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A periodically forced two-dimensional cellular automata model is used to reproduce and analyze the com-
plex spatiotemporal patterns observed in the transmission of vector infectious diseases. The system, which
comprises three population levels, is introduced to describe complex features of the dynamics of the vector-
transmitted dengue epidemics, known to be very sensitive to seasonal variables. The three coupled levels
represent the human, the adult, and immature vector populations. The dynamics includes external seasonality
forcing, human and mosquito mobility, and vector control effects. The model parameters, even if bounded to
well-defined intervals obtained from reported data, can be selected to reproduce specific epidemic outbursts. In
the current study, explicit results are obtained by comparison with actual data retrieved from the time series of
dengue epidemics in two cities in Brazil. The results show fluctuations that are not captured by mean-field
models. It also reveals the qualitative behavior of the spatiotemporal patterns of the epidemics. In the extreme
situation of the absence of external periodic drive, the model predicts a completely distinct long-time evolution.
The model is robust in the sense that it is able to reproduce the time series of dengue epidemics of different
cities, provided that the forcing term takes into account the local rainfall modulation. Finally, an analysis is
provided of the effect of the dependence between epidemics threshold and vector control actions, both in the
presence and absence of human mobility factor.
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I. INTRODUCTION

Understanding the rather complex dynamics of transmis-
sible diseases is of utmost importance for improving life
quality and even warranting the survival of some human
population groups. To achieve this task, interdisciplinary ef-
forts are necessary. They certainly include the use of recently
developed techniques to study complex systems �1� that have
been mostly carried out by physicists and mathematicians,
also in the cases of biologically motivated problems �2,3�. At
the beginning of the 21st century, both directly transmitted
diseases, such as tuberculosis and acquired immuno-
deficiency syndrome �AIDS�, as well as vector-transmitted
diseases, such as dengue and malaria, are still not controlled.
The intense flux of people both at global level and within
large cities �4� increases the complexity of transmitted dis-
ease propagation �5�. For vector-transmitted diseases, there
are already indications that climatic conditions and vector
mobility may increase the number of cases �6�. In the case of
dengue, an arboviral disease transmitted to humans by Aedes
mosquitoes �mainly Aedes Aegypti�, several factors favoring
transmission are found in large tropical and subtropical urban
centers �7�: human concentration, large intercity and intracity
human mobilities, and climatic conditions for the vector pro-
liferation �high humidity and temperature between 15 °C
and 40 °C�. Further, dengue outbursts are quite sensitive to
seasonal variations in pluviometric precipitations, humidity,
and temperature. The disease, which may be caused by four
different virus serotype �DenV1-DenV4�, reaches yearly

some 50 million people in more than 60 countries, with
�21 000 casualties �8�.

Since 1992 �9�, ordinary differential equation �ODE�
models have been proposed to analyze dengue interhost dy-
namics and the effect of vector control actions. More re-
cently, several attempts to introduce spatial dependence on
the disease propagation have been reported. They are based
on partial differential equation �10� and cellular automata
�CA� �11� models, as well as on data analysis techniques
�12�. In Ref. �11�, the authors proposed a model that takes
into account only the description of mosquito population,
which may be found in the adult and immature phases. How-
ever, a more accurate description of the dengue propagation
must include, besides the interaction among humans and
mosquitoes, the vector and human mobility, the effect of
control actions, and an explicit climatic periodic forcing on
the mosquito immature phase. To our knowledge, no previ-
ous investigation has taken into account all of these factors.

In order to appropriately model complex systems, the el-
ements of which belong to different classes, a multilevel CA
approach seems quite suitable. In this work, we investigate
an interhost three-level CA model, which describes the per-
tinent population groups in an urban environment: human,
adult vector �mosquito�, and immature vector in the aquatic
phase. As we will detail later on, the model includes all of
the quoted effects: external forcing to describe the environ-
ment influence on the vector life cycle, interaction between
different groups, and new terms to describe the effect of
human and vector mobility and control actions. The results
provided by the model reproduce actual time series from two
well-documented dengue epidemics in two Brazilian urban
centers �13,14� and qualitatively agree with some main fea-
tures of observed spatiotemporal transmission patterns. This*Corresponding author; suani@ufba.br
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is one major advantage of using the CA approach, which is
able to capture relevant features of spatiotemporal patterns
observed in transmitted diseases such as dengue �15�. We
also show that in the absence of a periodic forcing, the actual
epidemic outbursts are not reproduced, supporting the claims
of the importance of climatic aspects to trigger local events.
As the model describes the behavior of the exposed popula-
tion for larger time intervals under the presence of climatic
seasonal variations, it is possible to follow the effect of vec-
tor control actions. Our results provide insights on the quan-
titative dependence between the epidemic threshold and the
parameter describing the intensity of vector control.

The current investigation goes along several successful
works to describe the dynamics of disease propagation based
on CA intrahost models �for instance, AIDS, �16�, malaria
�17�, and cancer �18�� as well as on interhost models �19�. It
is also worth mentioning that a CA epidemic model, with
multiple interacting levels, has been explored in alternative
topologies as complex networks. There, nodes represent
patches of regular lattices �20� submitted to a contact process
dynamics �21�.

This paper is organized as follows: in Sec. II, we intro-
duce the CA local rules, comparing them to other models in
the literature. Section III discusses the choice of parameter
values in our simulations. In Sec. IV, we present our results,
comparing them with actual data: the simulated time series
�Sec. IV A� resulting from the periodic forcing seasonal ef-
fects, the simulated spatiotemporal patterns, and the vector
control associated to human mobility effect �Sec. IV B�. Fi-
nally, Sec. V closes this paper with concluding remarks and
perspectives.

II. MODEL

The CA model consists of three two-dimensional square
lattices �levels�, each one with Ns=L�L sites. The CA is
subjected to closed boundary conditions in order to mimic
the disease spreading in a city. In the distinct levels, each site
describes the respective local populations: human �H�, mos-
quito �M�, and immature vector in the aquatic phase �A�.
Humans follow susceptible, exposed, infectious, and re-
moved �SEIR� dynamics while mosquitoes, which usually
die before being removed, follow a simpler three-
compartment SEI version �9�. The CA interlayer interaction
rules locally couple the three involved levels by means of the
usual rate equation description. They consider interactions
between H and M levels, and the A to M vector population
flux. The CA Moore neighborhood with radius 1 allows, for
each site of a given layer, a maximum of nine neighbors in
the level it interacts with �see Fig. 1�. If we compare the
results to actual data, each neighborhood corresponds to a set
of distinct spatial units �census tracts� into which the re-
ported cases are assigned to.

We restrict ourselves to the one-serotype situation, al-
though the model can be extended to simulate the dynamics
of transmission with more than one serotype, considering
permanent immunity with respect to each homolog. Such
strategy seems indicated in a first investigation, since it pro-
vides a validation of the model with the minimum required

number of parameters and CA states. As it will become clear,
even this simplified model requires a large number of param-
eters for the adequate description of the many different fac-
tors influencing the dynamics of the system.

The CA sites of the A �aquatic vector� level can be found
in four different states: egg �E�, larvae �L�, pupae �P�, and
breeding �B�. The sites of the M �mosquito� level are allowed
to assume three distinct states �SEI compartments�: suscep-
tible �SM�, exposed �EM�, and infectious �IM�. Finally, four
states are available for the sites of the H �human� level:
susceptible �SH�, exposed �EH�, infectious �IH�, and recov-
ered �RH�. Moreover, the sites of A and M levels can be in
empty states, denoted by EAS and EMS. The local interac-
tion rules, based on the entomological �22� and epidemio-
logical aspects �23�, are as follows �see Fig. 2�:

A level: E, L, P, and B states evolve from the preceding
one after the E eclosion period te, L phase period tl, and P
phase period tp. An empty site EAS may be replaced with
probability fs�t� by an E state if there is at least one occupied
site in its M level Moore neighborhood. The transition from
E to L compartments also depends on fs�t�, much as the

FIG. 1. Diagram of different lattices: aquatic phase of the vector
�A�, mosquito �M�, and human �H�. Note that each element of the H
and A lattices “sees” up to nine neighbors of the M lattice �and vice
versa�.

FIG. 2. A schematic of the local rules of the model.
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persistence of B, which releases an adult mosquito SM to a
EAS site of the M level.

M level: the population in the M level results from the
dynamics in A phase. Adult population M dies according to a
death probability pmd in any state. The transition from a SM
state into EM depends on the number of neighbor sites in the
H level that occupy the IH state, on the local effective
mosquito-human biting probability pehm, and on the human
mobility �. A site in the EM state evolves to IM after the M
virus latent period tlm.

H level: in a similar way to the SM→EM transition, a site
in the SH state evolves to EH according to pemh, the number
of IM sites in the M level neighborhood, and the human
mobility �. EH becomes infectious IH after the H virus la-
tent period tlh, and IH becomes recovered RH after the vire-
mia period tv.

Note that in the above level descriptions, we already in-
cluded relevant features of dengue transmission mentioned in
Sec. I. Seasonal information �rainfall intensity� is used as
input data �6,7� by tuning the time dependence of the fs�t�
probability using a Fourier expansion of the actual rainfall
series. If the time series do not include daily entries or is not
complete over the whole simulation period, interpolation or
addition of random noise to the day average taken over a few
years can be used. Global infection probabilities between H
and M populations, due to mobility in private and public
transport systems, is described by a global �mean-field� mo-
bility parameter �. It describes the effect of daily human
displacement within the city. The action of �, which is the
same for all sites, is to globally increase the SM→EM and
SH→EH probability transitions, without any influence from
the neighborhood population in the other level. Finally, the
M level population decreases, which results from vector con-
trol actions, is included by the following additional rule: the
natural M death probability is increased by an additional
amount padm, which reduces the adult mosquitoes on any
state of the M level.

The initial conditions for the CA time evolution are the
following: �i� an infection seed, represented by one IH site, is
randomly placed in the H level. �ii� A large number of cells
in the SM and EMS states is randomly distributed in the M
level. �iii� The cells in the A level are randomly distributed
into the four possible states.

Some of the basic interaction mechanisms and external
effects included in the model have been used, in other con-
texts, by previous ODE models reported in the literature.
Climatic effects have been modeled by seasonal variations in
model parameters �24�. Tuning model parameters by com-
parison to actual data have also been attempted, e.g., by the
estimation of the basal transmission rate for age-stratified
data from Thailand �25�. Other models have considered the
role of a unique vector in the transmission of multiple dis-
eases, as more than one dengue serotype �26–28� or the con-
current transmission of yellow fever in dengue infested areas
�29�. Finally, the effects of vector control have already been
explicitly analyzed in ODE models �27,28,30�.

III. PARAMETER VALUES

The CA parameters introduced in the previous section can
be classified into four classes, according to the individual

processes they describe: �1� spatial parameters: L and �; �2�
temporal parameters: te, tl, tp, tlm, tv, and tlh; �3� transmission
probability and mosquito death parameters: pemh, pehm, and
pmd; �4� vector control parameter: padm.

The values of spatial parameters have been obtained by
taking into account the data of a given urban center. We
estimate the size L of the lattice �number of sites=L2� by
considering the area of the city �Ac� and the flight radius of
the vector �R�. More specifically, we assumed that Ac=L2a,
where a is the area of one cell, while R corresponds to the
average �Moore� neighborhood radius. This way, we have

R =
�a�1 + �2�

2
⇒ L =�Ac

a
=

�Ac�1 + �2�
2R

. �1�

An Aedes aegypti mosquito flies only over a limited region.
The diffusion of a mosquito population from the breeding
place, where the eggs have been laid, rarely extends itself
over a circle of radius 100 m �36�, the value we assume for R
in this work. The range of values of � was estimated by
requiring that the model reproduces the same behavior of the
histogram of the number of census tracts with, at least, one
reported dengue case during the corresponding time period.

We assumed fixed values �within the range presented in
Table I� for the transmission probabilities pehm= pemh=0.75
as proposed in �9� and followed in �24,25,27�. The life period
of the adult phase vector has been estimated from 4 to 7
days, so that pmd lies in the �1/7, 1/4� interval. For vector
control parameter, we scanned the complete interval from 0
to 1.

Choosing the CA iteration time unit to be 1 day, we are
able to set the value intervals for several temporal parameters
according to the literature �see Table I�. The simulations
were performed based on an adaptation of the epidemiologi-
cal definition of an epidemic process �37� to our model simu-

TABLE I. The parameter range of values of temporal param-
eters and the probabilities of transmission H-M and M-H, and of
death mosquito according to the literature. The baseline values were
chosen for the simulations of the model.

Parameter Range of values

Egg period �te� �22� 4–5 days

Larvae phase period �tl� �22� 5–7 days

Pupae phase period �tp� �22� 2–3 days

Latent period of virus in the mosquito �tlm�
�31,9,22,32� 7–20 days

Latent period of virus in the human �tlh�
�9,31,32� 2–12 days

Viremia period �tv� �9,31,33� 3–7 days

Probability of transmission human mosquito
�pehm� �34� 0.5–1.0

Probability of transmission mosquito human
�pemh� �9� 0.5–1.0

Probability of mosquito death �pmd� �9,29,35� 0.128–0.25

Lattice size �L� Variable

Mobility parameter ��� Variable
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lations. A disease outbreak is considered epidemic if the an-
nual incidence I, the number of reported cases to susceptible
population, is above a certain �epidemic� threshold Ith.
Therefore, Ith may be given by

Ith = �I� + 2� , �2�

where the average incidence �I� is calculated with respect to
the last N years and � corresponds to the standard deviation.
To obtain the corresponding model values, we run the pro-
gram for N different random seeds and evaluate Ith according
to definition �2�. We recall that, as for actual cases of vector-
transmitted diseases, several numerical simulations resulting
from different random seeds die out in the first weeks, which
is interpreted as small endemic processes. In other words, for
model simulations, Ith means a reference value to eliminate
samples that are not large enough to be considered as an
epidemic process.

After the evaluation of �I� and �, the program was run as
many times as necessary to get K-independent samples with
I� Ith. Although we performed the numerical simulations of
the model for large time intervals, our analysis can be re-
stricted to 364 time units if we want to compare the results
with the actual data of 1 year epidemic series. The output
data are the time series of each state density in the H, M, and
A levels of the CA model, and the spatial configurations at
any time step. The integration CPU time increases with L3.

Based on the range of temporal parameter values in Table
I, simulations have been conducted for an initial set of pa-
rameter values. Then, we investigate the effect of changing
one parameter at a time, while holding all the others fixed.
This is a simple procedure if compared to other heuristic
methods as, for instance, genetic algorithm �38�. Neverthe-
less, it is enough to reproduce actual time series of different
dengue epidemics.

This way, we identified the baseline values that minimize
the error between the actual time series and the simulated
time series. We performed several tests in order to check the
robustness of the chosen initial set of parameter values. For a
systematic analysis of parameter values, we considered an
average of M simulations samples, identifying the best out-
put for the purpose of comparison with one actual epidemics
time series. This is achieved by the analysis of the minimum
discrepancy between actual and simulated time series,

e =

	
i=1

T


ai − si


T
, �3�

where T is the number of days, ai is the actual incidence, and
si is the simulated incidence of day i. Once the baseline of
temporal parameter values was estimated, the analysis of
minimal discrepancy was applied to select the best sample in
comparison to actual data.

IV. RESULTS

A. Seasonal effects: Actual and simulated time series

In order to validate the model, we initially considered the
data recorded during the first dengue epidemic in Salvador,

Brazil �13�, which was caused by one single serotype �DenV-
2�. Then to check the robustness of the model we considered
the data of another dengue epidemic in another Brazilian
city. The event in Salvador occurred in 1995 when its popu-
lation comprised pc=2.3 million habitants. The area of the
city amounts to Ac=313�106 m2. The yearly average pre-
cipitation is 1980 mm/year, while seasonal effects concen-
trate precipitation in the March to August months. The 1995
weekly rain intensity �R and reported number of new dengue
cases ID �incidence� are shown in Fig. 3. The 1995 average
daily temperature was 25.89 °C, with 1.47 standard devia-
tion. Since temperature and air humidity are locally very
stable, rainfall is the most important climatical factor for
dengue propagation. Indeed, the Pearson correlation varies
from 0.49 to 0.76 for, respectively, weekly and monthly
sampled data. As it will be clear from the discussion of our
results, such an increase in the correlation value is due to a
roughly two week delay time between the two signals. When
the series are clustered in large time windows, such effects
become much smaller. The daily rainfall data were provided
by the Brazilian National Institute of Meteorology �INMET�.

The periodic forcing, represented by the function fs�t�,
was expressed in terms of the Fourier expansion of the raw
data,

fs�t� = a0 + 	
j=1

12

aj cos��jt/26� + bj sin��jt/26� , �4�

where the values of the coefficients are indicated in Table II.
The 10,831 reported dengue cases were georeferenced

into 2600 spatial units �census tracts�. They were also dis-
tributed into 52 time units, called epidemiological weeks
�13�. Note that due to large official subnotification and non-
georeferenced cases �26%�, the actual number of cases is
much larger. In Salvador, the epidemic peak occurs before
the rainfall peak, which can be justified by the fact that due
to the high intense pluviometric precipitation peak, the rain-
fall washes out the vector in the immature phase. As we will
see later, this may not happen in other urban centers. Insert-
ing into Eq. �1� the reported area of Salvador and mosquito
flying radius, we are lead to the value L=214. To warrant
consistency between L2 and the population of Salvador, each
cell represents 50 individuals. On the other hand, the value
�=5�10−4 has been selected from the interval where the

FIG. 3. Time series of the 1995 Salvador weekly rainfall �R

�solid gray squares� and weekly dengue incidence ID �hollow black
circles�.
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model is able to reproduce the exponential behavior in the
probability distribution of observed new cases in a year
among 2600 census tracts �not shown�.

Assuming that the presence of just one infected individual
in each H lattice site is sufficient to turn it into the EH state,
the best sample is able to reproduce the actual data quite
well, as shown by the normalized actual and simulated inci-
dence time series in Fig. 4. We normalize the incidence time
series just by dividing the corresponding values by the larg-
est number of new weekly cases. Therefore, the correspond-
ing normalization factor for the actual data is nmaxL

2 / pc
where nmax is the weekly largest number of new cases in the
actual series. In Fig. 4, the normalization factors for the ac-
tual and the best simulated time-series incidence are, respec-
tively, 17 and 11.

To emphasize the importance of the accurate description
of the recorded periodic forcing in reproducing the ID values,

we draw, in Fig. 5, the time evolution according to two hy-
pothetical scenarios. They were obtained by replacing fs�t�,
in the first place, by a constant value and afterward by a
simple periodic sine function. The resulting incidence
counts, which have been extended for a larger time interval
�5 years�, differ substantially from the typical patterns in Fig.
5. The importance of the accurate description of the external
drive, which is a crucial aspect of vector-transmitted dis-
eases, has been neglected in most of the analyzed models
with time and space dependence.

The importance of seasonal aspects for the observed dy-
namics can be further exemplified by running the model with
the data of other urban centers. We now consider the 1999
dengue epidemic in Mossoró, in Northeast Brazil �14�. Some
features of this outburst differ from those in the Salvador
event. For instance, we note that the rainfall peak ��R� pre-
cedes the reported incidence �ID� peak. In this case, for
which only the monthly data are available for both incidence
and rainfall, not only the rainfall regime is different from that
in Salvador but also Pearson’s correlation coefficient �c
=0.69� between the rainfall and dengue incidence is smaller
�see Fig. 6�.

Mossoró’s larger surface of Ac=2110�106 m �39� di-
rectly influences spatial parameters, leading to a lattice size

TABLE II. Values of the Fourier coefficients of the 1995 Salva-
dor weekly rainfall precipitation series.

n an bn

0 0.13929

1 −0.12878 0.04650

2 0.06192 −0.08005

3 0.01711 0.0831

4 −0.00424 −0.04121

5 0.00824 −0.0686

6 −0.03315 −0.03859

7 0.01013 0.0296

8 −0.04529 −0.01635

9 0.04763 −0.01109

10 −0.07674 0.04058

11 0.04784 −0.05186

12 −0.02364 0.04138

FIG. 4. Actual �ID� and simulated �IHN� 1995 Salvador weekly
incidence time series normalized by the largest single input. The
data have been smoothed by averaging on three consecutive weeks.
Hollow black circles, solid black squares, and solid gray triangles
indicate, respectively, ID, the best individual sample, and average
value over 20 samples taken from random seeds. The normalization
factors for ID, the best IHN, and the averaged IHN are 17, 11, and
8.14 respectively. The following parameter values have been used:
te=5, tl=5, tp=3, tlm=7, tlh=6, tv=6, pehm= pemh=0.75, pmd

=0.143, �=5�10−4, and L=214.

FIG. 5. Average value of simulated weekly incidence �IHN�
when fs�t�=1 �solid squares� and fs�t�=sin�2�t /52� �hollow
circles�. The data have been smoothed by averaging on three con-
secutive weeks. Parameter values are the same as in Fig. 4. Average
value taken oven 20 samples.

FIG. 6. Time series of the 1999 Mossoró monthly rainfall inten-
sity �R �solid gray squares�, actual dengue incidence ID �hollow
black circles�, and simulated dengue incidence IHN �solid black
squares�. The simulated curve corresponds to the best sample. The
following parameter values have been used: te=4, tl=7, tp=7, tlm

=6, tlh=5, tv=6, pehm= pemh=0.75, pmd=0.143, �=1.0�10−6, and
L=554.
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of L=554. As this incidence data are not georeferenced, �
could not be directly estimated. However, taking into ac-
count that the city is a less developed urban center with a
smaller population than Salvador �pc=234.390 habitants
�39��, we consider a smaller value of �=1.0�10−6. The val-
ues of the other parameters were chosen according to the
already discussed procedures. The results in Figs. 4 and 6
show that the model is robust enough to simulate dengue
incidence for cities with high and low rain intensities, and
different Pearson correlation coefficients. Such results indi-
cate that besides the importance of periodic forcing, the epi-
demic behaviors of vector-transmitted diseases are heavily
dependent on entomological and epidemiological aspects
that are also caught by the model.

To better understand the forcing effect, the behavior of
CA model, with the 1995 Salvador outbreak parameters, has
been followed for large time intervals. In this situation, we
consider that exactly the same rainfall incidence obtained
from 1 year pluviometric data is repeated periodically �12�.
Our results indicate that the periodic forcing leads to modu-
lated responses. However, if we disallow the possibility of
new exogenous infected sources �due, e.g., to an infected
visitor�, the amplitude of the epidemic outbursts does not
remain the same. If the same parameter values as in Fig. 4
are used, the results in Fig. 7�a� indicate that IHN oscillation
amplitude reaches its maximum value in the first year when
it starts decreasing in a steady way. It is interesting to note

that, at the same time, the M and A populations do not de-
crease in a similar way. This indicates that in a closed envi-
ronment, the number of individuals carrying active virus and
a relatively weak damping effect due to a small RH popula-
tion turns it difficult to trigger new epidemic events. This
happens in spite of the fact that, after five years, the number
of susceptible individuals SH in the population is still very
high—99.6% for the same parameter set.

On the other hand, Fig. 7�a� also shows that changes in
the parameter values, favoring virus permanence in the H
level for a longer time, may lead to the opposite landscape,
with a long period during which the yearly amplitude of the
IHN population increases monotonically. In such cases, the
amplitude decreases only when a large fraction of the H
population has become infected and switched to the RH
state. Note that this is not yet the situation, after a 5 year
evolution period, for such alternative time evolution sce-
narios. There, we still find a large fraction of SH susceptible
individuals, 84.3%, where the variation occurs in the human
viremia �tv=12�.

The size of successive epidemic events in isolated envi-
ronments depends on the value of tv in a nonlinear way. As
long as such values are inside the observed range �and even
�40% larger�, the obtained patterns predict a decrease in the
size of subsequent yearly events. However, when this param-
eter becomes much larger �in Fig. 7�a�, tv=12, �70% larger
than upper bound �7 days�, the predicted pattern changes
markedly. In Fig. 7�b�, such a dependence is synthesized by
drawing the epidemic threshold as function of tv. These re-
sults both confirm the structural stability of the model for
parameter values inside the confidence range, as well as its
ability to predict new possible scenarios beyond the param-
eter bounds in Table I. As far as we know, this effect, result-
ing from a local interaction among the three CA levels, has
not been previously discussed in the literature.

B. Mobility effects: Spatiotemporal patterns
and vector control

Spatiotemporal patterns resulting from georeferenced data
of the actual epidemics of Salvador in 1995 have been re-
ported elsewhere �13�. They can be compared to the CA
simulated spatiotemporal patterns, which have been gener-
ated with the help of the G2 graphic package �40�. We have
found that the model is able to qualitatively reproduce the
main features observed in actual spatiotemporal epidemic
patterns �13�.

In Fig. 8, we illustrate spatiotemporal patterns for A, M,
and H populations in some characteristic time steps. For the
sake of a better visualization, we choose a small value of
lattice size �L=79�. Using the same initial conditions pre-
sented in Sec. II, the simulations show that epidemics start
around the site where the IH seed was located. Neighboring
SM cells change into EM state, disseminating the disease
into other H sites, while increasing the radius of the primary
epicenter. Due to H and M mobilities, some secondary epi-
centers are formed. In this case, without any control strategy,
the epidemics evolve naturally until its end. Figure 8 reveals
qualitative similarities to the main features presented in �13�:

(b)

(a)

FIG. 7. �a� Predicted average value �IHN� for a large time inter-
val of 5 years as function of human viremia period: hollow squares,
hollow circles, and solid triangles indicate, respectively, tv=6, 9,
and 12. Values have not been normalized. Other parameter values
are the same as in Fig. 4. Averages have been taken over 20
samples. �b� Dependence of epidemic threshold over 5 years as
function of tv. A large increase ��2 orders of magnitude� starts at
tv�11.
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the persistence of the primary epidemic epicenter, the emer-
gence of secondary epicenters, and an irregular shape of each
epicenter.

Secondary epicenters at large distances from the original
seed are a direct consequence of the mobility effects, which
are well accepted to be an important feature for dengue trans-
mission in urban centers. Indeed, if �=0, the shown spa-
tiotemporal pattern is replaced by a diffusionlike pattern with
a single epicenter. However, � also plays an important role
in reducing relative fluctuations, an expected “mean-field-
like” effect. Such an effect is particularly intense for large
values of incidence, as shown in Fig. 9. On the other hand,
Fig. 9 also illustrates that very small values of � have a large
influence in the epidemic process, producing an increase in 2
orders of magnitude on the outbreak intensity.

Until today, no efficient vaccine against dengue could be
devised. Therefore, actions toward vector control constitute
the only public health policy to reduce the deleterious effect
of the disease. Even so, there are still controversies regarding
whether vector control actions are more reliable in the A or
M phases. As the CA model is able to successfully reproduce
epidemic data and follow the dynamics of the disease for
longer periods of time, it can also provide useful insights
regarding the efficiency of vector control actions.

To this purpose, let us consider the dependence between
the epidemic threshold and the mature phase vector control

parameter pamd. We have performed a large number of inde-
pendent simulations for different values of pamd. We evalu-
ated Ith with the help of Eq. �2�, where the time average was
replaced by sample averages. Since the epidemic intensity is
as strong as large the value of Ith, this parameter measures
the probability that an individual living the simulated urban
center gets infected within 1 year.

The results in Fig. 10 show that when �=0, Ith is almost
insensitive to pamd as long as pamd�0.01. For larger values,
the plot shows an expressive decrease in the value of Ith.
Although the pattern suggests a power-law behavior, this ef-
fect is valid only over a short interval ��1 decade�. The
reduction in the value of Ith shows that effective policies
aiming at a reduction in the vector reproduction in its own
environment produce substantial reduction in affected popu-
lation. This effect is still more expressive and relevant when
we consider more realistic situations, in which human and
vector population move in the urban space. As expected, the
epidemic threshold is larger, for any value of pamd, when �
�0 than when �=0. Besides that, when ��0, Ith decays
with respect to pamd in a faster way in comparison to the �

FIG. 8. �Color online� Simulated spatiotemporal configurations
of cumulated cases for the following parameter values: L=79,
pmd=0.143 pemh= pehm=0.75 �=0.001, te=5, tl=7, tp=3, tlm=7,
tlh=5, and tv=5. Four snap shots are shown for each lattice: �a�
aquatic phase �A�; �b� mosquito �M�; and �c� human �H�. Online
version: �A�—empty site: light yellow; E: green; L / P: blue; B: dark
red; �M�—empty site: light yellow; SM: green; EM: blue; IM: dark
red; �H�—SH: green; EH: blue; IH: dark red; RH: light yellow�.
Printed version: �A�—empty site: white; E: light gray; L / P: gray;
B: dark gray; �M�—empty site: white; SM: light gray; EM: gray;
IM: dark gray; �H�—SH: light gray; EH: gray; IH: dark gray; RH:
white.

FIG. 9. Illustration of the mobility parameter effect. Small non-
zero value of � largely increases the event sizes. The average value
of IHN are taken over 200 samples. Parameter values are the same
as in Fig. 4, with the exception of � that assumes the following
values: 0.0 �solid black square� and 0.02 �hollow black circle�. For
the sake of a better comparison between events of rather distinct
magnitudes, logarithmic scale is used on the vertical axis.

FIG. 10. Illustration of vector control actions. The simulated Ith

is drawn as function of vector control parameter �pamd�. We con-
sider 20 samples and the same parameter values of Fig. 4, except
for �=0 �triangles� and �=10−5 �squares�. The stretched exponen-
tial fitting values �solid line� are b1= �1.218	0.007��103, b2

=86.4	4.0, and 
=1.14	0.01.
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=0 situation. As shown in Fig. 10, the points fit quite well to
a stretched exponential Ith=b1 exp�−b2�pamd


 ��.

V. CONCLUDING REMARKS AND PERSPECTIVES

The three-level CA model investigated in this work has
been proven successful in quantitatively reproducing actual
time series of dengue epidemics. As such, the CA main as-
sumptions can be extended or adapted to the description of
similar vector-transmitted diseases. Besides the usual local
interaction steps based on SEIR compartment models, the
most important novelties are �i� the use of multiple levels to
describe the relevant populations involved in the disease
spreading; �ii� the use of the climatical data as input data;
�iii� the A-M and M-H interlevel interactions; �iv� the inclu-
sion of short-range vector mobility and long-range human
mobility.

The model is robust with respect to the range of param-
eters considered in the literature and to its ability in repro-
ducing time series of dengue epidemics in different urban
centers. The climatic input data, as well as the procedure
used for estimating the parameter values, are able to catch
the diversity of the dengue incidence time series for different
cities. Although we have mainly focused our analysis on the
human population, the CA model also provides useful in-
sights on the behavior of the vector population, which will be
detailed discussed in a future work.

The analysis of vector control shows that, as expected, it
indeed produces a decrease in the probability of human in-

fection. However, we have shown that this effect is more
relevant when vector and human mobility are taken into ac-
count. In this case, the infection probability decreases ac-
cording to a stretched exponential, while a power-law behav-
ior is observed when the no mobility assumption is taken
into account.

Once the basic dynamical aspects of the model have been
validated, perspectives for further work on this model are of
two kinds. The first one amounts to investigate the impact of
different strategies of vector control on dengue transmission
as well as to discuss the detailed behavior of M and A popu-
lations subject to those strategies. A more ambitious goal is
to achieve the quantitative reproduction of spatial patterns.
This requires a more precise local characterization of spatial
units, as well as global positioning system georeferencing
data. This way, the CA model can help in planning improved
vector control policies from the spatial point of view, attack-
ing mainly the most important foci for the epidemic trigger-
ing.

ACKNOWLEDGMENTS

The authors thank C. P. Ferreira, D. Alves, E. Massad, H.
M. Yang, J. G. V. Miranda, J. P. Dias, L. Esteva, M. N.
Burattini, and V. C. G. S. Morato for useful discussions about
dengue modeling. The authors acknowledge the Brazilian
agencies CNPq and FAPESB for financial support; and IN-
MET for rainfall data.

�1� N. Boccara, Modeling Complex Systems Series: Graduate
Texts in Contemporary Physics �Springer Verlag, New York,
2004�.

�2� P. Philippe, Nonlinear Dyn. Psychol. Life Sci. 4, 275 �2000�.
�3� R. Anderson and R. May, Infectious Diseases of Humans—

Dynamics and Control �Oxford University Press, Oxford,
1991�.

�4� G. Chowell, J. M. Hyman, S. Eubank, and C. Castillo-Chavez,
Phys. Rev. E 68, 066102 �2003�.

�5� D. J. Gubler, in Dengue and Dengue Hemorrhagic Fever, ed-
ited by D. J. Gubler and G. Kuno �CAB, New York, 1997�, pp.
1–22.

�6� S. Hales, N. de Wet, J. Maindonald, and A. Woodward, Lancet
360, 830 �2002�.

�7� G. Kuno, Epidemiol. Rev. 17, 321 �1995�.
�8� World Health Organization, 2008, http://www.who.int/

mediacentre/factsheets/fs117/en/
�9� E. A. C. Newton and P. Reiter, Am. J. Trop. Med. Hyg. 47,

709 �1992�.
�10� N. A. Maidana and H. M. Yang, Tend. Mat. Apl. Comput. 8, 83

�2007�.
�11� C. P. Ferreira, P. Pulino, L. T. Takahashi, and H. M. Yang,

Math. Popul. Stud. 13, 215 �2006�.
�12� A. Vecchio, L. Primavera, and V. Carbone, Phys. Rev. E 73,

031913 �2006�.
�13� F. R. Barreto, M. G. Teixeira, M. C. N. Costa, M. S. Carvalho,

and M. L. Barreto, BMC Public Health 8, 51 �2008�.
�14� J. P. Dias, Ph.D. thesis, Universidade Federal da Bahia, Brazil,

2006.
�15� D. A. T. Cummings, R. A. Irizarry, N. E. Huang, T. P. Endy, A.

Nisafaix, K. Ungchusak, and D. S. Burge, Nature �London�
427, 344 �2004�.

�16� R. M. Zorzenon dos Santos and S. G. Coutinho, Phys. Rev.
Lett. 87, 168102 �2001�.

�17� R. M. Zorzenon dos Santos, S. T. R. Pinho, C. P. Ferreira, and
P. C. A. da Silva, Eur. Phys. J. Spec. Top. 143, 125 �2007�.

�18� E. A. Reis, L. B. L. Santos, and S. T. R. Pinho, Physica A 388,
1303 �2009�.

�19� A. Johansen, J. Theor. Biol. 178, 45 �1996�.
�20� S. L. Silva, J. A. Ferreira, and M. L. Martins, Physica A 377,

689 �2007�.
�21� S. C. Ferreira and M. L. Martins, Phys. Rev. E 76, 036112

�2007�.
�22� N. A. Honório, W. C. Silva, P. J. Leite, J. M. Gonçalves, L. P.

Lounibos, and R. Lourenço-de-Oliveira, Mem. Inst. Oswaldo
Cruz 98, 191 �2003�.

�23� M. G. Teixeira, M. C. N. Costa, M. L. Barreto, and L. E. Mota,
Cad Saude Publica 21, 1307 �2005� FIOCRUZ.

�24� F. A. B. Coutinho, M. N. Burattini, L. F. Lopez, and E. Mas-
sad, Bull. Math. Biol. 68, 2263 �2006�.

�25� N. M. Ferguson, C. A. Donnelly, and R. M. Anderson, Philos.
Trans. R. Soc. London, Ser. B 354, 757 �1999b�.

SANTOS et al. PHYSICAL REVIEW E 80, 016102 �2009�

016102-8



�26� L. Esteva and C. Vargas, J. Math. Biol. 46, 31 �2003�.
�27� L. M. Hartley, C. A. Donnelly, and G. P. Garnett, Trans. R.

Soc. Trop. Med. Hyg. 96, 387 �2002�.
�28� I. B. Schwartz, L. B. Shaw, D. A. T. Cummings, L. Billings,

and M. McCrary, and D. S. Burke, Phys. Rev. E 72, 066201
�2005�.

�29� E. Massad, F. A. B. Coutinho, M. N. Burattini, and L. F. Lo-
pez, Trans. R. Soc. Trop. Med. Hyg. 95, 370 �2001�.

�30� L. Esteva and H. M. Yang, Math. Biosci. 198, 132 �2005�.
�31� H. M. Yang and C. P. Ferreira, Appl. Math. Comput. 198, 401

�2008�.
�32� J. F. Siler, M. W. Hall, and A. P. Hitchens, Philippine. J. Sci.

29, 1 �1926�.
�33� D. J. Gubler, R. T. Suharyono, R. Tan, M. Abidin, and A. Sie,

Bull. World Health Organ. 59, 623 �1981�.
�34� L. Rosen, L. F. Roseboom, D. J. Gubler, J. C. Lien, and B. N.

Chaniotis, Am. J. Trop. Med. Hyg. 34, 603 �1985�.
�35� P. M. Sheppard, W. W. MacDonald, R. J. Tonn, and B. Grab, J.

Anim. Ecol. 38, 661 �1969�.
�36� C. Liew and C. F. Curtis, Med. Vet. Entomol. 18, 351 �2004�.
�37� D. P. Barker and F. J. Bennett, Practical of Epidemiology

�Churchill Livingstone, Edinburgh, 1976�.
�38� M. Mitchell, An Introduction to Genetic Algorithms �MIT

Press, Cambridge, MA, 1996�.
�39� BRASIL, Instituto Brasileiro de Geografia e Estatística

�IBGE�, 2008, http://www.ibge.gov.br/home/
�40� Lj. Milanovic and H. Wagner, g2-graphic library �C�, 1999,

http://g2.sourceforge.net

PERIODIC FORCING IN A THREE-LEVEL CELLULAR… PHYSICAL REVIEW E 80, 016102 �2009�

016102-9


