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Abstract
Background: Dengue is a disease which is now endemic in more than 100 countries of Africa,
America, Asia and the Western Pacific. It is transmitted to the man by mosquitoes (Aedes) and
exists in two forms: Dengue Fever and Dengue Haemorrhagic Fever. The disease can be contracted
by one of the four different viruses. Moreover, immunity is acquired only to the serotype
contracted and a contact with a second serotype becomes more dangerous.

Methods: The present paper deals with a succession of two epidemics caused by two different
viruses. The dynamics of the disease is studied by a compartmental model involving ordinary
differential equations for the human and the mosquito populations.

Results: Stability of the equilibrium points is given and a simulation is carried out with different
values of the parameters. The epidemic dynamics is discussed and illustration is given by figures for
different values of the parameters.

Conclusion: The proposed model allows for better understanding of the disease dynamics.
Environment and vaccination strategies are discussed especially in the case of the succession of two
epidemics with two different viruses.

Background
With medical research achievements in terms of vaccina-
tion, antibiotics and improvement of life conditions from
the second half of the 20th century, it was expected that in-
fectious diseases were going to disappear. Consequently,
in developed countries the efforts have been concentrated
on illnesses as cancer. However, at the dawn of the new
century, infectious diseases are still causing suffering and
mortality in developing countries. Malaria, yellow fever,
AIDS, Ebola and other names will have marked the mem-
ory of humanity forever.

Among these diseases, dengue fever, especially known in
Southeast Asia, is sweeping the world, hitting countries

with tropical and warm climates. It is transmitted to the
man by the mosquito of the genus Aedes and exists in two
forms: the Dengue Fever (DF) or classic dengue and the
Dengue Haemorrhagic Fever (DHF) which may evolve to-
ward a severe form known as Dengue Shock Syndrome
(DSS). The major problem with dengue is the fact that the
disease is caused by four distinct serotypes known as
DEN1, DEN2, DEN3 and DEN4. A person infected by one
of the four serotypes will never be infected again by the
same serotype (homologus immunity), but he looses im-
munity to the three other serotypes (heterologus immuni-
ty) in about 12 weeks and then becomes more susceptible
to developing dengue haemorrhagic fever.
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The first form (DF) is characterized by a sudden fever
without respiratory symptoms, accompanied by intense
headaches making its nickname "breakbone fever" well
deserved. It lasts between three and seven days but it stays
benign. The haemorrhagic form (DHF) is also character-
ized by a sudden fever, nausea, vomiting and fainting due
to low blood pressure caused by fluid leakage. It usually
lasts between two and three days and can lead to death.
The case of a second infection has therefore a capital im-
portance because of the possibility of evolution toward
the haemorrhagic form of the disease.

So far, the strategies of mosquito control by insecticides or
similar techniques proved to be inefficient. Moreover, the
deterioration of the environment, the climatic changes,
the unsanitary habitat, the poverty and the uncontrolled
urbanization are as many favorable factors to the infec-
tious illness propagation in general and dengue fever in
particular. During the last decades the global prevalence
of the dengue progressed dramatically. The disease is now
endemic in more than 100 countries of Africa and Ameri-
ca. The Southeast of Asia and the Western Pacific are seri-
ously affected by the illness.

Before 1970, only nine countries had known epidemics of
dengue haemorrhagic fever, but this number had in-
creased more than fourfold in 1995 and about 2500 mil-
lion of people are now exposed to the risk of the dengue
fever. According to the present evaluations of the World
Health Organization (WHO), about 50 million cases of
dengue occur in the world every year, with an increasing
tendency. In 1998, there were more than 616, 000 cases of
dengue in America, of which 11, 000 cases of dengue
haemorrhagic fever, that's twice the number of cases re-
corded in the same region during the year 1995. In 2001
there were 400, 000 cases of haemorrhagic fever in South-
east Asia, whereas, in Rio de Janeiro alone, 500, 000 peo-
ple were struck by a dengue outbreak in 2002. The
epidemic effect reached Florida and southern Texas [1–3].

During epidemics of the dengue fever the rate of the infec-
tious among the susceptibles is often between 40 and 50
% but it may reach 80–90 % in favorable geographic and
environmental conditions. Every year more then 500, 000
cases of dengue haemorrhagic require an hospitalization.

By contrast to malaria, caused by a parasite mainly in rural
areas and transmitted by mosquito bites only at night,
dengue is a viral disease resulting from the interaction of
susceptible individuals with any of the four serotypes,
mosquitoes of genus Aedes. The two recognized species of
the vector transmetting dengue are Aedes aegypti and
aedes albopictus. The first is highly anthropophilic, thriv-
ing in crowded cities and biting primarily during the day
while the later is less anthropophilic and inhabits rural ar-

eas. Consequently, the importance of dengue is twofold:
(i) Even in the absence of fatal forms, and because of its
wide spreading and its multiple serotypes, the disease
breeds significant economic and social costs (absentee-
ism, immobilization debilitation, medication). (ii) The
potential risk of evolution towards the haemorrhagic
form and the dengue shock syndrome with high econom-
ic costs and which may lead to death.

Mathematical modelling became an interesting tool for
the understanding of these illnesses and for the proposi-
tion of strategies. The formulation of the model and the
possibility of a simulation with parameter estimation, al-
low tests for sensitivity and comparison of conjunctures
[4].

In the case of dengue fever, the mathematical models we
have found in the literature propose compartmental dy-
namics with Susceptible, Exposed, Infective and Removed
(immunised). In particular, SEIRS models [5] and SIR
models [6] with only one virus or two viruses acting si-
multaneously [7] were considered.

In the present paper, while pointing out that the idea of
two viruses coexisting in the same epidemic is controver-
sial [7], a model with two different viruses acting at sepa-
rated intervals of time is proposed. Our main purpose is
to study the dynamics of dengue fever, while concentrat-
ing on its progression to the haemorrhagic form, in order
to understand the epidemic phenomenon and to suggest
strategies for the control of the disease. In search of clarity
and simplicity, we assume that the latent period is not cru-
cial for the susceptible-infective interaction, hence we
omit the compartment of exposed and consider a SIR
model.

Formulation of the model and stability analysis
Parameters of the model
We suppose that we dispose of a human population (re-
spectively of mosquito population) of size Nh (resp. Nv)
formed of Susceptibles Sh, of Infective Ih and of Removed
Rh (resp. Sv and Iv).

The model supposes a homogeneous mixing of human
and mosquito population so that each bite has an equal
probability of being taken from any particular human.
While noting bs the average biting rate of susceptible vec-
tors, phv the average transmission probability of an infec-
tious human to a susceptible vector, the rate of exposure
for vectors is given by: (phvIhbs)/Nh. It is admitted [6] that
some infections increase the number of bites by the infect-
ed mosquitos in relation to the susceptible, therefore, we
will assume that the rate of infected mosquito bites bi is
greater than the one of the susceptible mosquitos bs.
Page 2 of 10
(page number not for citation purposes)



BioMedical Engineering OnLine 2003, 2 http://www.biomedical-engineering-online.com/content/2/1/4
Noting pvh the average transmission probability of an in-
fectious vector to human and Iv the infectious vector
number, the rate of exposure for humans is given by:
(pvhIvbi)/Nh so:

• The adequate contact rate of human to vectors is given
by: Chv = Phvbs

• The adequate contact rate of vectors to human is given
by: Cvh = pvhbi.

The man life span is taken equal to 25 000 days (68.5
years), and the one of the vector is of 4 days. Other param-
eters values are given in the following section.

Basis parameters
Values of the parameters used in the model are given in
Table 1.

Equations of the model
A schematic representation of the model is shown in Fig-
ure 1. We consider a compartmental model that is to say
that every population is divided into classes, and that one
individual of a population passes from one class to anoth-
er with a suitable rate.

Up to now there is no vaccine against dengue viruses but
research is going on and the eventuality of an immuniza-
tion program is not excluded in the medium term. In this
study we investigate the effect of such an immunization
option and we also discuss the possibility of a partial vac-
cination against each serotype that will enable the control
of the second epidemic and the evolution of dengue to
dengue haemorrhagic fever.

In the case of first epidemic, the simplest assumption is
that a random fraction, p, of susceptible humans can per-
manently be immunized against all the four serotypes.
While for the second epidemic, a partial immunization is

applied to the removed from the first epidemic. The dy-
namics of this disease in the host and vector populations
is given by the following equations:

First epidemic
The model is governed by the following equations:

Human population

Table 1: definitions and values of basis parameters used in simulations [5]

Name of the parameter Notation Base value

transmission probability of vector to human phv 0.75
transmission probability of human to vector pvh 0.75
Bites per susceptible mosquito per day bs 0.5
Bites per infectious mosquito per day bi 1.0
Effective contact rate, human to vector Chv 0.375
Effective contact rate, vector to human Cvh 0.75
Human life span 25000 days
Vector life span 4 days
Host infection duration 3 days

1
µh
1
µv1

µ γh h+

Figure 1
schematic diagram: compartments of human and vector 
populations
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Vector population

With the conditions Sh + Ih + Rh = Nh and Sv + Iv = Nv, so:

Rh = Nh - Sh - Ih and Sv = Nv - Iv

then the two previous systems become:

Equilibrium points
Let the set Ω given by:

Ω = {(Sh,Ih,Iv)/0 ≤ Iv ≤ Nv; 0 ≤ Ih; 0 ≤ Sh, (1 + p/µh)Sh + Ih
≤ Nh}

then we have the following theorem:

Theorem 1

The previous system admits two equilibrium points E1(Nh/(1 +

p/µh), 0, 0) and E2 ( , , ) where

, 

and 

Proof:

see appendix A.1

Remark 1

Letting , we can notice that:

• if R - 1 ≤ p' the trivial state E1 is the only equilibrium.

• if R - 1 >p' then the endemic equilibrium E2 will also be
in Ω.

stability
Theorem 2

i) For R ≤ 1 + p' the state E1(Nh/(1 + p'), 0, 0) is globally as-

ymptotically stable (ie ).

ii) For R > 1 + p' the state E2 ( , , ) is locally asymptot-

ically stable.

Proof

see appendix A.2

Remark 2

The inequality R - 1 ≤ p' (ie µh(R - 1) ≤ p) represents the
principle of herd immunity because the susceptible popu-
lation may be protected from epidemics if enough people
are immunized.

Second epidemic
In the same way as in the previous section we suppose the
onset of a second epidemic with another virus. But in this
case, we may assume that a proportion of the population
of susceptibles is globally immunized against the four se-
rotypes or partially immunized against one, two or tree vi-
ruses. Consequently, we may concentrate only on the
removed from the first epidemic who are exposed to the

DHF by taking the new population . Therefore

the model is given by the following equations:

Human population

Vector population
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With the conditions  and Sv + Iv = Nv so:

 et Sv = Nv - Iv then the two previous sys-
tems become:

Equilibrium points
Let the set Ω given by:

 with p' = p/µh

Theorem 3

The previous system admits two equilibrium points: E1( /(1

+ p'), 0, 0) and E2( , , ) with

, ,

and 

Remark 1

We have two equilibrium points: the first E1 = ( /(1 +
p'), 0, 0) is trivial, corresponding to to the state where the
whole population is and will remain healthy. The second

point is: E2 = ( , , ) it corresponds to the endemic

state in which the disease persists in the two populations.

stability
Theorem 4

i) For R1 ≤ 1 + p' the state E1( , 0, 0) is globally asymptot-

ically stable

ii) For R1 > 1 + p' the state E2 ( , , ) is locally asymp-

totically stable.

Results and Discussion
Assuming a vaccination program as an option that would
enable a proportion p of susceptible humans to be global-
ly immunized against the four serotypes, the stability
analysis shows that the population may be protected from
epidemics if p satisfies the principle of herd immunity:
µh(R - 1) ≤ p, where R is a function of the model parame-
ters, defined as the number of new infected by an infective
in interaction with susceptibles. Otherwise, there will be
an endemic equilibrium and the disease will persist. But
the problem is precisely in finding a vaccine against the
four serotypes, which makes a strategy based on global
immunization irrealistic in the short term. Meanwhile, a
search leading to a partial vaccine against each serotype
should be more feasible. In this direction, the proposed
model shows that the evolution of dengue to dengue
haemorrhagic fever can be controlled by a partial vaccine
restricted to the people affected by the first epidemic.

In order to illustrate the dynamics of each epidemic and
to study different strategies, a simulation was carried out
using MATLAB routines with different values of the pa-
rameters implied in each model.

Mainly two directions can be envisaged to control the dis-
ease. The first may act on the number of mosquitoes and
the second may consider the number of susceptible
humans.

Figure 2 shows the effect of the reduction of the number
of susceptibles with different values of the mosquito pop-
ulation Nv in the absence of vaccination (p = 0).

Figure 3 shows that in absence of vaccination (p = 0), a re-
duction of the mosquito population Nv is not sufficient to
prevent the epidemic, it can only delay it's occurrence.

Figure 4 illustrates the benefit of vaccination in the con-
trol of the epidemic, a comparison is given for different
values of the proportion p (p = 0, 0.25, 0.75), but this
eventuality remains subject to the advent of the vaccine.

Conclusion
As mentioned in the introduction, Our main purpose was
to study the dynamics of dengue fever and its progression
to the dengue haemorrhagic fever in order to understand
the epidemic phenomenon and to suggest strategies for
the control of the disease in general and the haemorrhagic
form in particular. The nature of dengue epidemics is
complex since it conjugates human, environmental, bio-
logical, geographical and socio-economic factors. Our
model and simulations show that the strategy based on
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the prevention of dengue epidemic using vector control
through environmental management (to eliminate the
larval resting places such as containers like bottles, limp of
canned foods, tire or other objects susceptible to keep wa-
ter) or chemical methods (application of insecticides) re-
mains insufficient since it only permits to delay the
outbreak of the epidemic (figure 4). This conclusion
agrees with the experiences realized by EA. Newton and P.
Reiter using insecticides [5].

On the other hand, although the model suggests the re-
duction of susceptibles via vaccination, such a strategy is
unlikely to be applicable in the short term because it faces
some hurdles due to the fact that a vaccine must protect

against the four serotypes at the same time. However, we
consider this option since its eventuality is not excluded in
the medium and long term.

In the short term, an intermediate solution would be to
combine as much as possible, the environmental preven-
tion and a partial vaccination essentially to avoid the
haemorrhagic form of the disease caused by different vi-
ruses. This suggestion may help health-care policy makers
to tackle environment causes as preventive measures and
researchers to investigate and concentrate on the search
for a vaccine against each serotype rather than looking for
a vaccine against the four serotypes at the same time.

Figure 2
the role of reduction of susceptible humans (Sh) and mosquito population (Nv) to control the disease in the first and second 
epidemic (model without vaccination (ie p = 0)) Sh = 10000, Nv = 50000 Sh = 2000, Nv = 5000 Sh = 5000, Nv = 50000
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Appendix
proof of theorem 1
the equilibrium points satisfy the following relations:

From the equation (3) we have: ChvIh/Nv(Nv - Iv) - µvIv = 0

From the equation (1) we have: µhNh - (µh + p + CvhIv/

Nh)Sh = 0 then 

Figure 3
the reduction of the mosquito population is not sufficient to eradicate dengue fever (model without vaccination (ie p = 0)) Nv 
= 50000 Nv = 30000 Nv = 800
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(because we have ,  and

)

From the equation (2) we have:

On the other hand:

therefore it can be seen that values of Ih are:  = 0 or

 substituting the equilibrium values

Figure 4
The role of vaccination in the eradication of the disease in the first and second epidemic without vaccination (ie p = 0) p = 0.25 
p = 0.75
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of  in the equations (4) and (5) we obtain two equilib-

rium points:

i) the first E1 = (Nh/(1 + p'), 0, 0) is trivial in the sense that
all individual are healthy and stay healthy for all time.

ii) The second point is: E2 = ( , , ), (where

,  and

) that corresponds to the en-

demic state i.e the case where the disease persists in the
two populations. ■

proof of theorem 2
i) For E1 the matrix of linearization (Jacobian matrix) is
giving by:

Thus the eigenvalues of matrix  are:

so E1 is stable for R < 1 + p'.

For the global stability, we consider the following Liapun-
ov function:

thus:

So in Ω and for R ≤ 1 + p' we have:  ≤ 0.

 = 0

⇒ If R < 1 + p' then (Nh - (1 + p')Sh)Iv = 0, Ih = 0.

and If R = 1 + p' then (Nh - (1 + p')Sh)Iv = 0, IvIh = 0.

Thus the set {E1} is the largest invariant set within the set

{(x, y, z)/ (x, y, z) = 0}. So according to the invariant set
theorem: every trajectory in Ω tends to E1 as time t increas-
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So: AB >C then following Routh-Hurwitz conditions for
the polynomial P, the state E2 is locally asymptotically sta-
ble for R > 1 + p' ■

Authors' contributions
M.D contributed to Bibliography, the stability analysis,
simulation and TEX writing

A.B proposed the models, contributed to discussion and
writing

E.H.T contributed to bibliography, discussion of numeri-
cal results and English writing. All the authors read the fi-
nal version before submission.

Acknowledgement
This work was supported by the Royal Society of London under the DWSV 
scheme and the Moroccan C.N.R under the program PARS MI 23.

References
1. Derouich M Modélisation et Simulation de modèles avec et

sans structure d'âge : Application au diabète et à la fièvre
dengue. Ph.D thesis Faculty of Sciences, Oujda Morocco 2001, 

2. Sesser S Plague proportion. The Asian Wall Street Journal 2002 Au-
gust 30 Septembre 1

3. Dengue and Dengue Haemorrhagic Fever [http://
www.who.int/inf.fs/en/fact117.html] 

4. Hethcote HW The Mathematics of Infectious Diseases SIAM
review 2000, 42:599-653

5. Newton EA and Reiter P A model of the transmission of dengue
fever with an evaluation of the impact of ultra-low volume
(ULV) Insecticide applications on dengue epidemics. Am J
Trop Med Hyg 1992, 47:709-720

6. Esteva L and Vargas C Analysis of a dengue disease transmission
model. Mathematical Biosciences 1998, 150:131-151

7. Feng Z and Hernàndez V Competitive exclusion in a vector-host
model for the dengue fever. Journal of Mathematical Biology 1997,
35:523-544

8. Luenberger DG Introduction to Dynamic systems, Models,
and Applications. Theory, Models, and Applications, John Wiley & sons
1997, 

9. Luenberger DG Introduction to Applied Non linear systems
and Chaos. S Wiggins, Springer 1996, 

10. Dietz K Transmission and control of arbovirus diseases. In Pro-
ceedings of the Society for Industrial and Applied Mathematics, Epidemiol-
ogy: Philadelphia (Edited by: Ludwing D) Philadelphia 1974, 104-106

AB
p MR

M
M

R M

p MR

Mh
h

v h=
+ ′( ) +( )

+
+ +

+( )
+ ′( ) +













⋅
+µ β

β
µ

µ β
β

µ1

1

12 ′′( ) +( )
+

+ +
− − ′( )

+ ′( ) +













>

p MR

M
R

M R p

p MRh v
h v

h

β
β

µ µ
µ µ β

β

µ µ

1

1

2
vv

h v

MR

M R p> − − ′( )µ µ2 1
Page 10 of 10
(page number not for citation purposes)

http://www.who.int/inf.fs/en/fact117.html
http://www.who.int/inf.fs/en/fact117.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1361721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1361721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1361721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9656647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9656647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9145954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9145954
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Formulation of the model and stability analysis
	Parameters of the model
	Table 1

	Basis parameters
	Equations of the model
	First epidemic
	Equilibrium points
	stability

	Second epidemic
	Equilibrium points
	stability


	Results and Discussion
	Conclusion
	Appendix
	proof of theorem 1
	proof of theorem 2

	Authors' contributions
	Acknowledgement
	Acknowledgement

	References

