
Spatial statistical methods in health

T.C. Bailey

University of Exeter, UK.

Abstract

The study of the geographical distribution of disease incidence and its relationship to potential risk
factors (referred to in general in this paper as ‘geographical epidemiology’) has provided, and continues
to provide, rich ground for the application and development of statistical methods and models. In
recent years increasingly powerful and versatile statistical tools have been developed in this application
area which are capable of addressing more complex issues than was hitherto the case. This paper
discusses the general classes of problem in geographical epidemiology and reviews the key statistical
methods now being employed in each of the application areas identified. In doing so, methods are
described in outline, rather than in mathematical depth, and the focus is on a selection of commonly
used techniques in each of the areas discussed, rather than on attempting to exhaustively cover all
possible methods and models. Extensive references are provided to further details about the methods
discussed and to additional approaches mentioned in passing. The overall aim is to provide a picture
of the ‘current state of the art’ in the use of spatial statistical methods in epidemiological and public
health research. Following the review of methods, the main software environments which are available
to implement such methods in practice are briefly discussed. The paper then concludes with some
brief general reflections on the eidemiological and public health implications of the use of spatial
statistical methods in health and on associated benefits and problems.

Keywords: Geographical and Environmental Epidemiology, Spatial Statistical Models and Meth-
ods.

1 Introduction

1.1 The concerns of geographical epidemiology

The analysis of the geographical distribution of the incidence of disease and its relationship to potential
risk factors has an important role to play in various kinds of public health and epidemiological studies.
For the purposes of this paper this general area is referred to as ‘geographical epidemiology’ and four
broad areas of statistical interest are identified:

‘Disease mapping’ focusses on producing a map of the true underlying geographical distribution of
the disease incidence, given ‘noisy’ observed data on disease rates, This may be useful in suggesting
hypotheses for further investigation or as part of general health surveillance and the the monitoring
of health problems. For example, in assisting to detect the outbreak of a possible epidemic, or in
identifying significant trends in disease rates over time, or in particular geographical locailities.

‘Ecological studies’ are concerned with studying associations between observed incidence of disease
and potential risk factors as measured on groups rather than individuals, where these groups are
typically defined by geographical areas. Such studies are valuable in investigating the aetiology of
disease and may help to target further research and possibly preventative measures.

‘Disease clustering studies’ focus on identifying geographical areas with significant elevated risk of
disease, or on assessing the evidence of elevated risk around putative sources of hazard. Uses include
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the targeting of follow up studies to ascertain reasons for identified clustering in disease occurence,
or the initiation of control measures where the aetiology of identified clustering is established.

‘Environmental assessment and monitoring’ is concerned with ascertaining the spatial distribution
of environmental factors relevant to health and exposure to these so as establish necessary controls
or take preventative action.

Sub-areas exist under any one of these four main headings depending on the particular epidemiological
or public health context and upon whether data is available on individual cases of a disease, or only at
the level of geographical area, and upon whether there is a temporal as well as a spatial dimension to
the analysis. The distinction between the four main types of study is also somewhat blurred in practice.
For example, good disease incidence maps often play an important preliminary role in studies of disease
clustering, disease mapping commonly incorporates relationships with covariates representing known risk
factors for the disease, and putative hazards are sometimes usefully viewed as particular kinds of covariate
in the analysis, while environmental assessment may well be the prelude to a study designed to investigate
whether there is a relationship between some suspected risk factor and disease incidence.

These provisos accepted, the division of geographical epidemiological concerns into four main areas pro-
vides a useful structure under which to review associated statistical methods in the subsequent Sections 2-5
of this article.

1.2 Statistical methods in geographical epidemiology

Given the breadth and importance of the concerns in geographical epidemiology, as outlined in the
previous section, it is not surprising that there has been considerable interest in the area in recent years.
Much of this interest has been in the development of relevant statistical methods and techniques and
there is no doubt that this particular vein of research has been, and continues to be, a fruitful source of
interesting statistical problems, motivating successful methodological developments within that discipline.

Several issues of major statistical journals have been devoted to spatial statistical methods in health
applications (e.g. American Journal of Epidemiology, 132: S1-S202, 1990. Journal of Royal Statistical
Society, Series A: 152, 1989. Journal of Royal Statistical Society, Series D: 47, 1989.). Statistics in
Medicine: 12, 1993; 15, 1996; 14, 1995. There has also been a considerable volume of papers in the
field published separately, key journals including: The American Journal of Epidemiology; Biometrics;
Biometrika; Environmetrics; Journal of Environmental and Ecological Statistics; Geographical Analysis;
IEEE Transactions on GeoScience and Remote Sensing; The Journal of Royal Statistical Society, Series
A, B, C, & D; The Journal of American Statistical Association; Mathematical Geology; Statistics in
Medicine and Statistical Science. In addition a number of significant recent texts have been devoted to
this subject area (e.g. Lawson A et al, 1999a; Gatrell and Loytonen, 1998; Halloran and Greenhouse,
1997; Elliot et al, 1996.)

There have also been various special initiatives concerned with statistical methods in geographical epi-
demiology. A notable example was the 1997 international workshop in Rome in conjunction with the
European initiative in disease mapping and risk assessment and the WHO European Centre for Environ-
ment and Health (see Lawson A et al, 1999a). Some of the work conducted under the European Spatial
and Computational Statistics Network has also been particularly relevant to spatial epidemiology and
this network has now held two international workshops, (Aussois, France, 1998; Crete, Greece, 1999). In
addition to these a considerable amount of statistical work has been conducted under the aupices of other
agencies with long term interests in geographical and environmental health issues, e.g. the U.S. Centres
for Disease Control and Prevention (CDC); the U.S. Environmental Protection Agency; the U.S. National
Research Centre for Statistics and the Environment; the Pan American Health Organization (PAHO);
the World Health Organization (WHO) and various European Community government agencies.

The net benefits of the statistical efforts associated with all this activity are difficult to judge. Certainly
we now have statistical tools that are capable of addressing much more complex situations than was the
case say ten years ago. However, the epidemiological and public health implications and benefits arising
from the use of such methods are more difficult to assess. This point is returned to in Section 7 after
looking at some of the statistical developments in more detail in Sections 2-5 (each of which relates to
one of the four main headings identified in Section 1.1) and after considering in Section 6 the software
environments which are available to implement methods discussed in Sections 2-5.
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One general point worth making at this stage is that although certain of the four areas reviewed are char-
acterised by specialised statistical methods, there is also considerable overlap in the statistical modelling
that has been employed in any one of them. For example, ‘disease clustering studies’ have given rise
to an extensive and rather specialised literature on hypothesis tests for either ‘focussed’ or ’unfocussed’
clusters of disease. ‘Environmental assessment’ also inevitably involves a focus on specialised spatial
interpolation methods, some of which are derived from the geostatistical literature. However, these kinds
of exceptions aside, a distinctive feature of much of the recent modelling work in all areas is a Bayesian
approach. Indeed, the various areas of geographical epidemiology have all provided a very fruitful area for
the application of Bayesian models and associated Markov Chain Monte Carlo (MCMC) methodology.
As will be seen in subsequent sections, the application of Bayesian techniques in ‘disease mapping’, in
‘ecological studies’, in ‘disease clustering studies’ and in ‘environmental assessment and monitoring’ is
now well-established and accompanied by an extensive and growing literature.

1.3 Data types in geographical epidemiology

Before embarking on a review of methods under the four topic headings discussed earlier, it is useful to
make some broad distinctions in the types of data that might have to be dealt with in any of these areas,
since that will assist to further categorise the methods under each heading.

Broadly speaking, there are essentially four kinds of data which have to be considered. Some problems
may involve simply one of these types of data, but often mixtures of data types may be involved. Some
methods discussed in subsequent sections may only be appropriate to a specific data type, others may be
able to be applied (or modified to apply) to more than one data type. The four data types are:

Irregular lattice data—measures aggregated/averaged to the level of census tracts or other type of
administrative district. Could be counts of cases or population at risk, socio-economic measures,
environmental assessments etc.

Case-event data—locations (usually residential) of individual cases of a disease, or of individual
members of a suitable control group (‘population at risk’). Covariates may also be measured on
each individual.

Geostatistical data—measurements (usually of an environmental nature) sampled at point locations.

Regular lattice data–measures aggregated/averaged to on a regular grid (typically arising from
remote sensing)

In any of the above cases there could also be a temporal dimension as well as a spatial dimension to the
data. For example, we might have case-event data on a disease where both the spatial location of cases
and the time of onset of the disease is recorded. Environmental data is also often collected in both space
and time.

2 Disease Mapping

Maps of disease incidence have always played a key descriptive role in spatial epidemiology. They are
useful for several purposes such as: identifcation of areas with suspected elevations in risk of a dis-
ease, assisting in the formulation of hypotheses about disease aetiology and assessing potential needs
for geographical variation in follow-up studies, preventative measures, or other forms of health resource
allocation.

From a statistical point of view the problem of disease mapping amounts to obtaining a ‘good’ estimate
of the geographic heterogeneity of the disease rate over the study area. The obvious approach is to map
standardised rates, but many of the diseases of interest are relatively uncommon and observed SMRs
therefore have high natural variability with extreme values tending to occur in areas with the smallest
populations. The areas of greatest potential interest are thus often associated with the least reliable data.
One therefore seeks methods to produce a more reliable map of the underlying geographical variation in
disease rates which reduces excess local variability at the same time as correcting for variations produced
by population age/sex variations or other well-known risk factors. Methodologically there are conceptual
similarities to general statistical techniques designed to ’clean’ observed spatial imagery.
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Most commonly, the observed data on disease incidence is aggregated to an irregular lattice i.e. counts
of cases and corresponding populations in areal units. However, as health information systems steadily
improve, there is an increasing demand for methods that can be used with case event data, where more
precise locations of cases (usually residential addresses) are known. Models for the two different data
types are dealt with separately below.

2.1 Mapping aggregated data

There are several different statistical approaches, but the focus here is on what has emerged as the
‘mainstream’ methodology—that based on Bayesian hierarchical models. The basic model employed
is that the observed counts of cases, y = (y1, . . . , yn), in the different areas, each follow a Poisson
distribution with with mean µi = eiρi, where ei is the ‘expected’ number of cases in each area (based
upon the population at risk and suitable overall reference rates for the disease) and ρi is the relative
disease risk in area i.

Generally the ‘expected’ number of cases ei is assumed known and often incorporates stratification cor-
rections for known confounders, such as age and sex (i.e. ei =

∑
j rjpij, where rj are known group overall

reference rates and pij is the population of type j in area i). In the case of such ‘direct standardisation’
modelling often focusses on the log relative risk of the disease θi = logρi.

If the θi are taken as ‘fixed effects’ then their maximum likelihood estimates are simply θ̂i = log
(

yi

ei

)
,

i.e. the relative risk estimates are just the traditional SMRs. But, as mentioned previously, SMRs in
small areas may be unreliable because the most extreme SMRs are often based on only a few cases. Some
‘smoothing’ of the raw SMRs is therefore incorporated into the model by taking the θi as ‘random effects’.
Essentially this allows for overdispersion in the Poisson model caused by unobserved confounding factors
(e.g. see Mollié, 1995; Clayton and Bernardinelli, 1996).

The most common method of estimating the vector of ‘random effects’ θ = (θ1, . . . , θn) is to adopt a
Bayesian approach. Each θi is assumed to arise from a suitable prior distribution with relevant ‘hyperpa-
rameters’ each of which in turn arise from a suitably ‘non-informative’ ‘hyperprior’ distribution. Various
specifications of the prior and hyperprior distributions are possible (e.g. see Bernardinelli et al, 1995b),
but a typical choice in disease mapping is to take θi ∼N(µθ, σ

2
θ) with the non-informative hyperpriors

being a normal distribution for the hyperparameter µθ and a gamma distribution for the hyperparame-
ter 1/σ2

θ , with large variances in both cases. In general if P (θ|γ) denotes the chosen prior distribution
involving a vector of hyperparameters γ and if P (γ) is the associated joint hyperprior, then the joint
posterior distribution of all of the parameters given the data y is derived from the relationship:

P (θ, γ|y) ∝ P (y|θ)P (θ|γ)P (γ)

Given P (θ, γ|y), the parameters of interest, θ, are then estimated from this posterior distribution via
θ̂ =E(θ|y). Unfortunately direct mathematical derivation of the posterior P (θ, γ|y) from the above rela-
tionship involves a high-dimensional integration to obtain the constant of proportionality (the normalising
constant) and is not mathematically tractable. Therefore in practice either empirical Bayes methods or
Monte Carlo simulation is used to approximate P (θ, γ|y) indirectly.

In empirical Bayes (e.g. Clayton and Kaldor, 1987; Devine and Louis, 1994; Martuzzi and Elliott, 1996)
the unknown vector of hyperparameters is replaced by suitable estimate γ̂. The problem of deriving the
posterior then simplifies since the corresponding relationship is now:

P (θ|y, γ̂) ∝ P (y|θ)P (θ|γ̂)

and this can be handled by direct mathematical analysis. Commonly, the hyperparameter estimates γ̂
that are used are their maximum likelihood estimates from the marginal likelihoodP (y|γ) =

∫
P (y|θ)P (θ|γ)dθ.

In that case γ̂ is obtained from information pertaining to the overall map structure (hence the terminology
‘empirical’ - the hyperparameters are estimated from global aspects of the same data set).

The problem with the empirical approach is that it makes no allowance for uncertainty in estimating γ
— the hyperparameters are simply replaced by their estimates assuming these to be error free (e.g. see
Bernardinelli et al, 1992). In the Markov Chain Monte Carlo approach the full hyperprior framework is
used, but rather than attempt to determine P (θ, γ|y) by direct mathematical analysis, instead observa-
tions are indirectly simulated from this posterior using Markov Chain Monte Carlo (MCMC) methods
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(e.g. see Brooks, 1998; Gilks et al, 1996). The desired parameter estimates θ̂ are then calculated from
relevant sample statistics of the simulated values from P (θ, γ|y). The basic idea of the MCMC approach
is to simulate values from a Markov Chain whose equilibrium distribution is the same as the posterior
distribution of interest. This is achieved via the general Metropolis algorithm which only requires the
complex joint posterior distribution, P (θ, γ|y), to be specified up to the normalising constant (e.g. see
Gilks et al, 1993). One particular variant of the general Metropolis algorithm known as ‘Gibbs sampling’
(e.g. see Gilks et al, 1993) is convenient when conditional posterior distributions of each parameter given
all the others are available up to a normalising constant (as is the case here and often in spatial models
more generally, see Gilks et al, 1993). Gibbs sampling is implemented in the BUGS or WinBUGS computer
packages (Spiegelhalter et al, 1997) which provide a relatively easy way to fit a large range of Bayesian
models. It consists of visiting each parameter in turn (i.e. here each θi in θ and each hyperparameter in
γ) and simulating a new value for this parameter from its full conditional distribution given the current
values for the remaining parameters (i.e. here from P (θi|θj �=i, γ, y) etc.)

Regardless of which particular variant of the Metropolis algorithm is adopted, after discarding a sufficient
number of initial ‘burn in’ simulations the MCMC approach results in repeated sets of simulated values for
the parameters (θ, γ) from their posterior distribution P (θ, γ|y). Samples from the marginal distributions
(e.g. P (θi|y)) are then approximated by simply picking out the values for one parameter from the
simulated samples for (θ, γ) ignoring the other parameters. Point estimates concerning the parameter
are then obtained from that the sample mean of that set of values.

The basic model for relative risk that has been considered so far allows for Poisson overdispersion in the
distribution of disease counts yi via the random effects θi. This may partially account for unmeasured
covariates that induce spatial dependence in the yi, but it does not allow for explicit spatial dependence
between the yi. The latter may be present (e.g. see Clayton et al, 1993) arising, for example, through
lesser variability of rates in neighbouring densely populated urban areas as opposed to sparsely populated
rural areas, or through an infectious aetiology of the disease. Such explicit spatial dependence may be
incorporated into the model by including an additional spatially structured random effect term (e.g. see
Mollié, 1995; Clayton and Bernardinelli, 1996). The model is extended to: logµi = log ei + θi + νi, so
that now the log relative risks are given by θi+νi. The priors and hyperpriors relating to θi are as before.
But νi are taken to have a spatially structured prior. A typical choice is to use a conditional intrinsic
Gaussian autoregressive model (an example of a CAR, see Besag and Kooperberg, 1995) where:

νi|νj �=i ∼ N

(∑
j �=i wijνj∑
j �=i wij

,
σ2

ν∑
j �=i wij

)

here wij are suitably chosen proximity weights for the areas (often simply 1 if two areas are adjacent, 0
otherwise) and the new hyperparameter σν controls the strength of local spatial dependence. Typically
a vague gamma hyperprior is assumed for 1/σ2

ν. MCMC methods then provide samples from P (θ, γ|y)
where now γ = (µθ, σθ, σν).

Further extensions to the disease mapping model are possible to include covariates which correct for
known risk factors other than those incorporated into the direct standardisation term (i.e. the expected
cases ei). In that case the model essentially becomes similar to that used in ecological investigations (see
Section 3). Indirect standardisation is also one example of this, where population values in age/sex groups
are treated as covariates in the model with associated unknown overall group reference rate parameters
and this replaces the known ‘expected’ number of cases ei. The group reference rates are then estimated
as part of the model.

2.2 Mapping case event data

Again various approaches exist, but generally there has been less work in this area than on aggregated
data and a ‘mainstream’ methodology is more difficult to identify.

The basic model usually adopted is that locations of individual cases and of individuals in the population
at risk both arise as inhomogenous Poisson processes with spatially varying intensities (events per unit
area) denoted by µ(s) and π(s) respectively, where s represents spatial position. Then:

µ(s) = απ(s)ρ(s)
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where α is the overall reference rate for the disease and ρ(s) is the relative risk surface. Often interest
focusses on the estimation of log relative risk θ(s) = logρ(s) rather than directly on ρ(s).

A typical practical situation is when data are available on n = n1 + n2 point locations which correspond
to n1 cases of the disease at locations (s1, . . . , sn1) and n2 cases of a suitable control group at locations
(sn1+1, . . . , sn). The control group may be primary data, or secondary data obtained by appropriate
simulation of the location of control cases from socio-demographic data aggregated to small areas covering
the region concerned. Given this data structure, a straightforward approach (see Bithel, 1990; Kelsall
and Diggle, 1995) is then to non-parametrically estimate θ(s) (to within an additive constant) via a log
ratio of kernel estimates as:

ˆθ(s)τ = log

( ∑n1
i=1Kτ (s − si)∑n

i=n1+1Kτ (s − si)

)

where K(·) is some suitable radially symmetric kernel function and τ is a suitably chosen bandwidth.

Choice of an optimal bandwidth τ is however rather difficult in the above approach (see Kelsall and Diggle,
1995) and more recent work (Kelsall and Diggle, 1998) avoids that problem by adopting a non-parametric
binary regression approach which results in an indirect estimate of θ(s). Essentially the method is to
attach binary values yi to all n data locations such that yi = 1 if the location corresponds to a disease
case and yi = 0 if it does not. The probability that any point is a disease case, φ(s), is then estimated
via kernel regression (e.g. see Green and Silverman, 1994) of yi on si i.e. by:

φ̂(s) =
∑n

i=1Kτ (s − si)yi∑n
i=1Kτ (s − si)

Then (to an additive constant) θ̂(s) is given by logit
(
φ̂(s)

)
i.e by log

(
φ̂(s)

1−φ̂(s)

)
. Bandwith selection

methods are then easier to handle and the approach can also be extended to include covariates measured
on each individual so as to correct for additional known risk factors for the disease. This is achieved via
a Generalised Additive Model (GAM) as discussed later in Section 3.

2.3 Further issues and approaches in disease mapping

There are several further extensions and variations on the basic ideas discussed in Sections 2.1 and 2.2.
There is not space here to discuss these in any detail, but some of the most significant issues that have
been considered are listed below with relevant references.

General methods for simple exploratory analyses of spatial data which may be usefully applied in relation
to disease incidence have been investigated by several authors (e.g. Cislaghi et al, 1995; Haining et
al, 1998; Unwin and Unwin, 1998; Walter, 1993a; Wilhelm and Steck, 1998). The addition of further
covariates to further refine the basic disease mapping model has already been mentioned (e.g. see Clayton
et al, 1993; Clayton and Bernardinelli, 1996; Mollié, 1995; Bernardinelli et al, 1997; Muller et al, 1997;
Xia et al, 1997; Martuzzi and Elliott, 1996). Several authors have also considered how models can be
extended to handle disease incidence data which has a temporal as well as a spatial dimension (e.g.
Bernardinelli et al, 1995a; Knorr-Held and Besag, 1998; Waller et al, 1997). Special problems introduced
by edge effects in disease mapping have been dicussed by Lawson et al (1999b). Bayesian mixture or
latent structure models have also been used in disease mapping as an alternative to the more conventional
models discussed earlier ( e.g. Schalttmann et al, 1993; Richardson and Green, 1997). Some other studies
have also considered the application of geostatistical interpolation models (primarily variants of ‘kriging’)
to the analysis of disease rates (e.g. Carrat et al, 1992; Webster et al, 1994).

3 Ecological studies

As mentioned previously, ‘ecological studies’ are concerned with studying associations between observed
incidence of disease and potential risk factors as measured on groups rather than individuals, where these
groups are typically defined by geographical areas or location. Such studies are valuable in investigating
the aetiology of disease and may help to target further research and possibly preventative measures.

From a statistical point of view ecological studies involve regression type models, but the models are
complicated by the need to allow for both spatial and aspatial confounding factors (see Richardson at al,
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1992; Clayton et al, 1993; Prentice et al, 1995). Usually such studies involve observed data on disease
incidence which is aggregated to an irregular lattice i.e. counts of cases and corresponding populations
in areal units. However, more recently there has also been some work studying associations between
suspected risk factors and disease incidence using case event data or mixtures of aggregated data (relating
to risk factors) and individual data (relating to disease incidence). Models for aggregated disease incidence
data and for that which involves case events are dealt with separately below.

The aggregated nature of the data normally involved in ecological studies has led to considerable emphasis
on the need to avoid and if possible correct for the so-called ‘ecological fallacy’ i.e. the various forms of
bias associated with making inference about the effects of factors on the disease risk of individuals from
relationships obtained on groups where within group variability cannot be assessed (e.g. see Elliot et al,
1996; Prentice and Sheppard, 1995; Axelson, 1999).

3.1 Models for aggregated data in ecological studies

As in disease mapping, several different approaches have been used. The one that tends to dominate in
the literature uses extensions to the Bayesian hierarchical models employed in disease mapping and the
focus here is mostly on that framework. It should be noted however, that other forms of spatial regression
model have also been adopted, some of which have potential advantages in terms of addressing ecological
bias and that point is returned to in Section 3.3.

The basic Bayesian hierarchical model adopted is a straightforward extension of that discussed under dis-
ease mapping. Now K covariates, (xi1, . . . , xiK), are included related to suspected risk factors measured
in each area, so that the model becomes:

logµi = log ei +
K∑

k=1

βkxik + θi + νi

with µi, ei, θi, νi as in Section 2.1 and βk are new parameters reflecting the influence of each covariate on
the log relative risk which is now modelled as

∑
k βkxik + θi + νi. As mentioned previously, one could

drop the ‘direct standardisation term’, log ei, and instead use indirect standardisation by incorporating
a constant β0 and include amongst the covariates relevant measures of population age/sex structure.

The priors and hyperpriors for θi and νi are chosen as in Section 2.1. The new fixed effects, β, are each
taken to have specified ‘non-informative’ priors (e.g. Normal distributions with large variances). We
then proceed as before using MCMC methods to derive samples from the posterior P (β, θ, γ|y) with γ
referring, as earlier, to the vector of hyperparameters relating to the random effects θi and νi.

Further details and variations on this basic modelling framework may be found in many published exam-
ples of ecological studies (e.g. see Ricardson et al, 1992; Clayton et a;, 1993; Mollié, 1995; Bernardinelli
et al, 1997; Lawson et al, 1999a; Rushton et al, 1996; Spiegelhalter, 1998)

3.2 Models for case event data in ecological studies

There has been relatively little work in this area compared with that devoted to aggregated disease
incidence data data. Some recent initiatives include work by Lawson and Clark (1999) and Kelsall and
Diggle (1998).

The latter work was mentioned in passing in relation to disease mapping in Section 2.2. It involves
the extension of the non-parametric binary regression model considered there to a GAM (Generalised
Additive Model). Recall that in model discussed previously the focus was on estimation of φ(s), the
probabilty that any point is a disease case in a combined realisation of cases and controls, the log relative
risk surface, θ(s), is then related to this (up to an additive constant) by logit (φ(s)). When additional
risk factors are involved then instead of estimating φ(s) by kernel regression, K covariates are included,
(x1(s), . . . , xK(s)), in the regression, so that the data yi are observations on a binary response variable
(‘case or not case’) with associated probability φ(s) such that:

logit (φ(s)) =
K∑

k=1

βkxk(s) + ψ(s)

7



If ψ(s) is assumed to be a ‘smooth’ function of s, then the above represents a GAM with a logit link
function. GAMs are fitted by an iteratively weighted additive model procedure (see Hastie and Tibshirani,
1990) that is implemented in several software packages (e.g. SPlus)

Alternative ways of handling associations between suspected risk factors and disease incidence using case
event data are discussed in Best et al (1998); Lawson et al (1999a) and Lawson and Clark (1999).

3.3 Further issues and approaches in ecological studies

Several further extensions and variations on the basic models used in ecological studies have been inves-
tigated. There is not space here to discuss these in any detail but some of the most significant issues that
have been considered are listed below with relevant references.

The general approach of graphical models (e.g. Spiegelhalter, 1998) provide a particularly valuable
framework within which to specific the dependency structure of hierarchical Bayesian ecological models.
Corrections to adjust for measurement error in the covariates have been suggested by Bernardinelli et
al (1997). Mixtures of case event and aggregated data have been discussed by Plummer and Clayton
(1996) and Best et al (1998). Thomson et al (1999) has considered a situation involving aggregated data
corresponding to a mix of different geographical scales. Bayesian latent structure or mixture models
have also been employed in ecological studies as an alternative to the more conventional model discussed
in Section 3.1 (e.g. Schalttmann et al, 1996; Weir et al, 1999). Multi-level models (Goldstein, 1995)
have also been employed as an alternative to the Bayesian approach (e.g. Congdon, 1998; Langford and
Lewis, 1998). Other forms of spatial regression models have also been adopted (Yasui and Lele, 1997;
Christiansen and Morris, 1997; Ghosh et al, 1998; Wolpert and Ickstadt, 1998; Brunsdon et al, 1998;
Prentice and Sheppard, 1995) Some of these involve so-called ‘aggregated models’ which are particularly
orientated to reducing ecological bias by combining partial samples of individual level data on risk factors
in addition to that on groups at the areal level. Ecological models appropriate for spatio-temporal data
have also been considered (e.g. Bernardinelli et al, 1995a; Knorr-Held and Besag, 1998; Wikle et al, 1998;
Waller et al, 1997). Methods for longitudinal data in general (e.g. see Diggle et al, 1994) have also been
applied in ecological studies (e.g. Gregoire et al, 1997).

4 Disease clustering studies

As mentioned earlier, disease clustering studies seek to establish significant ‘unexpected’ elevated risk of
a disease either in space, or in space and time. Such localised ‘clusters’ could arise from many factors e.g.
an unidentified infectious agent, localised pollution sources, or localised common treatment side effects.
There are several comprehensive general reviews of the area (e.g. Hills and Alexander, 1989; Alexander
et al, 1991; Bithell, 1995; Kulldorff and Nagarwalla, 1995; Alexander and Boyle, 1996; Olsen et al, 1996;
Anderson and Titterington, 1997).

In general disease cluster studies may seek to investigate a ‘general tendency to cluster’ (no prespecified
locations or number of suspected hazards) or be concerned with ‘focussed clustering’ (prespecified number
and locations for putative hazards). The two situations are discussed separately below. Note that the
second situation naturally provides for a more powerful statistical test of the suspected clustering because
the hypothesis is more tighly specified. However, there is a clear need to avoid what is sometimes
referred to as the ‘Texan sharp shooter’ approach (centering the target where the bullet strikes), which
in this context would imply using the data to explore where elevations in risk appear to exist and then
subsequently using those locations in a test of ‘focussed clustering’.

In general disease clustering studies may involve either case event or aggregated data (see Diggle and
Elliott, 1995, for a discussion of the relative merits). In both cases known population heterogeneity and
other covariates must be allowed for along with any natural tendency to cluster through effects induced
by data aggregation or inadequately measured covariates.

4.1 Assessment of general clustering

A large amount of work in this area has focussed on development of hypothesis tests for a general tendency
to cluster. There is not space to discuss these tests in detail here. Some of the most commonly used tests
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with associated references are listed below.

For aggregated data, the key hypothesis testing approaches suggested include those discussed by: Potthoff
et al (1966); Wittemore et al (1987); Turnbull et al (1990); Alexander et al (1991); Besag and Newell
(1991); Walter (1993b, 1994); Kulldorf and Nagarwalla (1995); Oden (1995); Tango (1995); Kulldorf
(1997); Kulldorf et al, 1997); and Assunção and Reis (1999). Many of these various tests are more or less
refined variations on similar themes. Some are concerned only with assessment of a tendency to cluster,
others also identify the locations where such clustering occurs.

For case event data, key hypothesis tests include those discussed by: Cuzick and Edwards (1990); Diggle
and Chetwynd (1991); Oppenshaw (1991); and Anderson and Titterington (1997); Again some of these
are concerned only with assessment of a tendency to cluster, others also identify the locations where such
clustering occurs.

Hypothesis tests designed to detect spatio-temporal interaction include those discussed by: Knox (1964);
Mantel (1967); Lawson and Viel (1995); Jacquez (1996a); Baker (1996); and Kulldorf and Hjalmars
(1999).

The problem with many such hypothesis tests for general clustering is that positive results invariable leave
subsequent questions unanswered—how many clusters are there? How big are they? Where are they?
For that reason approaches to disease clustering which employ an explicit model have some advantages.
Recent work by Lawson and Clark (1999) provides an illustration of that kind of approach. In the
case event situation they suggest extending the kind of case event model discussed in relation to disease
mapping in Section 2.2 to:

µ(s) = απ(s)m(s; κ, ξ1, . . . , ξκ, ν)

where, as before, µ(s) is the intensity of disease cases, π(s) is that of the population at risk and α is an
overall disease rate, but now the previous unknown relative risk surface ρ(s) is replaced by the specified
function m(·) which is parameterised in terms of an unknown number of clusters, κ, a corresponding
unknown set of cluster locations, (ξ1, . . . , ξ�), and a set of further parameters, ν, which relate to the
risk decay around clusters.

For example, one possible specification for such a model might be:

µ(s) = απ(s)

{
1 +

κ∑
k=1

e−(‖s−�k‖2)/2ν2

√
2πν

}

In that case, it has been suggested that π(s) be estimated from a set of controls using non parametric
density estimation with a suitable bandwidth τ (τ can be derived separately or considered an additional
unknown parameter in the Bayesian framework). Given such an estimate, π̂τ(s), MCMC methods are
then used to estimate the joint posterior for all the remaining unknown parameters involved. Note that
since the number of parameters depends on κ, which is itself a parameter, then this model is like a
Bayesian mixture model with an unknown number of components and ‘reversible jump’ MCMC sampling
must be used (e.g see Richardson and Green, 1997).

This model for case event data can be further generalised to allow for covariates and random effects in
m(·). It can also be adapted for use with aggregated data consisting of counts yi in areas Ai with means
µi via:

µi =
∫

Ai

απ(s)m(s; κ, ξ1, . . . , ξκ, ν)ds

Details of how this is handled in a MCMC framework are provided in Lawson et al (1999a) and Lawson
and Clark (1999).

4.2 Assessment of focussed clustering

As for general clustering, several hypothesis tests for focussed clustering have been proposed. Again there
is not space for any detail here. Some of the most commonly used tests with associated references are
listed below.

For aggregated data, key hypothesis testing approaches for focussed clustering include those discussed
by: Stone et al (1988); Besag and Newell (1991) (the focussed version of the general clustering test);
Lawson (1993); Waller and Lawson (1995); and Bithel (1995).
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Corresponding tests for case event data include those discussed by: Stone et al (1988); Cuzick and
Edwards (1990) (the focussed version of the general clustering test) Diggle and Elliot (1995); Lawson and
Waller (1996). and Korie et al, 1998.

Again explicit modelling approaches have advantages if it is possible to use them and the kind of models
discussed in Section 4.1 can be used with prespecified cluster locations (e.g. see Lawson, 1995). In the
simplest situation for case event data with a single putative source at known location s0, a suitable model
might take the form:

µ(s) = απ(s)
(
1 + ν1e

−ν2‖s−s0‖
)

MCMC methods are then used to estimate ν1 and ν2 with π(s) estimated from a set of controls using non
parametric density estimation with a suitable bandwidth τ (τ can be derived separately or considered an
additional unknown parameter in the Bayesian framework). Extensions to include covariates can also be
developed.

Earlier work by Diggle and Rowlingson (1994) and Diggle et al (1997) uses a similar model, but avoids the
density estimation of π(s) by focusing on the probability that an event is a disease case in the combined
point process consisting of both cases and controls, as discussed previously in Section 1.2. The model for
a single source at known location s0 is taken as:

µ(s) = απ(s)(1 +m(‖s − s0‖; ν)

where m(·) is a suitably chosen function to reflect risk decay around the source. As before, binary values
yi are attached to all n points such that yi = 1 if point is a disease case and yi = 0 if it is not. Then if
φ(s) = µ(s)

µ(s)+π(s) denotes the probabilty that any point is a disease case, we have:

logit (φ(s)) = log
(
µ(s)
π(s)

)
= logα+ log (1 +m(‖s − s0‖; ν))

So π(s) has been ‘conditioned out’ of the model and logistic regression with a binary response may be
used to estimate the parameters ν. This is a non-linear regression, but with a suitable choice of m(·)
maximum likelihood estimation is relatively straightforward. Biggeri et al (1996) provide details of a case
study which employs this kind of model.

4.3 Further issues and approaches in disease clustering studies

There are several further extensions and variations relating to disease clustering studies which there is
not space to discuss here in detail, but some of the most significant issues that have been considered are
listed below with relevant references.

Local indicators of association (e.g. Getis, 1992; Anselin, 1995) are general exploratory methods for spatial
data which may have potential application in the preliminary phase of disease clustering studies. Models
(rather than significance tests) that have relevance to spatio-temporal disease clustering investigation are
discussed by Bernardinelli et al, 1995a; Knorr-Held and Besag, 1998. Edge effect considerations in disease
clustering are discussed by Lawson et al (1999b). Cressie (1996) discusses inference for extreme values
in general with relevance to cluster detection. Methods for incorporating directional or scale effects in
the effects to be expected from putative sources of hazard have also been developed (e.g. Lawson and
Viel, 1995; Waller and Turnbull, 1993). Jacquez (1996b) also discusses how uncertainy in the location of
suspected sources of hazard may be handled.

5 Environmental assessment and monitoring

There are many known or suspected environmental factors that influence health (e.g. nuclear contami-
nation, chemical toxins, air pollution, climatic or vegetation conditions that may influence distribution
of disease vectors etc.). The quantity and quality of data on the environment is constantly increasing,
particularly that from remote sensing platforms. Statistical models of environmental processes (e.g. see
Piegorsch et al, 1998) allow spatial or spatio-temporal prediction of environmental factors which may then
be used in conjunction with studies concerned with investigating disease aetiology or establishing public
health intervention programmes (e.g. see Diggle and Richardson, 1993). The environmental processes
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under study usually exhibit strong local spatial, temporal and exogenous variability which needs to be
allowed for in prediction models.

Environmental modelling is a very wide field and there is not space to discuss it in any great detail here.
In general remote sensing and image processing techniques increasingly play a key role (e.g. see Besag et
al, 1991; Datcu et al, 1998; Schroder et al, 1998; Stein et al, 1998b) as do advances in modelling of Markov
Random Fields (e.g. see Aykroyd, 1998; Cressie and Davidson, 1998; Tjelmeland and Besag,1998). Many
of the models used in environmental analysis adopt a Bayesian approach (e.g. see Besag and Green,
1993; Christakos and Li, 1998; Gaudard et al, 1999). In some cases there is a need to particularly focus
on the prediction of threshold values of a phenomena in which case extreme value modelling (e.g. see
Coles and Powell, 1996) may be necessary. Many studies involve spatio-temporal data (e.g. Kyriakidis
and Journel, 1999; Stein et al, 1998a; Wikle et al, 1998). Other related areas include spatial sampling
considerations (e.g. see Cox et al, 1997) and a need for versatile exploratory methods for spatial and
space-time environmental data (e.g. Cook et al, 1997).

One recent general development concerning spatial prediction models is worthy of particular note here
since it may have considerable potential in relation to health studies. The methodology of ‘kriging’ in its
many various guises (e.g. see Cressie, 1993), provides a versatile prediction tool for many geostatistical
processes in space or in space and time and has usefully been employed in the prediction of environmental
processes. However, kriging is conventionally concerned with prediction of Gaussian spatial or spatio-
temporal process (e.g. it can over smooth when distribution is non-Gaussian). A significant recent
development (Diggle et al, 1998) is the generalisation of this methodology to situations in which data
is non-Gaussian. The essential idea embeds linear kriging methodology within a non-linear and more
general distributional framework, analogous to the embedding of standard least squares regression within
the framework of generalised linear models (GLMs). A Bayesian approach, implemented through MCMC
methods, is then used to fit the associated model. Diggle et al (1998) provide details and applications of
the approach.

6 Software in Geographical/Environmental Epidemiology

A recurring theme in this paper is the computationally intensive nature of many of the statistical methods
discussed. In this section some of the key software environments that exist to support the use of these
methods are briefly discussed.

One computing environment which now dominates in much of the literature concerned with statistical
methods in geographical epidemiology (as in many other areas of statistical analysis) is the versatile sta-
tistical computing language SPlus (or the freely available public domain similar language R). A number
of ‘add on’ SPlus packages particularly orientated to spatial applications are also available, in particular
S+Spatial and S+GeoStat. The former includes several general purpose routines for spatial analysis,
including point pattern analysis, some forms of spatial regression and simple kriging; whilst the latter is
orientated more to geostatistical modelling. There are also a number of relevant public domain SPLus
libraries of functions supplied by third parties such as: SPLancs (point pattern analysis), geoS (geostatis-
tical functions), Oswald (longitudinal data analysis) and spatial (basic spatial statistics). Many other
relevant Splus functions (or groups of functions) are also available on the Internet from many individual
contributors. Some of the above functionality is also available for R the public domain version of SPlus.

SPlus or R do not in themselves provide for MCMC methods. Functionality in this area is provided
by BUGS or, more recently, WinBUGs, both available in the public domain. These packages are able to
implement many of the Bayesian models discussed in earlier sections of this paper. A public domain
link between BUGS and Splus also exists known as CODA which enables results from BUGS to be easily
transferred to Splus for subsequent analysis.

SPlus, R and BUGS provide no direct ability to geographically visualise or map spatial results. For
that purpose it is neceassry to use them in conjunction with a suitable Geographical Information System
(GIS). The most commonly used packages in this regard in the health area are probably ARC/INFO and/or
ARC/View and MAPINFO. Splus provides a link to ARC/View which allows results to be transferred and
mapped relatively easily.

More special purpose computing packages for particular kinds of analysis relevant in geographical or
environmental epidemiology include: ECOSSE (geostatistical/environmental modelling); DisMapWin (epi-
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demiological mixture models); MLWin (multi-level modelling); and Stat!, Gamma or SatScan (each relating
to various types of spatial disease clustering tests and associated analysis).

Full details of the various packages or libraries mentioned in this section are easily available through the
Internet and those references are not repeated here.

7 Some closing remarks on statistical methods in geographical
and environmental epidemiology

Given the rich variety of methods discussed in this paper, it is clear that the ‘state of the art’ in statistical
methods appropriate to certain problems in spatial epidemiology contains some powerful, versatile and
useful tools. Research interest is strong and undoubtedly further developments and more spohisticated
techniques will also continue to develop. Many of the existing spatial methods and models are fairly
widely known in the statistical community and some of them have been in use for several years. Such
methods are less familiar amongst epidemiologists and public health specialists, but the amount of work
referenced in this paper demonstrates that situation is rapidly changing and that methods and access
to supporting software environments are becoming better disseminated. Hopefully that situation will
continue to improve and MCMC methods and the more sophisticated models that they enable will
become increasingly used where appropriate.

Reflection on the methods discussed in the paper does however reveal some areas which emerge as
significantly ‘under played’ amongst the ‘mainstream’ methods and models. These include: a greater
requirement for methods capable of handling mixtures of data types (e.g. at different levels of aggregation,
or mixtures of case event and aggreagated data, or combination of information from remotely sensed
imagery with that from more conventional health or demographic data sources); methods designed to
better address the problem of ecological bias of various types; methods to better handle the spatio-
temporal considerations present in many studies; the fact that there is currently a relative absence of
methods designed to handle multivariate spatial responses; and also that the current spatial methods
place a heavy reliance on the Euclidean distance metric combined with relatively crude topographic
assumptions, despite the potentially powerful functionality that GIS can now provide in that area.

Such areas provide a rich agenda for further study and some related exciting and difficult challenges,
particularly in the area of the multivariate study of groups of related diseases in spatial epidemiology and
in incorporating more realistic and sophisticated measures of spatial proximity and spatial structure into
models which appropriately exploit the detailed geographical information which is now available through
GIS and remotely sensing.

In concluding this review of spatial statistical methods in health it is also appropriate to comment
briefly on some wider and less statistical issues. The first point to acknowledge is that geographical
epidemiology is epidemiology first and foremost and not statistics. Valuable spatial epidemiology does not
necessarily follow from the use of better and more sophisticated statistical methods. Clearly, the ultimate
benefits of all the statistical effort in geographical epdiemiology also depends crucially on appropriate
and well-founded epidemiological considerations combined with access to data at an appropriate level
of detail and of sufficient quality to address the issues under consideration. The value of clear-cut, well
designed geographical epidemiological studies associating disease with specific agents are not controversial.
However, regardless of the sophistication of the statistical models employed, general geographical studies
of widespread risk factors usually come up with relatively low relative risk estimates (resulting from low
grade exposure, the difficulties of obtaining good exposure contrasts, and the problems of confounding
effects). This can cause credibility problems for the results and limit their implications for public health
response. For example, of the hundreds of ‘disease clustering’ investigations conducted there are only a
few examples of real ‘success’ in terms of substantive advances in aetiological knowledge, or developments
in public health (e.g. see Neutra, 1990).

Ultimately geographical/environmental epidemiology needs to be evaluated in the same way as any other
public health screening programme (e.g. see Axelson, 1999, Neutra, 1999). In some such applications
which involve the spatial statistical analysis of already existing data, or that arising from routine collection
systems, the ‘screening’ is relatively cheap. However, this has to be balanced against the implications
of false positive findings, the potential for effective intervention in cases of true positive findings and
the costs of the follow up and more focussed studies that will inevitably be necessary in such cases.
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Such considerations are important and whilst they do not mitigate against the development and use of
improved statistical methodology, they do emphasise that the value of such methods has to be viewed in
the context of a wider and ultimately more complex set of public health and epidemiological concerns.
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Schalttmann P. and Böhning D. (1993), Mixture models and disease mapping, Statistics in Medicine, 12,
1943-1950.
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