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Summary

Models in science may be used for various purposes: organizing
data, synthesizing information, and making predictions. However,
the value of model predictions is undermined by their uncertainty,
which arises primarily from the fact that our models of complex
natural systems are always open. Models can never fully specify the
systems that they describe, and therefore their predictions are always
subject to uncertainties that we cannot fully specify. Moreover, the
attempt to make models capture the complexities of natural systems
leads to a paradox: the more we strive for realism by incorporating
as many as possible of the different processes and parameters that
we believe to be operating in the system, the more difficult it is for
us to know if our tests of the model are meaningful. A complex
model may be more realistic, yet, ironically, as we add more factors
to a model, the certainty of its predictions may decrease even as our
intuitive faith in the model increases. For this and other reasons,
model output should not be viewed as an accurate prediction of the
future state of the system. Short timeframe model output can and
should be used to evaluate models and suggest avenues for future
study. Model output can also generate “what if” scenarios that can
help to evaluate alternative courses of action (or inaction), including
worst-case and best-case outcomes. But scientists should eschew
long-range deterministic predictions, which are likely to be errone-
ous and may damage the credibility of the communities that gener-
ate them. -

The Role of Quantitative Models in Science

What is the purpose of models in science? This general question underlies the
specific theme of this volume: What should be the role of quantitative models
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in ecosystem science? Ultimately the purpose of modeling in science must be
congruent with the purpose of science itself: to gain understanding of the natu-
ral world. This means understanding both processes and products, the things in
the world and the ways in which they interact. Historically, scientists have
sought understanding for many reasons: to advance utilization of earth re-
sources, foster industrialization, improve instruments and techniques of war-
fare, prevent or treat disease, generate origins stories, reflect on the glory and
beneficence of the world’s creator, and satisfy human curiosity. None of these
goals has proved itself superior to any of the others; science has advanced under
all of these motivations.

Until the twentieth century, the word “model” in science typically referred to
a physical model—such as the seventeenth-century orreries built to illustrate
the motions of the planets. Physical models made abstract ideas concrete and
rendered complex systems visualizable, enabling scientists to think clearly and
creatively about complex systems. Models provided analogies: in the early
twentieth century, the orbital structure of the solar system provided a cogent
analogy for the orbital structure of the atom. Models also served as heuristic
devices, such as the nineteenth-century mechanical models that used springs
and coils to interrogate the mechanism of light transmission through the ether,
or the twentieth-century wooden models of sticks and balls used to explore pos-
sible arrangements of atoms within crystal structures. Perhaps most ambi-
tiously, physical models were used as arguments for the plausibility of pro-
posed causal agents, such as the nineteenth-century scale models of mountains,
in which various forms of compression were applied in hopes of simulating the
fold structures of mountain belts to demonstrate their origins in lateral compres-
sion of the earth.

In our time, the word “mode!” has come to refer primarily to a computer
model, typically a numerical simulation of a highly parameterized complex
system. The editors of this volume suggest that quantitative models in ecosys-
tem science have three main functions: synthesis and integration of data; guid-
ing observation and experiment; and predicting or forecasting the future. They
suggest that scientists are well aware of the value of models in integrating data
and generating predictions, but are less well informed about the heuristic value
of models in guiding observation and experiment. In their words,

Quantitative models provide a means to test our understanding of
ecosystems by allowing us to explore the interactions among ob-
servations, synthesis, and prediction. The utility of models for
synthesis and prediction is obvious. The role of quantitative mod-
els in informing and guiding observation and experimentation is
perhaps less often appreciated, but equally valuable. (Canham et
al. 2001)

There is, however, a generous literature on the heuristic value of models and
their use in guiding observation and experiments, particularly in the physical
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sciences, which need not be reiterated here (e.g., Cartwright 1983; Tsang 1991,
1992; Konikow 1992; Konikow and Bredehoeft 1992; Beven 1993, 2000, 2001,
1999; Oreskes et al. 1994, Rastetter 1996; Narisimhan 1998; Oreskes 1998;
Morgan and Morrison 1999). The focus of this essay is therefore on challenging
the “obvious”—that is, challenging the utility of models for prediction.

. To be sure, many scientists have built models that can be run forward in
time, generating model output that describes the future state of the model sys-
tem..Quantitative model output has also been put forward.as a basis for decision
rpakmg in socially contested issues such as global climate change and radioac-
tive waste disposal. But it is open to question whether such models generate
reliable information about the future, and therefore in what sense they could
reasonably inform public policy (Oreskes et al. 1994; Pilkey 1994; Shackley et
al. 1998; Evans 1999; Morgan 1999; Sarewitz and Pielke 2000, Sarewitz et al.
2000; Oreskes 2000a; Oreskes and Belitz 2001). Moreover, it is not even clear
that time-forward model output necessarily contributes to basic scientific un-
derstanding. If our goal is to understand the natural world, then using models to
predict the future does not necessarily aid that goal. If our goal is to contribute
usefully to society, using models to predict the future may not do that, either.

Why should we think that the role of models in prediction is obvious? Sim-
ply because people do something does not make its value obvious; humans do
many worthless and even damaging things. To answer the question of the utility
of models for prediction, it may help to step back and think about the role of
prediction in science in general. When we do so, we find that our conventional
understanding of prediction in science doesn’t work for quantitative models of
complex natural systems precisely because they are complex. The very factors
that lead us to modeling—the desire to integrate and synthesize large amounts
of c!ata in order to understand the interplay of various influences in a system—
mitigate against accurate quantitative prediction.

Moreover, successful prediction in science is much less common than most
of us think. It has generally been limited to short-duration, repetitive systems,
characterized by small numbers of measurable variables. Even then, success has
typically been achieved only after adjustments were made based on earlier
failed predictions. Predictive success in science, as in other areas of life, usually
ends up being a matter of learning from past mistakes.

Models Are Open Systems

The conventional understanding of scientific prediction is based on the hy-
pothetico-deductive model. Philosophers call it the deductive-nomological
model, to convey the idea that, for our predictions to be correct, they must de-
rive from stable scientific laws. Whatever one prefers to call it, this model as-
sumes that the principal task of science is to generate hypotheses, theories, or
laws and compare their logical consequences with experience and observations
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in the natural world. If our predicticus match the facts of the world, then we can
say that the hypothesis has been confirmed, and we can feel good about what
we have done so far. We are on the right track. If the observations and experi-
ences don’t match our predictions, then we say that the hypothesis has been
refuted and we need to go back and make some adjustments.

The problem with the hypothetico-deductive model, as many scientists and
philosophers have realized, is that it works reliably only if we are dealing with
closed systems. The hypothetico-deductive model is a logical structure of the
form “p > g¢,” where our proposition, p, does in fact entail g, if and only if p >
q is a complete description of the system. That is, if and only if the system is
closed. But natural systems are never closed: they always involve externalities
and contingencies that may not be fully specified, or even fully known. When
we attempt to test a hypothesis in the real world, we must invoke auxiliary as-
sumptions about these other factors. This means all the additional assumptions
that have to be made to make a theory work in the world: frictionless surfaces,
ideal predators, purely rational humans operating in an unfettered free market.
When we test a theory by its consequences, other potentially influential factors
have to be held constant or assumed not to matter. This is why controlled ex-
periments play such a pivotal role in the scientific imagination: in the labora-
tory we have the means to control external conditions in ways that are not
available in ordinary life. Yet even in the laboratory, we still must assume—or
assert—that our controlled factors are in fact fully controlled and that the fac-
tors we consider negligible are in fact so. If a theory fails its test, we cannot be
certain whether the fault lies in the theory itself or in one of our other assump-
tions.

Another way to understand this is to compare a model of a natural system
with an artificial system. For example, in our commonly used arithmetic, we
can be confident that if 2 + 2 = 4, then 4 — 2 = 2, because we have defined the
terms this way and because no other factors are relevant to the problem. But
consider the question: Is a straight line the shortest distance between two
points? Most of us would say yes, but in doing so we would have invoked the
auxiliary assumption that we are referring to a planar surface. In the abstract
world of Euclidian geometry, or on a high-school math test, that would be a
reasonable assumption. In high school, we’d probably be classified as a smart
aleck if we wrote a long treatise on alternative geometrical systems. But if we
are referring to natural systems, then we need additional information. The sys-
tem, as specified, is open, and therefore our confident assertion may be wrong.
The shortest distance between two points can be a great circle.

Furthermore, in order to make observations in the natural world, we invaria-
bly use some form of equipment and instrumentation. Over the course of his-
tory, the kinds of equipment and instruments that have been used in science
have tended to become progressively more sophisticated and complex. This
means that our tests have become progressively more complex, and apparent
failures of theory may well be failures of equipment, or failures on our part to
understand the limitations of our equipment.
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The most famous example of this in the history of science is the problem of
stellar parallax in the establishment of the heliocentric model of planetary mo-
tions (Kuhn 1957). When Nicolaus Copernicus proposed that model in the early
sixteenth century, it was widely recognized that this idea would have an ob-
servable consequence: stellar parallax—the apparent changing position of a star
in the heavens as the earth moved through its orbit. If the earth stood still, its
position relative to the stars would be constant, but if it moved, then the posi-
tion of the stars would seem to change from winter to summer and back again.
One could test the Copernican model by searching for stellar parallax. This test
was performed and no parallax was found, so many astronomers rejected the
theory. It had failed its experimental test.

Four hundred years later, we can look back and see the obvious flaw in this
test: it involved a faulty auxiliary hypothesis—namely, that the universe is
small. The test assumes that the diameter of the earth’s orbit around the sun is
large relative to the distance to the star and that the stellar parallax is a large
angle. Today, we would say this is a conceptual flaw: the stars are almost infi-
nitely far away and the parallax is therefore negligibly small.

The experimental test of stellar paraliax also involved an assumption about
equipment and instrumentation: namely, that the available telescopes were ac-
curate enough to perform the test. Today, astronomers can detect stellar paral-
lax, which is measurable with the instruments of the twenty-first century, but
sixteenth-century telescopes were simply inadequate to detect the change. Of
course, our equipment and instrumentation are far more sophisticated today, but
the same kinds of assumptions of instrumental adequacy are built into our tests
as were built into theirs.

This brings us to the kind of models that most of us work with today. The
word “model” can be problematic because it is used to refer to a number of dif-
ferent things, but this discussion will assume that we are referring to a mathe-
matical model, typically a numerical simulation, realized on a digital computer.
However, the points may apply to other kinds of models as. well.

All models are open systems. That is to say, their conclusions are not true by
virtue of the definition of our terms, like “2” and “+,” but only insofar as they
encompass the systems that they represent. Alas, no model completely encom-
passes any natural system. By definition, a model is a simplification—an ideali-
zation—of the natural world. We simplify problems to make them tractable,
and the same process of idealization that makes problems tractable also makes
our models of them open. This point requires elaboration.

There are many different ways in which models are open, but there are at
least three general categories into which this openness falls. First, our models
are open with respect to their conceptualization (how we frame the problem).
When we create a model, we abstract from the natural world certain elements
that we believe to be salient to the problem we wish to understand, and we omit
everything else. Indeed, good science reqguires us to omit irrelevancies. For
example, consider a model of predator-prey relations in the Serengeti Plain. We
can be fairly confident that the color of my bedroom is irrelevant to this model.
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There is no known reason why it should matter to animals in Africa; indeed,
there is no way (so far as we know) that the animals could even be aware of it.
But a little imagination reveals that there could be other factors that we consider
irrelevant but that might in the future be shown to matter. (The history of sci-
ence is full of connections and correlations that were previously unsuspected
but later demonstrated. It is also full of examples of correlations that were later
rejected.) Moreover, there may be factors that we know or suspect do matter,
but which we leave out for various reasons—we lack time, computational
power, or other resources to incorporate them; we lack data or analytical meth-
ods to represent them; or we lack confidence about their significance (Ascher
1993; Oreskes and Belitz 2001). Or we may simply frame the problem incor-
rectly (for a more detailed discussion, with specific examples of this, see
Oreskes and Belitz 2001). At every level there remains the question whether the
model conceptualization is adequate.

Our models are also open with respect to the empirical adequacy of the gov-
erning equations (how well our mathematical representations map onto natural
processes). We often call these equations /aws, but as philosopher Nancy Cart-
wright (1983) has cogently shown, this usage is really rather misleading. Scien-
tific laws are idealizations that map onto the natural world to a greater or lesser
degree depending on the circumstances. Moreover, while the use of the term
“law” was borrowed from the political realm, laws of nature are different from
laws of the state.

Political laws do not attempt to describe an actual state of affairs, but rather
the opposite: they announce how we want things to be. Political laws are decla-
rations of intent, and we adjudicate them based on rather formal procedures.
Laws of nature are not declarations. They are our best approximations of what
we think is really going on, and there is no formal standard by which we judge
them. In a numerical model, we assume, based on prior experience, that the
equations used are adequate, but we have no logical way to demonstrate that
this assumption is correct. Therefore the model remains open.

Third, models are open with the respect to the input parameterization (how
well numerical variables represent elements of the system). In some systerns,
like planets orbiting around the sun, we can count the number of objects in-
volved in the problem—nine planets' and the sun—and make our best meas-
urements of their size, shape, distance, etc. But in many other problems, it is an
open question as to exactly what the relevant variables are. Even if we know
what they are—for example, permeability in a hydrological model—we still
have to make choices about how best to represent and parameterize it.

It is important to underscore that calling a model open is not the same as
calling it “bad.” The more we don’t know about a system, the more open our
model will be, even if the parts we do know about are very well constrained. A
card game is often taken as a good example of a closed system because we
know how many cards are in the deck and precisely what those cards have to
be, assuming no one is cheating. But there’s the rub. To be confident of our
odds, we have to make the assumption of honest dealing. In fact, this paradig-
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matically closed system is, in real life, open. Poker is a good game, but in real
life it’s an open system. Similarly, it is possible to imagine a model in which
the available empirical data are well measured and in which the governing
equations have stood the test of time, yet in which important relevant parame-
ters have not yet been recognized. Such a model might be “good” in terms of
the standards of current scientific practice yet remain highly open and therefore
fail to make reliable predictions.

The Complexity Paradox

The openness of a model is a function of the relationship between the complex-
ity of the system being modeled and the model itself. The more complex the
natural system is, the more different components the model will need to mimic
that system. Therefore we might think that by adding components we can make
the model less open. But for every parameter we add to a model, we can raise a
set of questions about it: How well does it represent the object or process it
purports to map onto? How well constrained is our parameterization of that
feature? How accurate are our measurements of its specific values? How well
have we characterized its interrelations with other parameters in the model?
Even as we increase our specifications, the model still remains an open system.

This might suggest that simpler models are better—and in some cases no
doubt they are—but in ecosystems modeling we do not want to abandon com-
plexity because we believe that the systems we are modeling are in fact com-
plex. If we can demonstrate that certain parameters in the model are insignifi-
cant, then we can omit them, but in most cases that would be assuming the
thing we wish to discover: What role does this parameter play? How does it
interact with other parameters in the system? Indeed, in many cases it is the
very complexity of the systems that has inspired us to model them in the first
Place—to try to understand the ways in which the numerous parts of the system
Interact.

Moreover, complexity can improve accuracy by minimizing the impact of
errors in any one variable. In an analysis of ecological models of radionuclide
kinetics in ecosystems, O’Neill (1973) showed, as one might expect, that sys-
tematic bias resulting from individual variables decreased as the number of
variables in a model increased. However, uncertainty increased as the meas-
urement errors on individual parameters accumulated. Each added variable
added uncertainty to the model, which, when promulgated in a Monte Carlo
simulation, contributed to the uncertainty of the model prediction.

These considerations may be summarized as the “complexity paradox.” The
more we strive for realism by incorporating as many as possible of the different
processes and parameters that we believe to be operating in the system, the
more difficult it is for us to know if our tests of the model are meaningful. Put
another way, the closer a model comes to capturing the full range of processes
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and parameters in the system being modeled, the more difficult it is to ascertain
whether or not the model faithfully represents that system. A complex model
may be more realistic yet at the same time more uncertain. This leads to the
ironic situation that as we add more factors to a model, the certainty of its pre-
dictions may decrease even as our intuitive faith in the model increases. Be-
cause of the complexities inherent in natural systems, it may never be possible
to say that a given model configuration is factually correct and, therefore, that
its predictions will come true. In short, the “truer” the model, the more difficult
it is to show that it is “true.”

Successful Prediction in Science

At this point some readers will be thinking, “But surely there are many cases in
which scientists have made successful predictions, many areas of science where
we do a good job and our predictions have come true.” This intuition may be
recast as a question: Where have scientists developed a track record of success-
ful prediction? What do we learn when we examine the nature of those predic-
tions and how they have fared? Viewed this way, we find a surprising result:
successful prediction in science is less common than most of us think, and it has
developed as much through a process of trial and error as through the rigorous
application of scientific law. Consider three areas of science that have a large
literature on their predictive activities: weather, astronomy, and classical me-
chanics.

Example 1: Meteorology and Weather Prediction

Meteorology is the science most closely associated with prediction in the public
mind and the only science that regularly earns time on the evening news. What
do we know about weather prediction? First, that it is non-deterministic.
Weather forecasts are not presented in the form, “It will rain two inches tomor-
row beginning at 3:00 o’clock and lasting until 4:30.” They are presented in the
form, “There is a 20% chance of rain tomorrow afternoon to early evening,”
Moreover, if rain is expected, forecasters typically offer a range of plausible
values, such as 1-2 inches. In a sense, we could say that meteorologists hedge
their bets, and there has been considerable debate within the meteorological
community over just how weather forecasts should be presented (e.g., Murphy
1978). The use of probabilistic forecasting is partly a response to experience:
history has demonstrated just how difficult specific, quantitative prediction of a
complex system is.

Second, weather prediction involves spatial ambiguity. If my local forecast
calls for an 80% chance of rain tomorrow in San Diego County, that forecast
will be deemed accurate if it does in fact rain, even though some parts of the
county may remain dry. Some of us have seen the phenomenon where it is rain-
ing at our house and dry across the street. Weather can be very local; forecasts
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are spatially averaged; and typically they become more accurate as they become
more general and less accurate as they attempt greater specificity.

Third, and perhaps most important, accurate weather prediction is restricted
to the near term. In meteorology, a “long-range” forecast is 3—5 days (or lately
perhaps a bit longer.) The great successes in the history of meteorology, like the
celebrated D-Day forecasts, are a case in point (Petterssen 2001). If you need an
accurate forecast for the weather on January 27 next year, you simply cannot
get it. (Anyone who has tried to plan an outdoer wedding is familiar with this
problem. In fact there are now folks who will sell you a forecast for next June
10, and there are also folks who still sell snake oil.)

Partly in response to this problem, atmospheric scientists have developed a
distinct terminology to deal with long-term change—they speak of (general)
climate rather than (specific) weather. Meteorologists can accurately predict the
average temperature for the month of January because the dominant control on
monthly weather is the annual journey of Earth around the Sun, coupled with
the tilt of Earth’s axes, factors that are themselves quite predictable. Yet these
planetary motions are not the only relevant variables: natural climate variation
also depends on solar output, gases and dust from volcanoes, ocean circulation,
perhaps even weathering rates controlled by tectonic activity. These latter pro-
cesses are less regular than the planetary motions and therefore less predictable.
Hence our predictive capacity is constrained to the relatively near future: we
can confidently predict the likely average temperature of for a specific month
within the next couple of years, but not so the average temperature of that
month in 2153 (claims to the contrary not withstanding). The more extended the
period, the more difficult the forecasting task becomes.

We know something about why long-range weather forecasting is so diffi-
cult: weather patterns depend upon external forcing functions, such as the input
of solar radiation, small fluctuations in which can produce large fluctuations in
the system. Weather systems are also famously chaotic, being highly sensitive
to initial conditions. Many systems of interest to ecologists are similar to cli-
mate: they are strongly affected by exogenous variables. We know that these
factors are at play, and we may even understand the reasons why they vary, but
we cannot predict how their variations will alter our systems in the years to
come. This is why a model can be useful to guide observation and experiment
yet be unable to make accurate predictions: we can use a model to test which of
several factors is most powerful in affecting the state of a system and use that
information to motivate its further study, but we cannot predict which of these
various factors will actually change and therefore what the actual condition of
the system will be.

There is an additional point to be made about weather prediction. The reason
we can make accurate predictions at all is because our models are highly cali-
brated. They are based on enormous amounts of data collected over an extended
time period. In the United States and Europe, weather records go back more
than a century, and high quality standardized records exist for at least four dec-
ades. In the United States, there are 10 miilion weather forecasts produced by
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the National Weather Service each year (Hooke and Pielke 2000)! Predictive
weather models have been repeatedly adjusted in response to previous bad pre-
dictions and previous failures. Compare this situation with the kinds of models
currently being built in aid of public policy: general circulation models, advec-
tive transport models, forest growth models, etc. None of these has been subject
to the kind of trial and error—the kind of learning from mistakes—that our
weather models have been.

We can readily learn from mistakes in weather modeling because weather
happens every day and because of the enormous, worldwide infrastructure that
has been created to observe and forecast weather. A similar argument can be
made about another area of successful prediction in science: celestial
mechanics.

Example 2: Celestial Mechanics and the Prediction of
Planetary Motions :

Celestial mechanics is an area in which scientists make very successful predic-
tions. The motion of the planets, the timing of comets and eclipses, the position
and dates of occultations—scientists routinely predict these events with a high
degree of accuracy and precision. Unlike rain, we can predict to the minute
when a solar eclipse will occur and precisely where the path of totality will be.
Given this success, we can ask ourselves: What are the characteristics of these
systems in which we have been able to make such successful predictions?

The answer is, first, that they involve a small number of measurable parame-
ters. In the case of a solar eclipse, we have three bodies—Earth, its moon, and
the Sun—and we need to know their diameters and orbital positions. This is a
relatively small number of parameters, and each has a fixed value. Put another
way, the variables in the system do not actually vary. The diameter of Earth is
not, for all intents and purposes, changing (or at least not over the time frame
relevant to this prediction). Second, the systems involved are highly repetitive.
Although eclipses don’t happen every day, they happen a lot, and we can track
the positions of the planets on a daily basis. Moreover, planets return to their
orbital positions at regular intervals. When we make an astronomical predic-
tion, we can compare it with observations in the natural world, generally with-
out waiting too long. If our predictions fail because we have made a mistake,
we can find this out fairly quickly and make appropriate adjustments to the
model. Third, as in the case of weather, humans have been making and re-
cording observations of planetary motions for mlllenma We have an enormous
database with which to work.

However, precisely because of its successful track record, the development
of accurate planetary prediction raises one of the most serious concerns for
modelers: that faulty models may make accurate predictions. Returning to Co-
pernicus, the failure of the prediction of stellar parallax was a serious problem
for the heliocentric model, but there was another problem more pressing still:
the Ptolemaic system, which the heliocentric model aspired to replace, made
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highly accurate predictions. In fact, it made more accurate predictions than the
Copernican system until many decades later when Johannes Kepler introduced
the innovation of elliptical orbits. Astronomers did not reject the Copernican
view because they were stubborn or blinded by religion. They rejected it be-
cause the model they were already working with was better, as judged by the
accuracy of its predictions. Yet in retrospect we believe that it was wrong at its
very foundations.

This should give any modeler pause, for it shows that accurate predictions
are not proof of a model’s conceptual veracity: false models can make true pre-
dictions. In this case, repeated accurate predictions serve to bolster what in
hindsight will be viewed as misplaced confidence. Conversely, a model that is
conceptually well grounded may still fail in its predictions if key elements of
the model are incorrect. Therefore, building a model that makes accurate pre-
dictions may not necessarily aid the goal of improved basic understanding. In-
deed, it may actually impede it.

Many modelers achieve successful prediction through a process of model
calibration: they obtain observations from the natural world and adjust model
parameters until the model successfully reproduces the observational data. But
this kind of calibration ensures that the model cannot fail—effectively, it makes
the model refutation-proof (Oreskes et al. 1994; see also Anderson and Bates
2001). If there is a conceptual flaw in the model, unconstrained calibration will
hide the flaw from view. This is what the Ptolemaic astronomers did: they
added epicycles upon epicycles to “save the phenomenon”—to make the model
fit the data—all the while preserving a system that was conceptually flawed at
its root.

Example 3: Classical Mechanics

A third example may be drawn from classical mechanics. This is the area of
science that most closely matches the hypothetico-deductive ideal of determi-
nistic laws that generate specific quantitative predictions. We all learned these
laws in high school physics: f= ma, s = ¥ af*, p = mv, etc. What do we really
know about these laws, which most of us think of as the best example of deter-
ministic laws that make accurate predictions? None is literally true. To generate
accurate predictions, they all require ceferis paribus clauses: that there is no
friction, no air resistance, or that an ideal ball is rolling down a perfectly fric-
tionless plane. In real life, the laws do not work as stated, because in real life
these kinds of ideal systems do not exist. Philosopher Nancy Cartwright calls
this how the laws of physics “lie”—they posit an imaginary world, not the
world that we live in (Cartwright 1983; see also Cartwright 1999). To make the
laws of physics work in practice requires adjustments and modifications that are
not based upon deterministic laws but rather on past experience and earlier
failed attempts. So what starts out looking like a successful case of clean, de-
terministic prediction becomes a great deal messier as you get down into the
nitty-gritty details.
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Where does this leave us? First, we can draw the conclusion that accurate
prediction in science is a special case (Cartwright 1999). It tends to be restricted
to systems characterized by small numbers of measurable parameters or to sys-
tems in which the events at issue are naturally repetitive, like the orbits of the
planets, or easily repeated, like balls rolling down hills. Second, accurate pre-
dictions have usually been achieved only after adjustments to the model in re-
sponse to earlier failed predictions. This is why the interplay between modeling
and observation is so important. It also is why repetitive systems are more
likely to be predictable even if they are chaotic. Whether a system is intrinsi-
cally deterministic or intrinsically chaotic, we are more likely to be able to pre-
dict its behavior successfully if we have observed it many times before. Third,
even when we achieve a match between quantitative prediction and empirical
observation, it does not guarantee an accurate conceptualization of a system.
Faulty conceptual models can make accurate predictions. Predictive capacity by
itself is a weak basis for confidence.

Model Testing, Forecasting, and Scenario Development

Our focus here has been on branches of science that have a track record of pre-
diction—meteorology, astronomy, and physics. The natural sciences that deal
with complex nonrepetitive systems—geology, biology, and ecology—have no
historic track record of predictive success at all. Indeed, until very recently, no
one ever expected scientists in these disciplines to make predictions (Oreskes
2000b). If our science has no track record of predictive success, then it be-
hooves us to ask, what makes us think we are different?

To answer this question, it may help to distinguish between short-term and
long-term prediction, or what might be better referred to as model testing versus
forecasting. Clearly, short-term predictions that can be used as a means to
evaluate the model are extremely important, because they can provide a test of
our understanding. The Copernican example shows that agreement between
prediction and observation is not proof that a model is right, but disagreement
can be evidence that something is wrong. Moreover, short-term predictions can
be used to compare alternative models: to give us a handle on which of a num-
ber of possible conceptualizations or parameterizations does a better job of de-
scribing a given system, or to see what range of outcomes is suggested by cur-
rent understandings. The latter in particular may be highly relevant for policy
decisions, for example, in developing worst-case scenarios of climate change.
Understood this way, prediction—that is to say, short-term prediction—
becomes one of the heuristic functions of modeling.

However, long-range predictions—or forecasts—cannot be tested, and there-
fore do nothing to improve scientific understanding. A concrete example may
help to clarify this point. Recently, the U.S. Department of Energy has issued
forecasts of radionuclide releases at the proposed nuclear waste repository at
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Yucca Mountain ten thousand years from now. These projections are inter-
preted to be required by law to ensure that the repository will satisfy regulatory
standards. If the law demands such forecasts, then they will be made, and they
are not necessarily useless: if the values are considered too high they may in-
spire modification to the repository design, or perhaps even stop the repository
from going forward. In this way, such forecasts can be socially and politically
useful (or harmful, depending upon your point of view). But from a scientific
point of view, such long-range forecasts offer-very little value, for they cannot
be compared with empirical results and therefore cannot be used to improve
scientific knowledge. If we understand our purpose as fundamentally a scien-
tific one—to improve our understanding of natural systems—then long-range
forecasting cannot aid this goal. Only when predictions are on a short enough
time frame that we can compare them to events in the natural world can they
play a role in improving our comprehension of nature.

This brings us to the domain of models and public policy. The desideratum
of policy-relevant scientific information is frequently cited as a major motiva-
tion for modeling in ecology, atmospheric science, geochemistry, hydrology,
and many other areas of natural and social science (Oreskes et al. 1994, Oreskes
1998). Several papers in this volume state that one of the important reasons for
building the model under discussion is its relevance to public policy.

Some questions of public policy involve short time frames, and these ques-
tions may be usefully informed by model results. However, questions about
short-duration events are typically questions about particular localities whose
details are unique (Beven 2000). Given the uncertainties of the details of most
site-specific models, predictive modeling is unlikely to be a substitute for moni-
toring. The problem here, as recently emphasized by Anderson and Bates
(2001), is that data collection and monitoring are frequently viewed as “mun-
dane,” whereas modeling is viewed as “cutting-edge.” Perhaps for this reason,
data-collection programs have proved difficult to sustain. Scientists should pon-
der why this is so and consider whether the public interest is being served by
our emphasis on models. A better balance between modeling and data col-
lection may be called for.

Better data collection for model testing and monitoring may improve the
usefulness of models used for short-term policy decisions, but the policy issues
that models are commonly held to illuminate often involve long-term change in
natural systems. Global climate change is the most obvious, but many, perhaps
most, ecological models involve questions whose import will be realized over
time frames of at least years, if not decades. Yet all of the available evidence
suggests that long-term forecasts are likely to be wrong and may very well mis-
inform public policy.

Given how many models have been built in the past decades, it is remarkable
how few have been evaluated after the fact to determine whether their forecasts
came true. Where such post hoc evaluations have been done, the results are
extremely disconcerting: the vast majority of the predictions failed, often they
failed rapidly, and in many cases the actual results were not only outside the
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error bars of the model, but they were in an entirely different direction (Ascher

1978, 1981, 1989, 1993; Ascher and Overholt 1983; Konikow 1986; Konikow
and Patten 1985; Konikow and Person 1985; Konikow and Swain 1990; Leo-
nard et al. 1990; Pilkey 1990, 1994, 2000; Nigg 2000; see also Sarewitz et al.
2000 and Oreskes and Belitz 2001).

The most detailed work on the question of forecasting accuracy has been
done by political scientist William Ascher, working on economic and social
science models (Ascher 1978, 1981, 1989, 1993; Ascher and Overholt 1983).
For example, in a study of the rate of return on development projects, he found
that in most cases the return was not only lower than predicted, but it was be-
low the designated cut-off criterion for the funding agency. Indeed, it was so
low that had it been accurately predicted, the project would never have been
funded in the first place (Asher 1993). Another example is the celebrated
“World Model” of the Club of Rome, published in the 1970s best-seller, The
Limits to Growth (Meadows et al. 1972). This model predicted major shortages
of natural resources by the end of the twentieth century that would cause com-
modity prices to skyrocket. In fact, not only did prices fail to increase at the
predicted rate, they did not increase at all. At the end of the twentieth century,
the prices for nearly all natural resources were lower than at the time the model
was built (Moore 1995).

Natural scientists may be inclined to discount results from the social sci-
ences because we have been trained to think of the systems they deal with as
poorly constrained and subject to the intrinsic unpredictability of human behav-
ior. Yet if one considers why social sciences models are messy—particularly
the difficulty of specifying and quantifying system variables—we find much in
common with models of complex natural systems. Moreover, if part of the mo-
tivation for our model-building is policy-relevance, then by definition we are
looking at systems which in some way either affect or have been affected by
humans, in which case the unpredictability of human behavior may well be
relevant. For example, in his post audit of hydrological models, Leonard
Konikow found that models typically failed because of unanticipated changes
in the forcing functions of the system, and these forcing functions commonly
involved human activities such as groundwater pumping, irrigation, and urbani-
zation (Konikow 1986).

Faulty Forecasts Undermine Scientific Credibility

If the forecasts of a model are wrong, then sooner or later they will be refuted.
For complex systems that are poorly constrained, or for which there are limited
historical data, experience suggests that sooner is the more likely timeframe. If
the forecasts are presented as facts—and they typically are—then this ulti-
mately undermines the credibility of the community that generated them. A
good example of this comes from the 1997 Grand Forks flood, an example of
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prediction gone wrong that has been analyzed by Pielke (1999) and Changnon
(2000).

In the spring of 1997, the Red River of the North, which flows past Grand
Forks, North Dakota, crested at the historically unprecedented level of 54.11
feet, causing massive flooding and $1-2 billion in property damage. Several
weeks before, the National Weather Service had issued two flood “outlooks,”
one based on a scenario of average temperature and no additional precipitation,
the other based on average temperature with additional precipitation. The two
outlooks were 47.5 and 49 feet, respectively. Because spring flooding in this
region is largely controlled by snowmelt, one might expect such forecasts to be
reliable—after all, the snowpack can be measured. So the town of Grand Forks
prepared. Residents added a couple of feet “just in case” and prepared for flood
crests of up to 51 feet (Pielke personal comm. 2002). When the waters rose to
54 feet, massive damage ensued.

Although the scientists involved surely understood the uncertainties in their
forecasts, and the Weather Service appended qualitative disclaimers, these un-
certainties were not “received” by local officials. Rather they interpreted the
outlooks as “facts”—either that the river would crest between 47.5 and 49 feet
or that it would crest no higher than 49 feet. As these numbers were repeated by
local officials, the media, and ordinary citizens, their status as facts hardened.
When these “facts” proved false, blame for the disaster was laid at the feet of
the Weather Service. While one might argue that local officials were at least in
part responsible—for misunderstanding the scientific data and not preparing for
worst-case scenarios—or that this was simply a tragic but uncontrollable natu-
ral disaster—an act of God or other unforeseeable event—this is not how the
disaster was interpreted by those involved. Rather, it was interpreted as a failure
on the part of the Weather Service. As Pielke (1999) quotes the mayor of Grand
Forks, “they blew it big.”

Examples like these illustrate how scientists can and will be blamed for
faulty predictions, even if disclaimers or error bars are included and even if
scientists have done their best in the face of an unprecedented natural event.
Given this, it is hard to see how it can be in the long-term interest of the scien-
tific community to make confident assertions that will be soon refuted. At best,
the result is embarrassment; at worst, the risk is a loss of confidence in the sig-
nificance and meaning of scientific information and ultimately a loss of public
support for our endeavors.

The alternative is to shift our focus away from specific quantitative predic-
tions of the future and toward policy-relevant statements of scientific under-
standing (see Sarewitz and Pielke 2000, and this volume chapter 7, for related
views). Rather than attempt a specific prediction that is likely to fail, we can
develop “what if” scenarios that highlight, for policy-makers and other inter-
ested parties, what the most likely consequences will be of alternative possible
courses of action. To say that something is policy-relevant is to say that there is
some possible course of human action (or inaction) that bears on the future state
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of affairs and that our information might plausibly affect which course of action
humans will take.

We cannot say what will happen in the future, but we can give an informed
appraisal of the possible outcomes of our choices. In the case of Grand Forks,
Pielke argues that the National Weather Service intended to convey—and
thought it had conveyed—the message that the communities involved should
prepare for unprecedented flooding. Imagine then, for a moment, if instead of
issuing their quantitative outlooks, the Weather Service had said just this:
“All the available evidence suggests that we need to prepare for unprecedented
flooding.” The outcome, both for the reputation of the Weather Service and,
more importantly, for the people of Grand Forks, might have been very
different.
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Note
1. Or maybe eight, depending upon your opinion of the status of Pluto.
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