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The aims of this course

My objectives in this course are to:

â Describe in outline a selection of the statistical modelling methods currently

employed in analysing small area disease rates (including a basic introduction to

Bayesian modelling and ‘Markov Chain Monte Carlo’ (MCMC) methods)

â Discuss software available to implement these modelling methods using a

number of illustrative case studies (including a short basic introduction to the use

of the public domain WinBUGS package for Bayesian modelling and links

between WinBUGS and the public domain statistical language R)

â Briefly discuss some spatio-temporal extensions to these models

â Provide references to more details about these methods and to extensions and

additional approaches
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The context of this course

â Before I embark on that agenda first note that my focus is only on modelling

disease data in the form of small area disease rates.

ß i.e. data on health events and related measures aggregated or averaged to the

level of census tracts or other kinds of administrative districts (e.g. counts of

cases and population at risk grouped in areas along with corresponding

socio-economic descriptors and exposure measures for these groups)

â I am not going to discuss modelling methods appropriate to case event data

ß i.e. data involving locations (usually residential) and covariate measures on

individual cases of a disease and of individual members of a suitable control

group
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The context of this course

â Area-level data on disease incidence remains more readily available than

case-event data. However, the latter is now increasingly becoming accessible and

many studies in spatial epidemiology may now be involved with either of these

data types and sometimes a mixture of both.

â However, there are important distinctions between the statistical modelling of area

data as opposed to that on individual cases and throughout this course we

confine ourselves solely to models for data at a group level within

geographical areas

â In doing so we must of course remain aware of the problems involved in

examining associations between disease incidence and risk factors measured on

groups (the so-called ecological fallacy)—we take this as ‘gospel’ throughout the

course
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The context of this course

â Second note that my focus will be on statistical methods and I fully

acknowledge spatial epidemiology involves much more than statistical models

(however sophisticated)

â It is a blend of essentially three factors:

ß An understanding of the relevant Epidemiology

ß Access to appropriate Data (good survey design included)

ß Suitable Analytical Tools — this includes not only statistical models and

methodology, but also ‘geoprocessing’ more widely (computer software, GIS,

algorithms etc.)

â So let me state from the outset that I appreciate that this course is about only part

of an overall process —statistics is easy, spatial epidemiology is hard.
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The context of this course

Finally note that we shall focus on two key areas in which statistical models have

proved useful in the analysis of area-level data on disease incidence:

â Disease Mapping — Describing the underlying geographical distribution and

pattern in a disease as part of general health surveillance (epidemics, increasing

rates, preliminary identification of unusual elevations in risk, etc.)

â Ecological (or correlation) Studies — investigation of the relationships between

disease incidence and corresponding group risk factors i.e. covariates (so as to

correct for confounding factors, or establish hypotheses to target further research

or prevention)

Division is convenient, but blurred in practice — disease mapping commonly involves

relationships with known risk factors for the disease and ecological models often

incorporate spatial and/or temporal ‘smoothing’ effects employed in disease mapping
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The context of this course

â We will not consider methods (many) and models (fewer) which have been

explicitly designed to address a third key area in the analysis of area-level disease

incidence—disease clustering

ß i.e. testing for significant space or/and time elevations in the risk of disease

(either unfocussed or focussed) around known suspected (putative) hazards

â There are a whole range of specialised hypothesis tests and related techniques in

this area and references are provided to follow these up

â However note that the two areas we intend to cover do indirectly relate to disease

clustering — good disease incidence maps often play an important preliminary

role in such studies and putative hazards are now sometimes usefully viewed as

particular kinds of covariate in models which are similar to those used in

correlation studies
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Some illustrative examples

Having set the scene for the course, it may be useful to briefly introduce three case

studies that we can use throughout to illustrate the methods discussed. These

concern:

â Leprosy surveillance in the period 1991-1995 in Olinda, N.E. Brazil.

â Incidence of larynx cancer diagnosed during 1982-1991, in the Mersey and West

Lancashire districts of N.W England.

â Leptospirosis incidence in the city of Rio de Janeiro, Brazil in the period

1997-2002.
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Leprosy surveillance in Olinda

â Olinda (as you know!) is a municipality of Pernambuco State in N.E. Brazil

comprising (in 1991 census) 241 census tracts with approx 350,000 inhabitants.

â Data involved are the incidence of new leprosy cases by census tract over the

period 1991-1995 (1135 cases in total) along with corresponding mid-period

(1993) population estimates in these tracts.

â A simple indicator of deprivation is also available — the proportion of heads of

household with monthly income below one minimum legal wage (approximately

US$80). Census tracts where this indicator is extremely high (in excess of 60%)

are primarily ’favelas’ where accurate case detection is notoriously difficult.
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Pernambuco State, Brazil



% households in Olinda (1993) with monthly income < minimum legal wage (≈ US$80)
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Larynx cancer incidence in Mersey and West Lancashire

â Data consist of 876 cases of larynx cancer diagnosed during 1982-1991, in 144

electoral wards of Mersey and West Lancashire in NW England.

â Also available are the expected numbers of cases in these wards calculated using

external standardisation based on national age- and sex-specific reference rates

and population counts from the 1991 census.

â In addition results of a survey in the Mersey and West Lancashire region which

included questions on smoking habits have been used to derive an area-level

smoking index for each district (‘low’, ‘medium’ or ‘high’ — i.e. a predominance of

non-smokers, moderate smokers or heavy smokers)

â Finally, a measure of air pollution is available in the form of annual mean levels of

particulates in each district estimated from a dispersion model based upon traffic

flow.
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SMRs of Larynx Cancer in in Mersey and West Lancashire 1982-1991
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Leptospirosis incidence in Rio de Janeiro

â Data comprise diagnosed cases of Leptospirosis by month and by year for the

period 1997-2002 (total of 367 cases) in 157 districts (Bairro) of the city of Rio de

Janeiro along with corresponding populations (2001 census)

â Information is also available on social deprivation in the districts including the

proportion of the population living in favelas, mean numbers of persons per house

and proportion of families with income of less than one minimum wage.

â Mean and maximum annual rainfall in the years 1997-2002 from 32 weather

stations dotted across the city provides some indication of the risk of floods in

each district.
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Satellite Image of Rio de Janeiro



Leptospirosis rates per 100,000 population 1997-2002
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Structure of the remainder of the course

â Will attempt to briefly review selected topics under following headings using the

three illustrative applications where appropriate and introducing computing ideas

‘as we go’:

0 Preliminaries — a tour of statistical/Bayesian modelling

0 Disease mapping

0 Ecological (correlation) studies

0 Further topics in ecological studies

0 Space-time models

0 Concluding remarks

â Time prevents much mathematical detail or anything like an exhaustive coverage.

List of selected references provided to help.



Structure of the remainder of the course

â Will attempt to briefly review selected topics under following headings using the

three illustrative applications where appropriate and introducing computing ideas

‘as we go’:

0 Preliminaries — a tour of statistical/Bayesian modelling

0 Disease mapping

0 Ecological (correlation) studies

0 Further topics in ecological studies

0 Space-time models

0 Concluding remarks

â Time prevents much mathematical detail or anything like an exhaustive coverage.

List of selected references provided to help.



Preliminaries — A tour of statistical modelling



A tour of statistical modelling

â Much of this course is about Bayesian spatial statistical models. Therefore start by

reviewing some statistical background to set the stage for the these models.

â Much of modern statistics (perhaps all of it!) is about modelling data

Data⇒ Trend+Error⇒ model⇒ Probability distribution for the data

â So a statistical model for data y = (y1, . . . , yn) consists of a joint probability

distribution for these data P (y)

â In practice the general form of the model will involve unknown parameters

θ = (θ1, . . . , θp). So it is actually a joint probability distribution for y which depends on

values for the parameters—P (y;θ). When viewed as a function of θ rather than y

P (y;θ) is known as the likelihood for the data

â Assuming the model form is well chosen (the ‘art’ of statistics) then the focus in statistical

modelling is to obtain good estimates for values of the associated parameters (the

‘science’ of statistics)
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A tour of statistical modelling

â The key general purpose conventional method used in estimating the parameters of a

statistical model is maximum likelihood

â The joint probability distribution P (y;θ) when viewed as a function of θ is known as the

likelihood because under the proposed form of the model it essentially represents ‘how

likely it is that you would get the particular data y that you observed, given specific values

for the parameters θ’ (although note it is not a probability distribution for θ)

â One way to find ‘good’ estimates for θ is to choose values θ̂ for θ that maximise the

likelihood P (y;θ) — i.e. use maximum likelihood estimates (mle)

â In general the accuracy of such estimates (i.e. their standard errors) may then be

assessed by ‘how peaked’ the likelihood is at the maximum — i.e. by a function of the

second derivative of the likelihood evaluated at the maximum (θ = θ̂). Hypothesis tests

may be performed by looking at likelihood ratios — ratio of maximised likelihood under

null hypothesis to maximised likelihood without it.
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A tour of statistical modelling

â If all this sounds a bit abstract, then rest assured that most of you have been

doing it for years!

ß The least squares estimates α̂ and β̂ of the intercept and slope parameters in

the simple regression model µ = α+ βx under the assumption that

y ∼ N(µ, σ2) (i.e. normally distributed errors) are in fact the maximum

likelihood likelihood estimates of these parameters

ß The residual sum of squares is closely related to the value of the likelihood at

the maximum

ß All the usual calculations for the standard errors of the regression coefficients,

t-tests, F-tests and the like, are essentially equivalent to the same quantities

derived from the general maximum likelihood approach.
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A tour of statistical modelling

â Let’s take a simple example (non-spatial) to clarify these ideas

â Suppose you want to know the incidence of a disease in the general population.

You take a random sample of n individuals, test each for the disease, and let y be

the number who test +ve.

â Let θ be the probability an individual has the disease, then the simplest model

(likelihood) for the data y is a binomial distribution: P (y; θ) =
(

n

y

)

θy(1− θ)n−y

â The log likelihood is therefore proportional to y log(θ) + (n− y) log(1− θ) and

differentiating with respect to θ and setting this derivative equal to zero (for a

maximum) gives:
y

θ̂
=

(n− y)

(1− θ̂)
or θ̂ =

y

n

â so the maximum likelihood estimate of theta is just the sample proportion who test

+ve (as you would expect!!)
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A tour of statistical modelling

â A simple (non spatial) model for counts of cases of a rare disease (aren’t they all!)

in n areas also serves as another illustration of the maximum likelihood idea.

â The most basic model is that observed counts of cases y = (y1, . . . , yn) are

Poisson distributed
(

P (yi) =
µ

yi
i
e−µi

yi!

)

with means µi = eiρi, where ei is the

‘expected’ number of cases (based on some global reference rate) and ρi is the

‘relative disease risk’ for observation (area) i.

â The ’expected’ cases are assumed known and taken as ei = rπi where r is an

known overall reference rate for the disease and πi is the population at risk for

each observation. Often this reference rate is stratified for known confounders,

such as age and sex i.e. ei =
∑

j rjπij (where j is age/sex etc. group)

â So the model can be summarised as: yi ∼ Poisson(eiρi) where ρi is the relative

disease risk for observation i compared to the chosen reference rate.
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A tour of statistical modelling

â Here the parameters of the model are θ = (ρ1, . . . , ρn) and the likelihood for

the data i.e. P (y;θ) or P (y1, . . . , yn; ρ1, . . . , ρn) is therefore:

n
∏

i=1

[

(eiρi)
yi

yi!
exp(−eiρi)

]

So the log likelihood is:
∑n

i=1 [yi (log ei + log ρi)− eiρi − log(yi!)]

â Differentiating wrt ρi and setting this derivative equal to zero (for a maximum)

gives: yi

ρi
− ei = 0 so the maximum likelihood estimate of ρi is: ρ̂i = yi

ei

i.e. the familiar standardised morbidity ratio (SMR) for the ith observation.

â Can then go on to show (using the second derivative of the likelihood) that

Var(ρ̂i) = ρi

ei
which may be estimated by ρ̂i

ei
or alternatively yi

e2
i

. (i.e. extreme

SMRs are subject to large standard errors)
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A tour of statistical modelling

â Maximum likelihood is fine as a general approach, but if the form of the likelihood

P (y;θ) is complex and/or the number of individual parameters involved in θ is

large then the approach may prove either very difficult or infeasible to implement

â If so then a Bayesian approach to parameter estimation may prove useful

â In the Bayesian approach we also think of the parameters as ‘random quantities’

(rather than fixed constants)

â The statistical model then becomes a joint probability distribution for both the

data and the parameters: P (y,θ) (the likelihood is now the conditional

distribution of y ‘given’ the parameter values – P (y|θ))
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A tour of Bayesian modelling

â Elementary probability theory then allows us to relate P (y,θ) to the likelihood:

P (y,θ) = P (y|θ)P (θ)

where P (θ) is called the prior probability distribution for the parameters. This

prior expresses our uncertainty about θ before taking the data into account.

It will usually be chosen to be ‘non-informative’.

â Bayes Theorem then allows derivation of a posterior probability distribution for

the parameters given the observed data:

P (θ|y) =
P (y|θ)P (θ)

P (y)
=

P (y|θ)P (θ)
∫

θ
P (y|θ)P (θ) dθ

i.e. ‘posterior’ is proportional to ‘likelihood’× ‘prior’ — the denominator is

just a normalising constant independent of the parameters (but unfortunately

difficult to calculate because it involves a ‘nasty’ multi-dimensional integral)
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â The posterior P (θ|y) expresses our uncertainty about θ after taking the data

into account.

â So any characteristics of interest concerning the parameters (e.g. mean, standard

deviation, mode, median, quantiles etc.) may be derived from the corresponding

characteristics of the posterior.

â For example an obvious choice of a point estimate, θ̂, for the parameter values is

the posterior mean of the parameters:

θ̂ = E [θ|y] =

∫

θ

θP (θ|y) dθ =

∫

θ
θP (y|θ)P (θ) dθ

∫

θ
P (y|θ)P (θ) dθ

â But it’s important to stress that Bayes gives us a full posterior distribution for θ

and thus allows us to examine any aspect of θ we choose and make associated

probability statements
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A tour of Bayesian modelling

â Let’s return to our earlier simple example to clarify these ideas.

â Recall we were estimating the incidence of a disease in the general population

from a random sample of n individuals, each of whom are tested for the disease,

and y is the number who test +ve.

â As before, let θ be probability an individual has the disease, then the likelihood for

y is a binomial distribution:

P (y|θ) =

(

n

y

)

θy(1− θ)n−y

â Suppose take a prior for θ as U(0, 1) i.e. P (θ) = 1 for 0 ≤ θ ≤ 1 (this says θ

equally likely to be anywhere in the (0, 1) range)
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â Then posterior is given by:

P (θ|y) =
P (y|θ)P (θ)

∫

θ
P (y|θ)P (θ) dθ

=

(

n

y

)

θy(1− θ)n−y

∫ 1

0

(

n

y

)

θy(1− θ)n−y dθ
=

(

n

y

)

θy(1− θ)n−y

1
(n+1)

â A reasonable point estimate for θ is the mean of the posterior i.e.

θ̂ = E [θ|y] =

∫ 1

0

θ(n+ 1)

(

n

y

)

θy(1− θ)n−y dθ =
y + 1

n+ 2

â Recall the mle estimate of θ was y

n
. For this prior that is the mode of the posterior

or MAP estimate (rather than the posterior mean). y

n
is actually the posterior

mean when prior is taken to be uniform for the log odds i.e. for log θ
1−θ

.

â Illustrates that prior choice can be tricky — which is most sensible estimate of θ?
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A tour of Bayesian modelling

â In summary the Bayesian modelling approach is:

ß Choose (joint) probability model (likelihood) for the data—P (y|θ)

ß Choose (joint) prior for the parameters—P (θ)

ß Derive the posterior P (θ|y)

ß Estimate any characteristic of interest involving one or more of the parameters

by the corresponding characteristic of the posterior. E.g the posterior mean for

a point estimate or the posterior standard deviation for a standard error.

â This is a very general and flexible approach to statistical modelling capable of

handling very complex modelling frameworks. Problem is that you have to be

able to integrate to find the posterior distribution in order to use the

method! So why is it any more useful than maximum likelihood?
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A tour of Bayesian modelling

â It’s true that until relatively recently the integrations involved in determining the

posterior have presented practical difficulties in Bayesian modelling, especially

when large numbers of parameters are involved.

â In many applications mathematical evaluation of the posterior is impossible

because of the multidimensional integration involved in determining the

normalising denominator

â But now the ‘engineering’ approach of Monte Carlo integration can be used.

â This evaluates any characteristic of the posterior by simulating many sample

values from it and then approximating any characteristic of it by the corresponding

characteristic of these samples. If samples are numerous and representative of

the posterior then they can provide virtually complete information about it.
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â For example suppose f(θ) is some function of the parameters of interest (e.g. a

prediction from the model)

â Let θ(1), . . . ,θ(n) where θ(i) = (θ
(i)
1 , . . . , θ

(i)
p ), denote n samples from the

posterior P (θ|y).

â Then if n is large enough:

f̂(θ) = E [f(θ)|y] ≈
1

n

n
∑

i=1

f(θ(i))
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A tour of Bayesian modelling

â That’s nice! But the problem is then how to simulate samples from the posterior?

Direct sampling from P (θ|y) is difficult (because you don’t know what it is!). But

indirect sampling from a Markov Chain (MC) with P (θ|y) as its stationary

(equilibrium) distribution is feasible.

â Sequence {θ(i)} is an MC if P (θ(i+1)|θ(1), . . . ,θ(i)) = P (θ(i+1)|θ(i)) i.e.

next value θ(i+1) depends only on current value θ(i) and not previous values.

Subject to certain conditions, MCs gradually ‘forget’ their initial value and

converge to a stationary distribution (overall probability of taking any value

remains same and this is independent of the original starting value). Subsequent

values of the chain are then samples from this stationary distribution

â Hence construct an MC with a stationary distribution identical to the posterior and

use values from that MC chain after a sufficiently long burn in as simulated

samples from the posterior. This is called Markov Chain Monte Carlo (MCMC)
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A tour of Bayesian modelling

â The reason that this is so useful in practice is because it is surprisingly easy to

construct a Markov Chain which has a given stationary distribution.

â This is achieved via the general Metropolis-Hastings algorithm.

â Furthermore this algorithm only requires the stationary distribution (in our case

the posterior P (θ|y)) to be specified up to the normalising constant—i.e. we just

need the product of the prior and the likelihood — no nasty integration required!

â Brooks (1998) or Gilks et al (1996) provide excellent accounts of MCMC

methodology
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Markov Chain Monte Carlo (MCMC) methods

â The Metropolis-Hastings algorithm constructs a Markov Chain to converge to the

target distribution by sampling a candidate for the next value of the chain from

a proposal distribution and then either accepting it or rejecting it according to a

acceptance probability which depends upon the proposal distribution, the target

distribution, the current state of the chain and the candidate value

â The proposal distribution can have any form subject to certain regularity

conditions. It will be chosen to be appropriate to the particular target distribution

required and so that it is easy to sample from
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Markov Chain Monte Carlo (MCMC) methods

â Given a target distribution, p(θ|y), the Metropolis-Hastings proceeds as follows:

ß Set i = 0 and choose arbitrary starting values θ(0) for θ

ß Sample a candidate, θ(∗), for the next state of the chain given the current state

θ(i) from a pre-selected proposal distribution, q(θ(∗)|θ(i))

ß Compute an acceptance probability

α
(

θ(i),θ(∗)
)

= min

{

1,
p(θ(∗)|y)q(θ(i)|θ(∗))

p(θ(i)|y)q(θ(∗)|θ(i))

}

(note target distribution appears only as a ratio, so unknown constant of

proportionality involved in p(θ|y) cancels)

ß Sample u such that u ∼ U(0, 1). If u ≤ α(θ(i),θ(∗)) then set

θ(i+1) = θ(∗), else set θ(i+1) = θ(i)

ß Set i = i+1 and return to step 2 for a new candidate (repeat 1000’s of times)
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A tour of Bayesian modelling

â In general, particular versions of the algorithm need to be ‘hand crafted’ to fit

different applications so as to obtain:

ß a good rate of convergence (short burn-in needed to achieve stationary

distribution)

ß and good rate of mixing (fast movement around the support of the stationary

distribution once it is achieved)

â But all this is generally easier than maximising the equivalent likelihoods and you

get a full distribution for the parameters from it, rather than just point estimates

and standard errors
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â One variant of the Metropolis-Hastings algorithm is Gibbs sampling. This is

convenient when conditional posterior distributions of each parameter given

values of all the others and the data are available

â Suppose θ = (θ1, . . . , θp) then in Gibbs sampling we:

ß Set i = 0 and choose arbitrary starting values (θ
(0)
1 , . . . , θ

(0)
p )

ß Sample θ
(i+1)
1 from P (θ1|θ

(i)
2 , . . . , θ

(i)
p ,y)

Sample θ
(i+1)
2 from P (θ2|θ

(i+1)
1 , θ
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Sample θ
(i+1)
p from P (θp|θ

(i+1)
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(i+1)
p−1 ,y)

ß Set i = i+ 1 and repeat the last step (do this many 1000’s of times)
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A tour of Bayesian modelling

â To do Gibbs sampling we need to be able to specify the full conditional posterior

distributions of each parameter given the values of the others and the data. That

is we need P (θj|θ1, . . . , θj−1, θj+1, . . . , θp,y)

â Turns out that these are relatively easy to work out for a wide range of commonly

used models, and this includes many spatial models, (see Gilks et al, 1993)

â We also need to be able to simulate observations from each of these distributions

and this again turns out to be relatively easy since each is one-dimensional and

often ‘log concave’. Which means that general techniques such as adaptive

rejection sampling can be used

â Hence Gibbs sampling is able to be used in a wide variety of Bayesian models. It

forms the basis of the MCMC method in the public domain WinBUGS package

(Bayesian Inference Using Gibbs Sampling) (see Spiegelhalter et al, 1997)



A tour of Bayesian modelling

â To do Gibbs sampling we need to be able to specify the full conditional posterior

distributions of each parameter given the values of the others and the data. That

is we need P (θj|θ1, . . . , θj−1, θj+1, . . . , θp,y)

â Turns out that these are relatively easy to work out for a wide range of commonly

used models, and this includes many spatial models, (see Gilks et al, 1993)

â We also need to be able to simulate observations from each of these distributions

and this again turns out to be relatively easy since each is one-dimensional and

often ‘log concave’. Which means that general techniques such as adaptive

rejection sampling can be used

â Hence Gibbs sampling is able to be used in a wide variety of Bayesian models. It

forms the basis of the MCMC method in the public domain WinBUGS package

(Bayesian Inference Using Gibbs Sampling) (see Spiegelhalter et al, 1997)



A tour of Bayesian modelling

â To do Gibbs sampling we need to be able to specify the full conditional posterior

distributions of each parameter given the values of the others and the data. That

is we need P (θj|θ1, . . . , θj−1, θj+1, . . . , θp,y)

â Turns out that these are relatively easy to work out for a wide range of commonly

used models, and this includes many spatial models, (see Gilks et al, 1993)

â We also need to be able to simulate observations from each of these distributions

and this again turns out to be relatively easy since each is one-dimensional and

often ‘log concave’. Which means that general techniques such as adaptive

rejection sampling can be used

â Hence Gibbs sampling is able to be used in a wide variety of Bayesian models. It

forms the basis of the MCMC method in the public domain WinBUGS package

(Bayesian Inference Using Gibbs Sampling) (see Spiegelhalter et al, 1997)



A tour of Bayesian modelling

â To do Gibbs sampling we need to be able to specify the full conditional posterior

distributions of each parameter given the values of the others and the data. That

is we need P (θj|θ1, . . . , θj−1, θj+1, . . . , θp,y)

â Turns out that these are relatively easy to work out for a wide range of commonly

used models, and this includes many spatial models, (see Gilks et al, 1993)

â We also need to be able to simulate observations from each of these distributions

and this again turns out to be relatively easy since each is one-dimensional and

often ‘log concave’. Which means that general techniques such as adaptive

rejection sampling can be used

â Hence Gibbs sampling is able to be used in a wide variety of Bayesian models. It

forms the basis of the MCMC method in the public domain WinBUGS package

(Bayesian Inference Using Gibbs Sampling) (see Spiegelhalter et al, 1997)



A tour of Bayesian modelling

â After sufficient ‘burn in’ successive samples θ(i) = (θ
(i)
1 , . . . , θ

(i)
p ) formed from

general Metropolis-Hastings or some variant such as Gibbs Sampling settle down

to samples from a markov chain with stationary distribution P (θ|y).

â Samples from marginal posteriors (e.g. P (θj |y)) are approximated by simply

picking out the values for one parameter from the samples ignoring the other

parameters.

â Characteristics concerning a parameter are then estimated from the marginal

posterior samples via their sample equivalents (e.g. mean, mode, median,

standard deviation, quantiles etc.)
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A tour of Bayesian modelling

â As said, important issues in MCMC to ensure good estimates are convergence

(‘burn-in’ required) and mixing (required number of samples after convergence)

â There are formal ways to assess convergence (see references) but essential point

is that samples for any parameter should be a random scatter about a stable

mean value. Note convergence is to a target distribution not to a single value.

Check convergence by several long runs and widely different starting values

(multiple chains). Statistics such as ‘R hat’ help to assess whether the chains

have converged (Rule of thumb: its value should be < 1.2 for each parameter)

â After convergence, sufficient samples required to ensure posterior variance is

estimated accurately. Again formal techniques exist (see references). A useful

statistic is the MC standard error for each parameter. Ideally want MC error

small in relation to posterior st. dev. (Rule of thumb: run simulation until MC error

for each parameter < 5% of sample (posterior) st. dev)
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A tour of Bayesian modelling

â Choice of suitable prior distributions in Bayesian modelling can be controversial

(see references).

â Conjugate priors are priors which lead to the posterior being in the same family

as the prior. These are useful, but unfortunately conjugate priors do not exist for

all likelihoods. MCMC methods make conjugacy less important.

â In some cases the prior for the basic model parameters P (θ) will itself involve

some additional parameters, γ, i.e. the prior may be of the form P (θ|γ). Then

we have a hierarchical model. Parameters of the prior are known as

hyperparameters.
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A tour of Bayesian modelling

â One beauty of the Bayesian framework is that it easily incorporates these extra

unknown quantities.

â We just extend the same game and specify a joint hyperprior P (γ) for the

hyperparameters γ and then use:

P (θ,γ|y) =
P (y|θ)P (θ|γ)P (γ)

P (y)
=

P (y|θ)P (θ|γ)P (γ)
∫

θ

∫

γ
P (y|θ)P (θ|γ)P (γ) dγ dθ

â Essentially the hyperparameters γ are treated on the same footing as the primary

parameters θ



A tour of Bayesian modelling

â One beauty of the Bayesian framework is that it easily incorporates these extra

unknown quantities.

â We just extend the same game and specify a joint hyperprior P (γ) for the

hyperparameters γ and then use:

P (θ,γ|y) =
P (y|θ)P (θ|γ)P (γ)

P (y)
=

P (y|θ)P (θ|γ)P (γ)
∫

θ

∫

γ
P (y|θ)P (θ|γ)P (γ) dγ dθ

â Essentially the hyperparameters γ are treated on the same footing as the primary

parameters θ



A tour of Bayesian modelling

â One beauty of the Bayesian framework is that it easily incorporates these extra

unknown quantities.

â We just extend the same game and specify a joint hyperprior P (γ) for the

hyperparameters γ and then use:

P (θ,γ|y) =
P (y|θ)P (θ|γ)P (γ)

P (y)
=

P (y|θ)P (θ|γ)P (γ)
∫

θ

∫

γ
P (y|θ)P (θ|γ)P (γ) dγ dθ

â Essentially the hyperparameters γ are treated on the same footing as the primary

parameters θ



A tour of Bayesian modelling

MCMC methods make Bayesian modelling of complex situations involving many

parameters a practical feasibility. Use is now widespread (non spatial as well as

spatial). In summary the full Bayesian MCMC approach is:

â Choose appropriate (joint) probability model (likelihood) for the data—P (y|θ)

â Choose appropriate (joint) prior for the parameters—P (θ|γ)

â Choose appropriate (joint) hyperprior for the hyperparameters—P (γ)

â Use MCMC (Gibbs Sampling or general Metropolis-Hastings) to generate

numerous samples (θ,γ)(i), i = 1, . . . , n from posterior P (θ,γ|y) using:

P (θ,γ|y) ∝ P (y|θ)P (θ|γ)P (γ)

â Estimate any characteristic of interest involving one or more of the parameters or

hyperparameters by the equivalent characteristic of the posterior samples
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A tour of Bayesian modelling

â Lets see all this in action on a very simple example. Cholesterol level (mg/ml) and

age (years) was measured for 24 patients diagnosed with hyperlipoproteinaemia

and resulted in the following scatter plot:

Cholesterol Level against Age
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â Sample correlation between age and cholesterol is strong (≈ 0.9) and a standard

linear regression model (indicated in the plot) results in the following model:

yi (Cholesterol level) = α (1.2799) + β (0.0526)× agei

with residual standard deviation σ equal to 0.334.
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A tour of Bayesian modelling

â In the notation we have been using, we can represent this as a Bayesian model

by taking the parameters as: θ = (α, β, σ) and the data y = (y1, . . . , y24) to

consist of independent observations with P (yi|θ) ∼ N(α+ βagei, σ
2) so that:

P (y|θ) =
24
∏

i=1

P (yi|θ)

â As priors for both α and β we use Normal distributions with zero means and large

variances.

â As a prior for σ2 we take τ = 1
σ2 (known as the precision) to have a Gamma

distribution with mean 1 and a large variance.

â These choices are pretty standard for this situation and represent minimally

informative priors. Note in this case the priors do not involve hyperparameters
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â As a prior for σ2 we take τ = 1
σ2 (known as the precision) to have a Gamma

distribution with mean 1 and a large variance.

â These choices are pretty standard for this situation and represent minimally

informative priors. Note in this case the priors do not involve hyperparameters
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A tour of Bayesian modelling

In WinBUGS we require the following specification:

Model
for(i in 1:N){

Y[i]∼ dnorm(mu[i], tau) # normal distribution for data, mean mu, precision tau

mu[i]← alpha + beta * age[i] # linear model for mean mu

}

alpha∼ dnorm(0, 1.0E-6) # diffuse normal prior for alpha

beta∼ dnorm(0, 1.0E-6) # diffuse normal prior for beta

tau∼ dgamma(.001, .001) # vague gamma prior for tau

sigma← 1/sqrt(tau) # st. deviation for Y derived from tau
Data

list(N = 24,Y = c(3.5,1.9,...,3.3),age = c(46, 20,...,50))

Initial values for the MCMC sampler

list(alpha = 0, beta = 0, tau = 1) +



A tour of Bayesian modelling

â Note that WinBUGS provides an interface to specify models via a directed graph

which indicates the nature of all quantities in the model and their dependencies.

In this case a suitable graphical model would be:

â Each of the nodes in the diagram can be edited to define the details of the

corresponding part of the model
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A tour of Bayesian modelling

â We can now run this model to generate samples from the posterior distribution

and collect summary statistics from those samples. WinBUGS itself derives the

conditional distributions required for the Gibbs Sampling from the dependency

structure specified in the model.

â In this case 10,000 samples with a ‘burn-in’ of 5000 values gave the following

(kernel density) estimates for the marginal posterior distributions of each

parameter:

P (α|y) P (β|y) P (σ|y)
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A tour of Bayesian modelling

â The corresponding summary statistics were:

posterior mean sd 2.5% median 97.5%
P (α|y) 1.27800 0.224300 0.83170 1.27900 1.73800
P (β|y) 0.05265 0.005406 0.04178 0.05259 0.06324
P (σ|y) 0.34600 0.055730 0.25660 0.33930 0.47360

â Results from the conventional regression were:

parameter estimate sd
α 1.279900 0.215700
β 0.052625 0.005192
σ 0.334000

â Note that changing the model from P (yi|θ) ∼ N(α+ βagei, σ
2) to one with a different

distributional assumption, or with a mean which is a non-linear function of the parameters

means that regression cannot be used (a GLM is then required). However, in the

Bayesian case it means a simple adjustment to the model specification the basic

approach remains unchanged.
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A tour of Bayesian modelling

â Note that good links have been developed between WinBUGS and the versatile

statistical software environment SPlus (and its many add on packages). These

links also exist for R— the public domain equivalent of SPlus.

â For example, R package R2WinBugs allows one to set up data and model

specification in R and then use this to call WinBUGS to do the MCMC sampling

and return the results to R for further analysis +

â Note also that WinBUGS includes an add on package known as GeoBUGS

which allows display of model results on maps imported by the user.

â There also exists a maptools package for R which allows for the importation of

maps from GIS software (such as ARC/INFO/ARC/View or MAPINFO) and the

plotting of such maps in conjunction with results from the R/WinBUGS interface.
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Disease Mapping

â Maps of disease incidence are useful for several purposes and production of

disease ‘atlases’ has a long tradition

ß Description of geographical distribution of disease

ß Hypothesis generation

ß Surveillance — to highlight areas at apparently high risk

ß Placing point source/cluster investigations in context

ß Aid to policy formation and resource allocation

â Methods are sought which produce a ‘clean’ map free of random noise and

effects produced by population size/age/sex variations or other well-known risk

factors (conceptual similarities to ‘filtering’ or ‘cleaning’ in image processing)
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Disease Mapping

â Recall our focus is purely on data in the form of aggregated measures of disease

incidence (rates in areas)

â Mapping of such data can be carried out at a variety of scales (International,

National, sub-National). The models we discuss are particularly important at the

sub-National or ‘small-area’ scale, where numbers of cases and risk populations

are relatively small and observed SMRs can be highly variable (recall variance of

SMRs ( yi

e2
i

) is high when risk populations or cases are small)

â Different models and approaches can be used (see references). I will focus here

on what has emerged as the ‘mainstream’—that based on a Poisson Generalised

Linear Mixed Model or (GLMM)

ß Generalised⇒ error distribution is other than Normal (Gaussian)

ß Mixed⇒ model contains both fixed and random effects (parameters)
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Basic Disease Mapping Model

â We have already introduced the basic model for observed counts yi i.e.:

yi ∼ Poisson(µi) = Poisson(eiρi)

where ei is the known ‘expected’ number of cases (based on some global

reference rates within suitable population strata) and ρi is the unknown relative

risk in area i compared to the chosen reference rates.

â Such a model is reasonable for a relatively rare and non-infectious disease with

assumed constant risk within each area× strata combination. Sometimes for

less rare conditions a Binomial formulation might be appropriate, but we focus on

the more common Poisson case here.

â Note the model for µi can be expressed equivalently as: log µi = log ei + θi

where θi denotes log relative risk (i.e. θi = log ρi or ρi = exp(θi)).
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Fixed effects model — SMRs

â Have already seen that if ρi are taken as fixed effects in this model then it is just

a standard Generalised Linear Model (GLM) and the mles ρ̂i are just the

traditional SMRs yi

ei
(ratio of observed to expected cases)

â But we have also noted that SMRs may be unreliable as estimates of relative risk

and thus naı̈ve use of SMRs in disease mapping can be misleading — SMR maps

are unstable due to low event counts or populations at risk, with small changes in

case numbers sometimes producing dramatic shifts in particular SMRs

â In devising models to counter this, one may envisage the total variability in the

observed rates or SMRs as having two components:

ß within area variation about the true underlying area rate (due to unmeasured

or unknown risk variations and/or data inaccuracies within the area)

ß between area variations in the true rates
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Random effects models for disease mapping

â In other words the data exhibit extra-Poisson variation or overdispersion

(because of the within area variation the variance in disease counts is greater

than that which would be expected from a Poisson distribution)

â One way to allow for overdispersion in the Poisson model is to take the ρi as

random effects.

â Treating these parameters as random (rather than fixed) effects introduces an

extra source of variability (a latent effect) into the model to capture the impact of

unknown or unobserved confounding factors

â Essentially they allow the estimate of relative risk for each area to ‘borrow

strength’ from data in other areas leading to a dampening or smoothing of the raw

SMRs (often referred to shrinkage)
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Poisson-Gamma Bayesian model for disease mapping

â With random effects we have a Poisson Generalised Linear Mixed Model

(GLMM) and one approach to fitting such a GLMM is to use a Bayesian

framework. Here the simplest Bayesian model is exchangeable priors for

ρi ∼ Gamma(ψ, φ) (i.e. mean is µρ = ψ

φ
and variance is σ2

ρ = ψ

φ2 )

â A Gamma prior combines conveniently with a Poisson likelihood to give a Gamma

posterior (it is conjugate to the Poisson) and it may be shown that:

P (ρi|y) ∼ Gamma(ψ + yi, φ+ ei). Thus the posterior mean (ρ̂i) is: (ψ+yi)
(φ+ei)

â Therefore in areas with abundant data the posterior mean (ρ̂i) is≈ yi

ei
(i.e. the

SMR) and in areas with sparse data the posterior mean (ρ̂i) is≈ ψ

φ
(i.e. µρ)

â So the relative risk estimates are ‘shrunk’ towards the global mean with the

amount of shrinkage depending upon the hyperparameters ψ and φ (or

equivalently µρ and σ2
ρ) which also have to be estimated as part of the model
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Poisson-Gamma Bayesian model for disease mapping

â To fit this model could use empirical Bayes which involves obtaining point

estimates for the hyperparameters ψ̂ and φ̂ from global aspects of the data and

then proceeding as if these quantities are known (see Clayton al, 1987)

â But better to use the full hierarchical Bayesian framework (we have the

technology!!) i.e. specify a hyperprior for ψ and for φ and then derive a full

posterior for these hyperparameters together with the relative risks

ρ = (ρ1, . . . , ρn) via use of MCMC applied to:

P (ρ, ψ, φ|y) ∝ P (y|ρ)P (ρ|ψ, φ)P (ψ)P (φ)

â In practice suitable hyperpriors for ψ and φ would be diffuse exponential

distributions



Poisson-Gamma Bayesian model for disease mapping

â To fit this model could use empirical Bayes which involves obtaining point

estimates for the hyperparameters ψ̂ and φ̂ from global aspects of the data and

then proceeding as if these quantities are known (see Clayton al, 1987)

â But better to use the full hierarchical Bayesian framework (we have the

technology!!) i.e. specify a hyperprior for ψ and for φ and then derive a full

posterior for these hyperparameters together with the relative risks

ρ = (ρ1, . . . , ρn) via use of MCMC applied to:

P (ρ, ψ, φ|y) ∝ P (y|ρ)P (ρ|ψ, φ)P (ψ)P (φ)

â In practice suitable hyperpriors for ψ and φ would be diffuse exponential

distributions



Poisson-Gamma Bayesian model for disease mapping

â To fit this model could use empirical Bayes which involves obtaining point

estimates for the hyperparameters ψ̂ and φ̂ from global aspects of the data and

then proceeding as if these quantities are known (see Clayton al, 1987)

â But better to use the full hierarchical Bayesian framework (we have the

technology!!) i.e. specify a hyperprior for ψ and for φ and then derive a full

posterior for these hyperparameters together with the relative risks

ρ = (ρ1, . . . , ρn) via use of MCMC applied to:

P (ρ, ψ, φ|y) ∝ P (y|ρ)P (ρ|ψ, φ)P (ψ)P (φ)

â In practice suitable hyperpriors for ψ and φ would be diffuse exponential

distributions



Poisson-Gamma model for Larynx Cancer in Mersey and West Lancashire

The relevant WinBUGS model is:

for (i in 1 : N) {

y[i]∼ dpois(mu[i]) # Poisson observed counts

mu[i]← e[i]*rho[i] # model for Poisson mean

rho[i]∼ dgamma(psi,phi) # exchangeable prior for relative risks

}

psi∼ dexp(0.1) # diffuse exponential hyperprior for psi

phi∼ dexp(0.1) # diffuse exponential hyperprior for phi

mu.rho← psi/phi # mean of prior for relative risks

sigma.rho← psi/pow(phi,2) # variance of prior for relative risks

As initial values we might take ψ = 0.1, φ = 0.1 and ρi = 1, i = 1, . . . , n. +
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Poisson-Log Normal Bayesian model for disease mapping

â A Gamma prior for ρi is mathematically convenient, but may be restrictive:

ß Covariate adjustment is difficult (i.e. ecological (correlation) studies)

ß Not easy to relax the independence of the ρi — risks in nearby areas may be

spatially correlated (particularly if geographical trends or clusters in risk exist)

â In practice a hierarchical Poisson-log normal formulation is more flexible i.e.:

yi ∼ Poisson(µi) = Poisson(eiρi)

log µi = log ei + log ρi = log ei + θi
θi ∼ Normal(µθ, σ

2
θ)

(so θi are exchangeable and relative risks are now ρi = exp(θi))

â Typical ‘non informative’ hyperpriors are a diffuse Normal distribution (zero mean

large variance) for µθ and a diffuse Gamma for the precision τθ = 1/σ2
θ .
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â Typical ‘non informative’ hyperpriors are a diffuse Normal distribution (zero mean

large variance) for µθ and a diffuse Gamma for the precision τθ = 1/σ2
θ .



Poisson-Log Normal model for Larynx Cancer in Mersey and West Lancashire

The relevant WinBUGS model is:

for (i in 1 : N) {

y[i]∼ dpois(mu[i]) # Poisson observed counts

log(mu[i])← log(e[i]) + theta[i] # model Poisson mean

theta[i]∼dnorm(mu.theta, tau.theta) # exchangeable prior logRR

rho[i]←exp(theta[i]) # modelled relative risks

}

mu.theta∼dnorm(0,1.0E-6) # normal hyperprior for mu.theta

tau.theta∼dgamma(0.5, 0.0005) # gamma hyperprior for tau.theta

sigma.theta←sqrt(1/tau.theta) # st dev derived from tau.theta

As initial values we might take µθ = 0, τθ = 1 and θi = 0, for i = 1, . . . , n. +
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Model extensions for spatial structure

â The model considered so far allows for overdispersion in the Poisson distribution

of counts yi (via the random effects) but it does not allow for explicit spatial

dependence between the yi. This may also be present (e.g. arising through

lesser variability of rates in neighbouring densely populated urban areas as

opposed to sparsely populated rural areas, or an infectious aetiology)

â Can include such dependence by splitting random effect θi in the Poisson-log

normal model into a spatially unstructured and a spatially structured term

â θi is replaced by α+ φi + νi where α is the mean log relative risk over all areas

(i.e. our earlier µθ), φi a zero mean spatially unstructured (or exchangeable) log

relative risk of area i compared to the map as a whole, and νi is corresponding

spatially structured (non-exchangeable) random effect.

â This model is often termed a convolution model
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Model extensions for spatial structure

â A typical choice for the spatially structured prior for νi is a conditional intrinsic

Gaussian autoregressive model (CAR) (see Besag et al, 1995) i.e.:

νi|νj 6=i ∼ N

(

∑

j 6=iwijνj
∑

j 6=iwij
,

σ2
ν

∑

j 6=iwij

)

here wij are suitable adjacency weights for the areas and the new

hyperparameter σν controls the strength of local spatial dependence.

â Often wij are taken as simple binary values—wij = 1 if area i has common

boundary with area j, wij = 0 otherwise.

â Similar to before, the prior for φi is φi ∼ N(0, σ2
φ). The prior for α is now taken

as α ∼ U(−∞,+∞) to allow for the fact that the CAR is improper (has

undefined mean) and so a ‘sum to zero’ constraint needs to applied to the νi.
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Model extensions for spatial structure

â So the full hierarchical model is now:

yi ∼ Poisson(µi) = Poisson(eiρi)

log µi = log ei + log ρi = log ei + α+ φi + νi
α ∼ U(−∞,+∞)

φi ∼ Normal(0, σ2
φ)

νi ∼ CAR(σ2
ν)

â To complete the specification diffuse gamma hyperpriors are assumed for

precisions corresponding to both hyperparameters i.e. for τφ = 1/σ2
φ and for

τν = 1/σ2
ν
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Spatially structured Poisson-Log Normal model: Larynx Cancer in Mersey & W Lancashire

â The relevant WinBUGS model is:
for (i in 1 : N) {

y[i] ˜ dpois(mu[i]) # Poisson likelihood for observed counts

log(mu[i]) <- log(e[i])+alpha+phi[i]+nu[i] # model for Poisson mean

phi[i] ˜ dnorm(0, tau.phi) # normal prior for spatially unstructured effects

rho[i] <- exp(alpha+phi[i]+nu[i]) # R Risks compared to reference rate

rholocal[i] <- exp(phi[i]+nu[i]) # R Risks compared to overall risk in study area

Phigh[i] <- step(rholocal[i] - 1.5) # Prob that local rholocal[i] > 1.5 (note how easy this is!)

}

nu[1:N] ˜ car.normal(adj[],weights[],num[],tau.nu) #CAR prior for spatially structured effects

alpha ˜ dflat() # uniform prior for mean log relative risk

tau.phi ˜ dgamma(0.5, 0.0005) # diffuse gamma hyperprior for tau.phi

tau.nu ˜ dgamma(0.5, 0.0005) # diffuse gamma hyperprior for tau.nu

sigma.phi <- sqrt(1/tau.phi) # st dev of prior for spatially unstructured effects

sigma.nu <- sqrt(1/tau.nu) # st dev of prior for spatially structured effects

â Initial values take: α = 0, τφ = τν = 1, and φi = νi = 0, i = 1, . . . , n. +

ë
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Ecological (correlation) studies



Ecological (correlation) studies

â Refers to investigations where the focus is on examining associations between

disease incidence and risk factors measured on groups (we have already

mentioned the so-called ecological fallacy)

â As usual there are various approaches (see references). But we focus on

extensions to the Bayesian hierarchical models we employed in disease mapping

â Following the basic model development we then consider a number of further

issues concerned with such models and their interpretation, for example the

handling of censored values and missing values, predictive distributions and

correction for specification bias and measurement error
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Bayesian Ecological Models

â We use a straightforward extension of the disease mapping model discussed

earlier to include p covariates (xi1 . . . , xip) measured in each area i i.e.

yi ∼ Poisson(µi) = Poisson(eiρi) with:

log µi = log ei + α+

p
∑

j=1

βjxij + φi + νi

note overall relative risks are now ρi = exp(α+
∑

j βjxij + φi + νi) and

exp(α+φi+ νi) is the residual relative risk after ‘correcting’ for the covariates.

â Priors and hyperpriors relating to φi, νi and α are as before. Non-informative

Normal priors (zero mean large variances) are adopted for β = (β1, . . . , βp).

â Then use MCMC to obtain samples from P (α,β,φ,ν, τφ, τν |y) where

hyperparameters τφ = 1/σ2
φ and τν = 1/σ2

ν again refer to the precisions of the

priors for spatially unstructured and spatially structured random effects φi and νi.
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Prostate cancer mortality in Spanish provinces

â As an example consider a study on relationship of prostate cancer mortality in

Spanish provinces to nitrate concentrations in drinking water

â model used was: log µi = log pi + α+ β1xi1 + β2xi2 + φi + νi where in area

i: pi is population, xi1 is proportion of population over 40 and xi2 is nitrate

concentration in drinking water. Note that here the direct standardisation term

log(ei) has been dropped in favour of an indirect standardisation—i.e. relevant

age/sex specific population measures are included amongst the covariates

â Results showed the posterior credible interval for β2 did not contain zero in the

absence of the νi term, but when this term is present in the model then the β2

posterior credible interval did contain zero

â There is therefore no clear evidence of the nitrate effect, but it cannot be entirely

ruled out. Remember —absence of evidence is not evidence of absence
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Bayesian Ecological Models

â The preceding model allows for differences in areas through a combination of

unstructured and spatially structured random effects, but the nature of the relationships

between relative risk and the ecological covariates is assumed homogeneous over the

study region—there is no local variation in β

â An alternative perspective on spatial heterogeneity is to allow non constant covariate

coefficients over the study region i.e. allow β to be area specific. In the case of a single

covariate, xi, a suitable model might be:

log µi = log ei + α+ βixi + φi + νi

with exchangeable priors βi ∼ Normal(µβ , σ
2
β), i = 1, . . . , n and other priors as

before. Here µβ represents the average relationship with xi over the region

â Note identifiability may be a problem in such a model (inability to uniquely distinguish

between certain parameters because an exactly identical set of outcomes can arise from

more than one set of parameter values). Some parameter constraints may be needed.
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Bayesian Ecological Models

â If the area specific relationships in the previous model are expected to be

differentiated in a spatially distinct pattern (i.e. similar relationships are spatially

clustered) then we can use a model such as:

log µi = log ei + α+ βxi + βixi + φi + νi

with the βi assumed to be spatially dependent i.e. non-exchangeable priors

βi ∼ CAR(σ2
β), i = 1, . . . , n.

â The βxi term (with prior as β ∼ U(−∞,+∞)) is included in the model to

represent the overall global relationship since the CAR is improper and a sum to

zero constraint will need to be imposed on βi. The βi therefore now represent

deviations from the overall relationship.
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Bayesian Ecological Models

â Clearly identifiability problems are compounded with such a model and further

issues arise relating to potential confounding between the spatially dependent

area-specific coefficients βi and the spatially dependent random effects νi.

â For these reasons alternative less direct formulations have been suggested which

avoid the CAR and instead incorporate a multivariate set of underlying

unstructured random effects which induce spatial dependence in the βi and the

νi by being linked to them via scaled adjacency weighting systems (see Congdon,

2003; Leyland et al, 2000).

â Such an approach is particularly useful when models involving area-specific

coefficients for more than one explanatory variable need to be considered, since

the CAR formulation is difficult to extend to this case.
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Bayesian Ecological Models

â The spatial expansion model and geographically weighted regression

(GWR) represent examples of an entirely different (non Bayesian) approach to

estimating area specific covariate coefficients

â Rather than use a single model, such approaches instead reuse the data n times,

with the ith regression being considered to be ‘centred’ on the ith area.

â For example, GWR essentially consists of performing n weighted regressions,

with the ith of these being ‘centred’ on the ith area and using weights on data

points inversely proportional to their distance from i (see Brunsdon et al, 1998).

For more details of the spatial expansion model (see Casetti, 1992)

â Note that the terminology ‘geographically weighted regression’ is sometimes now

used to refer generally to any spatial regression model with area-specific covariate

coefficients and not just the Brunsdon method from which the name originated
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Leprosy surveillance in Olinda (Brazil) 1991-1995

â As a more extended example of the use of Bayesian ecological models let us

consider application of the basic model (with non area specific covariate

coefficients) to the data on leprosy incidence from Olinda in Brazil. This example

will also allow us to explore how our previous Bayesian models can be extended

to handle censored (and missing) data values

â There is a priori reason to believe that numbers of leprosy cases will be higher in

the poorer and more socially deprived areas. To allow for this we include a single

covariate xi in the model — the proportion of heads of household with monthly

income below one minimum legal wage (approximately US$80).

â Expected cases ei in each area are derived from the population at risk and the

global leprosy detection rate over the whole study area

â In the CAR definition, wij are taken as the standard binary adjacency weights.



Leprosy surveillance in Olinda (Brazil) 1991-1995

â As a more extended example of the use of Bayesian ecological models let us

consider application of the basic model (with non area specific covariate

coefficients) to the data on leprosy incidence from Olinda in Brazil. This example

will also allow us to explore how our previous Bayesian models can be extended

to handle censored (and missing) data values

â There is a priori reason to believe that numbers of leprosy cases will be higher in

the poorer and more socially deprived areas. To allow for this we include a single

covariate xi in the model — the proportion of heads of household with monthly

income below one minimum legal wage (approximately US$80).

â Expected cases ei in each area are derived from the population at risk and the

global leprosy detection rate over the whole study area

â In the CAR definition, wij are taken as the standard binary adjacency weights.



Leprosy surveillance in Olinda (Brazil) 1991-1995

â As a more extended example of the use of Bayesian ecological models let us

consider application of the basic model (with non area specific covariate

coefficients) to the data on leprosy incidence from Olinda in Brazil. This example

will also allow us to explore how our previous Bayesian models can be extended

to handle censored (and missing) data values
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Leprosy surveillance in Olinda 1991-1995

The relevant WinBUGS model is:
for (i in 1 : N) {

y[i]∼ dpois(mu[i]) # Poisson counts
log(mu[i])← log(e[i]) + alpha + beta * x[i] + phi[i] + nu[i] # model for mean
phi[i]∼ dnorm(0.0, tau.phi) # prior for phi
rho[i]← exp(alpha+beta*x[i]+phi[i]+nu[i]) # Leprosy relative risks
}

nu[1:N]∼ car.normal(adj[], weights[], num[], tau.nu) # CAR prior for nu
alpha∼ dflat() # prior for alpha
beta∼ dnorm(0.0, 1.0E-5) # prior for beta
tau.phi∼ dgamma(1.0E-3, 1.0E-3) # hyperprior for tau.phi
tau.nu∼ dgamma(1.0E-3, 1.0E-3) # hyperprior for tau.nu
sigma.phi← 1 / sqrt(tau.phi) # st dev of prior for unstructured rand effects
sigma.nu← 1 / sqrt(tau.nu) # st dev of prior for structured rand effects

As initial values we take α = β = 0, τφ = τν = 1, and φi = νi = 0, i = 1, . . . , n.

+
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Leprosy surveillance in Olinda 1991-1995

â MCMC (10,000 samples with ‘burn in’ of 5000 and thinning of 10) provides

following posterior mean estimates for a selection of the parameters

Model α̂ β̂
mean 95% cred int mean 95% cred int

1991-1995 std. -0.5 (-0.6, -0.2) 0.4 (0.1, 1.2)

Model σ̂φ σ̂ν
mean sd mean sd

1991-1995 std. 0.4 0.1 1.0 0.2



Olinda deprivation (left) and leprosy relative risk estimated from ‘standard’ model (right)
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Leprosy surveillance in Olinda 1991-1995

â Could be some problems with this analysis

ß A number of areas exhibit contrasting and counter intuitive extremes of high

deprivation scores combined with low relative risk of leprosy.

ß The estimate of β is not convincingly different from zero, a result which is

surprising given strong a priori reasons for the belief that leprosy rates will be

higher in the more socio-economically deprived areas.

â These observations suggest some differences in the quality of data from area to

area. It could be that there is significant under-detection of cases in the poorer

areas during the period 1991-1995.



Leprosy surveillance in Olinda 1991-1995

â Could be some problems with this analysis

ß A number of areas exhibit contrasting and counter intuitive extremes of high

deprivation scores combined with low relative risk of leprosy.

ß The estimate of β is not convincingly different from zero, a result which is

surprising given strong a priori reasons for the belief that leprosy rates will be

higher in the more socio-economically deprived areas.

â These observations suggest some differences in the quality of data from area to

area. It could be that there is significant under-detection of cases in the poorer

areas during the period 1991-1995.



Leprosy surveillance in Olinda 1991-1995

â Could be some problems with this analysis

ß A number of areas exhibit contrasting and counter intuitive extremes of high

deprivation scores combined with low relative risk of leprosy.

ß The estimate of β is not convincingly different from zero, a result which is

surprising given strong a priori reasons for the belief that leprosy rates will be

higher in the more socio-economically deprived areas.

â These observations suggest some differences in the quality of data from area to

area. It could be that there is significant under-detection of cases in the poorer

areas during the period 1991-1995.



Leprosy Detection Rates between 1991 and 2000

This suspicion is confirmed by also looking at more recent detection rates in the

period 1996-2000.
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There was a significant extension of the coverage and efficacy of the control

programme in 1995 and so the subsequent period should more accurately reflect the

true picture regarding numbers of cases
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Leprosy detection rates versus deprivation index in the two periods with
superimposed non parametric smoothed line
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Censored model for Leprosy in Olinda (Brazil) 1991-1995

â One way to handle possible under-detection is to treat number of cases in the

1991-1995 data as censored in certain areas and use the corresponding

observed counts as lower bounds for the true disease counts

â The dividing line between reliable and unreliable disease counts might perhaps

best be left to experience with the surveillance system and local researchers

suggest that the number of leprosy cases in the 1991-1995 period should be

treated as suspect where over 60% of population receive an income of less than

one minimum wage (consistent with the observed “flattening” of increase in log

relative risk with deprivation score which is observed in the 1991-1995 period)

â Some 16% of the areas in the study region fall into the suspect category under

this assumption. and some of the poorest of these contain examples of ‘favelas’
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Censored model for Leprosy in Olinda 1991-1995

â Using this 60% cut-off as a working assumption (could obviously experiment with

alternatives) we then have a need for a model that can incorporate censoring and this

provides an example of how relatively straightforward it is to handle censored values in

the Bayesian framework more generally

â The basic model for the leprosy counts remains the same, but now data is:

(y,y∗) = (y1, . . . , ym, y
∗
m+1, . . . , y

∗
n), where y∗i refer to the censored data values in

the areas where the deprivation indicator exceeds 60% (for convenience we reorder the

data by deprivation score).

â So now likelihood is: P (y1, . . . , ym|θ)P (Ym+1 ≥ y
∗
m+1, . . . , Yn ≥ y

∗
n|θ)

rather than simply P (y1, . . . , yn|θ) as before

â MCMC then provides posterior: P (θ, ym+1, . . . , yn|y,y
∗) i.e. the joint distribution of

the parameter set in the model θ together with estimates for the n−m censored values

given the m exactly observed data values y and the n−m censoring points y∗
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Leprosy surveillance in Olinda 1991-1995

The relevant WinBUGS model for the censored case is:

for (i in 1 : N) {

y[i]∼ dpois(mu[i])I(cens[i],)

phi[1]∼ dnorm(0.0, tau.phi)

log(mu[i])← log(e[i]) + alpha + beta * x[i] + phi[i] + nu[i]

rho[i]← exp(alpha+beta*x[i]+phi[i]+nu[i])

}

etc ... as before for other distributions

yi now contains missing values for censored observations (i.e. where xi ≥ 0.6)

whereas ‘cens[i]’ is set to zero for real observations and to the counts observed for the

censored observations.

Initial values are as before and in addition censored values of yi are initialised to the

observed counts at the censored observations (or just above) +
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Results for standard model versus censoring for leprosy in Olinda

Model α̂ β̂
mean 90% cred int mean 90% cred int

1991-1995 std. -0.5 (-0.6, -0.2) 0.4 (-0.1, 1.2)
1991-1995 cens. -0.9 (-1.2, -0.6) 1.9 (1.1, 2.7)

Model σ̂φ σ̂ν
mean sd mean sd

1991-1995 std. 0.4 0.1 1.0 0.2
1991-1995 cens. 0.5 0.1 0.9 0.2



Modelled leprosy relative risks standard (left) and censored (right)
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Leprosy surveillance in Olinda 1991-1995

â Treatment of the suspected under-detections via censoring would appear to have been

relatively successful in producing more realistic estimates of true cases in the poorer

areas. The estimated total of 1991-1995 cases is now 1590, as opposed to 1135

observed and predicted from non-censored model— more similar to the 1,766 cases

actually detected in 1996-2000.

â Model can be used to estimate number of under-detections in each area. If such

under-detection estimates had been available in 1995 then improved surveillance could

have been targeted in areas where particularly bad under-detection had occurred with

knowledge of the suspected numbers of missed detections in those areas

â Example illustrates how the statistical modelling of disease rates can directly lead to the

identification of valuable public health responsive action. Application discussed concerns

leprosy control, but the methods may equally well be applied in surveillance of other

diseases where under-reporting of cases is a potential problem.
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Handling missing data values

â Also worth noting at this point that missing data values (as opposed to censored

values) are also very simply handled in the Bayesian framework

â The data vector is then (y,y(∗)) = (y1, . . . , ym, y
(∗)
m+1, . . . , y

(∗)
n ), where the yi

refer to actual data values and the y
(∗)
i refer to missing data values (for

convenience we assume the data are ordered accordingly)

â The model (i.e. likelihood, priors, hyperpriors) remains the same but now MCMC

provides samples from p(θ,y(∗)|y) – the joint posterior distribution of the set of

real parameters in the model θ together with the n−m missing values y(∗),

given the m actual observed data values y

â Point estimates, standard errors etc. for any particular missing values are then

obtained from the marginal posterior distribution for this quantity, in exactly the

same way as they would be for any other parameter of the model
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Adjusting Larynx Cancer risk in Mersey & West Lancashire for smoking

â A further example of using an ecological model is provided by returning to the

larynx cancer data and recalling that we have a three level indicator for the

prevalence of smoking in each of these districts (1=‘low’, 2=’moderate’, 3= ’high’).

We now incorporate this categorical factor into the earlier spatially structured

Poisson-log normal model.

â The resulting WinBUGS model can also be extended to predict the excess

number of cases associated with smoking in any particular area and the

probability that reducing smoking levels to 1 in that area will lead to reduction of

more than 15 cases. This requires the use of the idea of a Bayesian predictive

distribution.
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Bayesian predictive distributions

â Suppose that the original data consists of observations y associated with p

covariates X = (x1, . . . ,xp) in a Bayesian model that involves a set of

parameters θ

â Further suppose that we wish to predict the response y∗ at a new set of covariate

values (x∗1, . . . , x
∗
p). Then the relevant predictive distribution is defined as:

P [y∗|(x∗1, . . . , x
∗
p),y,X] =

∫

θ

P [y∗|(x∗1, . . . , x
∗
p),θ]P [θ|y,X ] dθ

â i.e. the predictive distribution averages over the uncertainty in the parameter

values as reflected by the posterior distribution

â In fact we have already used this idea in predicting the values of censored in the

Olinda example and in our discussion of handling missing data values
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Adjusting Larynx Cancer risk for smoking

â The relevant WinBUGS model (focussing on area 53 for predictive purposes) is:
for (i in 1 : N) {

y[i] ˜ dpois(mu[i]) # Poisson likelihood for observed counts

log(mu[i]) <- log(e[i])+alpha+beta[smoke[i]]+phi[i]+nu[i] # model for Poisson mean

phi[i] ˜ dnorm(0, tau.phi) # normal prior for spatially unstructured effects

rho[i] <- exp(alpha+beta[smoke[i]]+phi[i]+nu[i]) # RRs compared to reference rate

rholocaladj[i] <- exp(phi[i]+nu[i]) # RRs compared to overall risk in study area

# after adjusting for smoking

}

nu[1:N] ˜ car.normal(adj[],weights[],num[],tau.nu) # CAR prior for spatially structured effects

alpha ˜ dflat() # locally uniform prior for mean log relative risk

beta[1] <- 0 # set level 1 of smoking to be the reference category

beta[2] ˜ dnorm(0, 0.0001) # diffuse normal prior for beta[2]

beta[3] ˜ dnorm(0, 0.0001) # diffuse normal prior for beta[3]

tau.phi ˜ dgamma(0.5, 0.0005) # diffuse gamma hyperprior for tau.phi

tau.nu ˜ dgamma(0.5, 0.0005) # diffuse gamma hyperprior for tau.nu

sigma.phi <- sqrt(1/tau.phi) # st dev of prior for spatially unstructured effects

sigma.nu <- sqrt(1/tau.nu) # st dev of prior for spatially structured effects

mu.pred53 <- exp(e[53]+alpha+beta[1]+phi[53]+nu[53]) # predict mean in 53 with smoking level 1

y.pred53 ˜ dpois(mu.pred53) # predict individual value in 53 with smoking level 1

y.diff53 <- y[53] - y.pred53 # predict reduction in cases in 53 if no smoking

P.diff53 <- step(y.diff53-15) # predict probability reduction > 15 cases

+
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Further topics in ecological studies

â It is often acknowledged that case-control studies are the ‘gold standard’ in

studying the relationship between disease and risk factors. But at the same time it

is admitted that these usually require the collection of new data, they are

expensive and time-consuming and there are problems of selection and other

biases

â So aggregate level (‘ecological’) studies with suitable models should not be

dismissed:

ß data involved are cheap and widely available

ß range of exposure to risk factors in populations concerned is potentially larger

than in studies on individuals

ß exposure measurement errors are typically dampened by averaging over areas
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Further topics in ecological studies

But one should always appreciate the potential problems and biases associated with

aggregate level studies:

â Problems of spatial scale—typically the health, exposure and population data are

obtained from different sources and this can lead to problems of imprecise

geographical matching and data aggregation. The choice of aggregation unit

needs to trade off between data precision, the ability to detect localised patterns

of risk and the scale over which an environmental risk factor may be expected to

operate.

â Problems of confounding—an omitted variable which is related to both the

disease and to some of the included risk factors. E.g. area-level socio-deprivation

is strongly correlated with many diseases, but it also coincides with such things as

industrial sites, busy roads and smoking.
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Further topics in ecological studies

Hypothetical result of not accounting for regional smoking differences in studying

relationship of lung cancer to indoor radon exposure at an aggregate level
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Further topics in ecological studies

â Problems of specification bias—the difference between individual and group

level relationships between disease incidence and risk caused by non-constant

exposure to risk within the group

ß For example, suppose that we are considering a single risk factor and that at

the individual level the relative risk of contracting a disease given a level of

exposure x is exp(α+ βx) (i.e. a log-linear relationship as in the ecological

models we have considered)

ß Then the relationship between group relative risk and mean exposure (µx) at

an area-level will not be exp(α+ βµx) unless the exposure of all individuals

in the area is the same (i.e. all have exposure µx)

ß Instead this relationship will be a weighted average of the function

exp(α+ βx) over values of x with the weights reflecting the probabilities of

individuals within the region receiving exposure levels x
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Specification bias in ecological studies

â A simple case is when the within area probability distribution of individual levels of

exposure is N(µx, σ
2
x)

â Then it may be shown that the area-level relationship is actually

exp(α+ βµx + β2 σ
2
x

2
).

â The key general point is that to adjust for specification bias, we need information

on the within-area distribution of exposure — say from a small random sample of

individuals within each area.

â For two or more exposures we would need information on the joint exposure

distribution within areas.
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Adjusting for specification bias in ecological studies

E.g. For a single covariate and given a sub-sample of the exposures of M individuals

in each of the N areas a relevant WinBUGS model might be something like:

for (i in 1 : N) {
y[i]∼ dpois(mu[i]) # observed counts
log(mu[i])←log(e[i])+alpha+beta*mu.x[i]+pow(beta,2)*sigmasq.x[i]/2 # mean model
for (j in 1 : M) {

x[i,j]∼ dnorm(mu.x[i],tau.x[i]) # exposure sub-sample
}
mu.x[i]∼ dnorm(0, 1.0E-6) # mean area-level exposure
tau.x[i]∼ dgamma(.01,.01) # precision area-level exposure
sigmasq.x[i]← 1/tau.x[i] # area-level exposure variance
}
alpha∼ dnorm(0, 1.0E-6) # prior for alpha
beta∼ dnorm(0, 1.0E-6) # prior for beta

where, for simplicity of presentation we have ignored the random effect terms that

would usually be additionally included



Other issues in ecological studies

â Finally, we should comment on problems of data errors—these could arise in

recording of health events, in demographic variables or from measurement errors

related to exposure.

â The latter involves several possible sources of error including:

ß equating environmental (external) exposure with biological (internal dose)

ß equating current exposure with past exposure

ß equating modelled estimates with true exposure

ß equating average exposure for an area with individual exposure

â Some of these exposure measurement problems may be addressed by various

forms of errors-in-variables modelling.
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Errors-in-variables modelling

â One of the simplest forms of errors-in-variables modelling concerns classical

measurement error where observed values of exposure are assumed to vary

about the true measurement

â If present and not allowed for then such measurement error can result in

attenuation effects when estimating model parameters

â Commonly such attenuation leads to covariate coefficient estimates being biased

(usually towards the null) and sampling error in the response being

overestimated.



Errors-in-variables modelling

â One of the simplest forms of errors-in-variables modelling concerns classical

measurement error where observed values of exposure are assumed to vary

about the true measurement

â If present and not allowed for then such measurement error can result in

attenuation effects when estimating model parameters

â Commonly such attenuation leads to covariate coefficient estimates being biased

(usually towards the null) and sampling error in the response being

overestimated.



Errors-in-variables modelling

â One of the simplest forms of errors-in-variables modelling concerns classical

measurement error where observed values of exposure are assumed to vary

about the true measurement

â If present and not allowed for then such measurement error can result in

attenuation effects when estimating model parameters

â Commonly such attenuation leads to covariate coefficient estimates being biased

(usually towards the null) and sampling error in the response being

overestimated.



Errors-in-variables modelling

â For continuous exposures classical measurement error is often described by

the reliability coefficient:

ρ =
σ2
true

σ2
true + σ2

err

where σ2
true is the variance of the true exposure and σ2

err reflects the variance of

measurement errors.

â The average size of errors for categorical exposures can be described by a

matrix of misclassification probabilities pjk, where pjk is the conditional

probability that a subject is classified as level k given that they are truly exposed

to level j

â Given information on these quantities the ecological models that we have

described can be adjusted to allow for measurement errors in the explanatory

variables
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Adjusting Larynx Cancer risk for air pollution

â In a previous model we adjusted the risk of larynx cancer according to a three

level smoking factor. We now include as an additional covariate a measure of air

pollution—the annual mean levels of particulates in each area estimated from a

dispersion model based on traffic flow

â From previous validation studies the reliability coefficient for these air pollution

estimates is:

ρ =
σ2
true

σ2
true + σ2

err

= 0.71

â We consider a WinBUGS model that includes the air pollution covariate and at

the same time allows for errors in observed values of this covariate in accord with

the above reliability coefficient



Adjusting Larynx Cancer risk for air pollution

â In a previous model we adjusted the risk of larynx cancer according to a three

level smoking factor. We now include as an additional covariate a measure of air

pollution—the annual mean levels of particulates in each area estimated from a

dispersion model based on traffic flow

â From previous validation studies the reliability coefficient for these air pollution

estimates is:

ρ =
σ2
true

σ2
true + σ2

err

= 0.71

â We consider a WinBUGS model that includes the air pollution covariate and at

the same time allows for errors in observed values of this covariate in accord with

the above reliability coefficient



Adjusting Larynx Cancer risk for air pollution

â In a previous model we adjusted the risk of larynx cancer according to a three

level smoking factor. We now include as an additional covariate a measure of air

pollution—the annual mean levels of particulates in each area estimated from a

dispersion model based on traffic flow

â From previous validation studies the reliability coefficient for these air pollution

estimates is:

ρ =
σ2
true

σ2
true + σ2

err

= 0.71

â We consider a WinBUGS model that includes the air pollution covariate and at

the same time allows for errors in observed values of this covariate in accord with

the above reliability coefficient



Adjusting larynx cancer risk for air pollution & measurement error

The relevant WinBUGS model is:
for (i in 1 : N) {

y[i] ˜ dpois(mu[i]) # Poisson likelihood for observed counts

log(mu[i]) <- log(e[i])+alpha+beta1[smoke[i]]+beta2*truepoll[i]+phi[i]+nu[i] #model for mean

phi[i] ˜ dnorm(0, tau.phi) # prior for unstructured random effects

truepoll[i] ˜ dnorm(mu.true,tau.true) # distribution of true exposure

poll[i] ˜ dnorm(truepoll[i],tau.err) # distribution of measurement error

rholocaladj[i] <- exp(phi[i]+nu[i]) # R risks compared to overall risk in study area after

} # adjusting for smoking and air pollution

nu[1:N] ˜ car.normal(adj[],weights[],num[],tau.nu) # CAR prior for structured random effects

alpha ˜ dflat() # uniform prior for alpha

beta1[1] <- 0 # set beta1[1] as the reference smoking level

beta1[2] ˜ dnorm(0, 0.0001) # diffuse normal prior for beta1[2]

beta1[3] ˜ dnorm(0, 0.0001) # diffuse normal prior for beta1[3]

beta2 ˜ dnorm(0, 0.0001) # diffuse normal prior for beta2

tau.phi ˜ dgamma(0.5, 0.0005) # hyperprior for tau.phi

tau.nu ˜ dgamma(0.5, 0.0005) # hyperprior for tau.phi

sigma.phi <- sqrt(1/tau.phi) # st dev of unstructured rand effects

sigma.nu <- sqrt(1/tau.nu) # st dev of structured rand effects

mu.true ˜ dnorm(0, .00001) # diffuse normal hyperprior for mu.true

tau.true ˜ dgamma(0.5, 0.0005) # diffuse gamma hyperprior for tau.true

sigmasq.true <- 1/tau.true # variance of true measurements

rho <- 0.71 # reliability coefficient

sigmasq.err <- sigmasq.true*(1-rho)/rho # variance of measurement error

tau.err <- 1/sigmasq.err # precision of measurement error
+
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Spatio-Temporal Models

â So far we have only considered models involving spatial outcomes, but obviously

the evolution over time of such outcomes may also be of considerable interest

â There exist a broad class of models that may be used in modelling (and perhaps

forecasting) spatio-temporal disease incidence by area

â We focus here only on illustrating the potential for spatio-temporal modelling of

small area disease rates, restricting our discussion to fairly simple extensions to

the Bayesian ecological models that we have used in the purely spatial context

â In particular we do not explore in any detail the various alternative formulations of

space-time interaction in such models — this is a substantive topic and we can

only touch upon the issues here (for more details see Knorr-Held and Besag,

1998)
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Spatio-Temporal Models

â The simplest temporal extension of the purely spatial Bayesian disease mapping model

discussed earlier is to include a temporally unstructured time effect into the model.

Given

disease counts yit (in areas i and time periods t) and corresponding expected numbers

of cases eit (derived from suitable reference rates) the model is:

yit ∼ Poisson(µit) = Poisson(eitρit)
log µit = log eit + log ρit = log eit + α+ φi + νi + δt

α ∼ U(−∞,+∞)
φi ∼ Normal(0, σ2

φ)
νi ∼ CAR(σ2

ν)
δ1 = 0 (as a baseline to avoid identifiability problems)
δt ∼ Normal(0, σ2

δ ) t = 2, . . . , T

so relative risks are ρit = exp(α+ φi + νi + δt) with ρi1 = exp(α+ φi + νi).

â To complete the specification diffuse gamma hyperpriors are assumed for precisions

corresponding to all hyperparameters i.e. for τφ = 1/σ2
φ, τν = 1/σ2

ν and τδ = 1/σ2
δ
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corresponding to all hyperparameters i.e. for τφ = 1/σ2
φ, τν = 1/σ2

ν and τδ = 1/σ2
δ



Spatio-Temporal Models

â The simplest temporal extension of the purely spatial Bayesian disease mapping model

discussed earlier is to include a temporally unstructured time effect into the model. Given

disease counts yit (in areas i and time periods t) and corresponding expected numbers

of cases eit (derived from suitable reference rates) the model is:

yit ∼ Poisson(µit) = Poisson(eitρit)
log µit = log eit + log ρit = log eit + α+ φi + νi + δt

α ∼ U(−∞,+∞)
φi ∼ Normal(0, σ2

φ)
νi ∼ CAR(σ2

ν)
δ1 = 0 (as a baseline to avoid identifiability problems)
δt ∼ Normal(0, σ2

δ ) t = 2, . . . , T

so relative risks are ρit = exp(α+ φi + νi + δt) with ρi1 = exp(α+ φi + νi).

â To complete the specification diffuse gamma hyperpriors are assumed for precisions

corresponding to all hyperparameters i.e. for τφ = 1/σ2
φ, τν = 1/σ2

ν and τδ = 1/σ2
δ



Spatio-Temporal Models

â The previous model imposes no structure on the temporal effects and it may be that

temporally persistent differences in the outcome are important i.e. the time effects should

be temporally structured (smoothed)

â This may be expressed by introducing a temporally auto-correlated effect so that:

log µit = log eit + α+ φi + νi + δt + ωt

with for example ωt ∼ Normal(ωt−1, σ
2
ω) t = 2, . . . , T and ω1 ∼ Normal(0, σ2

ω1
).

All other priors are as before

â Various alternative specifications to the above simple random walk for the temporally

auto-correlated component of this model are possible. For example a second order

auto-regression may be preferred if one is interested in predicting future disease rates.

â Note that identifiability problems arise with these kinds of formulations and will need to be

addressed by imposing constraints on some parameters.
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Spatio-Temporal Models

â Where interest focusses on modelling trends in the relative risk relative to the reference

levels, then one might impose a stronger parametric structure on the temporal effects

â E.g. a linear trend (identical across all areas) would correspond to a model:

log µit = log eit + α+ φi + νi + γt

with γ ∼ Normal(0, σ2
γ) and all other priors as before.

â To allow for differentiated trends between areas, e.g. with some falling more or some less

than the global trend one could specify an area specific growth rate via:

log µit = log eit + α+ φi + νi + γit

with exchangeable priors γi ∼ Normal(µγ , σ
2
γ), where µγ is the overall average growth

rate.

â identifiability remains an issue and some parameter constraints may need to be imposed
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â If such trends are expected to be differentiated in a spatially distinct pattern (i.e.

similar falls or rises are spatially clustered) then the γi might be assumed to be

spatially dependent

â For example we could take γi ∼ CAR(σ2
γ) in which case we would also need a

γt term in the model to represent the global trend with γ ∼ U(−∞,+∞) since

the CAR is improper and a sum to zero constraint on γi will need to be imposed.

â so overall the model that results is:

log µit = log eit + α+ φi + νi + γt+ γit

with γi now representing deviations from the overall γ.

â Again identifiability is an issue and some parameter constraints may need to be

imposed
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Spatio-Temporal Models

â Models with area specific growth rates are not separable in space and time — they allow

for spatio-temporal interactions i.e. there can be some shuffling of spatial relativities in the

relative risks over time

â However, the form of those models imposes a restricted structure on this space-time

interaction and a more flexible class of models is obtained by adding an interaction term

to the model discussed earlier which involved a temporally auto-correlated main effect so

that this now becomes:

log µit = log eit + α+ φi + νi + δt + ωt + ψit

â The modelling options for spatial and temporal structure in the area-time interactions ψit

are very wide, since autocorrelations over areas may be combined in various ways with

those over time.

â Knorr-Held (2000) discusses four types of interaction schemes, ranging from

independence of all interactions to complete space/time dependence in the interactions
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Spatio-Temporal Models

â Finally note that variability in relative risks over both space and time may be

caused by changing impacts of social and other risk variables.

â All the space time models discussed can be extended to include ecological

covariates (xit1 . . . , xitp) relating to areas, to time periods or to both

â A very wide range of formulations is possible, depending upon whether covariate

measures are available only at each time point (spatially constant), or only for

each area (constant in time), or for each space-time combination

â Associated covariate model coefficients can likewise be modelled as globally

constant, varying only over time, varying only over space or varying over both

time and space.
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Spatio-Temporal Models

â For example trends in the impact of a single time-specific predictor (xit might be

modelled via: log µit = log eit + α+ βtxit + φi + νi

with βt taken as either temporally unstructured or structured (e.g. by a random

walk)

â Whereas a model such as: log µit = log eit + α+ βixit + φi + νi + δt

with spatially unstructured or structured βi, would allow one to model differences

in the importance of the explanatory variable between areas

â Note that in general identifiability problems will need to be addressed in such

models.

â Also note that models with covariate coefficients with are both temporally and

spatially varying may need to use the specialised methods referred to earlier in

relation to varying covariate coefficients in purely spatial ecological models.
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Leptospirosis incidence in Rio de Janeiro 1997-2002

â As an example of the use of spatio-temporal models we consider the data comprising

diagnosed cases of Leptospirosis by year for the period 1997-2002 (total of 367 cases) in

157 districts of the city of Rio de Janeiro.

â Annual area expected values ei are taken as constant over time and based on the district

populations in the 2001 census, using as a reference rate the overall disease incidence

for the six years as a proportion of 6× the total 2001 population in the study region

â We also include two area specific deprivation covariates from the 2001 census—xi1

(proportion of families with income of less than one minimum wage) and xi2 (proportion

of the population living in favelas)

â A further area and time specific covariate xit3 is maximum annual rainfall in the years

1997-2002 interpolated to districts from observations recorded at 32 weather stations

dotted across the city. This provides some indication of the risk of floods in each district in

the year in question.
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Leptospirosis incidence in Rio de Janeiro 1997-2002

Overall the model is:

yit ∼ Poisson(µit) = Poisson(eiρit)

log µit = log ei + α+ β1xi1 + β2xi2 + β3xit3 + φi + νi + δt + ωt
α ∼ U(−∞,+∞)

β1 ∼ Normal(0, 1.0E − 5)

β2 ∼ Normal(0, 1.0E − 5)

β3 ∼ Normal(0, 1.0E − 5)

φi ∼ Normal(0, σ2
φ)

νi ∼ CAR(σ2
ν)

δ1 = 0 and δt ∼ Normal(0, σ2
δ ) t = 2, . . . , T

ω1 ∼ Normal(0, σ2
ω1

) and ωt ∼ Normal(ωt−1, σ
2
ω) t = 2, . . . , T

Diffuse Gamma hyperpriors are assumed for precisions relating to all

hyperparameters.
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The relevant WinBUGS model is:
for (i in 1 : regions) {

for (t in 1 : time) {

cases[i,t] ˜ dpois(mu[i,t])

log(mu[i,t]) <- log(e[i]) + alpha + beta1*x1[i]+beta2*x2[i]+beta3*x3[i,t]+phi[i]+nu[i]+delta[t]+omega[t]

rho[i,t]<-exp(alpha + beta1*x1[i]+beta2*x2[i]+beta3*x3[i,t]+phi[i]+nu[i]+delta[t]+omega[t]) # RR

rhoadj[i,t]<-exp(phi[i]+nu[i]+delta[t]+omega[t]) # RR adjusted for covariates

}

phi[i] ˜ dnorm(0,tau.phi)

rhoiadj[i]<-exp(phi[i]+nu[i]) # RR adjusted for covariates averaged over all years

}

nu[1:regions] ˜ car.normal(adj[], weights[], num[], tau.nu)

delta[1]<-0

omega[1] ˜ dnorm(0, tau.omega1)

rhotadj[1]<-exp(omega[t]) # RR adjusted for covariates in year 1 averaged over all districts

for (t in 2 :time) {

delta[t] ˜ dnorm(0,tau.delta)

omega[t]˜dnorm(omega[t-1],tau.omega)

rhotadj[t]<-exp(delta[t]+omega[t]) # RR adjusted for covariates in years 2-6 averaged over all districts

}

alpha ˜ dflat()

beta1 ˜ dnorm(0.0, 1.0E-5)

beta2 ˜ dnorm(0.0, 1.0E-5)

beta3 ˜ dnorm(0.0, 1.0E-5)

tau.phi ˜ dgamma(0.1,0.1)

tau.nu ˜ dgamma(0.1,0.1)

tau.delta ˜ dgamma(0.1,0.1)

tau.omega1 ˜ dgamma(0.1,0.1)

tau.omega ˜ dgamma(0.1,0.1)

+



Leptospirosis incidence in Rio de Janeiro 1997-2002

â As an alternative we could attempt to model the monthly variation averaged over all years

1997-2002 (total of 367 cases) in the 157 districts.

â The monthly area expected values ei for the six years are taken as constant over all

months and are based on the district populations in the 2001 census, using as a

reference rate 1
12 of the overall disease incidence for the six years as a proportion of the

total 2001 population in the study region

â As before we include two area specific deprivation covariates from the 2001 census—xi1

(proportion of families with income of less than one minimum wage) and xi2 (proportion

of the population living in favelas)

â We then include an area specific covariate xi3 as the average maximum annual rainfall

over the years 1997-2002 interpolated to districts from observations recorded at 32

weather stations dotted across the city. This provides some indication of the average risk

of floods in each district over all months in question.
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â As before we include two area specific deprivation covariates from the 2001 census—xi1

(proportion of families with income of less than one minimum wage) and xi2 (proportion

of the population living in favelas)

â We then include an area specific covariate xi3 as the average maximum annual rainfall

over the years 1997-2002 interpolated to districts from observations recorded at 32

weather stations dotted across the city. This provides some indication of the average risk

of floods in each district over all months in question.
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Overall the monthly model is:

yit ∼ Poisson(µit) = Poisson(eiρit)

log µit = log ei + α+ β1xi1 + β2xi2 + β3xi3 + φi + νi + δt + ωt
α ∼ U(−∞,+∞)

β1 ∼ Normal(0, 1.0E − 5)

β2 ∼ Normal(0, 1.0E − 5)

β3 ∼ Normal(0, 1.0E − 5)

φi ∼ Normal(0, σ2
φ)

νi ∼ CAR(σ2
ν)

δ1 = 0 and δt ∼ Normal(0, σ2
δ ) t = 2, . . . , T

ω1 ∼ Normal(0, σ2
ω1

) and ωt ∼ Normal(ωt−1, σ
2
ω) t = 2, . . . , T

Diffuse Gamma hyperpriors are assumed for precisions relating to all

hyperparameters.
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The relevant WinBUGS model is:
for (i in 1 : regions) {

for (t in 1 : time) {

cases[i,t] ˜ dpois(mu[i,t])

log(mu[i,t]) <- log(e[i]) + alpha + beta1*x1[i]+beta2*x2[i]+beta3*x3[i]+phi[i]+nu[i]+delta[t]+omega[t]

rho[i,t]<-exp(alpha + beta1*x1[i]+beta2*x2[i]+beta3*x3[i]+phi[i]+nu[i]+delta[t]+omega[t]) # RR

rhoadj[i,t]<-exp(phi[i]+nu[i]+delta[t]+omega[t]) # Adjusted RR

}

phi[i] ˜ dnorm(0,tau.phi)

rhoiadj[i]<-exp(phi[i]+nu[i]) # Adjusted RR over all months/years

}

nu[1:regions] ˜ car.normal(adj[], weights[], num[], tau.nu)

delta[1]<-0

omega[1] ˜ dnorm(0, tau.omega1)

rhotadj[1]<-exp(omega[t]) # Adjusted RR in month 1 over all districts/years

for (t in 2 :time) {

delta[t] ˜ dnorm(0,tau.delta)

omega[t]˜dnorm(omega[t-1],tau.omega)

rhotadj[t]<-exp(delta[t]+omega[t]) # Adjusted RR in months 2-12 over all districts/years

}

alpha ˜ dflat()

beta1 ˜ dnorm(0.0, 1.0E-5)

beta2 ˜ dnorm(0.0, 1.0E-5)

beta3 ˜ dnorm(0.0, 1.0E-5)

tau.phi ˜ dgamma(0.1,0.1)

tau.nu ˜ dgamma(0.1,0.1)

tau.delta ˜ dgamma(0.1,0.1)

tau.omega1 ˜ dgamma(0.1,0.1)

tau.omega ˜ dgamma(0.1,0.1)

+

ë
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Concluding remarks

There are a number of issues which I have not have time to cover or comment on in

this course and perhaps I should at least list one or two of these (what you do not say

may be just as important as what you do)

â Some doubts have been expressed about the ability of the kind of disease

mapping models I have discussed to identify sharp discontinuities in disease

maps (e.g. a low morbidity area surrounded by high morbidity areas). Various

forms of discrete mixture models have been suggested as an alternative in

which areas are probabilistically allocated to clusters (e.g. see Schalttmann et al,

1996, 1993; Lawson and Clarke, 2002)

â We have mostly been concerned with models in which spatially structured

components have been formulated through a CAR. Alternative formulations of

spatial correlation structure are possible which focus on direct parametric

modelling of the variance/covariance matrix (e.g. see Leyland et al, 2000)
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Concluding remarks

â We have focussed on Bayesian models - there are a range of alternatives which

do not use a Bayesian framework (e.g. Prentice et al, 1995; Yasui et al, 1997)

â A further approach has been the use of Geostatistical models (e.g. see Webster

et al, 1994; Diggle et al, 1998)

â I said at the outset that I was not going to discuss methods explicitly designed to

detect disease clustering, either in space or in space and time, or at focussed or

unfocussed locations. There is a substantial literature on this important subject

and I have included a special section of references for those who wish to follow it

up
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Structure of the remainder of the course

â Will attempt to briefly review selected topics under following headings:

0 Preliminaries — a tour of statistical/Bayesian modelling

0 Disease mapping

0 Ecological (correlation) studies

0 Further topics in ecological studies

0 Space-time models

0 Concluding remarks
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