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Large-Scale Spatial-Transmission
Models of Infectious Disease
Steven Riley

During transmission of seasonal endemic diseases such as measles and influenza, spatial waves of
infection have been observed between large distant populations. Also, during the initial stages of
an outbreak of a new or reemerging pathogen, disease incidence tends to occur in spatial clusters,
which makes containment possible if you can predict the subsequent spread of disease. Spatial
models are being used with increasing frequency to help characterize these large-scale patterns
and to evaluate the impact of interventions. Here, I review several recent studies on four diseases
that show the benefits of different methodologies: measles (patch models), foot-and-mouth disease
(distance-transmission models), pandemic influenza (multigroup models), and smallpox (network
models). This review highlights the importance of the household in spatial studies of human
diseases, such as smallpox and influenza. It also demonstrates the need to develop a simple model
of household demographics, so that these large-scale models can be extended to the investigation
of long–time scale human pathogens, such as tuberculosis and HIV.

Outbreaks of directly transmitted infec-
tious diseases of humans have the po-
tential to become pandemics, causing

extensive morbidity and mortality (1, 2). Even
when widespread transmission is averted, a
multicountry outbreak can have a disproportion-
ately large negative economic impact at a region-
al level (3). Similarly, in domestic animals, the
need to maintain disease-free geographical areas
requires extreme measures to control economi-
cally important pathogens (4). It would be un-
usual for naturally occurring disease emergence
or nondeliberate disease importation to occur
simultaneously at many locations. Therefore, in-
fectious individuals are necessarily clustered in
space during the initial phase of sustained trans-
mission. If containment is possible, this initial
clustering provides an opportunity to make ef-
fective use of limited resources for intervention.

Many types of host heterogeneity influence
host/pathogen interactions at the scale of the
individual, such as genetics, age, sexual activity,
location, and typical movement patterns. Some-
times, these factors are important at larger scales
and sometimes they are not (5). Consider hete-
rogeneities in the location and movement of
hosts during outbreaks of directly transmitted
infectious diseases of humans. The vast majority
of hosts spend a substantial proportion of their
time at a single location; that is, at home or in
the herd. When cases arise, their location is
often reported rapidly. Furthermore, for many
populations, accurate census data with which to
estimate spatial population distributions are
available. For humans, an accurate estimate of
population density is available for the entire

Earth, up to a resolution of 1 arc sec (6). Typical
movement patterns of hosts are also important.
For directly transmitted pathogens, an infectious
individual must be close to a susceptible indi-
vidual for infection to occur. Therefore, the prob-
ability that an infectious individual from one
home location infects a specific susceptible
individual from another is influenced greatly by
the journeys made away from home by both
infectious and susceptible individuals during the
period of infectiousness. For many populations,
data sets from which typical movement patterns
can be accurately inferred are now available
(7–10).

Spatial models of infectious disease trans-
mission provide the only plausible experimental
system in which knowledge of the location of
hosts and their typical movement patterns can
be combined with a quantitative description of
the infection process and disease natural history
to investigate observed patterns and to evaluate
alternative intervention options. As such, the use
of these models will increase as spatially hetero-
geneous interventions are considered more fre-
quently and as spatially resolved incidence data
are made available for more pathogens (the best
currently available data sets cover notifiable child-
hood diseases in developed countries). However,
one problem is that these models can be seduc-
tive to policy-makers. Realistic population den-
sities permit results to be presented as maps and
movies, and although these formats are useful to
describe spatiotemporal incidence patterns, their
visual impact conveys credibility that may not be
justified. Rather, the underlying structure of each
transmission model should be appropriate for the
infection process, the potential interventions, and
most important, the specific hypotheses that are
under consideration.

In this review, I highlight results from dif-
ferent diseases (Fig. 1) that use different

methodologies (Fig. 2). I did not include more
analytically sophisticated approaches (11), be-
cause they have only rarely been applied to the
dynamics of infectious disease in realistically
structured populations of animals (4, 12).

Measles and Patch Models
Measles is a disease that requires government
notification in England and Wales, for which
district-level data are available for each bi-
weekly period from 1948 onward. Two intrigu-
ing epidemiological features of this rich data set
have been explained, with the help of patch
models (or spatial metapopulation models)
(Fig. 2): (i) the longer-than-expected period of
fade-out after the start of mass vaccination in
1968 (13, 14) and (ii) the apparent waves of
infection observed before and after vaccination
(15). In these studies, large amounts of detailed
data and sophisticated descriptive statistics (e.g.,
wavelets) were used in conjunction with very
simple illustrative patch models to demonstrate
the plausibility of dynamical explanations. For
example, the spatial hierarchy of transmission
observed in (15) was illustrated with the use of
16 patches of two types (urban or semiurban)
arranged in a line. A refined version of this
methodology has been used to show that state-
scale spatial patterns of excess human mortality
attributed to pneumonia and influenza in the
United States are consistent with human travel
patterns (10). This latter study highlights the
computational efficiency of patch models over
individual-based approaches; that is, it was pos-
sible to include the transmission model within
the inferential framework because solutions
could be obtained so efficiently.

Patch models have also been used to inves-
tigate aspects of global disease spread (8, 9, 16),
largely motivated by the 2002–2003 outbreak of
severe acute respiratory syndrome (SARS). The
availability of disease incidence data at the
national level and the accuracy with which
contemporary global travel is described by
airline-ticket data (17) make this topic well
suited to the use of computationally efficient
patch models. For example, the observed size of
country outbreaks of SARS during 2003 is
largely consistent with model outcomes (9),
although mainland China was not included, and
temporal variation in the underlying rate of
transmission was assumed to be the same in
every country as that observed in Hong Kong
and Singapore.

Similar studies have investigated the poten-
tial impact of reduced travel on the rate of in-
ternational disease spread during an influenza
pandemic (8, 16). A theoretical model of 100
identical populations suggests that even the
most stringent border controls (>99% effective)
would delay global spread of a novel influenza
strain by only a few weeks (16). This result is
supported by a study of 52 globally connected
cities (8), which was validated using travel and
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disease data from the 1968–1969 pandemic
(18, 19).

Foot-and-Mouth Disease and
Distance Transmission
The 2001 foot-and-mouth disease (FMD) out-
break in the United Kingdom resulted in the
slaughter of 4.2 million animals and produced a
severe negative economic impact in the affected
districts (20). During the outbreak and afterward,
various stakeholder groups disagreed over the
relative merits of spatial culling and vaccination
strategies. Largely because updated case data
were made available to researchers early in the
course of the outbreak, statistical and mathemat-
ical models were developed rapidly enough to
be of use in policy formulation while the out-
break was underway (4, 12, 21, 22).

The availability of spatially resolved farm
census data, with unique identifiers that were
consistent with the case database, encouraged
one research team to formulate a spatially ex-
plicit distance-transmission model (Fig. 2) of
FMD, with farms as the individual units of
infection (21). The infection kernel for FMD in
the United Kingdom in 2001 was estimated
directly from case data (4, 21) and used in a
distance-transmission model (Fig. 2) to assess
the marginal benefits of refinements to culling
strategies, such as reducing the average delay
from report to culling of index premises (IPs)
and additional presumptive culling of contigu-
ous premises (21). Initial results using this spa-
tially explicit approach helped to validate those
from an earlier pair-correlation model (4, 12), in
which properties of an implicit spatial network
were approximated with ordinary differential

equations. This series of studies (4, 12, 21, 22),
conducted while the outbreak was in progress,
demonstrates the potential benefits to policy-
makers of multiple research teams addressing
similar questions using alternativemethodologies.

The precise location of individual farms in
distance-transmission models of FMD facilitated
the investigation of highly structured spatial in-
terventions that could not be considered in pair-
correlation models; for instance, vaccination of a
barrier region to protect large pools of susceptible
farms (21), prophylactic vaccination of high-risk
farms (23), reactive ring vaccination (23), pre-
dictive vaccination of nearby farms thought to
be most susceptible to infection (23), and vacci-
nation of an annulus around infectious farms
(24). However, the logistical implications of con-
stantly revising a large vaccination queue would
be substantial. Therefore, a more straightforward
strategy was specified: to prioritize farms for
vaccination based only on their proximity to IPs
reported in the previous 10 days or to dangerous
contacts of those IPs. This latter strategy was
shown to be the most effective in terms of re-
ducing the expected number of animals that
would be culled (24).

Pandemic Containment and Groups
In the event of sustained human-to-human trans-
mission of a novel strain of influenza, public
health interventions should ideally attempt to
contain the outbreak at the source. The trans-
mission of influenza between individual human
hosts occurs over much smaller distances than
does the transmission of FMD between farms.
Therefore, spatial multigroup models have an ad-
vantage over pure distance-transmission-models

when used to investigate influenza containment
because they explicitly represent the actual
locations (such as households, schools, andwork-
places) in which inventions will be used to reduce
transmission (Fig. 2). The household is particu-
larly important because relatively static groups of
hosts (families) spend prolonged periods together
in this setting.

The basic reproductive number R0 is used to
quantify the transmissibility of an infectious dis-
ease and is defined as the average number of
secondary cases generated by one typically in-
fectious individual in an otherwise susceptible
population (25). Two studies of influenza based
on models that include a multigroup component
suggest that the spatially targeted use of anti-
virals in rural Asia, in addition to other control
measures, has a greater than 90% probability of
containing pandemics with basic reproductive
numbers R0 < 1.9 (vaccination not included)
(26) or R0 < 2.4 (partial vaccination coverage
included) (27). In addition to recent estimates of
R0 for influenza that fall in this range (26, 28),
these findings led to the adoption of contain-
ment as an objective of the World Health Orga-
nization (29).

The results from these independent studies
are difficult to compare, owing to the many
interventions considered and to the principal objec-
tive of both, which was to demonstrate feasibil-
ity, rather than optimality. However, the two
models simulated quite different spatial infection
processes, as reflected by their assumed force of
infection (FOI) (the hazard of infection expe-
rienced by susceptible individuals). In (26), al-
though most individuals belonged to a household
and to either a school or a workplace, only two-

Fig. 1. Patterns of disease transmission in the United Kingdom. (A) Wavelet
analysis of prevaccination measles epidemics in 954 locations in England
and Wales [reproduced with permission from (15)] shows how London (black
box) drove the epidemics in most of the country, with the exception of the
Manchester-Liverpool urban concentration (upper left). (B) Simulations show
the three high-risk areas [adapted with permission from (21)] for FMD in the
United Kingdom in 2001. The key indicates the average number of cases in
a 10-by-10–km square from 100 model realizations. (C) A novel strain of
influenza [reproduced with permission from (34)] would spread rapidly

though the United Kingdom during a global pandemic. Only 75 days after
the arrival of the first cases from overseas, the intensity of red color shows
the relative concentration of infectious individuals, and green indicates that
the epidemic is already over in some small communities. (D) In contrast,
even under a pessimistic transmission scenario, 75 days after 10 initial seeds
became infectious with smallpox in London [adapted with permission from
(31)], there would have been relatively few cases, and the degree of spatial
correlation would still be striking [same key as in (B) but with 5-by-5–km
squares].
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thirds of the disease transmission occurred in
these settings. The remaining third occurred ran-
domly, as a function of the distance from in-
fectious individuals. In contrast, individuals in the
model used in (27) belonged to multiple groups,
in addition to households, schools, and work-
places. The inclusion of these extra settings was
an alternative to the distance-transmission com-
ponent used in (26). Although both approaches
require parameters for which there is little or no
supporting empirical data, the model used in (26)
could be viewed as more parsimonious because
its conclusions are less sensitive to these un-
informed parameters, and it made good use of the
data that were available, such as spatially re-
solved population density and travel survey data.

Model design choices such as these can
have a substantial impact on predictions of in-
tervention efficacy. For example, in (27), targeted
antiviral prophylaxis implicitly assumes that
household clusters and small neighborhoods that
are important for transmission could be easily
identified, resulting in a relatively low upper
bound of 1 million courses of treatment required
for containment. Conversely, the spatial recruit-
ment of households into the intervention pro-
cesses proposed in (26) implicitly assumed a
weaker correlation between antiviral distribution
and transmission, resulting in the more conserv-

ative estimate that 3 million courses of treatment
would be required to achieve containment.

Smallpox and Networks
Patch, distance kernel, and multigroup models
can all be considered as special cases of spatial-
network models, in which nodes represent
individual hosts and arcs represent potentially
infectious links. As networks, all of the model/
pathogen combinations described above would
have high average numbers of arcs per node
(i.e., a large neighborhood size) relative to their
basic reproductive number R0. However, for
smallpox, intimate contact was almost always
required for transmission to occur (30). There-
fore, it is necessary to represent a substantial
proportion of smallpox transmission as occur-
ring over a static network with a relatively small
neighborhood size. This approach was used (31)
to show that for the United Kingdom, the ad-
ditional benefits of geographically targeted
regional vaccination would not outweigh the
adverse effects of vaccinating many low-risk
individuals. Specifically, contact tracing with
isolation and vaccination alone would probably
result in fewer deaths from a small initial cluster
of cases in London than would occur if geo-
graphically targeted regional vaccination was
used in addition to such a policy.

Perhaps the most innovative modeling ap-
proach to emerge from smallpox epidemiology
(32) is the derivation of static contact networks
from individual-based second-by-second micro-
simulation. In (33), all of the people, locations,
and journeys in the city of Portland, Oregon,
were simulated explicitly. Simple rules were then
used to construct static contact networks from
dynamic networks of individuals and locations.
For example, if two individuals were present in
the same location for more than an hour, it was
assumed that a social contact existed between the
two. Because the intensity of contact was as-
sumed to be similar in all locations, implicitly,
people’s behavior in supermarkets (with respect
to disease transmission) was assumed to be the
same as in the home. This uniformity of contact
intensity is unrealistic and must have resulted in
overly connected social networks. However, when
good data are available on the relative transmis-
sibility of respiratory pathogens in different social
settings, the derivation of large spatial contact
networks from microsimulations will provide a
natural refinement of the distance-transmission
approach described above.

Current Challenges
Some of the individual-based spatial models
described above include age classes and house-

A B Distance C Group D NetworkPatch

Fig. 2. Four common abstractions for the spatial transmission of
infectious diseases. Differences between these approaches are best
understood in terms of the FOI, which is location-specific in spatially
explicit models. Red dots represent infectious individuals. (A) For patch
transmission, all members of the same patch (residents of a town, for
example) receive the same FOI, which is a function of the distance from
their home patch to other patches and of the prevalence of infection in all
patches. (B) Distance transmission is explicitly individual-based; that is,
each farm is assigned a precise location. It is assumed that any given
infectious individual can infect all susceptible individuals within range.
The pairwise probability of infection is usually a monotonically decreasing
function of distance, and the absolute FOI experienced by each susceptible
individual because of a single infectious individual is low. (C) In a pure
multigroup model, the FOI is determined entirely by group membership.
For example, if an infectious individual shares a household with a
susceptible individual (ovals), there is a high probability of transmission
occurring between the two. However, if an infectious individual does not
share a group with a particular susceptible individual, transmission

between the two cannot occur. Spatial patterns of spread are determined
by the locations of households and workplaces/schools (rectangle) and by
the typical distribution of journeys between them. Dashed lines indicate
group membership and solid lines indicate potentially infectious links
between individuals. (D) Network transmission is similar to group
transmission in that the FOI experienced by susceptible individuals is
zero, unless they share an arc with an infectious individual. For directly
transmitted respiratory pathogens, network transmission can be thought of
as a refinement of an implicit group structure, in which it is assumed that
not all members of a group are equally well connected; e.g., all colleagues
at a workplace are not contacts. More than one component of transmission
is included in some models. In general, computational requirements
increase from (A) to (D). Patch models can be implemented effectively on
a typical desktop computer because they do not explicitly represent
individuals. For population sizes greater than 10 million, individual-based
models have been implemented on clusters of large-memory personal
computers (26, 31, 34). Detailed microsimulation models (33) have not
yet been implemented at scales larger than a city.
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hold structure (26, 33–35). However, none of
them include demographic processes so that the
birth, death, and aging of individuals are con-
sistent with the formation and dissolution of
households over time. Although these processes
would introduce substantial additional complex-
ity, spatially resolved census data and projec-
tions are available for many populations, which
would allow the small number of parameters re-
quired by the additional demographic processes
to be estimated independently of the transmis-
sion model. Demographic projections have al-
ready been incorporated with good effect into
nonspatial models, such as those for HIV (36)
and pertussis (37). I suggest that several human-
pathogen interactions that exhibit spatial cluster-
ing at large scales and that are often transmitted
within the household could be investigated with
such an extension to current individual-based
spatial models. For example, it may be possible
to refine predictions of spatial patterns of com-
bined tuberculosis and HIV transmission in de-
veloping countries (38) and hence to consider
the use of spatially heterogeneous household-
based intervention strategies at different distance
scales. The sensitivity of results from such mo-
dels to the demographic processes that were used
could be illustrated clearly with appropriate sen-
sitivity analyses.

If one uses the network paradigm to critique
models of directly transmitted infectious dis-
eases, there is a desperate need for empirical
evidence to inform basic choices of topology,
such as average neighborhood size. For exam-
ple, the model structures used in many recent
studies of pandemic influenza (26, 27, 34, 35, 39)
assume implicitly that neighborhood size outside
the household is large; i.e., that a substantial
proportion of the small number of secondary
cases (basic reproductive number R0 < 2, in-
cluding household transmission) arises with low
probability from brief contacts withmany people.
Although this assumption is appropriate because

it is conservative with respect to the efficacy of
group-based interventions, there is very little
supporting empirical evidence. For example, I
am not aware of any studies that have been able
to infer reliable estimates (for any pathogen) of
the infectivity and susceptibility of individuals in
the home, relative to the workplace or school.
Techniques that allowhighly specific non-invasive
sampling for bacteria and viruses, coupled with
intense empirical studies based in households,
workplaces, and schools, could dramatically re-
duce these gaps in our knowledge. Detailed
microsimulation models (33) could be used to
obtain estimates of spatial-network topologies for
different pathogens.
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