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GLOSSARY

aggregation – in this context, the process of grouping data on individual units of analysis, such
as calculating neighborhood-level means of individual-level variables.

bias – the difference between the expected value of an estimator and the value of the parameter
being estimated.

correlation – the degree of linear association between two variables.

ecological fallacy – the assumption that relationships between variables at the aggregate level
imply the same relationships at the individual level.

ecological inference – a conclusion about associations or causal relationships among individual
observations at one level  based on the analysis of data aggregated to a higher level.

omitted variable bias – bias in a estimator resulting from the omission of a relevant variable
when the omitted variable is correlated with one or more of the explanatory variables.

In many important areas of social science research, data on individuals is summarized at higher

levels of aggregation.  For example, data on voters may be published only at the precinct level. 

The ecological fallacy refers to the incorrect assumption that relationships between variables

observed at the aggregated, or ecological level, are necessarily the same at the individual level. 

In fact, estimates of causal effects from aggregate data can be wrong both in magnitude and

direction.  An understanding of the causes of these differences can help researchers avoid

drawing erroneous conclusions from ecological data. 
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I. Origins of the Ecological Fallacy

The ecological fallacy has a long history spanning many disciplines, particularly

sociology and political science.  It is closely related to what economists tend to call aggregation

bias.  Stated briefly, one commits an ecological fallacy if one assumes that relationships

observed at an aggregated level imply that the same relationships exist at the individual level. 

For example, observing that the percent black and the crime rate are correlated at the level of

police precincts does not necessarily imply that blacks are more likely to commit crimes.  Indeed,

it is possible that the correlation of two variables at the aggregate level can have the opposite sign

as the correlation at the individual level.   As a result, it can be quite difficult to infer individual-

level relationships from aggregated cross-sectional data, an issue known as the problem of

ecological inference.

Social science is mostly about understanding the behavior of individuals.  Quite often,

however, researchers find that the only data available to address certain empirical questions is

aggregate data.  For example, a researcher may wish to know whether a specific racial group is

more inclined to vote for a particular party.   However, since balloting is secret, the researcher

does not have access to the individual-level data.  Instead, he or she may know the vote total for

two parties in each election precinct and the demographic characteristics of the voting age

population in each of these precincts.  Ecological inference refers to this process of attempting to

draw an inference about individual relationships from aggregate data.  In this example, the

researcher would attempt to draw a conclusion about the relationship between the race of an

individual and his or her voting propensity from the relationship between two precinct-level
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variables: the precinct proportion in the racial group, and the precinct proportion voting for a

particular party.  More generally, ecological inference is the drawing of a conclusion about how

X affects Y in some population of interest from data which consists of the means of X and Y for

subgroups of the population.

A.  Robinson’s Critique of Ecological Inference.

Although not the first to draw attention to the problems of ecological inference, Robinson

(1950) had the most dramatic impact.  Robinson cited a number of famous studies from several

disciplines that were based on what he called “ecological correlations” (351-352).  That is, the

cited studies relied on ordinary Pearsonian correlation coefficients between two variables

calculated from the averages of those variables for spatially-defined groups of individuals, such

as neighborhoods, cities, states, or regions.  These studies had assumed, often implicitly, that the

implications that could be drawn from the sign, magnitude, and significance of the ecological

correlations applied equally to the relationship between the two variables at the level of

individuals, which in almost all cases was the primary objective of the research.

Robinson subjected this practice to a withering critique, by contrasting individual and

ecological correlations in cases where data were available at both levels.  He showed that the

individual-level correlation between race and illiteracy in the U.S. in 1930 was 0.203, but the

correlation between percent black and percent illiterate at the state level was far higher, 0.773.  

Robinson showed that not even the sign of ecological correlations could be trusted.  The

correlation between having been born abroad and being illiterate was a positive 0.118 at the

individual level (again using 1930 data for the U.S.), probably reflecting the lower educational
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standards of the immigrants’ countries of origin.  However, the correlation at the state level

between the corresponding ecological aggregates (percent foreign born and percent illiterate) was

a counterintuitive -0.526, the opposite direction of the individual correlation!  Robinson

concluded that “there need be no correspondence between the individual correlation and the

ecological correlation” (354).  Moreover, he said he provided “a definite answer as to whether

ecological correlations can validly be used as substitutes for individual correlations.”  His

answer: “They cannot” (357).  

The impact of Robinson’s condemnation of ecological inference was profound.  Indeed,

inferences about individual relationships from aggregate data came to be regarded not just as

problematic, but – though Robinson’s seminal article did not use this word – as a fallacy (Selvin

1958: 615).  And while Robinson’s critique was stated in terms of simple bivariate correlation

coefficients, his critique is a challenge regression analysis on aggregate data as well.  All slope

coefficients in bivariate and multiple regressions can be expressed as functions of either simple

or partial correlation coefficients, respectively, scaled by the standard deviations of the dependent

and independent variables.  Because standard deviations are always positive, the sign of any

regression coefficient reflects the sign of the correlation coefficient on which it is based, whether

simple or partial.  Thus, regression analysis on aggregated data – a common practice in several

disciplines – runs the risk of committing the ecological fallacy as well.

B.  The Limitations of Robinson’s Critique.

Seen in retrospect, Robinson’s analysis seems to ignore the presence of confounding

variables.  For example, using Robinson’s second example, immigrants tended to flock to
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industrial states in search of jobs, and these states are wealthier and had higher literacy rates than

poor (jobless) Southern states that failed to attract as many immigrants.  To a modern reader,

Robinson’s analysis seems to lack appropriate controls for socioeconomic status, regional

dummy variables, or a fixed-effects model to isolate the effect of illiteracy from other covariates.  

Indeed, Hanushek et al. revisited Robinson’s data and showed that the sign of his correlation was

a reflection of left-out variable bias (1974: 90-95); in other words, his model was underspecified.

If the anomalous results attributed to the ecological fallacy actually result from model

mis-specification, then “the ecological fallacy itself is a near fallacy” (Firebaugh 1978: 570).  On

the other hand, if the divergence between individual and aggregate level estimates are more

subtle and intractable, then ecological inference is a dangerous business.  The following section

illustrates the mathematical bases of the ecological fallacy, which in turn gives some guidance as

to how it can be avoided. 

II. Understanding the Mathematical Structure of the Ecological Fallacy

To understand the ecological fallacy, one needs to understand what causes the differences

between estimators generated by data at difference levels.  The next section provides graphical

illustrations that establish how ecological inference can go wrong.  Sections B and C develop the

two mathematical conditions that cause such aggregate estimates of relationships between

variables to differ from their individual-level counterparts.

A. Graphical Illustration of the Problem with Ecological Correlations.

We begin by considering a few simplified scenarios using scatterplots, following Gove
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and Hughes (1980).  Suppose we are interested in a dichotomous dependent variable such as

dropping out of high-school, coded as either 1 if a person is a dropout or 0 if the person is not. 

Further, suppose there are two groups, white and black, and the basic question of interest is

whether members of one group or the other are more likely to drop out.   But we lack data on

individuals.  Instead, we only know the overall proportion of persons who are dropouts in 3

different neighborhoods.  We also know the proportion black in each of the three neighborhoods,

which for the purpose of illustration I have set to 0.20, 0.50, and 0.80.  

Figure 1 shows how ecological inference is supposed to work.  The figure shows the

separate rates for whites and blacks as dashed lines, because the researcher does not observe

these data.  The black group has a higher dropout rate than the white group, and so as the

proportion black in the neighborhood rises the overall dropout rate also rises.   In this case, one

could correctly infer from the aggregate data that blacks are more likely to drop out.

[Figure 1 about here.]

Figure 2 shows how the ecological data can give misleading results.  In this case, whites

have a higher dropout rate than blacks in each neighborhood.  However, the dropout rate of both

groups rises as percent black in the neighborhood rises, perhaps because percent black in the

neighborhood is correlated with some other variable such as family income.  Even though whites

have higher rates than blacks in every neighborhood, the ecological regression coefficient will

have a positive slope, because the overall dropout rate rises as percent black rises. In this case,

the ecological regression would correctly report that the DV is positively associated with percent

black in the neighborhood, but the inference that individual blacks are more likely to drop out

than whites would be wrong.   (This is an example of what is known as Simpson’s paradox.)
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[Figure 2 about here.]

Other scenarios are possible.  Suppose the black and white dropout rates are exactly the

same within each neighborhood, but the rates for both groups rise as the percent black in the

neighborhood rises.  At the ecological level, the observed dropout rates will slope upwards, even

though there is no effect of race at the individual level.  Figure 3 shows a case where the dropout

rate rises as the percent black rises solely because the whites have higher rates in the

neighborhoods in which they are the minority.  Again, an inference from the ecological level that

blacks drop out more often would be incorrect.

[Figure 3 about here.]

In Figure 4, blacks do have higher drop out rates than whites in each neighborhood, and

the rates of both groups rise as percent black increases.  Regression on the aggregate data

produces a positive slope, but virtually all of that slope is driven by the common increase of both

groups in the more heavily minority neighborhoods.  Only a small fraction of the slope reflects

the influence the race of individuals on the drop out rate.  In this case, the direction of the

ecological inference would be correct, but the magnitude of the effect would be substantially

overestimated.

B. How Aggregation Produces Bias

The problem described above can be restated as a form of aggregation bias (Freedman

2001; Irwin and Lichtman 1976; Stoker 1993; Theil 1955).  We want to understand how one

variable affects another in the population.  In other words, we want to know the slope parameter

that tells us how the dependent variable changes in response to changes in the independent
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variable.  We can obtain an estimate of the effect by applying ordinary least squares (OLS) to the

following regression equation:

, [1]

in which j indexes neighborhoods and i indexes individuals within neighborhood j.  The OLS

estimate of the slope, b, has the following expected value:

. [2]

This result is analogous to the standard proof that OLS coefficients are unbiased, found in any

econometrics textbook, except for the double summation sign.  However, in view of the

associative property of addition, the double summation signs does not affect the sums or the

conclusion.  If the second term in equation 2 is zero, which will occur if and only if X and u are

uncorrelated, then b is an unbiased estimate of $.  The disturbance term, however, implicitly

includes the effect of all other variables as well as random influences.  If the net effect of these

omitted variables and influences is correlated with X, the assumption is violated, the second term

does not reduce to zero, and the estimator is biased.  

By summing up to the neighborhood level and dividing by the number of observations in

each neighborhood, equation 1 implies that:

. [3]

The $ that appears in equation 3 is algebraically identically to the $ in equation 1.  Thus, in

principle, an estimate of the effect can be obtained from either the individual or the aggregate

level regressions.  However, the expected value of the slope estimate from the aggregate
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regression, b*, is:

. [4]

At the aggregate level, the condition for the unbiasedness is that the mean disturbance

term is not correlated with the mean value of the independent variable.  It is quite possible that in

a given set of data, the criteria for unbiasedness is met at the individual level (equation 2), but

violated at the aggregate level (equation 4).  Such a correlation could arise if the grouping

process is related to some variable Z, not included in the regression, which is correlated with the

outcome variable (Freedman 2001).  Thus, the ecological fallacy can arise from a particular kind

of left out variable bias, one that is introduced or exacerbated because of the aggregation process. 

In addition, a correlation between X and u at the aggregate level could arise if the grouping

process is based on the values of the dependent variable, Y; in that case, either extreme values of

X or extreme values of u would produce extreme values of Y, that would then tend to be grouped

together.  

Although we have explicated these ideas in the context of a bivariate regression, they

apply equally well in the multiple regression context.  In fact, in the world of social phenomena,

where there are always correlations among explanatory variables, it is highly unlikely to be the

case that a bivariate regression would be correctly specified at either the individual or the

aggregate level.   In the multivariate context, however, one additional problem arises.  An

outcome variable for an individual may be affected by both the individual’s value of X and by a

contextual variable that is a function of the aggregated values of X, such as the mean of X

(Firebaugh 2001: 4025).  When the individual data are aggregated, the individual and contextual
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values of X may not be separately identified.  This problem is discussed further in Section C

below.

The first implication of the foregoing discussion is that if both the individual and

ecological regressions are correctly specified, both types of analyses will provide equally

unbiased estimates of the true slope parameter.  In symbolic terms,

[5]

The second implication is that both regressions can be mis-specified, and in the later case

there is no guarantee that the individual regression is the better of the two.   Grunfeld and

Griliches (1960), referring to individual regressions as micro equations and ecological

regressions as macro equations, argue that ecological regressions may be better in certain

circumstances:

[I]n practice we do not know enough abut micro behavior to be able to specify
micro equations perfectly.  Hence empirically estimated micro relations...should
not be assumed to be perfectly specified....  Aggregation of economic variables
can, and in fact frequently does, reduce these specification errors.  Hence,
aggregation does not only produce aggregation error, but may also produce an
aggregation gain. (1)

It is not hard to think of examples where aggregation could reduce correlation between

the disturbance term and X.  For example, persons may choose their neighborhoods on the basis

of unobserved characteristics which also affect their wages.  In that case, neighborhood

characteristics will be correlated with the disturbance term in a wage regression, resulting in

biased estimates of the neighborhood effect on wage.  Aggregating to the metropolitan level

would sharply reduce this source of bias, by subsuming all neighborhood-to-neighborhood
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selection in the metropolitan averages.   

The third implication is that is possible to think about the conditions under which the bias

term in equation [4] has an expectation different from zero.  Assume that we can write down a

well-specified individual model based on individual-level variables, as in equation 1, but only

lack the data to estimate it.  If the same equation estimated at the aggregate level produces biased

estimates, then there must be something about the grouping mechanism that leads to correlation

between the relevant X variables and the disturbance term.  In other words, it matters how the

data were aggregated.  It is useful to consider the following possibilities and their implications:

1. Random grouping is not very likely to arise in practice, but it is instructive to
consider the possibility.  If the data are aggregated randomly, and the model was
correctly specified at the individual level, there will be no aggregation bias.  The
expected value of mean X and mean u for all groups will be the grand mean of X
and u respectively, and they will not be correlated.

2. If the grouping is based on the X (or multiple Xs), there will be no aggregation
bias.  This follows because the conditional mean of the disturbance term is zero
for all values of X if the individual model is correctly specified.

3. If the grouping is based on Y, aggregation bias is very likely.  For example, if Y
and X are positively related, in the groups with higher levels of Y one would find
both high values of X and larger than average disturbance terms, and at lower
levels of Y, the opposite would occur.  Clearly, the aggregate levels of X and u
will be correlated and the ecological regression is mis-specified.

4. Grouping based on geography, the most common method, is also the most
difficult to evaluate, since neighborhood selection may be based on a complex set
of factors operating at different levels.  However, if the dependent variable is
something like income, the danger exists that neighborhood aggregation is more
like case 3.  If the dependent variable is less likely to be involved in the residential
choice function, then sorting by neighborhood will be more like cases 1 or 2.  

When data are provided in an aggregate form, the researcher must understand and
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evaluate how the groups were formed.  Then the researcher must try to ascertain whether the

procedure is likely to introduce aggregation biases or aggregation gains in view of the specific

dependent variable and explanatory models under consideration.

C.  Problems Related to Group-Level Effects.

The forgoing discussion is based on equation 1 and, like most empirical literature in

social science, this equation does not take into account the possibility of group level effects on

individuals.  That is, the individual level equation only includes group level variables.  But it is

possible, indeed likely, that the mean value of X in a neighborhood could have an independent

effect on Y even after controlling for the individual’s own level of X.  Firebaugh (1980)

describes several possibilities.  An intelligent student may well learn more in the presence of

more intelligent fellow students.  On the other hand, a mediocre student might be discouraged in

such an environment and do better if he was “a big fish in a small pond.”  Group effects include

or are related to neighborhood effects, peer group effects, and social network effects.

In general, we can characterize these models as including some measure of a group level

variable in an individual model:

[6]

At the aggregate level, this model becomes:

[7]

Clearly, even if there is no bias of the type discussed in the previous section, the individual and
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group effects are not identified, only their sum.  In the absence of individual data or outside

information on the magnitude of one or the other of the two effects, the lack of identification in

the aggregate models poses a formidable obstacle. 

Fortunately, in certain cases, the sum of the two effects may itself be of interest.  For

example, suppose the dependent variable is a measure of children’s health, and X is a measure of

insurance coverage through a public program.  One might expect a direct impact of the child’s

own coverage status, as well as an effect of the level of coverage in his or her area, through

reduction of contagious diseases and increased availability of medical service providers (a supply

response).  Both effects are real benefits of the program, and both are included in the coefficient

from the ecological regression.  

III.  Solutions to the Ecological Inference Problem?

While Robinson’s critique sent shock waves through the social science community and

undoubtedly influenced some researchers to eschew aggregate data, it also spawned a literature

on “solutions” to the ecological inference problem.  Goodman (1953, 1959) addressed the

problem in terms of dichotomous variables.  He noted that the dependent variable at the

aggregate level is a proportion, which must be the weighted sum of the unobserved proportions

of the two groups formed by the independent variable.  This is just an accounting identity.  In the

case of voting, we observe the overall proportion voting for a given party and wish to make

inferences about the votes for specific individuals depending on their racial group.  The weighted

average of the two groups’ voting must add to the observed total proportion in each

neighborhood: 
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[8]

where Ti is the observed proportion, Pi is the percent black, and Wi and Bi are the unobserved

rates for the white and black sub-populations, respectively.  

Algebraic manipulation yields an equation which can be estimated from the aggregate

data:

[9]

The constant term the regression is average proportion voting for the party in the white

population, and $-" produces the estimate of the black proportion.  The disturbance term is

introduced because " and $ are fixed, whereas in actuality Wi and Bi vary from neighborhood to

neighborhood.  The validity of this approach depends on the “constancy assumption”; in other

words, the voting proportions do not depend on the ethnic composition of the neighborhood

(Goodman 1953, 1959; Freedman 2001).  Figure 1 illustrated a case of the constancy assumption,

because the white and black drop out rates were unrelated to the percent black. 

A second basic approach is based on establishing bounds for the minimum and maximum

possible for each cell of a cross-tabulation in each of the aggregate units (Duncan and Davis

1953).  By summing these extrema up over the data set, it is possible to determine with 100

percent confidence the minimum and maximum bounds of the correlation that could obtain in the

individual level data.

King (1997) proposed a “solution” to the ecological inference problem, dubbed “EI.”  It

was also developed in the context of dichotomous dependent variables. EI combines the method

of bounds with Goodman regression technique, and estimates the system using maximum
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likelihood and numerical simulation, assuming a bivariate normal distribution for the parameters. 

Critics have pointed out a number of flaws with King’s technique, a review of which are beyond

the scope of this essay.   Important critiques are Anselin (2000), Anselin and Cho (2002),

Freedman (1998), and McCue (2001).  

The debate on the statistical underpinnings and empirical performance of the EI method

will likely continue for some time, even as the technique is being widely adopted within the field

of political science.  However, the most important issue concerning King’s approach is that it is

developed within and justified for a very narrow range of problems that are not fully

representative of the range of issues and types of data historically associated with the ecological

fallacy and the problem of ecological inference.  King dismisses the argument that ecological

inference is mainly a matter of model specification, and in doing so reveals the most serious

problem in his proposed methodology.  “[T]he concept of a ‘correctly-specified’ individual-level

equation is not helpful in this context,” he argues, 

since individual data contain the answer in ecological inference problems with
certainty.  That is, with individual data, we would not need to specify any
equation; we would merely construct the cross-tabulation and read off the answer. 
Having the extra variables around if indivdual-level data are available would
provide no additional assistance.  (49)

In other words, the narrow focus of King’s technique is reconstructing a description of the

individual data, not evaluating a causal model.  This is an adequate goal in King’s motivating

example, ascertaining voting patterns by race for the purpose of redistricting litigation.  But in

virtually any other social science application, our interest is in a causal model that can not be

reduced to a contingency table.  Even in voting analysis, there are substantively interesting
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questions about whether racial identity affects voting net of other factors, such as income,

occupation, and so on.  Further, King readily acknowledges that his method will be less effective

when the dependent variable is continuous, because no information is gleaned from bounds (p.

260).  These are rather important limitations.

For further discussion of approaches reduce bias in ecological inference, see Achen and

Shively (1995), Cho (2001), and Freedman (1991, 2002).

IV. Conclusion, or Learning to Live With Aggregate Data

Anselin, in a review of King’s work, put it best: “There is no solution to the ecological

inference problem” (2000: 589).  There are only estimates based on assumptions, but this is also

true about regressions on individual-level data.  No single procedure can claim to be the solution

to the ecological inference problem.  In the absence of data about individuals, one can derive

estimates about individual relations only by carefully specifying a model, and these assumptions

must be guided by theory, experience, and consistency with observable relations.  

When social scientists attempt to analyze aggregate data, the best course of action is to

parameterize the variables relevant to the grouping process as well as possible.  As noted

previously, Hanushek et al. (1974) were able to show that the real problem with Robinson’s data

was an underspecified model, not aggregation.  For example, it would be particularly important

to control for race and income if the data are neighborhood aggregates.  If there are contextual

effects, these need to be modeled as well, perhaps using multi-level models (Brown and Saks

1980; Firebaugh 1978: 570).  Firebaugh (1999: 4025) proposes adding additional independent

variables which explain and hence control for contextual effects.
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One can be misled by ecological correlations or by regressions on aggregate data, but one

can be equally misled by simple correlations or regressions based on individual data, and for

some of the same reasons – left out variables, model mis-specification, and false assumptions

about the process under study.  Robinson’s 1950 article generated five decades of productive

debate over the ecological fallacy and related topics such as ecological inference, aggregation

bias, and contextual effects.  With multivariate analysis, advanced modeling techniques, and an

understanding of the aggregation process, researchers can mostly avoid falling victim to the

ecological fallacy.  Indeed, in certain specific situations, aggregate data may be better than

individual data for testing hypotheses, even if those hypotheses are about individual behavior.  

The “ecological fallacy” has lost some of its sting, and should not cause researchers to abandon

aggregate data.  
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