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Abstract: In recent years, Earth observation (EO) satellites have generated big amounts of geospatial
data that are freely available for society and researchers. This scenario brings challenges for traditional
spatial data infrastructures (SDI) to properly store, process, disseminate and analyze these big data
sets. To meet these demands, novel technologies have been proposed and developed, based on cloud
computing and distributed systems, such as array database systems, MapReduce systems and web
services to access and process big Earth observation data. Currently, these technologies have been
integrated into cutting edge platforms in order to support a new generation of SDI for big Earth
observation data. This paper presents an overview of seven platforms for big Earth observation
data management and analysis—Google Earth Engine (GEE), Sentinel Hub, Open Data Cube (ODC),
System for Earth Observation Data Access, Processing and Analysis for Land Monitoring (SEPAL),
openEO, JEODPP, and pipsCloud. We also provide a comparison of these platforms according to
criteria that represent capabilities of the EO community interest.

Keywords: big Earth observation data; Google Earth Engine; Sentinel Hub; Open Data Cube; SEPAL;
JEODPP; pipsCloud

1. Introduction

Nowadays, Earth observation (EO) data play a crucial role in understanding processes on our
planet, enabling us to make great strides in monitoring environmental change, risk detection and
urban occupation analysis [1,2]. Based on information extracted from EO data, researchers and
decision-makers are able to conceive and apply effective policies for environment protection and
sustainable management of natural resources.

In recent years, the amount of EO data freely available for society and researchers has quite
increased, driven by technological advances and open data policies adopted by governments and
space agencies. Only in 2019, the volume of open data produced by Landsat-7 and Landsat-8,
MODIS (Terra and Aqua units), and the three first Sentinel missions (Sentinel-1, -2 and -3) is around 5
PB [3]. These big data sets often exceed the memory, storage and processing capacities of personal
computers; imposing severe limits that lead users to take advantage of only a small portion of the
available data for scientific research and operational applications [2,4,5]. Thus, there is a need for novel
technological solutions to properly store, process, disseminate and analyze these big EO data sets.

A Spatial Data Infrastructure (SDI) is a platform that facilitates the interface between people and
systems in the exchanging and sharing of spatial data, including EO information, by providing required
technologies, policies and standards [6]. SDI as a sharing platform aims to facilitate the access and
integration of multi-source spatial data inside a framework with a number of technological components.
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In the last years, traditional SDIs have been built based on standards to represent and store spatial
information in data files (e.g., GeoTIFF and Esri Shapefile) and database systems (e.g., PostGIS and
Oracle Spatial), as well as to serve spatial data, metadata and processes via web services, such as Web
Map Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS), Catalog Service for
Web (CSW) and Web Coverage Processing Service (WCPS). These standards proposed by Organization
for Standardization (ISO) and the Open Geospatial Consortium (OGC) [7] are essential to enable the
spatial data interoperability among SDIs from worldwide agencies and institutions. Although there are
ISO and OGC web services that allow data processing in the server side such as WCPS, most current
SDIs on regional, national, and international levels are focused on EO data sharing and dissemination
in the form of individual files, through HTTP, FTP and SSH protocols, web services for data access and
web portals [8].

In the current era of big spatial and EO data, there is a need for a next generation of SDIs able
to properly deal with this vast amount of data [9–12]. To take advantage of all potential of this era,
users need to handle hundreds (or thousands) of EO data files, of different spectral, temporal and
spatial resolutions, by using or developing software scripts to extract information of interest. To meet
these demands, novel technologies have been proposed and developed, based on cloud computing
and distributed systems.

According to Merticariu et al. [13], Array Database Management Systems (Array DBMS) have
set out to fill an important gap in storage and management of EO data represented as regular and
multidimensional arrays, such as satellite images. Unlike Relational Database Management Systems
(RDBMS), which are based on the concept of relations (or tables) and relational algebra, Array DBMS
are centered on multidimensional arrays. Examples of Array DBMS are RasDaMan [14], SciDB [15]
and TileDB [16]. Most array DBMS have the capability to split large arrays into indexed blocks or
chunks that are stored and shared among multiple computers to improve efficiency and performance.
Besides that, they provide their own query language for multidimensional arrays, such as RasDaMan
RasQL, SciDB AFL (Array Functional Language) and AQL (Array Query Language).

Another approach that has been explored for managing and handling big EO data is
MapReduce systems. Traditionally, high-performance computing systems separate compute nodes
and storage nodes, which are interconnected with high-speed links to meet data access requirements.
However, the capacity of these high-speed links is still less than the aggregate bandwidth of all compute
nodes [17]. In parallel data systems such as Google File System (GFS) [18] and Hadoop Distributed File
System (HDFS) [19], clusters are built from standard servers and each node takes on both compute and
storage functions. In these systems, data location stands out as a significant advantage over traditional
systems by leveraging data location and reducing network traffic - one of the bottlenecks in computing
applications that handle a large amount of data [17,20,21]. Assis et al. [22] propose an approach to use
MapReduce systems for EO satellite image time series analysis. A comparison between Hadoop and
SciDB in processing EO satellite images is presented by Camara et al. [5].

Despite these novel technologies addressing issues of storage and access, an increasing number
of applications have reached data volumes and acquisition speeds that make it impossible to move
data to local systems for processing and analysis [11,23]. The Moving Code paradigm stands out as an
alternative in this scenario. In this approach, the executable application (or source code) is sent to run
on the servers where the data is located, avoiding data movement [8]. To properly deal with big EO
data, the next generation of SDIs should provide solutions based on the Moving Code paradigm and
the approach to processing data on the server side where data is stored.

Regarding web services protocols that allow EO data processing on the server side, we can cite
two examples WCPS proposed by OGC and Web Time Series Service (WTSS). WCPS is an extension of
WCS which allows server-side coverage manipulation, extraction, and analysis through a functional
language [24]. This language allows the retrieving of one or more server-side coverages and performing
of operations on the data. The EarthServer project has a WCPS implementation using the RasDaMan
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array database as a backend [25]. WTSS is a lightweight web service for time series recovery from big
amounts of remote sensing images organized as coverages [26].

Recently, a solution that has facilitated the building of infrastructures based on Moving Code
paradigm is the cloud computing environment offered by providers as services, such as Amazon Web
Services (AWS) and Microsoft Azure Cloud Services. These environments are often highly scalable and
provide developer tools, storage, database, and networking services. Besides providing services for
virtual machines and containers, AWS contains several of the most used EO satellite image collections
as open data, including Landsat-8, Sentinel-2 and CBERS-4 (Open Data on AWS [27]). Following this
trend, the European Commission has financed five systems for cloud computing in the context of DIAS
(Data and Information Access Service) [28]: CREODIAS [29], Mundi [30], ONDA [31], WEkEO [32]
e Sobloo [33]. These systems provide open EO data from Copernicus program through standard
web services and protocols such as OpenSearch, WFS, WMS, WCS e CSW [29–33]. Besides that,
these systems allow users to contract on-demand services to store and process EO data sets as well
as to directly access these data sets. Similar to AWS, the DIAS systems allow users to execute their
applications in a cloud environment where data is stored, avoiding the movement of data through the
network and so improving the processing performance.

Although the cloud computing environments such as AWS and DIAS facilitate the high scale
processing of EO data, considerable effort and advanced technical knowledge are still required for
users to take advantage of these cloud computing environments. In addition to analytical tasks,
the EO community scientists and users face challenges to the management of these environment
computational resources. Thus, there is a need for user-friendly solutions that provide high-level
analytical tools for EO community researchers and users, abstracting the technical issues of these
cloud computing environments. The Sentinel Hub platform is an example of this kind of solution [34].
This platform uses the CREODIAS cloud computing services to access and process the Copernicus EO
data sets and provide a high-level programming interface that allow users to deal with these data sets
without worrying about technical details.

In this context, we define “Platforms for big EO Data Management and Analysis” as computational
solutions that provide functionalities for big EO data management, storage and access; that allow
the processing on the server side without having to download big amounts of EO data sets; and that
provide a certain level of data and processing abstractions for EO community users and researchers.
These platforms integrate different kinds of technologies, Application Programming Interfaces (API)
and web services to provide a more complete solution for big EO data management and analysis.
Based on this definition, this paper presents an overview of seven platforms and a comparison among
their functionalities—Google Earth Engine (GEE) [35], Sentinel Hub (SH) [34], Open Data Cube
(ODC) [36], System for Earth Observation Data Access, Processing and Analysis for Land Monitoring
(SEPAL) [37], OpenEO [38], JEODPP [3], and pipsCloud [39]. These platforms have close purposes but
use different storage systems, access interfaces and abstractions for EO data sets.

This paper is organized as follows—in Section 2, we present an overview of the platforms where
their main functionalities and technical issues are described. In Section 3, ten capabilities of the EO
community interest are presented and used to compare the platforms presented. Finally, in Section 4,
we discuss the platforms that stand out in the evaluated capabilities, the challenges in building a
platform that fully meets the evaluated capabilities, and the new trends in these technologies.

2. Platforms for Big Earth Observation Data Management and Analysis

This section presents the features, available functionality, and technical details of the seven
platforms evaluated in this paper. The questions that are addressed about each platform in this section
are—(i) who support?; (ii) how is it made available?; (iii) what is the software architecture?; (iv) how is
the data stored?; (v) how is the data processed?; (vi) how is the data made available?; (vii) what are
the data abstractions used?; (viii) is it possible to extend the platform?; and (ix) is there support for
reproducible science?
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2.1. Google Earth Engine

Google Earth Engine (GEE) is a cloud-based platform that enables large-scale scientific analysis
and visualization of geospatial data sets. GEE was launched in 2010 by Google as a proprietary system.
Currently, it is available to users as a free service for small and medium workloads, using a business
model similar to the other cloud-based services of the company.

This platform is built from a collection of technologies available on Google’s infrastructure,
such as the large-scale computer cluster management system (Borg), the distributed databases (Bigtable
and Spanner), the distributed file system (Colossus) and the parallel pipeline execution framework
FlumeJava, as depicted in Figure 1 [35].

Figure 1. A simplified Google Earth Engine (GEE) system architecture diagram. Source: Gorelick et al. [35].

GEE provides a JavaScript API and a Python API for data management and analysis. For the
JavaScript version, a web Integrated Development Environment (IDE) (https://code.earthengine.goo
gle.com) is also provided, where the user has easy access to available data, applications and real-time
visualization of the processing results. The Python API is available through a module and has a
structure similar to its JavaScript version.

This platform provides a data catalog that stores a large repository of geospatial data,
including optical imagery of a variety of satellites and air systems, environmental variables, weather,
and climate forecasts, land cover, socioeconomic and topographic datasets. Before being made available,
these data sets are preprocessed, enabling efficient access and removing many barriers associated with
data management [35].

GEE uses four object types to represent data that can be manipulated by its API. The Image
type represents raster data that can consist of one or more bands, which contain a name, data type,
scale, and projection. A stack or a time series of Images is represented by the ImageCollection type.
GEE represents vector data through the Feature type. This type is represented by a geometry (point,
line, or polygon) and a list of attributes. The FeatureCollection type represents groups of related
Features and provides functions to manipulate this data, such as sorting, filtering, and visualization.

To process and analyze data available in the GEE public catalog or data from the user’s private
repository, GEE provides an operator library for the object types listed above. These operators are
implemented in a parallel processing system that automatically splits the computation so that it can be
performed in a distributed environment.

In the GEE approach, objects handled via JavaScript or Python represent proxies for data stored
in Google’s infrastructure. When a new object is generated as a result of some operation, the locally
stored object has the description of the operation and the addresses of the input objects of the operation.

https://code.earthengine.google.com
https://code.earthengine.google.com
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Processing only occurs when there is an output (visualization or writing) of the object produced for
computation. This lazy computation mode allows the processing of only some parts of the data that
actually produce the required output.

The result of a GEE processing can be viewed in the web IDE or saved in one of three company
services—Drive, Cloud Storage or Assets. GEE uses a Tiles server to make data available to the web
interface efficiently. However, this service is not explicitly provided and so users cannot integrate it
into other applications.

As a computing system with shared resources among users, GEE imposes limits on the iterative
usage mode (On-the-Fly Computation box in Figure 1), where execution takes place in real-time.
The limits are on the maximum duration of each request, the maximum number of simultaneous
requests per user and the maximum execution of operations considered costly, such as spatial
aggregations. Processing beyond thresholds is possible through the batch computing mode (Batch
Computation box in Figure 1) [35]. For data-intensive processing or compute-intensive analytics, there is
currently a need to make a request to Google.

The Google Earth Engine library has over 800 functions for handling big EO data sets. Despite this
large number of builtin functions, these functions are close and users can not update or extend their
basic functionalities. While GEE provides a friendly environment for scientists, the implementation of
procedures that are not available through the GEE API functions requires significant user effort [40].
Besides that, GEE only offers programming interfaces that support pixel-based processing, and there
are natively no region-based methods such as image segmentation or large-scale time series analysis.

The characteristics of GEE have motivated its use by the EO community researchers. There are,
for example, studies using this platform for urban area assessment [41] and evaluations of the
performance of algorithms available in the platform for the classification of agricultural crops [40].

One facility that GEE provides to users is the capability to share their scripts and assets with other
users of the platform. Nevertheless, it is important to keep in mind that these scripts use algorithms
implemented internally by the platform and that these algorithms are close and can not be extended
on the server side. Therefore, GEE can not guarantee that an analysis performed on the platform can
be reproduced in the future, since these internal algorithms can be changed or discontinued by the
platform at any time [42].

The GEE terms of service guarantee users the intellectual property of their codes and data as
well as that the company will not use such information for purposes other than what is necessary to
provide the service to the user [42].

2.2. Sentinel Hub

Sentinel Hub (SH) is a platform developed by Sinergise that provides Sentinel data access and
visualization services. This is a private platform with public access (https://www.sentinel-hub.com).
Unlike Google Earth Engine, SH limits access to functionality in different payment plans. The free plan
only allows viewing, selection and downloading of raw data. Paid access enables data access through
OGC protocols and a specific API, data processing, mobile application data access, higher resource
access limits, and technical support [34].

The features of the SH platform are made available through OGC services and a RESTful API.
A web interface is also available that allows the configuration of specific services. Sinergise does not
provide a diagram of the system architecture used by Sentinel Hub or information about how data
is stored or processed. Thus, Figure 2, prepared by us, intends to illustrate the interaction between
the services provided and the data abstractions used by the SH platform. In this figure, the arrows
indicate the direction of the data flow.

https://www.sentinel-hub.com
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Figure 2. Sentinel Hub (SH) services and data abstraction diagram.

SH uses the concepts of Data Source, Instances and Layer to represent the data available in its
services. Data Source is an abstraction equivalent to the GEE ImageCollection, representing datasets that
share the same set of bands and metadata.

The Data Sources currently available on SH are—Landsat 8 L1C, Mapzen DEM, MODIS MCD43A4,
Sentinel-1 GRD, Sentinel-2 L1C and L2A, Sentinel-3 OLCI and SLSTR, and Sentinel-5P L2. It is also
possible to include your own data in the SH platform. These data sets are named Collections by SH and
need to be stored in the cloud optimized GeoTIFF (COG) format in a S3 bucket.

An Instance in SH platform acts as a distinct OGC service that can be configured to provide a set
of Layers that fulfill user needs. Each Layer is associated with one or more bands of a specific Data
Source and a processing script. These scripts, called Evalscripts by the SH, are applied to each pixel of
the data requested by the user. It is not possible to access the data of a pixel’s neighborhood during the
execution of the script, which can basically perform operations between bands.

Evalscripts are also used for SH API Process and Batch modules. In the Process module, the user
can request a Data Source, informing filtering parameters, such as bounding box and time range,
and indicating an Evalscript that will be applied to each pixel of the data before being delivered by the
service. In the Batch mode the behavior is the same, except the service that is asynchronous and saves
the result in an S3 bucket informed by the user during the request [43]. The SH web interface provides
an interactive means for creating Instances and registering Collections by users.

The Sentinel Hub source code is close and so it is not possible to extend it. Sinergise provides good
documentation with examples for using the web interface and SH API. Similar to GEE, Sentinel Hub
terms of service guarantee users the intellectual property of their content and that the company will
use it only for the provision of the platform services. Also, Sentinel Hub can change the offered
functionalities at any time and there is no guarantee of continuity of services [34]. Currently, SH has
no tools to facilitate the sharing of Evalscripts among researchers.

2.3. Open Data Cube

The Open Data Cube (ODC), previously known as the Australian Geoscience Data Cube (AGDC),
is an analytical framework composed of a series of data structures and tools that facilitate the
organization and analysis of EO data. It is available under Apache 2.0 license as a suite of applications.
It is currently supported by Analytical Mechanics Associates (AMA), The Committee on Earth
Observation Satellites (CEOS), The Commonwealth Scientific and Industrial Research Organization
(CSIRO), Geoscience Australia (GA) and United States Geological Survey (USGS).
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ODC allows the cataloging of massive EO data sets and their access and manipulation through
a set of command line tools and a Python API. Figure 3 illustrates the architecture of ODC.
Data Acquisition and Inflow represents the process to collect and prepare EO data before indexed by
ODC. Data Cube Infrastructure illustrates the main core of ODC, where EO data is indexed, stored and
delivered to users over the Python API. Data and Application Platform group auxiliary application
modules as job management and authentication.

Figure 3. Architecture diagram of the Open Data Cube (ODC) platform. Source: Lewis et al. [44].

The source code of ODC and its tools are open and are officially distributed through dozens of git
repositories (https://github.com/opendatacube). These repositories include web interface modules
for data visualization, data statistics extraction tools as well as jupyter notebooks with examples of
access and use of indexed data in ODC.

The main module responsible for data indexing is called datacube-core and consists of a Python
script set that uses a PostgreSQL database to catalog the metadata of the data and provides an API for
data retrieval. ODC can index data stored on a file system or the web. This platform does not use any

https://github.com/opendatacube
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approach to data distribution between servers, and it is the user’s chosen file system’s responsibility to
ensure the scalability of data storage and access.

ODC uses the concepts of Product and Dataset to represent the data indexed in its catalog.
Products are collections of data sets that share the same set of measures and some subsets of
metadata. The Dataset represents the smallest independently described, inventoried and managed
data aggregation. These are usually scenes stored in files that together represent a Product [45].

The data loading process in ODC consists of four steps. First, a Product must be registered from
its metadata. In the second step, the metadata is extracted from each file (Dataset) that will be linked
to the Product. To automate this process, ODC provides metadata extraction scripts for the following
instruments/sensors: Landsat-5/7/8, Sentinel-1/2, ALOS-1/2, ASTER Digital Elevation Model (DEM),
and MODIS [36]. With the metadata of the prepared files, the third step is to register these Datasets
in the ODC catalog. The last step, called data ingestion, is optional and deals with the process of
creating new Datasets from already registered Datasets. These new Datasets is saved using a new storage
scheme, composing a new Product. At this stage, data can be re-sampled, re-organized in time series
and/or broken into smaller blocks for storage. The main purpose of producing these new Datasets is to
optimize the data format to speed up the reading process of data in the file system.

The development of applications for processing data indexed by an ODC instance requires the use
of the framework’s Python API. This API allows the listing of indexed Products, retrieving Products and
Datasets data and metadata. Data retrieval is performed by a load function that receives parameters
such as product name, bounding box, period range, and spatial output resolution. This function
returns a xarray object to be used by user’s application. For parallelization of processing, ODC has
examples of using asynchronous task queues through the use of the Celery framework. Nevertheless,
the parallelization of the processing of applications using ODC is the responsibility of the user.

For data access, ODC provides implementations of OGC web services such as WCS, WMS and
WMTS. In addition to these modules, ODC also provides tools that facilitate ODC deployment
through containers, an implementation that exposes the ODC Python API through a REST API,
Jupyter Notebooks with Sample Applications, an application for extracting statistics from indexed
data and an implementation of a web portal. In this web portal, it is possible to discover the
available products, select and retrieve datasets (GeoTIFF and NetCDF), and perform analyzes through
applications available in the portal.

Out of the box, this web portal offers a small set of sample applications, but new features can be
added. This requires using a template provided by ODC developers. In this template, the researcher
needs to extend classes from the Django framework and the Celery framework [46].

Currently the ODC platform has no tools to facilitate the sharing of applications and data between
researchers. For a user to be able to reproduce results in another instance of ODC it is necessary to
manually share and index the data and applications used.

In June 2019, nine institutions were using ODC operationally, fourteen were in the implementation
phase and thirty three were analyzing its implementation [47]. The most prominent instance is the
Australian version, called the Australian Geoscience Data Cube (AGDC). This instance stores over
300,000 Landsat images covering Australia, corresponding to approximately 1013 measurements stored.
To store this volume of data, AGDC uses a cluster of computers with the Lustre distributed file
system [44]. Two other operational instances are Switzerland [48] and Colombia [49].

2.4. SEPAL

The System for Earth Observation Data Access, Processing and Analysis for Land Monitoring
(SEPAL) is a cloud computing platform developed for the automatic monitoring of land cover.
It combines cloud services, such as Google Earth Engine, Amazon Web Services Cloud (AWS),
with free software, such as Orfeo Toolbox, GDAL, RStudio, R Shiny Server, SNAP Toolkit and
OpenForis Geospatial. The main focus of this platform is on building an environment with previously
configured tools and on managing the use of computational resources in the cloud to facilitate the way
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scientists search, access, process and analyze EO data, especially in countries that have difficulties with
connection with the Internet and few computational resources [37].

SEPAL is an initiative of the Forestry Department of the United Nations Food and Agriculture
Organization (FAO) and financed by Norway. Its source code (https://github.com/openforis/sepal) is
available under MIT license and is still under development [37]. It works as an interface that facilitates
access and integration of other services. Figure 4 presents a diagram of SEPAL architecture. The Sepal
Instance, provides a web-based user interface where users can search and retrieve datasets and start
preconfigured cloud-based machines to perform their analysis.

SEPAL uses Google Cloud Storage and Google Drive to store EO data and metadata. The Google
Earth Engine is used for data processing and retrieval and the Amazon Web Services Cloud (AWS) is
used for data storage (S3 and EFS AWS services) and as an infrastructure for computing analyses (EC2
AWS service).

Figure 4. Architecture diagram of the System for Earth Observation Data Access, Processing and
Analysis for Land Monitoring (SEPAL) platform. Source: FAO [37].

The SEPAL platform can be accessed through a web portal (https://sepal.io), running on the AWS
infrastructure, or it can be installed on the user own infrastructure using Vagrant for the management
of processing instances. Currently, there are few available documentations about the deployment on
in-house infrastructure.

In the web portal, the functionalities are divided into 4 areas—Process, Files, Terminal, and Apps.
In Process, the user can search and retrieve images for further processing or viewing, by selecting
the area, the sensor (Landsat or Sentinel-1 and 2) and the period of interest on the web interface.
After searching, it is possible to select the best scenes for the production of a mosaic that can be
downloaded to a user’s storage space. In the Files section, users can browse through the files previously
saved in their storage space. The files searched and retrieved in the Search section can be accessed
and viewed from this area of the portal. The area called Terminal allows users to start a machine
in the AWS cloud. Before executing it, users must choose one of the 22 hardware configurations
available. Each machine is associated with a cost per hour of use. Upon accessing the SEPAL account,

https://github.com/openforis/sepal
https://sepal.io
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users receive a fixed amount of credits monthly. The machine configuration options available are some
possibilities found in the AWS EC2 service. In the Apps area, applications are available to process and
analyze data previously stored in the user’s storage space. When an option is selected, SEPAL deploys
the application code to the user’s running machine (or instantiates a new one, if none is active) and
opens a new browser window pointing to its interface. Currently available applications are RStudio,
Jupyter Notebook, Jupyter Lab, and interactive documents that run on an R Shiny Server.

Although SEPAL provides functionality for users to manage and view data on its web interface
(Files), this platform does not provide any web service to access the data or send processing requests
to the server. Its features are more focused on the management of computational resources (virtual
machines) and the aid of data pre-processing from EO data providers through a web interface (Process).
SEPAL automatically connects the storage service to the virtual machines allocated by the users,
making the previously downloaded files available to the user’s applications. In this environment,
researchers are responsible for developing applications that make good use of available computational
resources. SEPAL also does not provide tools to facilitate the sharing of analysis between users.

2.5. JEODPP

The Joint Research Center (JRC) Earth Observation Data and Processing Platform (JEODPP) is a
closed solution developed since 2016 by the JRC for the storage and processing of large volumes of
Earth observation data. This platform has features for interactive data processing and visualization,
virtual desktop and batch data processing. This platform uses a set of servers for data storage and
another set for processing. The storage servers use the EOS [50] distributed file system and store the
data in its original format, with only pyramidal representations added to speed up the reading and
visualization of the data.

For data visualization, JEODPP uses a Jupyter Notebook environment and provides an API for the
construction of objects that represent processing chains, through previously defined functions. When a
visualization object is built, the associated processing chain is not executed instantly. The execution of
the processing chain only occurs when data associated with the object is used. This lazzy processing
approach is the same as that adopted by GEE for data visualization.

Figure 5 illustrates the data processing and visualization flows adopted by JEODPP. The left side
shows the flow of registration of the processing chains, while the right side shows the flow of data
delivery for visualization.

For the virtual desktop feature, JEODPP uses the Apache Guacamole system, which allows
viewing a remote terminal through a browser. This feature allows the use of remote Linux or Windows
terminals, which are previously prepared with tools for processing EO data (R, Grass, GIS, QGIS,
MATLAB, etc.) and where the data is available through the EOS file system.

For batch processing, JEODPP uses the HTCondor framework for scheduling tasks on servers.
Users are responsible for integrating HTCondor into their applications in order to take advantage of
the cluster of processing servers. In these processing modes, users directly access the files, making it
necessary to know the folder structure and the formats of the stored data. JEODPP does not provide
any kind of extra abstraction for accessing and manipulating this data.

Soille et al. [3] presents the results of two tests performed with JRC applications in an instance
of the JEODPP system running in a cluster with 912 cores (15.8TFLOS) and accessing 1PB of data.
The tested applications are: (i) Search for Unidentified Maritime Objects (SUMO); and (ii) Global
Human Settlement Layer (GHSL) framework. For each application, the number of pixels processed
per second in Mpixel/s was calculated. The results show a linear growth of performance in relation to
the increase of processor numbers, indicating good processing and data access scalability.

Based on the documentation available, the JEODPP does not have tools to facilitate the sharing of
analysis among researchers. This capability is only available for internal use of JRC and there is no
source code available for implementation in other institutions.
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Figure 5. System architecture for interactive visualization and processing ofEarth observation (EO) data
on Joint Research Center (JRC) Earth Observation Data and Processing Platform (JEODPP) platform.
Source: Soille et al. [3].

2.6. pipsCloud

pipsCloud [39] is a proprietary solution developed by Chinese research institutions for the
management and processing of large volumes of EO data based on cloud computing. The file
system used in pipsCloud is HPGFS, a proprietary file system also developed by Chinese institutions
and which is not available for use by third parties. Its cloud environment is implemented in the
organization’s internal infrastructure using OpenStack technology, which allows the construction of
virtualized services infrastructure.

Figure 6 shows the architecture of pipsCloud. The highlight is given to the file indexing scheme,
which uses a Hilbert-R+ tree, and a virtual file catalog. Users who need to process data should
describe a query to identify the files of interest. From these files, a file system is mounted on the user’s
processing machine with only the requested data.

For data processing on the server-side, pipsCloud provides C++ code templates for building
applications. These templates abstract the reading of the data on disk and the submission of the
processes to the processing nodes. The communication between the processing nodes and the parallel
reading of the files is done using features of the MPI interface (Message Passing Interface).

The pipsCloud platform does not provide any functionality to export data using OGC standards
or to facilitate the reproducibility of science. In addition, it is only available for internal use by
the institutions that participate in the project and its source code is close and is not available for
implementation in other institutions.
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Figure 6. Architecture of the pipsCloud platform. Source: Wang et al. [39].

2.7. OpenEO

The OpenEO project started in October 2017 in order to meet the need to consolidate available
technologies for storing, processing and analyzing large volumes of EO data. This demand arises
from the difficulty that many users of EO data have in migrating their data analytics to cloud-based
processing platforms. The main reason is not, in many cases, of a technical nature, but the fear
of becoming dependent on the provider of the chosen platform. OpenEO aims to reduce these
concerns, by providing a mechanism for scientists to develop their applications and analyzes using a
single standard that can be processed in different systems, even facilitating the comparison of these
providers. With this approach, OpenEO aims to reduce the entry barriers for the EO community in
cloud computing technologies and in big EO data analysis platforms.

To this end, this system has been developing as a common and open source (https://github.c
om/Open-EO) interface (Apache license 2.0) to facilitate the integration between storage systems and
analysis of EO data and applications of the European program Copernicus.

Figure 7 shows the three-tier architecture adopted by OpenEO. The Client APIs layer consists of
packages or modules in R, Python and JavaScript, which act as an entry point for the development
of analysis by researchers. This API uses two terms to describe EO datasets. The Granule refers

https://github.com/Open-EO
https://github.com/Open-EO
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to a limited area and represents the less granularity of data that can be managed independently.
The Collection is a sequence of Granules sharing the same product specification [51]. The Core API
layer is responsible for standardizing Client APIs requests, unifying access to services provided by data
processing technologies and platforms. Finally, the Driver APIs layer is responsible for the interface
between the Core API and the data storage and processing services (back-end services).

Figure 7. Architecture of the OpenEO project. Source: Pebesma et al. [38].

OpenEO uses microservices to implement the Core API. These web services use the REST
architectural style and are divided into the following functionalities [52]:

• Capabilities: retrieves the functionality of the back-end services, such as which authentication
methods are supported and which User-defined functions (UDF) can be performed;

• EO Data Discovery: describes which data sets and image Collections are available on back-end
services;

• Process Discovery: provides the types of processing available at each back-end provider;
• UDF Runtime Discovery: allows the discovery of programming languages and environments for

the execution of UDFs;
• Job Management: organizes and manages the tasks running at the back-end providers;
• Result Access and Services: provides the services for data recovery and processing results in the

form of OGC Web Coverage Service (WCS) or OGC Web Map Service (WMS);
• User Data Management: manages the user account, such as storage and processing usage

issues; and
• Authentication: provides user authentication.

The interaction between the Client API and Core API layers is made using four abstractions
of processing elements, which are used to represent the objects sent by users to the OpenEO web
services. The first, Process Graphs, defines process calls, including input parameters for previously
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defined functions. For more complex processing, these graphs allow the linking of multiple processes,
where one process can receive another graph as a parameter, and so on. This type of computation
invocation is equivalent to that used by GEE. Tasks represents another abstraction used in the processing
flow adopted by OpenEO. These Tasks can be: Lazy evaluated jobs; Batch jobs; or Synchronously
executed jobs. From the execution of a Job, it is possible to make its results available through OGC
WCS or WMS.

The third abstraction used by OpenEO is User Defined Functions. They are used to expose, on the
server side, data to applications in different ways. They represent the interface of the functions that
users can implement to run on the server side. The last abstraction provided by OpenEO is Data View.
This functionality allows the user to select and configure the temporal and spatial resolution of the
data to be viewed. A Data View allows processing on demand, when only the data to be viewed is
processed. This approach is similar to that adopted by the Lazy mode used by the GEE [51,52].

OpenEO does not restrict the technologies used in the back-end for data storage or processing.
Thus, it is not possible to guarantee that all functionalities will be available or that the applications
will work in the same way in different back-ends. Besides that, OpenEO does not provide facilities to
guarantee the reproducibility of science.

3. Assessment of the Platforms

We define “Platforms for big EO Data Management and Analysis” as computational solutions that
provide functionalities for big EO data management, storage and access, which allow the processing on
the server side without having to download big amounts of EO data sets; and which provide a certain
level of data and processing abstractions for EO community users and researchers. EO community
users need efficient and stable solutions that provide analytical tasks and that minimize their effort and
required technological expertise to manage large EO data sets. These solutions should provide a certain
level of data and processing abstraction that allows scientists to deal with large EO data sets without
worrying about technologies such as database systems, web services and distributed computing.
These technologies should be integrated and presented to scientists in the form of a platform where the
complexities of data storage, processing, and infrastructure must be abstracted. According to Camara
et al. [5], an architecture for big EO data analysis must meet the following requirements:

• Analytical Scalability: it should cover the entire research cycle, allowing algorithms developed on
personal computers to be executed in massive computing environments or large data volumes
without major changes.

• Software reuse: it should allow researchers to adapt existing methods for application to large
volumes of data with minimal rework.

• Collaborative work: it should allow results to be shared with the scientific community.
• Replication: it should encourage research groups to deploy their own infrastructure.

Ariza-Porras et al. [49] list the following characteristics needed in a system for managing and
analyzing EO data of interest to their research group:

• Data ownership: historical out-of-the-box data series should be available without reliance on
external services.

• Extensibility: new processing algorithms should be easily added to the system.
• Lineage: the origin of the results should be identifiable by the algorithms and parameters used.
• Replicability: results should be replicable.
• Complexity abstraction: developers should be able to create new algorithms without interacting

directly with the data query API. Developers should work with multidimensional arrays.
• Ease of use: The user interface should allow analysts to execute algorithms without long training.

Developers should be able to create new algorithms using programming language knowledge
with a small learning curve.

• Parallelism: Available computing resources should be used effectively by the system.
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The demands and needs presented by Camara et al. [5] and Ariza-Porras et al. [49] motivated
us to define ten capabilities to serve as criteria for evaluating the platforms presented in this work.
The following list provides each capability name, its description, and, when applicable, its associated
term proposed by other authors in parentheses:

• Data abstraction: the capacity to provide data abstraction, hiding from scientists details about
how data is stored without limiting its access mode (Complexity abstraction; Ease of use).

• Processing abstraction: the capacity to provide data processing abstraction, hiding from scientists
details about where and how data is processed, without limiting its processing power (Complexity
abstraction).

• Physical infrastructure abstraction: the capacity to hide from scientists aspects regarding the
number of servers, hardware and software resources (Analytical scalability; Complexity abstraction).

• Open Governance: the capacity of the scientific community to participate in the governance and
development of the platform.

• Reproducibility of science: the capacity to provide means that allow scientist to share their
analysis and/or reproduce the results among other researchers (Collaborative work; Replicability).

• Infrastructure replicability: the capacity to replicate the software stack, processes and data on
own infrastructure (Replication).

• Processing scalability: the capacity to scale processing performance by adding more resources
(hardware/software) without a direct impact on the way scientists conducts their analysis
(Parallelism).

• Storage scalability: the capability to scale storage space by adding more resources
(hardware/software) without a direct impact on how scientists access data (Parallelism).

• Data access interoperability: the capacity to provide means, based on standardized interfaces,
that allow other applications to access analysis results or data sets available in the platform.

• Extensibility: the capacity to add new software tools that utilize the storage and processing
modules available internally in the platform (Analytical Scalability; Software reuse; Extensibility).

In this work, we evaluate these ten capabilities of the platforms Google Earth Engine (GEE),
Sentinel Hub (SH), Open Data Cube (ODC), System for Earth Observation Data Access, Processing and
Analysis for Land Monitoring (SEPAL), OpenEO, JEODPP, and pipsCloud. Table 1 presents a summary
of this evaluation. For each platform, we classify each capability in three levels—low, medium and high.
The following paragraphs present details about the platform capabilities.

GEE, ODC, OpenEO and SH provide high data abstraction to facilitate data access by users.
On these platforms, users can make queries with spatial and temporal criteria to select the data set of
interest. GEE uses the concept of ImageCollection to represent the data sets stored in these platforms.
ODC uses the concept of Product and delivers data through a multidimensional data, while OpenEO
uses the concept of Collection for these structures. SH provides access to data through Data Sources that
can be accessed through services. SEPAL, JEODPP, and pipsCloud do not provide data abstraction.
On these platforms, data is accessed through direct file manipulation.
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Table 1. Capacities of the platforms for big EO data management and analysis

3 Capability ODC GEE SEPAL JEODPP pipsCloud OpenEO SH

Data
abstraction

High: Product and
Dataset

High: Image,
ImageCollection,

Feature and
FeatureCollection

Low: Direct file
handling

Low: Direct file
handling

Low: Direct file
handling

High: Collection and
Granule

High: Data Source,
Instances and Layers

Processing
abstraction

Medium: Xarray
and celery

Medium: Predefined
pixel-wise functions

Low: User runs his
own code

Low: User runs his
own code

Low: User runs his
own code

Medium: User-Defined
Functions, Process

graphs and Jobs

Medium: Custom
scripts (Evalscripts)

layers perform
pixel-wise processing

Physical
infrastructure

abstraction

Medium: Only data
storage

infrastructure

High: Both data
storage and processing

infrastructure

Medium: Only data
storage infrastructure

Medium: Only
data storage

infrastructure

Medium: Only data
storage

infrastructure

High: Both data storage
and processing
infrastructure

High: Both data
storage and processing

infrastructure

Open
Governance

High: Defined
governance process

Low: Proprietary
software, closed source

software

Medium: Only open
source repository

Low: Proprietary
closed source

software

Low: Proprietary
closed source

software

Medium: Only open
source repository

Low: Proprietary
closed source software

Reproducibility
of science

Low: Without any
ease

Medium: Data links
and scripts shareable

without guarantee to be
reproducible

Low: Without any
ease

Low: Without any
ease

Low: Without any
ease Low: Without any ease Low: Without any ease

Infrastructure
replicability

High: Open source
code, docker

containers and
documentation

available

Low: Proprietary
closed source software

Medium: Open
source code with

basic documentation
available

Low: Proprietary
closed source

software

Low: Proprietary
closed source

software

Undefined: Dependent
on the backend used

Low: Proprietary
closed source software

Processing
scalability

Medium: A
template

application
available (Python

and Celery)

High: Code
automatically executed

in parallel using a
MapReduce approach

Low: User runs his
own code

Medium:
HTCondor

Medium: A
template

application
available (C++ and

MPI)

Undefined: Dependent
on the backend used High: Closed solution

Storage
scalability

High: Distributed
File System, S3 and

HTTP

High: Google storage
services

High: Google storage
services

High: Distributed
File System

High: Distributed
File System

Undefined: Dependent
on the backend used High: Closed solution

Data access
interoperability High: OGC Services Medium: Tile service Low: Without any

ease
Low:Without any

ease
Low:Without any

ease High: OGC Services High: OGC Services

Extensibility High: Open source
and modular code

Low: Proprietary
closed source software High: Open source

Low: Proprietary
closed source

software

Low: Proprietary
closed source

software

Medium: open source
software integrated with

proprietary software

Low: Proprietary
closed source software
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Regarding the abstraction of data processing, we consider that no platform fully meets this
capacity. GEE and SH platforms make transparent to users how and where processing is performed,
but limit or hinder the use of a non-pixel-by-pixel processing approach. ODC does not have this
limitation, but it requires the user to be aware of the processing mode used. In this platform, it is
possible to perform sequential or parallel processing. For parallel mode, ODC provides a toolkit
to facilitate application development, which should be developed by the user. OpenEO provides
a complete interface for performing server-side processing transparently, but it demands that such
functionality must be available on the back-end used. Thus, the processing abstraction may or may
not be observed in the OpenEO, depending on the chosen back-end platform. SEPAL, JEODPP,
and pipsCloud platforms do not have processing abstraction capabilities because they require users to
develop their applications and access data directly through files. On these platforms, parallelization or
distribution of processing must be implemented and managed by the users themselves.

GEE, OpenEO and SH platforms provide an high abstraction of the physical infrastructure used
for data storage and processing. In the case of GEE and SH, the user only interacts with their APIs
using JavaScript (SH and GEE) or Python languages (GEE) or OGC web services (SH). For OpenEO,
physical infrastructure abstraction is one of the main goals of the platform. Thus, it provides a single
interface for analysis on different back-ends.

The platforms ODC, JEODPP, pipsCloud, and SEPAL partially abstract the physical infrastructure.
Although users have facilities to use ODC, JEODPP, pipsCloud, and SEPAL through remote resources,
it is not transparent for users the use of the file system or the use of multiple resources for
distributed processing.

ODC, SEPAL and OpenEO platforms are open source and their code are available in open
repositories that allow the scientific community to collaboratively participate in their development.
Considering these platforms, ODC is the only one that provide publicly disclose documents that
formalize the platform governance process and how to create or incorporate new features into the
platform. GEE, JEODPP, pipsCloud and SH are closed solutions that do not allow collaborative
development or participation in governance by members outside the responsible teams.

The only solution reviewed that presents a clear initiative in providing reproducibility of science
is the GEE platform. Users can share their scripts and data, allowing other platform users to reproduce
their analysis. Nevertheless, the analysis of reproducibility of science is a complex issue when we
observe that GEE is a closed solution and that the scripts only represent processing invocations to
the platform API. Changes in algorithm implementations, even if they are corrections, can impact
the results observed by running the same script on the same dataset at different dates. GEE does not
provide a versioning system for algorithms or data in public catalog. For this reason, we consider that
GEE provides only an intermediate reproducibility of science capability.

The reproducibility of results in the other platforms is not facilitated through some
platform-specific functionalities. In general, users need to manually share scripts and data with
other users before the analyses can be replicated.

ODC, SEPAL and OpenEO platforms allow users to deploy them on their own infrastructures.
ODC, besides providing source code, provides a good documentation about the platform deployment
process and a repository with docker images, facilitating the platform infrastructure replication
process. Differently from ODC, SEPAL and OpenEO have little documentation about the deployment
of available applications, making this process difficult. The other platforms analyzed do not publicly
present means to be deployed in user infrastructures.

Regarding the processing scalability, GEE has the best performance gain with the increase of
resources because it uses a MapReduce architecture where data and processing are distributed using
technologies developed by Google. Processing scalability can also be observed in the solution adopted
by JEODPP in the production of visualization data (processing chains). This same capability is not
available in the other data processing modes of the JEODPP, leading us to classify it as medium.
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We consider that ODC and pipsCloud partially meet the scalability of processing. For while,
these platforms help users to make better use of processing resources by incorporating distributed
processing tools or code templates. However, the responsibility to implement such solutions is entirely
of the users.

A high level of storage scalability is observed in the GEE, SH, JEODPP, SEPAL, ODC,
and pipsCloud platforms. These platforms use or allow the use of distributed file systems to scale data
storage. The file systems themselves used by these solutions allow new storage features to be added
without a direct impact on how users access data.

Regarding data access interoperability, only ODC, OpenEO and SH platforms provide
standardized APIs for accessing stored data. These platforms provide OGC web services, such as
WMS, WTMS and WCS. GEE uses a Tile Map Service (TMS) only to show the results on the web IDE,
without explicitly informing the API endpoint.

Only ODC, SEPAL and OpenEO allow the extension of their functionalities by including new
software tools to the solutions already used by them. ODC stands out in this capacity because
it provides a good documentation about how to add new features by other users, including the
distribution of sample applications for distributed processing.

To summarize and visually illustrate the rating levels assigned to each platform in the analyzed
capacities, we produced six graphs. Each graph shows a pair of capacities. When possible,
capabilities were grouped by similarities, such as abstraction and scalability issues.

Figure 8 presents a graph illustrating the position of each platform in relation to data abstraction
and processing abstraction capabilities. In this figure, we observe two groups of platforms, those with
low data and processing abstraction (SEPAL, JEODPP and pipsCloud) and those with high data
abstraction and medium processing abstraction (ODC, GEE and OpenEO).

Figure 9 illustrates the distribution of platforms against processing and physical infrastructure
abstractions. In this figure, SEPAL, JEODPP and pipscloud platforms are grouped with low processing
abstraction and medium level of physical infrastructure abstraction capability. ODC presents medium
classification in both categories presented in this figure.

Figure 8. Data abstraction vs. Processing abstraction.
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Figure 9. Physical infrastructure abstraction vs. Processing abstraction.

Figure 10 presents the position of each platform in relation to reproducibility of science and
infrastructure replicability. In this graph we can observe that, in terms of infrastructure replicability,
the highlight is ODC, while GEE stands out in the reproducibility of science axis. JEODPP, pipsCloud,
and SH have none of these capabilities.

Figure 11 presents a graph that shows platforms in relation to storage scalability and processing
scalability capabilities. Note that all platforms appear at the top of the this figure. SEPAL appears in
the top left corner, pipsCloud, JEODPP and ODC are rated with medium processing scalability and
the platforms that appear in the upper right are only GEE and SH.

Figure 10. Infrastructure replicability vs. Reproducibility of science.
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Figure 11. Processing scalability vs. Storage scalability.

Figure 12 maps the extensibility and data access interoperability capabilities. Among the graphs
showed in this paper, this graph presents the largest dispersion among the capabilities of the platforms.
At the lower left corner, we have JEODPP and pipsCloud, while in the lower right corner only the SH
appears. ODC appears at the upper right corner, highlighting its high level in these two capabilities.
SEPAL is in the northwest corner, showing good extensibility, while GEE shows a medium data
access interoperability.

Figure 13 presents a graph relating the extensibility and open governance capabilities. In this
figure we can observe four groups. The first is formed by the platforms GEE, JEODPP, pipsCloud and
SH that does not have these capabilities. The in the upper part, SEPAL appears on the center of the
open governance axis, while ODC appears on the right edge. The latter group appears at the center of
both axes and is formed only by OpenEO platform.

Figure 12. Data access interoperability vs. Extensibility.
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Figure 13. Open Governance vs. Extensibility.

4. Final Remarks and Discussion

From the point of view of data abstraction and processing, OpenEO is the system that provides
the most flexible solution to the scientist. Process chaining through Process Graphs allows a high degree
of abstraction of processing tasks, equivalent to the solution used by GEE. Besides that, OpenEO allows
the scientist to use User Defined Functions, which allow data processing in different modes (scenes,
time series, cubes and windows). The shortcoming of this processing mode is the lack of support to
operate on more than one image.

On the other hand, OpenEO cannot guarantee that back-end systems will provide data, features,
and implementations that are compatible with each other. This fact can limit the execution of the same
analysis on different back-ends or require researchers to adapt their applications.

From the standpoint of ease of use and development maturity, GEE is the platform that delivers
the best solution for users. However, it has limitations because it is a closed platform, especially as
to guarantee the reproducibility of the analyses. Another important issue to consider is the lack of
guarantee of platform continuity, as it is not possible to replicate GEE in particular infrastructure.
These drawbacks are also shared by Sentinel Hub.

The technological solution adopted by SEPAL is more focused on infrastructure management and
the provision of tools for the analysis of EO data. Big data challenges are not directly addressed
by this platform, leaving the user with the burden to make efficient use of available hardware
and software resources. The ability to order hardware on demand, as provided by this platform,
implies moving data to perform processing. This strategy may be efficient for CPU-bound tasks, but in
I/O-bound computations, the approach of moving analysis closer to the data (moving code paradigm)
is more appropriate.

Among the analyzed platforms, ODC is the solution that presents the best balance between the
analyzed capacities. The drawback of the ODC solution is mainly the lack of support for reproducibility
of science, which is not found in the others either. On the other hand, the other capacities evaluated
are at least partially met.

Recently, ODC has been used by different projects to manage multidimensional data cubes created
from remote sensing images for a specific country, such as the Australian Data Cube [44], Swiss Data
Cube [48] and Africa Regional Data Cube [53]. In these projects, Analysis Ready Data (ARD) generated
from Earth observation satellite images are modeled as multidimensional data cubes, especially for
image time series analysis [54]. Such data cubes have three or more dimensions that include space,
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time and spectral derived properties. These data cubes can also be defined as a set of time series
associated to spatially aligned pixels ready for analysis [55].

This novel worldwide trend in creating multidimensional data cubes from big amounts of remote
sensing images brings new challenges for SDI. A novel generation of SDI has to properly store, access,
visualize and analyze these multidimensional data cubes, based on image time series processing.
Following this trend, ODC provides functions to index multidimensional data cubes and to handle
them, partially meeting these challenges.

Building a platform that fully meets all the capabilities discussed in this paper is a big challenge.
The greater the degree of abstraction delivered to the scientist, the greater the difficulty in providing
flexibility in data processing approaches. The solution, perhaps, is to provide a platform with two
forms of processing for the scientist. The most frequently used features could be made available
through a high abstraction API, similar to that provided by OpenEO and GEE. For more complex
analyzes, the platform could allow its extension through a framework, such as the solution adopted
by ODC, so that the scientist has direct access to data and infrastructure processing capabilities.
Besides that, the use of distributed data storage is important to minimize data movement during
processing. In this approach, processing would occur where data is stored, using the moving code
approach. In the scenario presented in this paper, we believe that ODC is the solution that presents the
best conditions to evolve to a platform with these characteristics.
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