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MUCH attention has been given to the Prisoners’ Dilemma as a
metaphor for the problems surrounding the evolution of coopera-
tive behaviour'™. This work has dealt with the relative merits of
various strategies (such as tit-for-tat) when players who recognize
each other meet repeatedly, and more recently with ensembles of
strategies and with the effects of occasional errors. Here we neglect
all strategical niceties or memories of past encounters, considering
only two simple kinds of players: those who always cooperate and
those who always defect. We explore the consequences of placing
these players in a two-dimensional spatial array: in each round,
every individual ‘plays the game’ with the immediate neighbours;
after this, each site is occupied either by its original owner or by
one of the neighbours, depending on who scores the highest total
in that round; and so to the next round of the game. This simple,
and purely deterministic, spatial version of the Prisoners’
Dilemma, with no memories among players and no strategical
elaboration, can generate chaotically changing spatial patterns,
in which cooperators and defectors both persist indefinitely (in
fluctuating proportions about predictable long-term averages). If
the starting configurations are sufficiently symmetrical, these ever-
changing sequences of spatial patterns—dynamic fractals—can be
extraordinarily beautiful, and have interesting mathematical
properties. There are potential implications for the dynamics of
a wide variety of spatially extended systems in physics and biology.

Although it has a long history, the paradox of the Prisoners’
Dilemma has recently been much studied for the light it may
shed on the evolution of altruistic or cooperative behaviour*?,
In its standard form, the Prisoners’ Dilemma is a game played
by two players, each of whom may choose either to cooperate,
C, or defect, D, in any one encounter. If both players choose
C, both get a pay-off of magnitude R; if one defects while the
other cooperates, D gets the game’s biggest pay-off, T, while C
gets S; if both defect, both get P. With T> R> P> S, the
paradox is evident. In any one round, the strategy D is unbeat-
able (being better than C whether the opponent chooses C or
D). But by playing D in a sequence of encounters, both players
end up scoring less than they would by cooperating (because
R > P). Following Axelrod and Hamilton’s pioneering work®,
many authors have sought to understand which strategies do
best when the game is played many times between players who
remember past encounters. These theoretical analyses, computer
tournaments, and laboratory experiments continue, with the
answers depending on the extent to which future pay-offs are
discounted, on the ensemble of strategies present in the group
of players, on the degree to which strategies are deterministic
or error-prone (for example, imperfect memories of opponents
or of past events), and so on>"°.

In this paper, we consider only two kinds of players: those
who always cooperate, C, and those who always defect, D. No
explicit attention is given to past or likely future encounters, so
no memory is required and no complicated strategies arise.
Interesting results emerge when we place these “players’—who
may be individuals or organized groups—on a two-dimensional,
n x n square lattice of ‘patches’: each lattice-site is thus occupied
either by a C or a D. In each round of our game (or at each
time step, or each generation), each patch-owner plays the game
with its immediate neighbours. The score for each player is the
sum of the pay-offs in these encounters with neighbours. At the
start of the next generation, each lattice-site is occupied by the
player with the highest score among the previous owner and
the immediate neighbours. The rules of this simple game among
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n® players on an n X n lattice are thus completely deterministic.
(In ref. 2 spatial arrays were briefly explored, but with a focus
on the interplay among tit-for-tat and other explicitly memory-
laden strategies in iterated encounters; the interest was in spatial
generalizations of earlier results, such as *“if a [strategy] is
collectively stable, it is territorially stable”.)

Specifically (but preserving the essentials of the Prisoners’
Dilemma), we chose the pay-offs of the Dilemma’s matrix to
have the values R=1, T=5b(b>1), S = P=0. That is, mutual
cooperators each score 1, mutual defectors 0, and D scores b
(which exceeds unity) against C (who scores 0 in such an
encounter). The parameter b, which characterizes the advantage
of defectors against cooperators, is thus the only parameter in
our model; none of our findings are qualitatively altered if we
instead set P = ¢, with ¢ positive but significantly below unity
(so that T> R> P> S is strictly satisfied). In the illustrations
below, we assume the boundaries of the n x n matrix are fixed,
so that players at the boundaries simply have fewer neighbours;
the qualitative character of our results is unchanged if we instead
choose periodic boundary conditions (so that the lattice is really
a torus). The illustrations are for the case when the game is
played with the eight neighbouring sites (the cells corresponding
to the chess king’s move), and with one’s own site (which is
reasonable if the players are thought of as organized groups
occupying territory). As amplified below, the essential con-
clusions remain true if players interact only with the four
orthogonal neighbours in square lattices, or with six neighbours
in hexagonal lattices; the results also hold whether or not self-
interactions are included.

Using an efficient computer program in which each lattice-site
is represented as a pixel of the screen, we have explored the
asymptotic behaviour of this system for various values of b, and
with various initial proportions of C and D arranged randomly
orregularly on an n x n lattice (n = 20 and more). The dynamical
behaviour of the system depends on the parameter b; the discrete
nature of the possible pay-off totals means that there will be a
series of discrete transition-values of b that lead from one
dynamical regime to another. These transition-values and the
corresponding patterns are described in detail elsewhere’. The
essentials, however, can be summarized in broad terms. If b >
1.8, a 2X 2 or larger cluster of D will continue to grow at the
corners (although not necessarily along the edges, for large
squares); for b < 1.8, big D clusters shrink. Conversely, if b <2,
a 2x2 or larger cluster of C will continue to grow; for b>2, C
clusters do not grow. The most interesting regime is therefore
2> b> 1.8, where C clusters can grow in regions of D and also
D clusters can grow in regions of C. As intuition might suggest,
in this interesting regime we find chaotically varying spatial
arrays, in which C and D both persist in shifting patterns.
Although the detailed patterns change from generation to gener-
ation—as both C clusters and D clusters expand, collide, and
fragment—the asymptotic overall fraction of sites occupied by
C, fc, fluctuates around 0.318 for almost all starting proportions
and configurations.

Figure 1 illustrates typical asymptotic patterns for two
different regimes of b values. The colour coding is as follows:
blue represents a C site that was C in the preceding generation;
red, a D site following a D: yellow, D following a C; and green,
C following a D. Thus a purely red and blue pattern would
necessarily be static. The amount of yellow and green in a picture
indicates how many sites are changing from one generation to
the next. Figure la, for 1.75 < b < 1.8, is typical of the irregular
and relatively static network of ‘D lines’ against a background
of C which arises for these b values; one gets less connected
fragments of D lines or ‘D blinkers’ for lower b values. Figure
1b is for the interesting regime 2> b > 1.8, and shows the typical
patterns of dynamic chaos found for almost all starting condi-
tions in this regime. Figure 2a adds a temporal dimension to
Fig. 1b, showing the proportion of sites occupied by C in
successive time-steps (starting with 10% D). The asymptotic
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FIG. 1 The spatial Prisoners’ Dilemma can generate a large variety of
qualitatively different patterns, depending on the magnitude of the para-
meter, b, which represents the advantage for defectors. This figure shows
two examples. Both simulations are performed on a 200 X 200 square lattice
with fixed boundary conditions, and start with the same random initial
configuration with 10% defectors (and 90% cooperators). The asymptotic
pattern after 200 generations is shown. The colour coding is as follows:
blue represents a cooperator (C) that was already a C in the preceding
generation; red is a defector (D) following a D; yellow a D following a C;
green a C following a D. a An irregular, but static pattern (mainly of interlaced

FIG. 2 The frequency of cooperators in simulations with random or sym-
metrical initial conditions, within the interesting region 1.8 <b < 2. a, The
frequency of cooperators, f(t), for 300 generations, starting with a random
initial configuration of .(0)=0.6. The simulation is performed on a 400 X 400
square lattice with fixed boundary conditions, and each player interacts with
9 neighbours (including self). The dashed line represents f.=12log 2-8
(see b). b, The frequency of C within the dynamic fractal generated by a
single D invading an infinite array of C. At generation t, the width for the
growing D structure is 2t +1, and the frequency of C, f(t) within the square
of size (2t +1)? centred on the initial D site is shown as a function of .
This curve has interesting properties, which can be partly understood by
referring to the geometry of the D structure. The D structures are closed-
boundary squares in generations that are powers of 2, t=2"; hence f(t)
has minima at generations that are powers of 2. These squares now expand
at the corners and erode along the sides, returning to square shape after
another doubling of total generations. On this basis, a crude approximation
suggests that, / time steps going from t to 2t there will be roughly
4(2i)(2t +1—2i) C sites within the D structure of size (2t +1 +2/)% hence
the asymptotic C fraction, f¢, for very large such symmetrical patterns is
fo=4 fci, s(1—~s)/(1+s)°ds=12log 2-8=0.318.... As discussed in the
text, this approximation agrees with the numerical results surprisingly well
in both parts a and b of the figure.
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networks) emerges if 1.75 < b < 1.8. The equilibrium frequency of C depends
on the initial conditions, but is usually between 0.7 and 0.95. For lower b
values (provided b >38—), D persists as line fragments less connected than
shown here, or as scattered small oscillators (‘D-blinkers’). b, Spatial chaos
characterizes the region 1.8<b < 2. The large proportion of yellow and
green indicates many changes from one generation to the next. Here, as
outlined in the text, 2 X2 or bigger C clusters can invade D regions, and
vice versa. C and D coexist indefinitely in a chaotically shifting balance, with
the frequency of C being (almost) completely independent of the initial
conditions at ~0.318.
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fraction, f, shown in Fig. 2a is found for essentially all starting
proportions and configurations for these b values.

Figure 3 is perhaps more in the realm of aesthetics than
biology. Again 2> b > 1.8, but now we begin (¢ = 0) with a single
D at the centre of a 99 x99 lattice of Cs. Figure 3a shows the
consequent symmetrical pattern 30 time-steps later, and Fig. 3b,
¢ and d shows three successive patterns at t =217, 219 and 221
after the pattern has reached the boundary (which happens at
t =49). These patterns, each of which can be characterized in
fractal terms, continue to change from step to step, unfolding
a remarkable sequence, dynamic fractals. The patterns show
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FIG. 3 Spatial games can generate an ‘evolutionary kaleidoscope’. This
simulation is started with a single D at the centre of a 99 X 99 square-lattice
world of C with fixed boundary conditions. Again 1.8 <. b < 2. This generates
an (almost) infinite sequence of different patterns. The initial symmetry is
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every lace doily, rose window or Persian carpet you can imagine.
As Fig. 2b shows, the asymptotic fraction of C is as for the
chaotic pattern typified by Figs 1b and 2a. Many of the dynamic
features of the symmetric patterns illustrated in Fig. 3 can be
understood analytically. In particular, we can make a crude
estimate of the asymptotic C fraction, f, for such very large
symmetrical patterns. This approximation is shown by the
dashed horizontal line in Fig. 2b, and it agrees with the numerical
results significantly better than we would have expected. Why
the approximation also works for the irregular, spatially chaotic
patterns (Fig. 2a) we do not know.

always maintained, because the rules of the game are symmetrical. The
frequency of C oscillates (chaotically) around a time average of 12 log 2-8
{of course). a, Generation t=30; b, t=217; ¢, t=219; d t=221.
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Our ‘spatial dilemmas’ game obviously invites comparison
with more familiar cellular automata, such as Conway’s ‘Game
of Life’®''. There are, however, qualitative differences. First,
what happens to a site or cell in our lattice depends on the
neighbours’ scores, and thence on the state of the neighbours’
neighbours. Thus, in the terminology of cellular automata, 25
cells are relevant to specifying the change in a given cell: the
transition matrix has 2%°rules (this contrasts with Life, when 9
cells specify a cell’s fate). That is, the motivating biological
metaphor of the Prisoners’ Dilemma generates a transition rule
that is simple, but it would look horrendous if expressed in
canonical cellular automata terms. Second, the patterns shown
in Figs 1 and 3 have a combination of complexity and underlying
regularity (exemplified by the asymptotic f = 0.318) unlike any
cellular automata with which we are familiar. Third, we do also
have a rich zoo of specific objects (rotators, gliders, blinkers,
and an expanding jaw-like configuration of C cells that eats up
a universe of D, leaving only structured strings of D (‘eaters’))
reminiscent of, but different from, those in Conway’s Life®?.
The taxonomy of this zoo is described elsewhere’.

Results similar to these are found if we exclude self-inter-
action, and consider interactions only with the eight nearest
neighbours; here the ‘interesting’ region is > b>%. The sym-
metrical patterns analogous to Fig. 3 are similarly kaleidoscopic,
though different. The asymptotic C fraction, fc, is now ~0.299
for both symmetric and random starting conditions. For interac-
tions only with the four orthogonal neighbours, again the same
qualitative regimes are found (here the interesting regime is
2> b>73 if self-interaction is included, and 3> b>3% if not).
Numerical studies suggest that f is around 0.374. Hexagonal
arrays give complex patterns, but show less of the lacy, fractal
character seen above, unless we weight the pay-offs from self-
interactions somewhat more heavily than from neighbours
(which is biologically plausible). In short, the above results seem
robust’.

More generally, we have explored other evolutionary games
played with neighbours in spatial lattices along the basic lines
laid down above. They have features, particularly chaotic poly-
morphisms, similar to those seen for the spatial Prisoners’
Dilemma. The hawk-dove game!? gives notably beautiful pat-
terns when begun from one hawk (or dove) invading an infinite
array of doves (or hawks).

The Prisoners’ Dilemma is an interesting metaphor for the
fundamental biological problem of how cooperative behaviour
may evolve and be maintained; alternative approaches involve,
for example, studies of how the patchiness that can be created
by limited dispersal or population ‘viscosity’ might favour the
evolution of altruism through the elevation of inclusive fitness
within kin groups'*~'°. Essentially all previous studies of the
Prisoners’ Dilemma are confined to individuals or organized
groups who can remember past encounters, who have high
probabilities of future encounters (with little discounting of
future pay-offs), and who use these facts to underpin more-or-
less elaborate strategies of cooperation or defection. The range
of real organisms obeying these constraints is limited (although
there is evidence suggesting ‘tit-for-tat® strategies among some
fish, birds, bats and monkeys>*'®'¥). In contrast, our models
involve no memory and no strategies: the players are pure C or
pure D. Deterministic interaction with immediate neighbours
in a two-dimensional spatial lattice, with success (site, territory)
going each generation to the local winner, is sufficient to generate
astonishingly complex and spatially chaotic patterns in which
cooperation and defection persist indefinitely. The details of the
patterns depend on the magnitude of the advantage accruing to
defectors (the value of b), but a wide range of values leads to
chaotic patterns, whose nature is almost always independent of
the initial proportions of C and D. We believe that deterministi-
cally generated spatial structure within populations may often
be crucial for the evolution of cooperation, whether it be among
molecules, cells or organisms'*~'*!°-2!_ Other evolutionary
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games (hawk-dove, and so on) which recognize such chaotic
or patterned spatial structure may be more robust and widely
applicable than those that do not. More generally, such self-
generated and complex spatial structures may be relevant to the
dynamics of a wide variety of spatially extended systems: Turing
models, 2-state Ising models, and possibly pre-biotic evol-
ution'®?! (where it seems increasingly likely that chemical
reactions took place on surfaces, rather than in solutions).
Although the motive for this work is primarily biological, we
emphasize that ‘spatial dilemmas’ generate patterns of extreme
richness and beauty. These have an aesthetic and mathematical
(explaining, for example, why 12log2-8 in Fig. 2 works
unexpectedly well) interest of their own. O
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Connectivity of chemosensory
neurons is controlled by the
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THE function of the nervous system depends on the formation of
a net of appropriate connections, but little is known of the genetic
program underlying this process. In Drosophila two genes that
specify different types of sense organs have been identified: cut
(ct)"?, which specifies the formation of external sense organs as
opposed to chordotonal organs, and pox-neuro (poxn)’, which
specifies the formation of poly-innervated (chemosensory) organs
as opposed to mono-innervated (mechanosensory) organs. Whether
these genes are also involved in specifying the connectivity of the
corresponding neurons is not known. The larval sense organs are
unsuitable for analysis of the axonal pathway and connections and
so we have investigated the effect of poxn on the adult. Here we
show that overexpression of poxn induces the morphological trans-
formation of mechanosensory into chemosensory bristles on the
legs and that the neurons innervating the morpholegically transfor-
med bristles follow pathways and establish connections that are
appropriate for chemosensory bristles.
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