
          

ABSTRACT This paper discusses the distribution of certainty around General
Circulation Models (GCMs) – computer models used to project possible global climatic
changes due to human emissions of greenhouse gases. It examines the trope of
distance underpinning Donald MacKenzie’s concept of ‘certainty trough’, and calls for
a more multi-dimensional and dynamic conceptualization of how uncertainty is
distributed around technology. The certainty trough describes the level of certainty
attached to particular technoscientific constructions as distance increases from the site
of knowledge production, and proposes that producers of a given technology and its
products are the best judges of their accuracy. Processes and dynamics associated with
GCM modeling challenge the simplicity of the certainty trough diagram, mainly
because of difficulties with distinguishing between knowledge producers and users,
and because GCMs involve multiple sites of production. This case study also challenges
the assumption that knowledge producers always are the best judges of the accuracy
of their models. Drawing on participant observation and interviews with climate
modelers and the atmospheric scientists with whom they interact, the study discusses
how modelers, and to some extent knowledge producers in general, are sometimes
less able than some users to identify shortcomings of their models.

Keywords atmospheric sciences, certainty trough, general circulation models, global
climate change, simulation technology, uncertainty
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‘[D]istance from the cutting edge of science is the source of what certainty
we have’, Harry Collins (1985, quoted in MacKenzie, 1990: 370) has
stated, arguing that there is an inverse relationship between the level of
certainty attached to any particular scientific construction and proximity to
its site of construction. Donald MacKenzie’s (1990) analysis of antiballistic
missile technology extends Collins’ (1985: 145) slogan that ‘distance lends
enchantment’ to technology. MacKenzie (1990: 370–71) proposes a dis-
tinction between two ‘quite different’ kinds of uncertainty about missile
accuracy. The first kind of uncertainty is that of the ‘alienated and those
committed to an alternative weapon system’. The second, ‘more private and
more limited’ form of uncertainty is that of ‘those closest to the heart of the
production of knowledge of accuracy’ (p. 371). Knowledge producers
themselves are ‘certainly not critics’ of their own technology, writes
MacKenzie; they do believe that missile accuracy – the ability to render
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missiles accurate in their targeting of enemy sites – is in principle knowable.
However, because of their intimate awareness of the ‘human vagaries’ in the
production of the missile technology, they are not inclined to defend accuracy
as fact (p. 366). Between these two positions are the ‘program loyalists’ and
those who simply ‘believe what the brochures tell them’ (p. 371).

MacKenzie represents these divergent positions in what he refers to as
a ‘schematic and impressionistic’ diagram in the shape of a trough (Figure
1). The attitude of ‘program loyalists’ is represented by a dip (thus
producing a ‘trough’) in the connecting line representing the higher levels
of uncertainty found among the two other groups, the knowledge pro-
ducers and the alienated. MacKenzie (p. 371) suggests that this diagram
‘might describe . . . the distribution of certainty about any established
technology’.

After 40 years of development, computerized models of climate dy-
namics are an established – albeit always evolving – technology. Such
models have become a cornerstone for the atmospheric sciences and for
the bodies of evidence supporting claims about human-induced climate
change. Although model developers and defenders do acknowledge many
uncertainties, as MacKenzie’s diagram would predict, I argue that the
certainty trough only partly captures the distribution of uncertainty around
climate models and their projections of future human-induced climate
changes.

MacKenzie may have intended the certainty trough to serve as little
more than a heuristic. However, the diagram deserves critical analysis
because of the widespread influence of MacKenzie’s work, and of the
certainty trough in particular an analysis of the social dimensions of
computer models (Shackley & Wynne, 1996; Jasanoff & Wynne, 1998;
Smyth, 2001; Jasanoff, 2003).1

FIGURE 1
Mackenzie’s certainty trough (MacKenzie, 1990: 372).
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When applied to climate simulation technology, MacKenzie’s frame-
work does not capture the complex dynamics shaping when and how
climate models are accepted, questioned, or rejected. In what follows, I
identify the limited applicability, in this case, of the certainty trough and
the trope of distance. I identify four interrelated factors that complicate the
certainty trough: (1) General Circulation Models (GCMs) are produced at
multiple sites dispersed in time and space; (2) GCM model developers are
generally also users, and some other users also may be said to be knowl-
edge producers; (3) identification of some model inaccuracies requires
empirical understanding more prevalent among empiricists than modelers;
and (4) social and psychological factors can reduce modelers’ ability to
retain critical distance from their own creations. The implication of (1),
(2), and (3) is that there is no single vantage point from which to best
evaluate the performance of a single complex GCM. The last point (4)
highlights the need to develop the certainty trough and the concept of
distance so that the model also accounts for the influence of professional
investments, social networks, and the broader political controversy that
surrounds the GCMs and the issue of climate change.

The paper draws from ethnographic fieldwork carried out over 6 years
(1994–2000) among US climate scientists at institutions where climate
modeling is carried out. The research analyzed the social, cultural, and
political dimensions underpinning disputes among scientists regarding the
present and future reality of human-induced climate change, and the
severity of its impacts. The author was based at the US National Center for
Atmospheric Research (NCAR) throughout this time, an institution that
hosts numerous important modeling efforts, and traveled to other US
modeling institutions around the country to study scientists there. The
research involved participant observation supplemented by more than 100
semi-structured interviews with atmospheric scientists, about 15 of whom
were climate modelers. Some of the latter were interviewed numerous
times. Participant observation over the 6-year period involved conversa-
tions with many more modelers, and provided the opportunity to engage
and listen in on their formal and informal conversations.

General Circulation Models

Computer simulations are central tools in areas of global change science
where wholly empirical methods are infeasible (Edwards, 1996). They are
part of a broader trend in science towards simulation technology that
allows scientific investigation of, and experimentation with, complex sys-
tems without some of the time and access constraints of traditional
experimentation. Scientists experiment with modeled earth systems in
order to understand how human activities may alter the global climate and
its associated natural and social processes.

GCMs are simulations used to model climate dynamics.2 GCMs use
computations to simulate complex interactions between the components of
the earth system; time-dependent three-dimensional flows of mass, heat,
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and other fluid properties. The models divide the earth system into three-
dimensional grids, mathematically representing the physical movement of
gaseous or liquid masses and the transfer, reflection and absorption of
energy. They compute these processes at each grid-point at appropriate
time intervals and repeat and speed-up these processes to simulate future
states of the climate system. The more complex GCMs include anthro-
pogenic effects and couple oceanic, atmospheric and land-surface
processes.

GCMs are based on the numerical weather prediction computer
models that also provide the forecasts and visual displays commonly shown
on television weather programs. Climate models can be programmed to
provide similar visual displays of projected temperature changes and other
climatological variables mapped onto geographical maps. For global
GCMs, such maps represent the contours of land masses and oceans
covering the entire globe. As in the case of television weather maps, the
global climate projections frequently use colors to represent temperature
differences, indicating warm temperatures with red and orange, and colder
temperatures with shades of blue and green.

Climate modelers come from a variety of disciplines. The majority of
them have degrees in atmospheric science, mathematics, and physics.
Currently, two dozen or so scientific groups around the world use GCMs
to consider the potential consequences of anthropogenic greenhouse gases
in the atmosphere. The resources required to run the increasingly complex
climate models are so extensive and expensive that relatively few countries
and institutions can afford them. Most of these countries (for example,
England, Germany, and Japan) have chosen to focus efforts on a single
national model. The USA, however, has numerous modeling efforts, with
no single national model. Consequently, model groups compete against
each other for access to research funds from national agencies such as the
US National Science Foundation, the Environmental Protection Agency,
the National Oceanic and Atmospheric Administration, and the Depart-
ment of Energy.

The Epistemology of Models

The biggest problem with models is the fact that they are made by
humans who tend to shape or use their models in ways that mirror their
own notion of what a desirable outcome would be. (John Firor [1998],
Senior Research Associate and former Director of NCAR, Boulder, CO,
USA)

In climate modeling, nearly everybody cheats a little. (Kerr, 1994)

Climate models are impressive scientific accomplishments with importance
for science and policy-making. They also have important limitations and
involve considerable uncertainties. The present discussion focuses on un-
certainties about the realism of climate simulations – rather than the
models’ significant strengths – in order to highlight features of models that
are overlooked when their output is taken at face value.
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Climate simulations are based on the assumption that nature can be
quantified and that it constitutes a sufficiently deterministic system that
therefore, in principle, can be forecast far into the future (Shackley &
Wynne, 1996). Whether or not long-term climate predictions are reliable is
an open scientific question, however (Somerville, 1996). Some skeptics
argue that indeterminacies perturb the climate system to the point of
always frustrating attempts at long-term forecasting (Wiin Nielsen,
1987).

Modelers generally agree that the climate system is a chaotic system in
both a technical and practical sense, rendering short-term weather patterns
unpredictable beyond a few weeks. Nevertheless, they do believe that
certain predictions can be made for the climate system, and that the
models ‘get the sign right’, meaning that they are accurate in the overall
effect they predict: that increased concentrations of greenhouse gases in
the atmosphere will result in net warming rather than cooling. Asked about
this, one climate modeler simply answered: ‘when you heat a kettle it
doesn’t get cold’. By contrast, at least a few atmospheric scientists I
interviewed thought it unlikely, but not impossible, that the models might
be getting the sign wrong.

Paul Edwards (1999, 2001) has analyzed the blurred and elusive
boundaries between models and observational data in global climate
research. Edwards describes the uncertain relation between global climate
simulations and the data they integrate and against which their accuracy is
checked. Some of these uncertainties are quantifiable and manageable by
means of empirical and computational improvements, while others repre-
sent ‘unquantifiable, irreducible epistemological limits related to inductive
reasoning and to the nature of model-based global science’ (Edwards,
1999: 439).

To gauge the realism of long-term GCMs that project climate condi-
tions many years into the future, scientists initially run the models for past
periods, in order to compare the simulations against empirical data. This
practice – often referred to as ‘historical forecasting’ – faces important
challenges as well, due to the lack of independent, reliable, consistent, and
global data against which to check the GCM output. In the absence of
such data, modelers often gauge any given model’s accuracy by comparing
it with other models. However, the different models are generally based on
the same equations and assumptions, so that agreement among them may
indicate very little about their realism.

Model uncertainties are a function of a multiplicity of factors. Among
the most important are limited availability and quality of empirical data
and imperfect understanding of the processes being modeled. As a result of
data limitations, GCMs are used in order to ‘massage’ the very data sets
fed into the GCMs in the first place to render them consistent and broadly
applicable (Edwards, 1999, 2001). Thus, the GCMs are used to fill in and
smooth data sets derived from geographically dispersed measuring sta-
tions, to render them fit for the process of producing and validating
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GCMs. This circularity characterizes processes of model production and
validation, which ideally should be kept separate.

Unable to calculate atmospheric changes everywhere, because of lim-
ited observational data and computer power, GCMs break the atmosphere
into a manageable number of blocks (grid boxes) and calculate relevant
processes within each block. The region represented by each block ranges
from 100 to 500 km2 in GCMs, and commonly includes about 10 km of
the atmosphere above Earth. Each block is partitioned into multiple
vertical layers starting with the lowest 2 m of the atmosphere, at the earth’s
surface, and proceeding above the atmosphere where pressure approaches
zero. In the process of dividing atmosphere and oceans into such large
three-dimensional grid boxes, GCMs do not resolve climate processes and
factors that are smaller than the grid’s scale, even though these factors
variously cool and warm the climate system. These unresolved factors
include key hydrological processes, such as cloud formations and their
movement in the atmosphere, as well as eddy currents, evaporation, and
surface exchanges.

Instead of being empirically represented, sub-grid and insufficiently
understood phenomena are ‘parameterized’. Rather than actually incorpo-
rating such phenomena into the models based on physical measurements,
modelers treat them indirectly by seeking to include their estimated
climatic effects. A successful parameterization requires understanding of
the phenomena being parameterized, but such understanding is often
lacking. For example, the intricate microphysical processes that make up
clouds are not well understood, nor is the overall climatic effect of clouds.
Depending on their composition – which varies in time and space – the
feedback processes created by clouds might trap heat around the earth or
reflect radiation away from it, thus either warming or cooling the planet.
How best to parameterize various processes is a contentious subject among
modelers and model analysts.

When confronted with limited understanding of how the climate
system works, modelers seek to make their models conform to how the
climate system is expected to behave. The adjustments may ‘save appear-
ances’ (Baker, 2000) without integrating precise understanding of the
causal relationships the models are intended to simulate. For example, a
particular tuning or tweaking technique is called ‘flux adjustment’ or ‘flux
correction’. It was used in the past for large coupled models at almost all
the major international modeling centers. Flux correction has generally
been considered a necessary adjustment to get model outputs to conform
more closely with reality. In the coupled models (for example, ocean–
atmosphere models), the ocean might tend to ‘drift’ away uncontrollably, a
consequence of the linear rather than non-linear feedback structure of the
model. In addition, large regions of modeled oceans have at times turned
into solid ice.

Oreskes et al. (1994) have noted the difficulty of distinguishing what is
and is not based on existent and validated knowledge in exploratory
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climate modeling. They write that when there is a lack of full access in time
or space to the phenomena of interest,

. . . there are certain similarities between a work of fiction and a model:
[J]ust as we may wonder how much the characters in a novel are drawn
from real life and how much is artifice, we might ask the same of a model;
How much is based on observation and measurement of accessible
phenomena, how much is based on informed judgment, and how much is
convenience? (Oreskes et al., 1994)

As is the case of scientific knowledge generally, models cannot be verified
in the sense of having their truth status confirmed with certainty (Oreskes
et al., 1994; Shackley & Wynne, 1995; Norton & Suppe, 2001).3 Identify-
ing model errors is particularly difficult in the case of simulations of
complex and poorly understood systems such as the earth’s atmospheric
system, simulations that sometimes extend hundreds of years into the
future. Whereas the accuracy of weather forecasts is established within
days, climate forecasts may only be proven wrong in decades or centuries.
Moreover, though computer resources have greatly expanded in the last
few years, at the time of the research reported here, modelers lacked
sufficient computer capacity and time to perform a large number of slightly
varied runs of the same complex GCM model, which was required for the
creation of error bars, and for testing, diagnosis, and documentation of
model characteristics (National Research Council, 1998). For related
reasons, computer models (model codes) are seldom subjected to peer
review (Bankes, 1993) and large-scale model studies are never replicated in
their entirety by other scientists, because this would require them to
reimplement the identical conceptual models. Replication in science is
generally difficult (Collins, 1985; Collins & Pinch, 1993), and in the field
of climate modeling, the exact reproduction of a climate model outcome
will never happen due to the ‘internal model variability’ that results in
chaotic dynamic perturbations. The nearest climate models come to close
scrutiny of their subcomponents is in the comparison of international peer-
reviewed studies. This process is also the closest the models come to peer
review. A kind of replication also occurs when model groups ‘benchmark’ a
code to ensure near-exact (replicable) conditions. This practice is per-
formed when model developers integrate code developed by other groups
on other platforms (that is, other computers) with their own platform.

The Distribution of Uncertainty Around General Circulation
Models

In his historical study of physics, Peter Galison observes that ‘the computer
began as a “tool”, an object for the manipulation of machines, objects, and
equations . . . [b]ut bit by bit . . . came to stand not for a tool, but for
nature’ (Galison, 1997: 777). His account evokes theoretical discussions of
the role of simulations in postmodernity (Poster, 1988; Baudrillard, 1993).
Galison does not discuss variations in levels of certainty attributed to
simulation technology and output, a challenge taken up by Simon Shackley
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and Brian Wynne (1995, 1996) in their analysis of climate models and their
interface with policy.

General Circulation Model Users

Shackley and Wynne draw from MacKenzie’s certainty trough to explain
the distribution of uncertainty around GCMs. They credit modelers with
being more aware of their own models’ uncertainties compared to users,
and as inclined to freely discuss these uncertainties, ‘at least among
themselves’ (Shackley & Wynne, 1996). Shackley and Wynne suggest that
awareness of flaws, limitations, and uncertainties associated with GCMs
and their output diminishes as these technologies travel from the produc-
tion site to other areas of science and society where they are used.
Scientists (‘impacters’) who use GCM output as input in other models that
simulate socioeconomic and environmental impacts of GCMs’ projections
of future climate change serve as a case in point. Shackley and Wynne
describe the impacters in terms of MacKenzie’s certainty trough, suggest-
ing that their location further from the site of GCM construction renders
them less aware than modelers of the uncertainties associated with the
output.

Shackley and Wynne’s representation of the distribution of uncertainty
resonates with the perspective of model developers. In interviews and
conversations during my ethnographic research, modelers typically identi-
fied the problem of users’ misuse of their model output, suggesting that the
latter interpret the results too uncritically. Model developers profess that
they, as one of them put it, take the models ‘seriously but not literally’
(Somerville, 1996). Some among them even publicly criticize the most
complex modeling efforts. For instance, veteran US-based climate modeler
Syukuro Manabe told The New York Times that the models have ‘gone too
far’ and that ‘[p]eople are mixing up qualitative realism with quantitative
realism’ (Revkin, 2001). His assertion supports the claim that modelers are
intimately aware of the limitations of the models they themselves help
produce, but leaves ambiguous exactly who the ‘people’ are to whom he
refers: do they include climate modelers or only users – and which types of
users, with what kinds of relationship to model development?

GCM developers’ discourses support Shackley and Wynne’s analysis of
the distribution of certainty. In what follows, however, I identify limitations
in the applicability of the certainty trough and the trope of distance when
applied to simulation technology.

Several important dimensions of climate modeling complicate the
applicability of the certainty trough in particular, and the trope of distance
in general. First, model developers typically are also model users. Because
of the complexity of the models and of the phenomena they seek to
represent, GCM model developers build only parts of a model, integrating
sub-models and representational schemes (‘parameters’) developed by
other modeling groups. Even scientists (‘model users’) who are not prima-
rily model developers typically modify the models they have obtained from
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elsewhere. Moreover, much research in the atmospheric sciences today
consists of modifying a subset of variables in models developed elsewhere.
This complicates clear-cut distinctions between users and producers of
models.

Second, the difficulty with distinguishing developers from users also
complicates clear identification of the exact site of production; any com-
plex GCM involves multiple sites of production. Any single model developer
acts at a distance from at least some of the multiple sites in which models
and their components are developed.

Third, increased specialization has reduced the amount of time model
developers have to study the atmosphere by means of empirical data.
Model accuracy is gauged by checking models against empirical knowledge
of how the real atmosphere and larger Earth system behaves. For this
reason, some empiricists are perhaps in the best position to identify some
model inaccuracies. These empiricists may also be described as users and
even, in some respects, as alienated from the GCMs.

Fourth, climate modelers’ psychological and social investments in
models and the social worlds of which they are a part can at times reduce
their critical distance from their own creations. Modelers sometimes iden-
tify with their own models and become invested in their projections, which
in turn can reduce sensitivity to their inaccuracy. Such personal and
professional investments are not unique to the field of modeling.

Because of the above factors, model producers are not always willing
or able to recognize weaknesses in their own models, contrary to what is
suggested by the certainty trough and by analyses of climate models
drawing on that framework. Below, I argue that some users – the empiri-
cists who help validate the models – may be better positioned to identify
inaccuracies than are model developers.

Multiple Sites of Production; Integration of Model Development and Model
Use

The certainty trough best describes innovations with unitary functions and
unitary sites of production. It applies poorly to GCMs because they are are
not carried out at a singular site and because GCM creators are also
commonly model users.

In the first decades of climate modeling (from the 1960s until the
1980s), individual model developers constructed their models from
scratch. Today, no scientist single-handedly develops a complex GCM
model from the bottom up. In any given modeling institution, there is
typically a division of labor. For instance, a coupled ocean–atmosphere
model typically involves at least three groups of scientists: one group of
scientists focuses on the development of an atmospheric model, another
group develops an ocean model, and a third group couples the two
together. Moreover, developers of each of the sub-models often build upon
and integrate elements from other sub-models (for example, convection
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schemes) developed by other groups. As a result, no single person deeply
knows, or is ‘close to’, all aspects of a given GCM.

Modelers’ empirical knowledge of the physical atmosphere is limited
by the fact that they have to devote the vast majority of their time to
studying their models rather than independent data sets and actual weather
phenomena. MacKenzie’s diagram is too simple conceptually to account
for the fact that complex GCMs involve a multiplicity of production sites
and that model developers also are model users. Especially in the context
of ‘big science’ (Galison & Hevly, 1992; Gibbons et al., 1994), actors are
not easily captured by singular and unchanging labels (‘knowledge pro-
ducers’, ‘users’, ‘alienated’) or characteristics (as knowledgeable, under-
critical, or over-critical). Since producer/users vary in their familiarity with
different parts of the same overall model, no single person intimately knows all
dimensions of any given GCM, or the associated uncertainties. In other
words, the overall distribution of certainty varies depending on the sub-model
or issue in focus. Moreover, as I discuss in the sections that follow, there
may be variation in the distribution of certainty through time: the same
person may think differently of the same technology at different moments
in time.

Knowledge Producers – Are They the Most Reliable Evaluators of Their Own
Technology?

Even disregarding the fact that model developers often are users as well
and work at some distance from a given model’s multiple sites of produc-
tion, the certainty trough does not account for the possibility that knowl-
edge producers may not be the most reliable evaluators of their own work.
MacKenzie (1990: 366) indicates some awareness of this when he ac-
knowledges that knowledge producers ‘certainly [are] not critics’ of their
own technology.

However, more subtle indications of knowledge producers’ limitations
may be overshadowed by MacKenzie’s description of them as being
intimately aware of the shortcomings of the products of their own labor.
Shackley and Wynne reinforce this view when they draw upon
MacKenzie’s certainty trough to discuss impacters’ less critical under-
standing of the GCMs, while suggesting that modelers openly discuss their
models’ shortcomings among themselves, and also when proposing that
modelers’ tendency to downplay uncertainty is a function of strategic
choice.

According to Shackley and Wynne, modelers sometimes deliberately
present their models in ways that suggest and encourage exaggerated faith
in their accuracy. The authors identify a duality in climate modelers’
discourse, observing that they shift between strong claims to scientific
authority (models as ‘truth machines’) and more modest claims about
models as aids to thinking about the world (models as ‘heuristics’) (Shack-
ley & Wynne, 1995, 1996). Though modelers lack a conceptual basis for
knowing whether the long-term climate is predictable, their discourse often
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moves from describing long-term global climate predictions as being
possible in principle, but presently unrealized and uncertain, to suggesting
that their models are in fact predictive. My interviews documented this
tendency with testimony from modelers themselves, confirming my own
observations.

Such oscillation may signal a need for a more radical reconceptualiza-
tion, but Shackley and Wynne’s distinction between how modelers speak
among themselves and how they speak to external audiences preserves the
certainty trough, as does their portrayal of modelers’ shifting representa-
tions as a function of strategic choice. They suggest that modelers – keen to
preserve the authority of their models – deliberately present and encourage
interpretations of models as ‘truth machines’ when speaking to external
audiences.

Shackley and Wynne thus identify an important aspect of modelers’
public communications. Like scientists in other fields, modelers might
‘oversell’ their products (as acknowledged in quotes presented below),
because of funding considerations. In a highly competitive funding envi-
ronment they have an interest in presenting the models in a positive light.

The centrality of climate models in politics can also shape how
modelers and others who promote concern about climate change present
them. GCMs figure centrally in heated political controversies about the
reality of climate change, the impact of human activities, and competing
policy options. In this context, caveats, qualifications, and other acknowl-
edgements of model limitations can become fodder for the anti-
environmental movement (Gelbspan, 1995, 1997; Helvarg, 1994; Lahsen,
1998b, 2005). Media-propelled political campaigns have erupted regularly
since the early 1990s, often with help from public relations companies,
politically conservative think tanks, and industry groups with interests in
continued high-level dependence on fossil fuels. These organized oppo-
nents attack the scientific evidence of human-induced climate change –
and hence climate models – to undermine policy measures designed to
prevent or mitigate the problem (Lahsen, 1998b).

In such a charged political context, modelers learn to exercise care in
how they present their models in public forums. The need for such care is
sometimes impressed explicitly upon them by scientists who have experi-
ence in national and international climate politics. Speaking to a full room
of NCAR scientists in 1994, a prominent scientist and frequent govern-
mental advisor on global change warned an audience mostly made up of
atmospheric scientists to be cautious about public expressions of reserva-
tions about the models. ‘Choose carefully your adjectives to describe the
models’, he said, ‘Confidence or lack of confidence in the models is the
deciding factor in whether or not there will be policy response on behalf of
climate change.’ While such explicit and public references to the political
impact of the science are rare (I only encountered this one instance during
my fieldwork), a similar lesson is communicated in more informal and
subtle ways. It is also impressed on many who witness fellow atmospheric
scientists being subjected to what they perceive as unfair attacks in
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media-driven public relations campaigns, such as the case of the Lawrence
Livermore National Laboratory (Livermore, CA) modeler Benjamin
Santer, in the controversy over the 1995 Intergovernmental Panel on
Climate Change (IPCC) report (Lahsen, 1998b).

It is thus correct to distinguish, as Shackley and Wynne do, between
how modelers speak among themselves and how they speak to ‘external
audiences’. Climate modelers and advisory scientists use strong claims –
invoking models as ‘truth machines’ and downplaying uncertainty – in
communications directed ‘outside’ of the modeling community, and such
discourse does not necessarily reflect their more private discussions.

But is it accurate to suggest, as MacKenzie, Shackley, and Wynne
appear to do, that the highest level of objectivity about a given technology
is to be found among those who produced it? Shackley & Wynne (1996)
write that ‘at least among themselves’, model producers typically acknowl-
edge many uncertainties and indeterminacies in their models. Knowing
exactly how modelers speak among themselves is complicated by an
‘outsider’s’ difficulty to directly observe unmediated, informal commu-
nication among modelers. However, my participant observation and
interview data suggest that model producers are not always inclined,
nor perhaps able, to recognize uncertainties and limitations with their
own models.

With its trope of distance, the certainty trough may inadvertently
reinforce – and perhaps draw persuasive power from – a common, ide-
alized construct of scientists as autonomous knowers of truth. Shackley
and Wynne use comparative and qualifying terms such as ‘likely’, ‘more’
(for example, ‘more aware’) and ‘quite’ (‘modelers are quite prepared to
discuss model deficiencies’ [1995: 118]), ‘typically’ (‘Typically, the pro-
ducers of knowledge acknowledge its many uncertainties . . . ’ [1996:
277]), ‘may’ (‘so practitioners may attribute greater certainty to knowledge
from another specialty than the practitioners in the first specialty’ [1995:
114]). Nevertheless, the trope of distance embedded in their analysis
suggests that, at sites where models are developed, people involved in their
production know the models’ limitations in a broadly consistent and
reliable way, even though the latter may be hidden or ignored when the
models ‘travel’ out into the world.

Yet, as discussed earlier, GCMs are developed and modified at a
multiplicity of sites dispersed in time and space; they are in fact composites
of multiple production processes. As a result, any given part of a larger
GCM is transparent only to some of the persons who helped develop it.
No single person has deep knowledge of all of the subcomponents and
assumptions that make up a given GCM. To function properly, it would
seem that the certainty trough should be applied not to a single overall
GCM, but to each of the innumerable subcomponents that comprise it.

Similar to Shackley and Wynne’s portrayal of modelers as being able to
identify and discuss model weaknesses among themselves, Deborah
Dowling’s (1999) construct of the ‘competent professional’ aguably serves
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to preserve an idealized image of how scientists use and relate to simula-
tions. On the basis of interviews with scientists in a variety of fields,
Dowling describes how the ‘competent professional’ relates to the simula-
tion technology they develop and use: they have a ‘clear, analytic grasp’ (p.
266) of the mathematics built into the program; they ‘get into the code’
and ‘know the strengths, the approximations, the difficult points, and the
pits you can fall into’ (ibid.). In the words of a pharmaceutical chemist
quoted by Dowling, responsible users try to ‘break down that sense that,
because this number came out on the printed form, it has got to be right’
(Dowling, 1999: 266). Dowling does not discuss the possibility that
competent scientists at times may fail to live up to this standard. Her
account of modelers’ relation to their own models recalls Robert
Merton’s norms of science (Merton, 1973 [1942]), which have been
criticized as ideals serving an ideology that promotes scientists’ self-interest
(Mulkay, 1976).

MacKenzie may also verge on idealizing knowledge producers in his
contrast between them, on the one hand, and users and critics on the
other. Users’ and critics’ credibility is undermined in contrast to that of
knowledge producers. In the certainty trough diagram, users are presented
as under-critical and critics as over-critical, in contrast to producers, who
have detailed understanding of the technology’s strengths and weaknesses.
In this framework, which valorizes closeness to the site of knowledge
production, the critics’ relatively greater distance from the site of knowl-
edge production also weakens their credibility. MacKenzie portrays ‘users’
as less knowledgeable than producers, and lumps them with persons who
uncritically believe the most idealized representations of the models (those
who simply ‘believe the brochures’).

MacKenzie notes that users sometimes consider knowledge producers
to be ‘liars’ and demand that their results be subjected to elaborate and
expensive independent testing (MacKenzie, 1990: 373). This suggests that
at least some users maintain critical distance from the technology in
question, and that a great deal of heterogeneity is lost when such users are
lumped together with others who are uncritically committed to the techno-
logical program. The possibility of critical distance on the part of (some)
users is not well reflected in the certainty trough diagram. In contrast to
the critics’ ‘alienation’ from the technology in question, and their ‘commit-
ment’ to alternative technology, users are assumed to be predisposed
to accept the technology, because of their ‘loyalty’ to the program.
MacKenzie appears to imply that their judgment is based relatively more
on external interests and possibly emotional factors, as opposed to in-
timate, technical, and objective understanding. MacKenzie’s description
would seem to imply that knowledge producers, by contrast, are not
similarly swayed by external and subjective factors.

By contrast, my case study indicates the extent to which the certainty
trough overlooks variation over time in knowledge producers’ willingness
and ability to recognize inaccuracies in their own models. In what follows, I
present interview data suggesting that modelers do not necessarily like to
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discuss their models’ weaknesses even among themselves, and that in some
respects they may be less inclined and less able to identify them than are
some other scientists. I also present evidence of greater heterogeneity in
the distribution of certainty within the categories of ‘knowledge producers’
and ‘users’ than the certainty trough assumes.

The Power of Simulations

During modelers’ presentations to fellow atmospheric scientists that I
attended during my years at NCAR, I regularly saw confusion arise in the
audience because it was unclear whether overhead charts and figures were
based on observations or simulations. In one such presentation about the
role of clouds in the climate system, observational data were compared
against model simulations. I grew confused as to which charts represented
empirical data and which represented simulations. I realized that I was not
alone in my confusion when scientists in the audience stopped the pre-
senter to ask for clarification as to whether the overhead figures were based
on observations or model extrapolations. The presenter specified that the
figures were based on models, and then continued his presentation.

Sometimes such confusion resulted from imprecise communication on
the part of modelers. It is understandable that modelers easily forget to
preface each of their representations with the words ‘simulated’ or
‘modeled’ (‘the simulated ocean’, ‘the modeled ocean–atmosphere dynamic’,
and so on). At other times, modelers may have been strategic when
alternating between speaking of their models as heuristics and presenting
them as ‘truth machines’. However, the oscillation also may reflect how
some modelers think and feel about their models at particular moments
when they fail to maintain sufficient critical distance. In interviews, mod-
elers indicated that they have to be continually mindful to maintain critical
distance from their own models. For example:

Interviewer: Do modelers come to think of their models as reality?

Modeler A: Yes! Yes. You have to constantly be careful about that [laughs].

He described how it happens that modelers can come to forget known and
potential errors:

You spend a lot of time working on something, and you are really trying to
do the best job you can of simulating what happens in the real world. It is
easy to get caught up in it; you start to believe that what happens in your
model must be what happens in the real world. And often that is not true . . .
The danger is that you begin to lose some objectivity on the response of the
model [and] begin to believe that the model really works like the real world . . .
then you begin to take too seriously how it responds to a change in forcing.
Going back to trace gases, CO2 models – or an ozone change in the
stratosphere: if you really believe your model is so wonderful, then the
danger is that it’s very tempting to believe that the way it responds to a
change in forcing must be right. [Emphasis added]

This modeler articulates that the persuasive power of the simulations can
affect the very process of creating them: modelers are at times tempted to
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‘get caught up in’ their own creations and to ‘start to believe’ them, to the
point of losing awareness about potential inaccuracies. Erroneous assump-
tions and questionable interpretations of model accuracy can, in turn, be
sustained by the difficulty of validating the models in the absence of
consistent and independent data sets.

Critical distance is also difficult to maintain when scientists spend the
vast majority of their time producing and studying simulations, rather than
less mediated empirical representations. Noting that he and fellow mod-
elers spend 90% of their time studying simulations rather than empirical
evidence, a modeler explained the difficulty of distinguishing a model from
nature:

Modeler B: Well, just in the words that you use. You start referring to your
simulated ocean as ‘the ocean’ – you know, ‘the ocean gets warm’, ‘the
ocean gets salty’. And you don’t really mean the ocean, you mean your
modeled ocean. Yeah! If you step away from your model you realize ‘this is just
my model’. But [because we spend 90% of our time studying our models]
there is a tendency to forget that just because your model says x, y, or z
doesn’t mean that that’s going to happen in the real world.

This modeler suggests that modelers may talk about their models in ways
they don’t really mean (‘you don’t really mean the ocean, you mean your
modeled ocean . . . ’). However, in the sentence that immediately follows,
he implies that modelers sometimes actually come to think about their
models as truth-machines (they ‘forget to step away from their models to
realize that it is just a model’; they have a ‘tendency to forget’).

The following interview extract arguably reflects such an instance of
forgetting. This modeler had sought to model the effects of the possible
‘surprise’ event of a change in the ocean’s climate-maintaining thermoha-
line circulation. On the basis of his simulation he concluded that the widely
theorized change in the ocean’s circulation due to warmer global tem-
peratures is not likely to be catastrophic:

Modeler C: One of the surprises that people have been worrying about is
whether the thermohaline circulation of the oceans [the big pump that
could change the Gulf Stream] shuts off . . . . If the models are correct, the
effect even of something like that is not as catastrophic as what most
people think. You have to do something really nasty to [seriously perturb
the system] . . . The reality is, it really is an ocean thing, it is basically an
ocean phenomenon; it really doesn’t touch land very much.

Interviewer: But wouldn’t it change the Gulf Stream and therefore . . . ?

Modeler C: Yes, look right here [shows me the model output, which looks like a
map]. If the model is right. [Slight pause] I put that caveat in at the
beginning [laughs]. But right there is the picture.

Modeler C struggles to not speak of his model as a ‘truth machine’, but
lapses before catching himself when presented with a question. Though he
starts off indicating that the models could be wrong (‘if the models are
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correct’), he soon treats the model as a truth machine, referring to the
modeled phenomena as reliable predictions of future reality (‘The reality
is, it really is an ocean thing’). Catching himself, he then refers back to the
caveat, followed by a little laugh.

The following modeler suggests that the above tendencies are perva-
sive in the field of climate modeling:

Modeler D: There are many ways to use models, and some of them I don’t
approve of. [Pause] It is easy to get a bad name as a modeler, among both
theoreticians and observational people, by running experiments and see-
ing something in the model and publishing the result. And pretending to
believe what your model gives – or, even, really believing it! [small laugh] –
is the first major mistake. If you don’t keep the attitude that it’s just a
model, and that it’s not reality . . . I mean, mostly people that are involved in
this field really have that, they have the overtone that it is.

Interviewer: They do tend to think that their model is the reality?

Modeler D: Or even if they don’t think that, they tend to oversell it,
regardless.

Interviewer: And why do they oversell it?

Modeler D: Because people get wrapped up in what they have done. You
know, I spent years building this model and then I ran these experiments,
and the tendency is to think: ‘there must be something here’. And then they
start showing you all the wonderful things they have done . . . And you
have to be very careful about that.

Confirming Shackley and Wynne’s argument, modeler D suggests that
modelers sometimes ‘oversell’ their models, strategically associating them
with more certainty than is warranted. However, echoing others quoted
earlier, Modeler D also suggests that modelers sometimes lose critical
distance from their own models and come to think of them as reliable
representations of reality.

The increasingly realistic appearance of ever-more comprehensive
simulations may increase the temptation to think of them as ‘truth-
machines’. As Shackley et al. (1998) have noted, there is a tendency among
modelers to give greater credence to models the more comprehensive and
detailed they are, a tendency they identify as cultural in nature because of
a common trade-off between comprehensiveness and error range. As
GCMs incorporate ever more details – even things such as dust and
vegetation – the models increasingly appear like the real world, but the
addition of each variable increases the error range (Syukuro Manabe,
quoted in Revkin, 2001).

Some may resist this temptation better than others, and even the same
modeler may resist it at some moments better than at others. Modelers’
statements suggest that the level of certainty any given modeler attaches to
his or her model varies in time; they do not necessarily have a consistent,
‘healthy skepticism’. At the ‘inner core’ of knowledge production – among
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modelers at the individual and the group level – awareness of uncertainties
thus can wax and wane depending on the situation.

This confusion of simulations with real data within the atmospheric
sciences may be part of a more general phenomenon: similar conflation of
simulations with ‘observations’, ‘samples’, and ‘data’ has been identified in
studies of scientists in other fields of research (Dowling, 1999). Simulation
techniques may especially encourage such conflation, however. For exam-
ple, Stefan Helmreich’s ethnographic study of artificial life simulators
(1998) revealed the powerful effect of simulations on the imagination of
their creators and users. Similar to global climate simulations, visual
simulations of artificial life afford a ‘god’s eye view’ that contributes to the
illusion that they are empirical results. These simulators conflate their
artificial worlds with real life, Helmreich suggests: the researchers recog-
nize that the life they simulate is not carbon-based, but they nevertheless
consider it to be an alternative, electron-based kind of life, insisting that
their admittedly artificial worlds are real life-forms in the sense that they
are composed of real matter and energy. It would seem reasonable to
assume that attempts to simulate the real world only intensify such
conflation.

Downplaying/Ignoring Model Uncertainties and Limitations among Modelers:
The Role of Emotional Attachment and Social Worlds.

Modelers’ professional and emotional investment in their own models
reduces their inclination and ability to maintain critical awareness about
the uncertainties and inaccuracies of their own simulations. Shackley and
Wynne suggest that modelers talk freely about their models’ shortcomings
among themselves. However, the following researcher identified a general
reluctance on the part of modelers to discuss their models’ weaknesses,
even among themselves:

Modeler E: What I try to do [when presenting my model results to other
modelers] . . . is that I say ‘this is what is wrong in my model, and I think
this is the same in all models, and I think it is because of the way we’re
resolving the equations, that we have these systematic problems’. And it
often gets you in trouble with the other people doing the modeling. But it rarely
gets you in trouble with people who are interested in the real world. They are
much more receptive to that, typically, than they are if you say ‘here, this
is my result, doesn’t this look like the real world?’ And ‘this looks like the
real world, and everything is wonderful’.

Interviewer: Why do you get in trouble with modelers with that?

Modeler E: Because . . . when I present it, I say ‘this model is at least as
good as everyone else’s, and these problems are there and they are in
everybody else’s models too.’ They often don’t like that, even if I am not
singling out a particular model, which I have done on occasion [smiles] –
not necessarily as being worse than mine but as having the same flaws.
Not when they are trying to sell some point of view and I go in there
saying ‘Hey, this is where I go wrong [in my model], and you are doing the
same thing! And you can’t be doing any better than that because I know
that this isn’t a coding error problem’ [laughs].

Lahsen: Seductive Simulations? 911



This modeler confirmed statements about modelers I encountered in other
contexts, who also identified a disinclination on the part of modelers to
highlight, discuss, and sometimes even perceive problems in their model
output.

In a paper consisting of an imaginary dialogue about global environ-
mental science and policy between two sirens of Greek mythology,
Shackley & Darier (1998) suggest that when modelers discursively asso-
ciate their models with unwarranted or unproven levels of accuracy, this
may reflect how they also think of their models. In response to the first
siren’s suggestion that such discourses are strategic in nature and intended
to seduce outside audiences, the second siren argues that modelers have
‘(self)seducing powers’. She notes that modelers ‘trust’ their models, that
they have some degree of ‘genuine confidence, maybe over-confidence’ in
their quantitative projections. She comments: ‘It is not simply “calculating
seduction” but a sincere act of faith!’

These claims about modelers’ relation to their own creations remain at
the level of speculation in Shackley and Darier’s text. They are backed up
by a reference to the paper by Risbey et al. (1996) on integrated assess-
ment (IA) modeling. Risbey et al. do not discuss modelers’ relation to the
models in detail but note that IA modelers do not always ‘bear in mind’ the
distinction between models as heuristics versus truth machines, and that
they can fail to ‘maintain familiarity’ with the limitations of their models
(1996: 331). Despite such limited documentation, it would seem that these
analysts of model communities have witnessed dynamics of the sort
described here.

Modeler E, in the excerpt quoted above, distinguished some modelers
from ‘people who are interested in the real world’. He thus implied that
modelers sometimes become so involved in their models that they lose
sight of, or interest in, the real world, ignoring the importance of knowing
how the models diverge from it.

Recognition of this tendency may be reflected in modelers’ jokes
among themselves. For example, one group joked about a ‘dream button’
allowing them – Star Wars style – to blow up a satellite when its data did
not support their model output. They then jokingly discussed a second best
option of inserting their model’s output straight into the satellite data
output.

These psychological and social dimensions of modelers’ investment in
the accuracy of their models, and the seductive power of simulations in
general, are not accounted for by the certainty trough, or, more generally,
by the trope of distance. The evidence from the present study suggests a
need to revise the certainty trough to indicate greater certainty among
climate modelers. Better yet, assuming it could be represented visually, the
curve indicating knowledge producers’ awareness of uncertainty ought to
vary depending on context, as their acknowledgement of uncertainty and
inaccuracy waxes and wanes. As I suggest in what follows, levels of
certainty among users also vary: some users are sometimes more aware than
producers are of model inaccuracies.
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General Circulation Model Users and Critics

Shackley & Wynne (1995: 114) suggest that ‘practitioners may attribute
greater certainty to knowledge from another speciality than the practi-
tioners in the first speciality would attribute to it themselves.’ This is
undoubtedly an important dynamic in the distribution of certainty, but it
may be the case that practitioners in neighboring fields – or who are in the
same field but have different interests and rely on different methods –
sometimes see limitations in the models that the modelers themselves can
not or will not see.

The complexity of GCMs undermines modelers’ ability to gauge the
validity of their own models. Computer models have grown so complex
and scientists so specialized that modelers spend little time checking their
own models against available observations. This weakens their ability to
identify where their models fail to accurately represent empirical evidence.
A physicist interviewed in a study on computers and identities confirmed
that scientists today can come to know more about computer models than
about actual biogeophysical dynamics that their computers represent:

My students know more and more about computer reality, but less and
less about the real world. And they no longer even really know about
computer reality, because the simulations have become so complex that
people don’t build them anymore. They just buy them and can’t get
beneath the surface. If the assumptions behind some simulation were
flawed, my students wouldn’t even know where or how to look for the
problem. So I am afraid that where we are going here is towards Physics:
The Movie. (Turkle, 1984: 66)4

Because modelers’ limited empirical knowledge of the atmospheric system
reduces their ability to identify shortcomings in their models, more empiri-
cally inclined scientists are brought in to help evaluate the models’ per-
formance. Some of these empirical scientists, who refer to themselves as
‘close’ or ‘feedback’ users, are better able than the knowledge-producers to
judge a given GCM’s accuracy, at least as far as identifying gaps between
the simulations and observations is concerned.

Modeler E noted that theoreticians and empiricists often criticize
modelers for claiming unwarranted levels of accuracy, to the point of
conflating their models with reality. My fieldwork revealed that such
criticisms circulate widely among atmospheric scientists. Sometimes
such criticisms portray modelers as motivated by a need to secure funding
for their research, but they also suggest that modelers have genuine
difficulty with gaining critical distance from their models’ strengths and
weaknesses. Moreover, they criticize modelers for lacking empirical under-
standing of how the atmosphere works (‘Modelers don’t know anything
about the atmosphere’).

Presentations at NCAR provide a forum for witnessing the tensions
that exist between modelers and empiricists. Following modelers’ pre-
sentations of their work, empiricists frequently feel a need to emphasize the
difference between model output and observational data. In interviews,
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empiricists often voice criticisms along the lines of this one expressed by a
meteorologist: ‘I joke about modelers: they have a charming and naive faith
in their models.’

Such comments were especially common among empirical meteorolo-
gists trained in synoptic weather forecasting techniques, who conduct
empirical research on a regional or local scale. They have not been
centrally involved in the process of model development and validation, and
thus may fall within MacKenzie’s category of the ‘alienated’. These empiri-
cists trained in synoptic methods are particularly inclined to criticize
GCMs. Such criticism may have to do with the fact that there is consider-
able resentment among various subgroups of atmospheric scientists about
the increased use of simulation techniques, and such resentment may be
echoed in other sciences in which simulations are ascendant (Lahsen,
1998a). Moreover, models and simulations are ‘misfits that do not sit
comfortably in established categories’ (Sismondo, 1999: 253). They exist
in an ambiguous space between theory and experiment and occupy an
ambiguous social position in science as well.

Synoptically trained empirical meteorologists have particular motiva-
tion to resent models. Their methods and lines of work were in important
part replaced by global numerical models. The environmental concern
about human-induced climate change, and the associated politics, also
favored the GCMs and those working with them. The applied aspect of
these meteorologists’ work was thus being taken over by numerical weather
forecasting, pushing them in the direction of basic research. Their com-
ments should be understood as potentially interested instances of
boundary-work (Gieryn, 1995) whereby they, as a competing scientific
group, seek to promote the authority of their own lines of research in
competition with GCMs. This placed them at a competitive disadvantage
when national funding priorities changed in favor of research with obvious
social benefits, whereas GCM modeling seemed relevant to predicting
future manifestations of human-induced climate change.

The emergence of numerical techniques also represented a loss in
epistemic status as well as funding for the empirical meteorologists. So-
called ‘objective’ numerical methods resulted in the demotion and relabel-
ing of their more qualitative approach as ‘subjective’, an unattractive label
in the context of a cultural preference for ‘hard’ science within the
scientific community. As a meteorologist jokingly said to me when express-
ing resentment at the label: ‘so I change it. I refer to [synoptic analyses]
saying: “these are the intelligent analyses, and those [GCM studies] are
artificially intelligent.”’

Compared with modelers, such empirical research meteorologists with
background in weather forecasting are part of a different social world;
these two groups partake in different, albeit overlapping, social networks
defined by different scientific orientations and cultural norms. The empiri-
cists are less committed to GCMs or to the theory of human-induced
climate change.5 They manifest skepticism about numerical forecasts in
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general, especially beyond a period of 10 days or so. These attitudes are
part of a common culture among weather forecasters, including scientists
who may only have done forecasting early in their careers. This culture also
involves humility about the accuracy of forecasts of atmospheric condi-
tions, which they trace to experiences of regularly seeing synoptic and
numerical weather forecasts proven wrong. In my judgment, many of these
meteorologists are rightly classified as ‘alienated’ with regard to GCMs.

Nevertheless, they may have important insight into model inaccu-
racies, both for technical reasons (a function of their expertise) and for
social and psychological reasons (a function of their lesser investment in
the GCM enterprise). As suggested by Modeler D above, non-modelers
may at times be better able to keep uncertainties in mind than the
modelers themselves. The fact that some of them are engaged in the pro-
cess of validating GCMs also indicates that the empiricists in some
respects are in a privileged position to discuss inaccuracies; sometimes they
become quite knowledgeable about GCMs. Those who help with validat-
ing GCMs are not necessarily alienated from the technology, and may have
a distinct investment in the models. However, at least some of these users
interact closely with empirical meteorologists trained in weather forecast-
ing, and in my judgment they appear to be influenced by the forecasters’
‘alienated’ attitude.

If some of these empirical meteorologists and self-identified users are
properly classified as alienated, this also confounds the axis of distance in
the certainty trough diagram. Some empirical research meteorologists are
alienated and committed to alternative technology (for example, empirical
‘synoptic’ methods), but they are not necessarily more distant from the site
of knowledge production than are many users.

Moreover, the attitude of the ‘alienated’ towards the models may be
ambivalent rather than consistently critical. They criticize GCMs, and
resent the way institutional funding has been drawn away from synoptic
approaches.6 At the time of my fieldwork, such atmospheric empiricists
complained about insufficient funding even for validation of the GCMs
with empirical data, a complaint supported by analysts (Risbey et al.,
1996). However, I found that even the meteorologists whose empirical
research competed with the numerical models were, overall, inclined to
acknowledge the value of GCMs. They considered GCM modeling as an
important contribution to science. This underscores once again the weak-
ness of the certainty trough in terms of ambivalence and complexity in the
level of commitment to a given technology.

Compared with modelers, the empiricists may at times be in a better
position to identify model shortcomings because of their deeper knowledge
of empirical processes simulated by the GCMs, and because of their lower
psychological and professional investment in the models. This is not to
suggest that empiricists are invariably better identifiers of truth. Indeed,
their expertise, methodologies, and commitments are also limited. Rather,
the point is that scientists tend to become emotionally involved with their
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own creations. Simulation of complex, uncertain, and inaccessible phe-
nomena leaves considerable room for emotional involvement to undermine
the ability to recognize weaknesses and uncertainties.

Empiricists complain that model developers often freeze others out
and tend to be resistant to critical input. At least at the time of my
fieldwork, close users and potential close users at NCAR (mostly synop-
tically trained meteorologists who would like to have a chance to validate
the models) complained that modelers had a ‘fortress mentality’. In the
words of one such user I interviewed, the model developers had ‘built
themselves into a shell into which external ideas do not enter’. His
criticism suggests that users who were more removed from the sites of
GCM development sometimes have knowledge of model limitations that
modelers themselves are unwilling, and perhaps unable, to countenance. A
model developer acknowledged this tendency and explained it as follows:

Modeler F: There will always be a tension there. Look at it this way: I spent
ten years building a model and then somebody will come in and say ‘well,
that’s wrong and that’s wrong and that’s wrong’. Well, fine! And then they
say, ‘well, fix it!’ [And my response to them is:] ‘you fix it! [laughs] I mean,
if I knew how to fix it, I would have done it right in the first place!!!
[Laughs] And what is more, I don’t like you anymore – all you do is you
come in and tell me what is wrong with my model! Go away!’ [laughter]. I
mean, this is the field.

Modeler F’s acknowledgement of inaccuracies in his model is implied in
his comment that he would have improved the model if he knew how.
Nevertheless, the interview excerpt is another indication of modelers’
emotional investment in their models. Modeler F acknowledges a common
tendency on the part of modelers to distance themselves from criticism and
react personally to criticisms (‘I don’t like you anymore’; ‘go away!’). One
might dismiss the seriousness of this account, because of the joking
manner in which Modeler F expresses it. Yet anthropologists identify
humor as a common marker of cultural sensitivity and charged emotions.
In this context, it is interesting to note other instances (such as Modelers A
and C, above) in which modelers laughed when discussing their relation-
ship to their own models, particularly the temptation to perceive them as
truth-machines.

Aside from the stakes involved with environmental policy and with
modeling groups’ need to sustain funding for their work, it is important to
recognize model developers’ stake in their own creations. Building a good,
complex GCM is a daunting task that requires years and even decades of
dedication. As a result, model developers’ entire professional careers are on
the line; the performance of their model will reflect on their careers as a
whole. It is thus understandable that they also are sensitive to criticisms
and at times may tend to give their models the benefit of the doubt. During
my fieldwork, I witnessed prolonged and acrimonious fights in which
model developers defended their models and engaged in serious conflicts
with colleagues within the larger modeling group who rejected them in
favor of other models they deemed more accurate.
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The point to stress here is that modelers’ desire to produce accurate
simulations sometimes weakens their willingness and ability to identify
weaknesses and uncertainties. Aside from the general phenomenon in
science of competition and conflict, the excerpts presented above reveal
emotional aspects of modeling not captured by the certainty trough.
Modelers’ careers and identities become intertwined with, and partly
dependent on, the quality of their models, to the point that they sometimes
may be tempted to deny it when their models diverge from reality.

Revising the Certainty Trough

The certainty trough may account for the distribution of certainty at a
broad, general scale. Generally speaking, atmospheric scientists are better
judges than, for example policy-makers, of the accuracy of model output.
However, the distribution of certainty about GCM output within the
atmospheric sciences reveals complications in the categories of ‘knowledge
producers’ and ‘users’, and the privileged vantage point from which model
accuracies may be gauged proves to be elusive.

Model developers’ knowledge of their models’ inaccuracies is en-
hanced by their participation in the construction process. However, devel-
opers are not deeply knowledgeable about all dimensions of their models
because of their complex, coupled nature. Similarly, the empirical training
of some atmospheric scientists – scientists who may be described as users –
limits their ability to gauge GCM accuracies in some respects while
enhancing their ability to do so in other respects; and, generally, they may
have better basis than the less empirically oriented modelers for evaluating
the accuracy of at least some aspects of the models.

Professional and emotional investment adds another layer of complex-
ity. Model developers have a professional stake in the credibility of the
models to which they devote a large part of their careers. These scientists
are likely to give their models the benefit of doubt when confronted with
some areas of uncertainty. By contrast, some of the empirically trained
atmospheric scientists, who are less invested in the success of the models,
may be less inclined to give them the benefit of the doubt, maintaining
more critical understanding of their accuracy.

The distinction between modelers’ public and non-public representa-
tions of models reflects modelers’ investment in the perceived accuracy of
their models. The distinction implies that in their interaction with external
audiences, modelers at times downplay model inaccuracies because they
are interested in securing their authority. I argue that this framework needs
to be stretched further to account for limitations in modelers’ ability to
identify such inaccuracies, limitations that may arise from a combination of
psychological, social, and political factors. Attitudes towards technology
are affected by these factors, which introduce (lack of) distance of a
different kind than what the certainty trough highlights. The notion of
‘alienation’ in MacKenzie’s framework may hint at the impact of emotional
commitments on perceptions of accuracy, but such an interpretation is
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somewhat undercut by the Marxist conception (alienation from the means
of production) implied by MacKenzie’s usage.

In light of the above, one might revise the certainty trough diagram as
shown in Figure 2.

However, even the revised diagram fails to capture the complexity of
the dynamics involved. To account for the complexities discussed in this
paper, the certainty trough diagram would have to do the following:

• recognize that any given model involves multiplicity sites of
production;

• represent greater heterogeneity within the general categories of knowl-
edge producers and users;

• reflect the shifting roles of individual actors involved: model developers
are also model users in some ways, users contribute to the production
of the technology;

• show that users in some instances may be closely interlinked with
‘alienated’ groups and share in some of those groups’ criticisms (for
example, share some resentment toward funding patterns that privi-
lege GCM approaches over more empirical lines of research);

• acknowledge that some users may be better positioned to identify
some model inaccuracies than producers of the models in question;

• show oscillation through time in the level of uncertainty and skepti-
cism acknowledged by producers and users of models.

A single, visual diagram seems unable adequately to represent the complex
ways in which political, professional, and psychological investment in the
models, as well as variations in time and context, affect awareness of
inaccuracies and uncertainties. Adequate representation of the complexity

FIGURE 2
Revised certainty trough. The dashed line (------) indicates uncertainty levels not
accounted for in MacKenzie (1990).
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would require a more dynamic model capable of showing multiple dimen-
sions and variations through time. It would also have to account for the
different combinations of socio-cultural influence – the different social
worlds – that shape different actors’ relationships to the technology.
Modelers and empirical atmospheric scientists are part of different, albeit
partly overlapping, social worlds involving different inclinations to question
the models’ scientific and political value as well as their accuracy. As I have
suggested, these actors relate differently to the climate models for reasons
not captured by the certainty trough, including reasons unrelated to
distance. Other, more obviously social and psychological factors come into
play, complicating the meaning of ‘distance’ and ‘proximity’. When we take
these other factors into account, it appears that distance lends enchant-
ment, but proximity lends enchantment as well.

Notes
This research was made possible thanks to financial support from the National Science
Foundation’s Ethics and Values in Science Program, the Environmental Protection Agency’s
‘STAR’ Fellowship Program, and a Postdoctoral Fellowship in the National Center for
Advanced Research’s Advanced Study Program. I want to thank the atmospheric scientists
who were willing to talk with me and have me in their midst for the duration of this
research. Special thanks to Richard Somerville, Anji Seth, John Firor, and Norman Miller,
who also helped strengthen the technical accuracy of this paper. I am also grateful for
detailed, insightful comments provided by Sheila Jasanoff, Michael M.J. Fischer, Stephan
Helmreich, Roger Pielke Jr, Radford Byerly, Robert Frosch, two anonymous reviewers for
Social Studies of Science, and, last but not least, Social Studies of Science Collaborating Editor
Sergio Sismondo.

1. The cited works explicitly discuss and integrate MacKenzie’s certainty trough. More
general influence of MacKenzie’s work is reflected in the significant number of citations
it has received, especially in the field of science studies (see for instance the Web of
Science database, < www.isinet.com/products/citation/wos/ > ).

2. For simplicity, I will use the term ‘models’ and ‘climate models’ rather than specify in
each instance that I am referring to ‘GCM modeling’. It should be made clear, however,
that scientists of all disciplines and practices use models, and that a wide range of
models exists. For example, a mouse may serve as a ‘model’ in medical research.

3. Stephen D. Norton and Frederick Suppe (2001) criticize the analysis of Oreskes et al.
(1994) for singling out models for criticism, when such criticism applies to scientific
knowledge in general. They note that scientific claims never can be established with
absolute certainty and that Oreskes et al. operate with a criterion of certainty that is
‘epistemologically irrelevant to actual scientific knowledge acquisition’ (Norton & Suppe,
2001: 103). Norton and Suppe note that models are useful precisely because they
simplify the otherwise baffling complexity of the phenomena modeled. As atmospheric
scientist Kevin Trenberth has noted, ‘All models are of course wrong because, by design,
they depict a simplified view of the system being modeled’ (Trenberth, 1997).

4. This physicist thus also refers to the common practice of obtaining and using models
developed by others. As noted above, atmospheric scientists often modify models
obtained from elsewhere, complicating clear identification of users versus producers, as
well as the exact site of production.

5. I base this on my years of fieldwork among such meteorologists. This claim is also
supported by the proportionally large representation of synoptically trained
meteorologists among signatories of petitions designed to weaken policy action on behalf
of human-induced climate change. See for instance S. Fred Singer’s ‘Leipzig
Declaration’ (Olinger, 1996). See also < www.sepp.org/pressrel/meteorLD.html > .
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6. One veteran synoptic research meteorologist expressed his exasperation in a 1999 letter
to the Undersecretary of Commerce for Oceans and Atmosphere and Administration of
the National Oceanic and Atmospheric Administration (NOAA). Noting his significant
record in a particular area of weather forecasting, he criticized NOAA’s bias towards
numerical climate prediction methodology. He suggested that rival climate forecast
methodologies were being squashed to ‘prevent embarrassing comparisons’. In an
interview with me, he claimed to speak for many fellow colleagues trained in synoptic
methods, and my subsequent interviews among synopticians confirmed his claim.
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