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1 Introduction 

The Amazon rainforest is the largest tropical rainforest in the world. It has an extent of 

approximately 5.5 million km
2
, of which about 60% are located in Brazil (Andersen, 

Granger, Reis, Weinhold, & Wunder, 2002). Due to its rich biodiversity and its potential 

role in global climate discussions, deforestation in the Amazon is not only of local interest, 

but leads to questions of global environmental and economical concern (Andersen, 

Granger, Reis, Weinhold, & Wunder, 2002; Malhi et al., 2008; Werth & Avissar, 2002). 

In the last decades the Amazon rainforest has been under increasing human pressure. The 

so-called Legal Amazon
1
 (Amazônia Legal), which comprises nine Brazilian states, 

experienced a population increase from 4 million people in 1950 (Barreto, Souza Jr, 

Nogueron, Anderson, & Salomão, 2006) to almost 24 million people in 2007 (IBGE, 

2007). Expansion of pasture areas for cattle-ranching and increasing demand for 

mechanized agriculture (e.g.: soybeans) are seen as the major drivers leading to massive 

forest clearing especially in the so-called arch of deforestation (Becker, 2005; Kaimowitz, 

Mertens, Wunder, & Pacheco, 2004; Nepstad & Stickler, 2006).  

Since 1988 the National Institute for Space Resarch INPE (Instituto Nacional de Pesquisas 

Espaciais) has been monitoring deforestation in the Brazilian Amazon and provides 

accurate, annual deforestation maps and rates (INPE, 2010). Figure 1-1 shows the spatial 

patterns of deforestation as measured by INPE in 2007. In recent years the deforestation 

rate reached a maximum of 27423 km
2
 in 2004 and had an average value of 17133 km

2
 

between 1997 and 2009. Figure 1-2 shows annual deforestation rates from 1997 to 2009. 

                                                 
1
 The Legal Amazon (Amazônia Legal) is not an uniform biome, as it initially was defined for regional 

planning purposes. It mainly consists of forests, savannahs/cerrados, inundated lowlands and steppes. 

(Andersen, Granger, Reis, Weinhold, & Wunder, 2002) 
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Figure 1-1: Deforestation map of the Brazilian Amazon in 2007 (INPE, 2010) 
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Figure 1-2: Deforestation rates from 1997 to 2009 (INPE, 2010) 

Tropical deforestation is an issue not only present in South America, but can also be 

observed in tropics in other parts of the world, where anthropogenic impact leads to land-

use and land-cover changes (LUCC). Land cover refers to the attributes of Earth’s land 

surface and immediate subsurface (e.g.: forest, grassland etc.) and land use to the purposes 

for which humans exploit the land cover (e.g.: forestry, pasture etc.) (Lambin, Geist, & 

Rindfuss, 2006). A lot of research in the area of LUCC modeling tries to investigate and 

simulate the human influence on once pristine forests. (Geist & Lambin, 2001) compare 
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various subnational LUCC case studies to analyze proximate
2
 and underlying

3
 causes of 

tropical deforestation. Their findings indicate that tropical deforestation can not be 

explained by a single or even a few variables, but by the interplay of several proximate and 

underlying factors. For Latin America they found a road-agriculture tandem as a robust, 

causative connection at the proximate level to be of relevant importance. In addition 

biophysical factors as relief or topography in combination with soil quality and water 

availability shape the patterns of deforestation in cases with high rates of annual 

deforestation (Geist & Lambin, 2001). 

Various modeling approaches exist to simulate the dynamics of land-use changes. These 

range from empirical models, based on statistical analyses like the CLUE model (De 

Koning, Veldkamp, Kok, & Bergsma, 1998; Kok, Farrow, Veldkamp, & Verburg, 2001; 

Veldkamp & Fresco, 1996; Verburg, De Koning, Kok, Veldkamp, & Bouma, 1999) to 

stochastic cellular automata models like DINAMICA (Soares-Filho, 2002) or agent-based 

models like LUCITA (Deadman, Robinson, Moran, & Brondizio, 2004). Understanding of 

past deforestation processes is essential for projecting and exploring of future scenarios, to 

provide decision makers with reliable tools and fundamental up-to-date information. 

Besides the substantial loss of biodiversity due to forest decline (Barreto, Souza Jr, 

Nogueron, Anderson, & Salomão, 2006; Fearnside, 2005) the interplay between climate 

and land-use changes is an important environmental issue. Thus several publications 

discuss these bi-directional interactions between climate and land-use dynamics to assess 

the vulnerability of the Amazon to global climate change on one side and the contribution 

of land-use changes to the climate on the other side (Aragão et al., 2008; Foley, Costa, 

Delire, Ramankutty, & Snyder, 2003; Gash, 1996; Malhi et al., 2008; Nobre, Sellers, & 

Shukla, 1991). No unified agreement on how the Amazonian climate might change due to 

deforestation has been reached so far, but most studies indicate that surface temperature 

has the tendency to rise, while precipitation might decrease in some parts of the Amazon, 

leading to significant drying in some areas during the 21
st
 century (Malhi et al., 2008; 

Voldoire & Royer, 2004). Even tipping the biome-climate system towards a new drier 

                                                 
2
 Proximate causes of deforestation are human activities (land uses) that directly affect the environment and 

thus constitute proximate sources of change. They operate on the local scale and can be structured in three 

groups: agricultural expansion, wood extraction and infrastructure extension. (lambin, geist, 2001) 
3
 Underlying causes of deforestation or driving forces may directly act at the local level or indirectly at 

national and global level. They are a complex of social, political, economic, technological and cultural 

variables, which are seen as fundamental forces which underpin proximate causes of deforestation (lambin, 

geist, 2001). 
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stable equilibrium state by land-use changes seems possible for tropical South America 

(Oyama & Nobre, 2003).  

This work uses a Potential Vegetation Model (PVM) based on climatic variables, 

developed at INPE (Oyama & Nobre, 2004) to derive additional input parameters for 

simulation of land-use change processes in the Brazilian Amazon. This PVM incorporates 

a water balance model from which climate dependent variables, such as soil wetness and 

seasonality index, are derived. The Potential Vegetation Model and the hydrological model 

will be implemented in the same modeling framework as a LUCC model for the Amazon, 

also previously developed at INPE (Aguiar, 2006; Moreira, 2009). Thus it will be possible 

to examine the explanatory power of additional environmental factors in a land-use and 

land-cover change model, especially to discriminate agriculture from pasture land-use 

patterns. The combined use of such models allows for comprehensible data integration 

through the same database and can further be seen as a prerequisite for dynamically 

coupling climate-LUCC models in the future. Hence this thesis can also be seen as a step 

towards future research topics regarding the construction of integrated environmental 

models. 

In this context, the scientific question of this thesis is thus to understand how such new 

environmental variables, derived from the water balance model, in conjunction with other 

environmental variables, such as slope and altimetry, can help to improve land-use change 

projections in the Amazon, facilitating the construction of coupled climate-LUCC 

integrated models in the future. 

1.1 Hypothesis 

The inclusion of hydrological, slope and altimetry variables improves the ability to 

discriminate pasture and agriculture patterns in the Brazilian Amazon. 

1.2 Objectives 

To address this hypothesis the following objectives were defined for this thesis: 

 Progress towards future coupling of models by implementing a potential 

vegetation model and its corresponding water balance model in the same 

modeling framework as a LUCC model 
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 Verification of the adequacy of hydrological variables derived from a water 

balance model to simulate and discriminate agriculture and pasture patterns in 

the Brazilian Amazon, using statistical analysis and spatially-explicit LUCC 

models. 

1.3 Structure of the thesis 

The structure of the thesis is the following. Chapter 1 starts with an introduction to the 

topic, the hypothesis and the objectives of the work. In Chapter 2 a literature review will be 

summarized to give an overview of the state of research. Chapter 3 describes the study area 

and the methods that will be used to validate the proposed hypothesis. Chapter 4 shows the 

results of the dynamic modeling approach. In chapter 5 a summary is given and 

conclusions are drawn. 
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2 Literature Review 

This chapter consists of a review of LUCC models and the coupling of climatic models to 

LUCC models. 

2.1 LUCC Models 

2.1.1 Overview of LUCC modeling approaches 

(Lambin, 2004; Lambin, Rounsevell, & Geist, 2000) distinguish four categories of land-

use change models: empirical-statistical, stochastic, optimization and dynamic (process-

based) models. LUCC models in a fifth category combine various model types and are 

named integrated modeling approaches. (Briassoulis, 2000) distinguishes between 

statistical and econometric, spatial interaction, optimization and integrated models and a 

class incorporating model types which do not fall into one of these classes, while 

(Heistermann, Müller, & Ronneberger, 2006) classify LUCC models into geographic 

(empirical-statistical or rule-based/process-based), economic and integrated models. No 

matter which model type is used, modeling of land-use change tries to address at least one 

of the following questions (Lambin, 2004):  

- Which socio-economic and biophysical variables contribute most to an 

explanation of land-use changes and why? 

- Which locations are affected by land-use changes – where? 

- At what rate do land-use and land-cover change progress – when? 

Another differentiation between land-use change models is defined by the attribute of 

being spatially-explicit. (Goodchild, 2002) defines four simple tests to investigate if a 

LUCC model is spatially-explicit. Corresponding to one of these tests, the outcome test, 

the author states that the most important reason for LUCC modeling to be spatially-explicit 

may relate to the model outcomes, as spatial patterns resulting from the processes of 
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LUCC are of significant interest to policy makers. Hence, if a LUCC model is assessed 

through the spatial patterns it produces, it is defined as being spatially-explicit. 

An overview of economic models of deforestation can be found in (Kaimowitz & 

Angelsen, 1998), where 150 different models are reviewed. (Barbier & Burgess, 2001) 

provide a survey of economic studies on tropical deforestation and land-use at the cross-

country level. (Geist & Lambin, 2001) compare various subnational LUCC case studies to 

analyze proximate and underlying causes of tropical deforestation. 

2.1.2 LUCC models in the Brazilian Amazon 

Numerous LUCC studies investigate land-use changes caused by deforestation in tropical 

South America, ranging from local studies to regional models covering the whole Amazon. 

The scientific areas of the authors of these studies differ (e.g.: GIScience, economics, 

computer science, remote sensing etc.) and so vary the types of models and the applied 

modeling approaches. In the following some modeling approaches of tropical deforestation 

in the Brazilian Amazon are reviewed. 

(Andersen & Reis, 1997) develop an econometric model of deforestation and economic 

development in the Brazilian Amazon to evaluate the effects of different policy 

instruments. The authors use a panel data set covering 316 municipalities from 1970 to 

1985 in five year steps. This data set comprises economic, ecological and demographic 

variables. The two-sector model consists of a rural and an urban sector and six equations. 

Past characteristics of a region and its neighbors are used by the main equation to predict 

the demand for newly cleared area, while the remaining equations assess the interaction 

between rural and urban populations, rural and urban output and land prices. The results of 

this LUCC study indicate a positive trade-off between economic growth and deforestation 

for subsidized credit for two main reasons. The authors conclude that subsidized credit 

promotes higher land prices which imply more efficient land-use and that farmers are 

stimulated to invest in more profitable and sustainable perennial crops. On the other side 

they state, based on the results of their model, that road building into pristine areas is 

harmful, but good in already cleared areas where it improves infrastructure. 

(Andersen, Granger, Reis, Weinhold, & Wunder, 2002) introduce an econometric model 

with an updated methodology and data of the model published in (Andersen & Reis, 1997). 

This LUCC model simulates land clearing and economic development considering the 
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growth rates of clearing and the growth rates of rural GDP
1
. The model is evaluated for 

two different time periods. The first period is from 1980 to 1985 and the second from 1985 

to 1995. Six endogenous variables are used: land-clearing, rural and urban GDP growth, 

rural and urban population growth and cattle herd growth. In addition to these variables 

models of paved and unpaved roads are included. A general-to-simple approach is used to 

eliminate factors out of the 74 initial potential explanatory variables. The model shows that 

herd growth and new land clearing are mainly affected by natural frontier spatial processes 

of maturation and urban demand centers. The results further indicate that building of paved 

roads in forested areas leads to more clearing than building of unpaved roads. In the model 

unpaved roads are associated mainly with land-extensive activities while paved roads 

correspond to more land-intensive economic activities. The authors expected to find a 

deforestation reducing effect in regions with high rainfall, but according to the model 

rainfall did not affect the growth rates of clearing and the growth of rural GDP. Simulating 

the Avança Brasil
2
 road construction plan the LUCC study found economic gains, but no 

overall increase in cleared area, which the authors explain by a possible underestimation of 

the impact of paved roads in relatively undisturbed areas. Nevertheless, the authors 

recommend reducing ecological costs by paving roads only in well-established areas. They 

further investigate the proposal to modify the “forest law”
3
 from 80% to 50% and state that 

the economic costs of sustaining the 80% threshold outreach the value of forest services. 

Hence the authors propose to change the law to 50% and to improve infrastructure in 

settled areas, instead of building roads through undisturbed areas. 

(Laurance et al., 2002) describe an empirical-statistical land-use change model for the 

Brazilian Amazon. The study area is subdivided into regular grids at two spatial scales, 

50x50 km
2
 and 20x20 km

2
. Satellite imagery from 1999 is used to estimate the proportion 

of forest cover, deforested area and natural water bodies in each grid cell. A set of 

variables comprising human-demographic factors, factors that affect physical accessibility 

to forests and factors that may affect land-use suitability for human occupation and 

agriculture is used in the statistical analysis which is carried out on a random set of 120 

cells, out of the 1927 cells at scale 50x50 km
2
. A robust ordination method results in the 

development of two major axes of variation, which lead to the conclusion that highways 

                                                 
1
 GDP … gross domestic product 

2
 Avança Brasil is a plan by the Brazilian government which involves a lot of investment in the Amazon 

region including infrastructure projects, social development projects, environmental projects and information 

collection (Andersen, Granger, Reis, Weinhold, & Wunder, 2002) 
3
 The “forest law” states that 80% of forest inside private properties must be preserved. 
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(paved roads), human population density and dry-season severity are the main factors 

leading to local deforestation, while rainfall and unpaved roads have a smaller influence. 

Thus the authors state that these three factors largely determine deforestation in the 

Brazilian Amazon. 

(Soares-Filho et al., 2006) focuses on modeling conservation in the Amazon basin by using 

an empirically based, policy-sensitive model of deforestation. Eight different scenarios for 

the time from 2001 to 2050 are utilized to project the influence of conservation approaches 

on the future development of the Amazonian rainforest. The used method comprehends 

two models. The first model divides the Amazon basin into 47 socioeconomic subregions 

and calculates deforestation rates for these regions based on historical trends, a planned 

road paving schedule and existing and proposed protected areas. It then passes these rates 

to a second model. This spatially-explicit model uses DINAMICA (Soares-Filho, 2002) a 

cellular automata model on cells with 1 km
2
 resolution to allocate the demand for land 

clearing and thus simulate the spatial patterns of deforestation using static (e.g.: distance to 

major rivers) and dynamic (e.g.: distance to deforested land) variables. The scenarios 

simulate future forest loss mainly in the eastern Amazon and along the BR-364 from 

Rondônia to Acre and thereby reducing the area of closed-canopy forest from 5.3 million 

km
2
 in 2003 to 3.2 million km

2
 in the “business-as-usual” scenario and to 4.5 million km

2
 

under a governance scenario by 2050. Areas in the northwestern part of Amazonas state 

and areas outside Brazil may remain largely untouched due to their remoteness. According 

to the authors, protected areas in the Amazon are suitable to maintain mammalian diversity 

to a large degree, but not to secure critical watersheds and ecoregions from 

impoverishment, hence they recommend improved conservation strategies outside of 

protected areas. 

(Aguiar, 2006) introduces an empirical-statistical, spatially-explicit model in the Brazilian 

Amazon. Spatial lag regression models and multiple linear regression models are used at 

two spatial scales to find statistical relationships between different land-use types and 

potential land-use determining factors. These factors come from a list of variables 

categorized in the following groups: accessibility to markets, economical attractiveness, 

public policies, agrarian structure, demographical, technological, and environmental 

factors. The applied modeling approach allows simulating different levels of law 

enforcement, road paving and creation of protected areas. Various combinations of factors 



 Literature Review 

and model parameters are used in five exploration scenarios from 1997 to 2020. Significant 

variations in relative importance of land-use determining factors are found between 

different regions. A result of these differences is that the impact of local policies also 

varies across space. The author thus advises to account for this intra-regional heterogeneity 

in land-use change models of the Amazon. A further conclusion is that connectivity 

measures to national markets are amongst the most important factors to capture 

deforestation dynamics in the new Amazonian frontiers, but they can only explain land-use 

patterns in combination with other factors.  

(Moreira, Costa, Aguiar, Câmara, & Carneiro, 2009) develop an approach to build a multi-

scale land-use change model including top-down and bottom-up interactions and test this 

dynamic coupling effort with a macro model of the Brazilian Amazon and a local model of 

Iriri/Terra do Meio in Pará state. At the macro scale (25x25 km
2
 cells) the empirical-

statistical modeling approach and data as described in (Aguiar, 2006) are used. At the local 

scale (1x1 km
2
 cells) an agent-based model is implemented. Two sets of agents are 

defined, each with a set of actions and decision rules. The multi-scale model contains top-

down actions, e.g. to send demand for land-use types to the local scale, and bottom-up 

feedbacks, e.g. to notify the global scale that the demand could not be allocated due to 

local policy restrictions. Four combinations of scenarios at both levels are tested from 1997 

to 2025. The results indicate that local conditions do not determine the pressure for land-

use change alone, it is also regulated by processes acting at higher hierarchical levels. To 

account for local and regional land-use change processes under varying biophysical and 

socioeconomic conditions is thought to be one of the strengths of multi-scale models. The 

authors thus conclude that models using top-down and bottom-up interactions can detect 

processes, which might are missed considering single scale models. 

2.1.3 CLUE modelling framework and its adaptation to the Amazon 

The CLUE (Conversion of Land-Use and its Effects) modeling framework is a dynamic, 

multi-scale land-use and land-cover change model (De Koning, Veldkamp, Kok, & 

Bergsma, 1998; Kok, Farrow, Veldkamp, & Verburg, 2001; Veldkamp & Fresco, 1996; 

Verburg, De Koning, Kok, Veldkamp, & Bouma, 1999). Currently three different versions 

exist: CLUE for regional to global scale analysis, CLUE-CR as the first implementation of 

the CLUE model applied to Costa Rica and CLUE-S for regional scale analysis. 
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The CLUE model has the objective to provide a spatially-explicit, multi-scale, quantitative 

description of land-use changes. It explores possible changes in the near future under 

different development scenarios. The model consists of a demand and an allocation 

module. In the non-spatial demand module scenarios of the quantity of change define how 

much change takes place in every time step. The spatial allocation module calculates where 

the changes are likely to happen. Connections between potential explanatory variables, 

such as socio-economic or environmental variables and various land-use types are assessed 

by multiple regression analysis. The CLUE model has been applied to various regions to 

study a large variety of land-use change issues, e.g. agricultural intensification, 

urbanization or deforestation. (Verburg & Overmars, 2007) 

CLUE-CR was the first dynamic multi-scale land-use/cover change model based on the 

CLUE framework. It was applied to Costa Rica at local, regional and national scales 

(Veldkamp & Fresco, 1996b). Written in PASCAL, the model incorporates five different 

land-use/cover classes in percent of total grid cell cover and uses a set of scale-dependent 

land-use/cover linear regressions as input. Altitude, temperature, relief, soil drainage, rural 

and urban population and other data is utilized in the nested scale analysis. Analyzing two 

scenarios the authors deduced that the CLUE-CR model is able to simulate effects of 

several driving forces on land-use/cover change in Costa Rica (Veldkamp & Fresco, 

1996b). 

CLUE-S (the Conversion of Land-Use and its Effects at Small regional extent) has been 

developed for regional scale analysis (Veldkamp et al., 2002). The major change to CLUE 

and CLUE-CR is the different data representation. The land-use/cover is no longer 

represented as a fraction of total grid cell cover, each grid cell contains only the dominant 

land-use/cover type. Thus CLUE-S has primarily been developed for resolutions from 

some meters up to 1000 meters for areas where high-resolution data is available. Two 

modules are incorporated in the modeling procedure. The non-spatial analysis uses driving 

factors of change to calculate the demand for the different land-use/cover types, while in 

the second module the spatial analysis and land-use/cover allocation takes place. The 

allocation in the CLUE-S model can be determined by four different methods or a 

combination of them: empirical analysis, decision rules, neighborhood functions and 

conversion elasticity. The CLUE-S model is a tool for analysis of land-use processes and 

can be used to study different mechanisms of land allocation (Verburg & Overmars, 2007). 
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A schematic representation of the spatial allocation module of the CLUE model is shown 

in Figure 2-1. The CLUE model allocates the area of each land-use type as defined by the 

demand module. This procedure is sequentially realized first for the coarse scale and then 

for the fine scale. Connections between potential explanatory variables, such as bio-

physical or socio-economic variables and the land-use types are assessed by multiple 

regression analysis. With the help of this set of multiple regressions for all land-use types 

for both scales, the suitability for each cell for a certain land-use type can be calculated. 

This suitability (“regression” cover) is compared to the actual cover percentage. Based on 

this difference the value for the land-use type is changed in an iterative procedure. 

Competition between land-use types is incorporated in this process if the total cover 

percentage of all land-use types in a grid cell exceeds the total cell area. In this case the 

changes in each land-use type are modified corresponding to the competitive strength of 

each land-use type, which is based on the change in demand and the difference between 

present cover and “regression” cover. A detailed description can be found in (Verburg, De 

Koning, Kok, Veldkamp, & Bouma, 1999). 

 

Figure 2-1: Schematic representation of the allocation at two scales (Verburg, De Koning, Kok, Veldkamp, & 

Bouma, 1999) 
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The CLUE model has been adapted by (Aguiar, 2006) to be applicable to the Brazilian 

Amazon. For a better distinction, this model, which has been developed at INPE, is called 

AmazonClueINPE. Several aspects had to be accounted for in the implementation of the 

model and are described in the following paragraphs.  

Initial modeling decisions involved the definition of spatial and temporal scales and the 

choice of land-use classes. Forest and five main agricultural land-uses, namely pasture, 

temporary agriculture, permanent agriculture, planted forest and non-used agricultural 

areas, serve as dependent variables at a 25x25km
2
 and a 100x100km

2
 scale. Potential 

explanatory factors comprise accessibility to markets, economical attractiveness, 

demographical, technological, agrarian structure, public policies and environmental 

factors. In addition to regarding the whole Brazilian Amazon, the study area is also 

subdivided into three macro regions at the fine scale, which allows considering diverse 

characteristics in different regions. These regions are the Densely Populated Arch, the 

Central Amazon and the Oriental Amazon. The temporal settings of the model show a time 

span from 1997 to 2020 with a resolution of one year.  

The statistical analysis led to the definition of several alternative models for each region. 

Log-transformation of the land-use classes and certain potential explanatory variables was 

used to account for non-linear relationships and thus improved the regression results. Due 

to correlation some variables could not be used in the same statistical model. 

The AmazonClueINPE model uses a modified allocation procedure to account for specific 

requirements of the study area and to allow analyzing different law enforcement scenarios. 

When deforestation reaches a certain threshold (lim_forest) in a cell, a different allocation 

algorithm is used. This method allows simulating if the Federal Law is observed or not. 

The Federal Law states that 80% of forest inside private properties must be preserved. As 

this law is currently largely disregarded, this threshold can simulate possible law 

enforcement actions. A second parameter allows controlling the maximum change in a cell 

in one period of time. This parameter was introduced because the AmazonClueINPE 

model initially concentrated changes only in a few cells with high suitability for change. 

With the max_change parameter an upper limit for the possible change in each cell in a 

given period of time is established. 
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In addition to lim_forest and max_change, some other adjustable parameters exist. The 

scale factor (scale_fact) gives the possibility to increase the importance of one scale in 

respect to the other and thus favor one of the two scales. A value of 1 treats both scales 

likewise. The max_iter value defines the maximum number of iterations in the allocation 

process. The max_demand_diff parameter indicates the maximum allowed difference 

between demand and allocated change. It is defined in terms of the demand.  

Table 2-1: Parameters for the AmazonClueINPE allocation module 

parameter description 

lim_forest forest threshold to preserve 20% of cell area from deforestation 

max_change upper limit for change in one period of time 

scale_fact to favor one scale in respect of the other 

max_iter maximum number of iterations 

max_demand_diff maximum allowed difference between demand and allocated change 

Various combinations of demand and allocation scenarios are defined to explore the 

influence of potential land-use determining factors on land-use changes under certain 

policy conditions and market constraints in the Brazilian Amazon. 

The exploration of different statistical models for the three macro-regions led to an 

important conclusion. The model results indicate that using the statistical model of the 

Densely Populated Arch (arch25) in all spatial regions produces more realistic spatial 

patterns of the deforestation process than using regression models from other macro-

regions or the whole Amazon. (Aguiar, 2006) states that this model (arch25), due to the 

inclusion of a distance to roads and a connection to markets measure delivers better results 

of the AmazonClueINPE model. The author points out that applying the arch25 model also 

to the other macro-regions should not lead to the assumption that the process in the Arch is 

likely to happen in other regions in the same way, but that it “captures the current and 

possible axes of development”. Important other variables in this model include a protected 

areas variable, distance to timber production areas and percentage of fertile soils. 

The first version of the AmazonClueINPE model was written in C++ and tested in the 

before mentioned study (Aguiar, 2006). (Moreira, 2009) implemented the 

AmazonClueINPE model in the TerraME modeling language, which is part of the 

TerraME modeling framework and described in section 2.3. The modular implementation 

allows top-down and bottom-up interactions between multiple scales through the 

integration of spatial, temporal and analytical couplers. A general description of the two 

studies was given in section 2.1.2. 
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2.2 Climatic Models coupling to LUCC models 

2.2.1 Overview 

Climate affects vegetation, but vegetation also has the potential to affect climate (Cox et 

al., 2004; Foley, Costa, Delire, Ramankutty, & Snyder, 2003; Oyama & Nobre, 2004). 

Vegetation models have been developed to investigate these complex bidirectional 

interactions. According to (Cook & Vizy, 2008) two kinds of vegetation models are 

currently in use. The first type is the potential vegetation model, which determines 

vegetation in equilibrium with a given climate. Due to other vegetation type determining 

factors apart from climate (i.e. topography, soil type, etc.) there is a discrepancy between 

the spatial distribution of potential and natural vegetation. Nevertheless reasonable 

agreement between the global distribution of potential and natural biomes at large spatial 

scales can be reached (Oyama & Nobre, 2004). The second type of vegetation models is 

the dynamic vegetation model, which is fully interactive and simulates the impact of 

vegetation on the exchange of moisture, heat and momentum between the atmosphere and 

the land surface (Cook & Vizy, 2008). Researchers can draw important conclusions about 

vegetation and climate interactions by coupling both kinds of vegetation models to 

atmospheric general circulation models (AGCM).  

The biophysical environment is continuously altered by human influence, which is in 

general not represented in dynamic global vegetation models (GLP, 2005). The Lund-

Potsdam-Jena managed Land model (Bondeau et al., 2007) builds an exception, as it 

integrates dynamic land-use at a global scale.  

Numerous LUCC models, as discussed in section 2.1, can be used to study the human 

involvement in land-use change processes. Consideration of anthropogenic impact is a 

prerequisite for the construction of integrated land system models as conceptualized in 

(GLP, 2005) or (Schaldach & Priess, 2008). These land system models consist of human 

and environment sub-systems, which influence each other through land-use and 

environmental change. Constructing such an integrated land system model, which 

incorporates biophysical characteristics and biogeochemical cycles, as well as a land-use 

model as a representation of human decision-making is an ambitious challenge. Due to the 

complexity of the involved interactions between human and environment subsystems, land 

system models are still rare in literature (Schaldach & Priess, 2008). Further collaborative 

work between various research areas is inevitable to successfully couple LUCC models to 
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climate or vegetation models, which would be an important step to further explore the 

Earth System. 

2.2.2 CPTEC-PVM 

CPTEC-PVM is a potential vegetation model, developed at INPE and introduced in 

(Oyama & Nobre, 2004). It comprehends a water balance model to derive water-related 

quantities from meteorological input data to distinguish between potential vegetation types. 

In its second generation CPTEC-PVM2 (Lapola, Oyama, & Nobre, 2009) considers CO2-

plant interactions through plant physiological processes and their interactions with the 

water cycle. The water balance model of CPTEC-PVM2 slightly differs from the first 

version as it calculates canopy resistance, which is used to estimate evapotranspiration, in 

terms of net primary productivity and atmospheric CO2 (Lapola, Oyama, & Nobre, 2009).  

Oyama and Nobre coupled the CPTEC-PVM to an AGCM to look for climate-vegetation 

equilibrium states for Tropical South America under present-day climatic conditions 

(Oyama & Nobre, 2003). Two equilibria were identified. The first equilibrium state is the 

current biome distribution. In the second equilibrium state savanna replaces forests in 

eastern Amazonia and a semi-desert area appears in the driest portion of Northeastern 

Brazil. The authors point out that tropical Brazil lies under increasing land-use pressure 

and that deforestation and other land cover and land-use changes could weaken the 

hydrological cycle in Amazonia and Northeastern Brazil and could tip by itself the climate-

vegetation system towards this new drier equilibrium state with savannization and 

desertification (Oyama & Nobre, 2003). On the contrary (Malhi et al., 2008) point out that 

resilience of Amazonian forest ecosystems to climatic drying is currently underestimated 

in vegetation-climate models. According to (Oliveira, Dawson, Burgess, & Nepstad, 2005) 

drought stress is partly being avoided through hydrological redistribution in tropical 

forests, which corresponds to the water transfer by roots to drier regions of the soil profile. 

(Nepstad, Stickler, Soares-Filho, & Merry, 2008) mention that some coupled vegetation-

climate models show savannization in parts of the Amazon, but that the majority of these 

modelling approaches does not support this theory, while noting that effects from factors 

like fire activity or land-use are not included in these models. 

(Salazar, Nobre, & Oyama, 2007) used CPTEC-PVM to asynchronously couple it to 

fifteen Coupled Ocean-Atmosphere General Circulation Models to reveal the effect of 

projected climate change on vegetation based on two emission scenarios. The authors 
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compared the projected distribution of biomes to the potential vegetation forced by 

present-day climate. They mention that though various climate change studies show that 

climate points towards a warmer future for South America, there is yet uncertainty how 

rainfall, evapotranspiration and amount of soil water will change due to the changing 

climate especially in Amazonia and Northeastern Brazil. The authors findings indicate that 

vegetation in tropical South America will mainly change through the conversion of tropical 

forest into savanna, due to an increase in dry season length and/or decrease of annual soil 

moisture, mainly concentrated in southeastern Amazonia. (Salazar, Nobre, & Oyama, 

2007). 

(Cook & Vizy, 2008) used CPTEC-PVM to asynchronously couple it to a regional 

atmospheric model to study the effects of twenty-first-century climate change on the 

tropical and subtropical climate and vegetation of Southern America. The results of the 

coupled region model simulations indicate a 70% loss of the Amazon rain forest by the end 

of the twenty-first century with much of the forest being replaced by savanna vegetation 

and a southward and westward expansion of caatinga vegetation, which refers to the 

semiarid vegetation of mixed shrubland and grassland that primarily exists in the drought-

prone northeastern region, into present day savanna regions.  

(Lapola, Oyama, & Nobre, 2009) used CPTEC-PVM2 driven by meteorological input data 

from fourteen coupled ocean-atmosphere global climate models under two different 

greenhouse gas emission scenarios to investigate the role of the CO2 fertilization effect on 

future biome distribution in South America. Results show that there must be substantial 

biome shift in the Amazon, including substitution of forest by savanna if the CO2 

fertilization effect does not play a role in tropical ecosystems or if the dry season length 

exceeds four months. Otherwise, the CO2 fertilization effect could prevent major biome 

changes in the Amazon. 

In this thesis a water balance model will be used to derive variables that represent wetter or 

drier climatic conditions, which can serve as input for the LUCC model. The water balance 

model is a submodel of CPTEC-PVM as described in (Oyama & Nobre, 2004). Although, 

according to (Lapola, Oyama, & Nobre, 2009), CPTEC-PVM is limited for future climate-

vegetation simulations and its successor CPTEC-PVM2 was already available, in this work 

the water balance model of CPTEC-PVM is used because it outputs two water-related 
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factors which can be better compared to already existing environmental variables of the 

LUCC model and thus give comprehensible results.  

2.2.2.1 Water Balance Model 

The water balance model of CPTEC-PVM is based on the one from (Willmott, Rowe, & 

Mintz, 1985). It produces a consistent global distribution of soil moisture (Oyama & 

Nobre, 2004) by estimating the water balance over a homogeneous soil layer covered by 

short grass. Different soil and vegetation types are not taken into consideration. The 

difference to (Willmott, Rowe, & Mintz, 1985) is that actual evapotranspiration is 

calculated using the Penman-Monteith equation, instead of Thornthwaite’s equation and 

that the possibility of soil freezing has been included. The water balance model is used to 

calculate two moisture variables which later on serve as input in the PVM classification 

algorithm. The wetnessindex (H) is used to distinguish between wet and dry climates and 

the seasonalityindex (D) to represent the soil moisture seasonality. The variables are 

defined according to 
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where E  is the actual and maxE  the maximum evapotranspiration, w  the soil water degree 

of saturation (ratio between soil water storage and soil water availability) and i  

corresponds to the i
th

 month. The detailed formulation of the water balance model can be 

found in (Oyama & Nobre, 2004). 

2.2.2.2 CPTEC-PVM Classification 

The two moisture variables serve as input for the algorithm to define the potential biome 

distribution based on the classification from (Dorman & Sellers, 1989). The three other 

variables in the PVM classification process are related to temperature. They are the mean 

temperature of the coldest month (TC) and the number of growing degree days using a 0°C 

(G0) and a 5°C (G5) threshold. The five input variables for the PVM are calculated for each 
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cell or grid point after every run of the water balance model. The algorithm to obtain the 

potential biome is shown in Figure 2-2.  

 

Figure 2-2: Algorithm to obtain the potential biome from environmental variables (Oyama & Nobre, 2004)
 4
 

Following the potential biome classification algorithm the CPTEC-PVM outputs the 

current potential vegetation as shown in Figure 2-3. 

                                                 
4
 Tc: temperature of the coldest month, G0: growing degree days with 0°C threshold, G5: growing degree 

days with 5°C threshold, H: wetnessindex, D: seasonalityindex 
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Figure 2-3: Current potential biomes for South America (Salazar, Nobre, & Oyama, 2007) 

In this work the biome classification of the CPTEC-PVM is not used. The water balance 

model is used to derive the two variables wetness- and seasonalityindex (Formulas 2-1 and 

2-2) which are added to the other potential determining factors (Table 3-1) which are used 

in the analysis of land-use and land-cover changes in the Legal Amazon (Chapter 4). 

2.3 The TerraME modeling environment 

TerraME
5
 is a programming environment for spatial dynamical modeling in various 

application areas (Carneiro, 2006). It is based on TerraLib
6
, an open source GIS classes 

and functions library for large-scale environmental and socio-economic applications 

(Câmara et al., 2008). TerraME provides a nested cellular automata model and services for 

spatiotemporal data analysis and management, model development, simulation and 

assessment. It supports cellular automata, agent-based models and network models 

(TerraME Website, 2010). Land-use change models and hydrological models belong to the 

typical applications of TerraME. The modules and services provided by TerraME are 

visualized in Figure 2-4. It shows a typical TerraME program sequence. A TerraME model 

can be written in any text editor. The model source code is syntactically checked and 

executed by the TerraME interpreter, which retrieves the required data from a TerraLib 

database and stores it afterwards. TerraView
7
 can be used to visualize and analyze the data.  

                                                 
5
 www.terrame.org 

6
 www.terralib.org 

7
 www.dpi.inpe.br/terraview 
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Figure 2-4: TerraME modules and services (Carneiro, 2006) 

The TerraME modeling language is an extension of the Lua scripting language 

(Ierusalimschy, de Figueiredo, & Celes, 1996) and has been designed to allow the 

development of models in a comprehensible way, also for non-professional programmers.  

The current version of TerraME (RC4 for TerraLib 3.2) works under Windows (XP and 

Vista) and supports Access and MySQL databases. TerraME has been developed as a joint 

effort among TerraLab (Laboratory for Modelling and Simulation of Land Systems), at 

Federal University of Ouro Preto, with Image Processing Division (DPI) and Earth System 

Science Center (CCST), at INPE (TerraME Website, 2010).   

TerraView is an open source GIS application based on the TerraLib GIS library for 

visualization and analysis of geographical data. The software supports various raster and 

vector data formats. The data is stored in relational or geo-relational databases as 

ACCESS, PostgreSQL, MySQL or Oracle (TerraView Website, 2010). Additional 

functionality can be reached by adding TerraView plugins, which are constantly developed 

by the TerraView community. 

aRT
8
 (Andrade, Junior, & Fook, 2005) is a R

9
 package which provides the integration 

between the statistical software R and the GIS library TerraLib. Thus it allows accessing 

and analyzing of geospatial data from a TerraLib database in R. 

                                                 
8
 www.leg.ufpr.br/doku.php/software:art 
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TerraME and TerraLib are freely available under the GNU Lesser General Public License, 

TerraView, R and aRT under the GNU General Public License. 

                                                                                                                                                    
9
 www.r-project.org 
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3 Methods 

In this chapter the study area is introduced and the methods are described, followed by 

sections about the CPTEC-PVM implementation and Land-use change modeling, including 

database construction, statistical analysis and the dynamic land-use model 

AmazonClueINPE. 

3.1 Study area 

The study area is the Brazilian Amazon (Legal Amazon, Amazônia Legal) which consists 

of the states Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, Roraima, Tocantins 

and a part of Maranhão. The Legal Amazon comprises an area of approximately 5 million 

km
2 

(58% of Brazilian territory) and was initially introduced for regional planning 

purposes (Andersen, Granger, Reis, Weinhold, & Wunder, 2002). It can be divided into 

three macro regions as defined by (Becker, 2005). The first macro region is the Densely 

Populated Arch, where most of the high population density areas, roads and centers of 

economy are. The second is the Central Amazon, which is the most vulnerable area in the 

Amazon, because of major roads crossing its interior. The third macro region is called 

Occidental Amazon, which is the most preserved area, because it is not cut by main roads 

and people settled to a large extent only in the area around Manaus, while the rest of the 

region remained mostly abandoned. 
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Figure 3-1: The Brazilian Amazon and its three macro regions (Becker, 2005; INPE, 2010) 

The study area is subdivided into regular cells at two spatial resolutions. The cells have an 

extent of 100x100km
2
 at the coarse scale and 25x25km

2
 at the fine scale. Based on a 

deforestation map from 1997 derived by INPE through the PRODES project (INPE, 2010) 

cells with a large amount of non-forest vegetation or mainly covered by clouds are 

excluded from further analysis (Aguiar, 2006). This results in the generation of 5228 cells 

at the fine scale and 363 cells at the coarse scale. The amount of deforestation in each cell 

is taken from the deforestation map (INPE, 2010), while the proportion of the different 

land-use types in each cell is computed from IBGE Agricultural Census 1996 (IBGE, 

1996). The detailed process can be found in (Aguiar, 2006). 

3.2 CPTEC-PVM implementation 

The CPTEC-PVM and the corresponding water balance model were implemented in the 

TerraME modeling language based on the original version (Oyama & Nobre, 2004) written 

in FORTRAN 77. The general description can be found in section 2.2.2. The full 

mathematical description is available in (Oyama & Nobre, 2004)
1
. Although only the 

                                                 
1
 (Oyama, 2005) changed some threshold values in the biome classification algorithm after the publication of 

this paper, which lead to the generation of CPTEC-PVM v2. The implementation in TerraME and the 
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results of the water balance model are used in this thesis, the PVM was fully implemented 

to allow for future coupling to other models written in the TerraME modeling language. 

The input data for the potential vegetation model, namely the mean values per month for 

precipitation, surface temperature and surface pressure as well as a land-sea mask are 

obtained from the climate data archive "Terrestrial Air Temperature and Precipitation: 

Monthly and Annual Time Series (1950 - 1999) (V 1.02)" (Willmott & Matsuura, 2001). A 

preliminary routine stores it in the database to have simple access to the data. The result of 

this step is that the data can easily be accessed and processed within the TerraME 

environment and be visualized with TerraView.  

The source code is split up into four modules to provide a comprehensible structure. 

main.lua sets the directories, loads the three modules and starts the simulation by executing 

the TerraME environment env. 

Code 3-1: main.lua 

-- set directories 

---------------------------------------- 

 DIR = "projects\\pvm\\source\\" 

 DATABASEDIR = "database\\" 

 

-- load files 

---------------------------------------- 

 dofile (DIR.."func.lua") 

 dofile (DIR.."wbm.lua") 

 dofile (DIR.."pvm.lua") 

 

-- run simulation 

---------------------------------------- 

 defBiome:build(); 

 env:add(cs); 

 env:add(defBiome); 

 env:execute(1); 

wbm.lua incorporates the water balance model. From monthly meteorological data of 

precipitation, surface temperature and surface pressure it calculates the two water-related 

environmental variables wetness- and seasonalityindex, which are used as potential land-

use determining factors in the LUCC analysis. In addition to these two variables the three 

other variables needed for the biome classification algorithm, namely the temperature of 

the coldest month, the growing degree days with 0°C threshold and the growing degree day 

with 5°C threshold are as well calculated in this module. The module consists of functions 

                                                                                                                                                    
screenshot in this chapter correspond to this version (v2), which results in minor differences between the 

figure from the original paper (v1, Figure 4-2) and the screenshot from TerraView (v2, Figure 4-1). 
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for the water balance model, the surface water budget for a month, evapotranspiration and 

runoff calculations. 

pvm.lua comprehends the definition of the cellular space (Code 3-2) and the automaton to 

calculate the potential biome number of each cell on basis of the environmental variables 

delivered by the water balance model module.  

Code 3-2: pvm.lua: defining the cellular space 

-- define cellular space 

 cs = CellularSpace{ 

  dbType = "ADO", 

  host = "localhost", 

  database = DATABASEDIR.."amazonia.mdb", 

  user = "", 

  password = "", 

  layer = "cells25", 

  theme = "cells25", 

 } 

 cs:load(); 

The biome classification algorithm is implemented as an Automaton, which consists of a 

state for each biome. These states are composed of Jump and Flow conditions. If the Jump 

condition applies to the cell it is send to another State. If it does not apply, the Flow 

condition is executed, which assigns the corresponding value to the potential biome 

number variable (bpot). 

Code 3-3: pvm.lua: defining the automaton (extract) 

-- define automaton 

 defBiome = Automaton { 

  it = Trajectory { 

   cs, 

   -- only cells that contain data 

  function (cell) return true; 

   end, 

   }, 

... 

   State { 

   id = "tropical forest", 

   Jump { 

    function (event, automaton, cell) 

     return cell["weti"] < 0.84 or 

      cell["seai"] < 0.86 or 

      cell["tmin"] < 11; 

    end, 

    target = "savanna" 

   }, 

   Flow { 

    function(event, automaton, cell) 

     cell.bpot = 1; 

    end 

   } 

  }, 

  State { 
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   id = "savanna", 

   Jump { 

    function (event, automaton, cell) 

     return cell["tmin"] < 14; 

    end, 

    target = "grasslands" 

   }, 

   Flow { 

    function(event, automaton, cell) 

     cell.bpot = 6; 

    end 

   } 

  } 

... 

} 

The environment env is defined in the PVM module. It defines a timer which includes only 

one event. This event first calls the water balance model module for each cell to calculate 

the environmental variables and then executes the defBiome automaton to calculate the 

potential biome numbers. In the last step the five variables and the potential biome number 

are stored into the new table env_var in the database. 

Code 3-4: pvm.lua: defining the environment 

-- define environment 

env = Environment{ 

 id = "env", 

 -- define timer 

 time = Timer{ 

  Pair{ 

   Event{ time = 1, period = 1, priority = 0}, 

   Message { 

    function (event) 

     -- run water balance model 

     for i, cell in pairs(cs.cells) do 

      wbm(cell); 

     end; 

     cs:synchronize(); 

 

     -- run potential vegetation model 

     defBiome:setTrajectoryStatus(true); 

     defBiome:execute(event); 

     cs:synchronize(); 

     cs:save(event:getTime(), "env_var", 

{"tmin",  

      "gdd0", "gdd5", "weti", "seai", "bpot"}) 

    end 

   } 

  }, 

 } 

} 

The functions module (func.lua) includes basic auxiliary routines. 

The potential biome (bpot) and the five variables needed in the biome classification 

algorithm, namely wetnessindex (weti), seasonalityindex (seai), the mean temperature of 
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the coldest month (tmin) and the number of growing degree days using a 0°C (gdd0) and a 

5°C (gdd5) threshold are stored in the database. In this thesis only the wetnessindex and 

seasonalityindex will be used for further analysis. The results of the CPTEC-PVM 

implementation are presented in section 4.1. 

3.3 Land-use change modeling 

3.3.1 Database Construction 

3.3.1.1 Land-use classes 

Basically two land-use types are used in this work: forest and deforested areas. For further 

analysis the class deforested areas is divided into five different subclasses. These classes 

are pasture, temporary agriculture, permanent agriculture, non-used agricultural land and 

planted forest. Every cell contains the proportion of the area covered by each land-use 

class inside the cell by total cell area, thus the values of the six land-use classes in each cell 

sum up to a value of 1. 

Forest 

The land-use class forest consists of all areas that are classified as primary forest by the 

PRODES project.  

Deforested Areas 

This class comprehends all deforested areas detected by INPE until 1997. The PRODES 

project (INPE, 2010) detects clear-cut areas greater than 6.25 ha. A short description of the 

land-use types based on definitions from the Census of Agriculture 1996 (IBGE, 1996) 

follows. 

Pasture 

The land-use class pasture includes all areas defined as planted pasture. These areas are 

especially cultivated for cattle ranching. In 1996 approximately 70% of deforested areas 

fell into this class, hence it was the major land-use type after forest.  

Temporary agriculture 

The class temporary agriculture includes areas used for planting or being prepared for 

planting short-term crops, which require new seeding after each harvest (rice, manioc, 

maize, soybeans, sugarcane etc.). Areas which have previously been used for planting 
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short-term crops, but have not been utilized for no longer than four years, fall also into this 

class. 

Permanent agriculture 

The class permanent agriculture includes areas used for planting or being prepared for 

planting long-term crops, which keep producing during successive years without the 

necessity of new seeding (cacao, coffee, cotton etc.). Also nurseries of permanent-crop 

seedlings fall into this class. 

Non-used agricultural land 

The class non-used agricultural land summarizes areas that are abandoned or fallow, as 

they have not been used for a period of more than four years, although being suitable for 

crops, pasture or woods.  

Planted forest 

This land-use class summarizes areas which are cultivated or being prepared for planting 

trees like black acacia, eucalyptus, pine etc.. Also seedling nurseries of forest essences fall 

into this category. 

3.3.1.2 Spatial land-use patterns 

Deforested Areas 

According to measurements by INPE (INPE, 2010) around 180.000 km
2
 of forest have 

been cut down between 1997 and 2006. The major part of deforestation took place in the 

Densely Populated Arch in the states of Mato Grosso, Pará, Rondônia and Maranhão. 

Figure 3-2 shows the deforestation map of 1997 and Figure 3-3 the relative deforestation 

map from 1997 to 2006.  



 Methods 

 

Figure 3-2: Deforestation in 1997 (INPE, 2010) 

 

Figure 3-3: Deforestation from 1997 to 2006 (INPE, 2010) 

Pasture and temporary agriculture 

Pasture is the major non-forest land-use type in the Amazon and accounted for almost 70% 

of deforested areas in 1997. Hence the pattern in 1997 (Figure 3-4) shows high similarity 
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to the deforestation map. Figure 3-5 shows the relative change of pasture between 1997 

and 2006 on basis of the Agricultural Census data from IBGE (IBGE, 1996; IBGE, 2009). 

A general increase of pasture can be seen in the Densely Populated Arch in the states of 

Pará, Mato Grosso, Rondonia and Maranhão, since usage as pasture is the most important 

land-use type for deforested areas. There is also a clear pasture increase along the 

Transamazônica (BR-230) and along the BR-163 in Pará. There are only a few cells in 

Mato Grosso and Pará with a decrease in pasture. 

 

Figure 3-4: Pasture in 1997 (IBGE, 1996; INPE, 2010) 
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Figure 3-5: Pasture from 1997 to 2006 (IBGE, 1996; IBGE, 2009; INPE, 2010) 

Temporary agriculture patterns add up to 14% of deforested area in 1997 (Figure 3-6). 

Consideration of this land-use class is important to detect land-use change processes 

related to the cultivation of temporary crops, e.g. soybeans. The analysis of this land-use 

type in the period of 1997 to 2006 (Figure 3-7) shows two distinct processes, a pattern of 

decreasing temporary agriculture in Maranhão and an increasing pattern in Mato Grosso. 

This increasing pattern in the south of the Brazilian Amazon reflects the expansion of 

mechanized agriculture in central Mato Grosso, which might also explain some of the 

decreasing pasture values in this area.  
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Figure 3-6: Temporary agriculture in 1997 (IBGE, 1996; INPE, 2010) 

 

Figure 3-7: Temporary agriculture from 1997 to 2006 (IBGE, 1996; IBGE, 2009; INPE, 2010) 
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3.3.1.3 Potential land-use determining factors 

The potential land-use determining factors used in this work come from a pool of variables 

defined in (Aguiar, 2006) and can be grouped into different classes. The six classes are 

Accessibility, Economic Attractiveness, Public Policies, Demographics, Agrarian Structure 

and Environment. The variables derived from the Water Balance Model of the CPTEC-

PVM – wetnessindex and seasonalityindex – and the slope and altimetry variables are 

added to the Environment group. Some explanatory variables – as well as the land-use 

variables – are logarithmic transformed to account for non-linear relationships between 

them. The variables are listed in Table 3-1. The socioeconomic factors are visualized in 

Figure 3-8 to Figure 3-20 and the environmental factors in Figure 3-21 to Figure 3-29 for 

the scale 25x25 km
2
. 

Table 3-1: potential land-use determining factors (adapted from (Aguiar, 2006)) 

Category Variablename Description Unit Source 

Accessibility log_dist_urban_areas 
euclidean distance to urban 

centers (log) 
km (log) IBGE 

 log_dist_roads 
euclidean distance to roads 

(log) 
km (log) IBGE 

 log_dist_paved_roads 
euclidean distance to paved 

roads (log) 
km (log) IBGE 

 log_dist_non_paved_roads 
euclidean distance to non 

paved roads 
km (log) IBGE 

 log_dist_large_rivers 
euclidean distance to large 

rivers 
km (log) IBGE 

 conn_markets 

indicator of strength of 

connection to national 

markets through roads 

network 

- IBGE 

 conn_sp 

indicator of strength of 

connection to São Paulo 

through roads network 

- IBGE 

 conn_ports 

indicator of strength of 

connection to ports through 

roads network 

- IBGE 

Economic 

Attractiveness 
log_dist_wood_extr_poles 

Euclidean distance to wood 

extraction poles (log) 
km (log) IBAMA 

 log_dist_min_deposits 
euclidean distance to mineral 

deposits (log) 
km (log) CPRM 

Public policies prot_all1 percentage of protected areas % of cell area 
IBAMA 

FUNAI 

Demographics log_pop_dens_96 population density in 1996 people/km
2
 IBGE 

 log_setl_nfamilies_70_99 
number of settled families 

from 1970 to 1999 (log) 

number of 

families (log) 
INCRA 

Agrarian 

Structure 
agr_area_small 

percentage of area of small 

properties 
% of cell area IBGE 

Environment soils_fert_B1 
percentage of high and 

medium to high fertility soils 
% of cell area IBGE 

 soils_fert_B3 percentage of wetland soils % of cell area IBGE 

 clima_humi_min_3_ave 
average humidity in the three 

drier months of the year 
% INMET 
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 weti wetnessindex - CPTEC-PVM 

 seai seasonalityindex - CPTEC-PVM 

 altitude_avg average elevation m SRTM 

 slope_flat 
percentage of flat areas (0°-

5°) 
% of cell area SRTM 

 slope_mod 
percentage of  moderately 

sloped areas (5°-15°) 
% of cell area SRTM 

 slope_steep 
percentage of steeply sloped 

areas (>15°) 
% of cell area SRTM 

Socioeconomic factors 

Accessibility 

This category comprises factors describing the accessibility of a given cell. Variables 

describe the Euclidean distance to the closest road, urban center or large river and indicate 

the strength of connection to national markets or ports through the roads network. 

 

Figure 3-8: distance to urban areas (log_dist_urban_areas) 
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Figure 3-9: distance to paved roads (log_dist_paved_roads) 

 

Figure 3-10: distance to non-paved roads (log_dist_non_paved_roads) 



 Methods 

 
Figure 3-11: distance to large rivers (log_dist_large_rivers) 

 

Figure 3-12: connection to markets (conn_markets) 
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Figure 3-13: connection to São Paulo (conn_sp) 

 

Figure 3-14: connection to ports (conn_ports) 
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Economic Attractiveness 

These factors determine economic attractiveness through the distance to wood extraction 

poles and mineral deposits. 

 

Figure 3-15: distance to wood extraction poles (log_dist_wood_extr_poles) 

 

Figure 3-16: distance to mineral deposits (log_dist_min_deposits) 
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Public Policies 

Various areas in the Brazilian Amazon are declared indigenous land, nature reserve or in 

some other way protected, which is represented by a protected area variable. 

 

Figure 3-17: protected areas (prot_all1) 
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Demographics 

These variables describe the demographic structure in a cell, from population density to the 

number of settled families. 

 

Figure 3-18: population density (log_pop_dens_96) 

 

Figure 3-19: number of settled families (log_setl_nfamilies_70_99) 
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Agrarian Structure 

The agrarian structure is represented by a variable summarizing the percentage of small 

properties in a cell. 

 

Figure 3-20: areas of small properties (agr_area_small) 

Environmental factors 

The environmental factors are composed of variables describing bio-physical 

characteristics (soil fertility, moisture), climatological conditions (humidity, wet-dry 

climate) and topographic properties (altitude, slope). 

 

Figure 3-21: fertile soils (soils_fert_B1, %) 
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Figure 3-22: wet soils (soils_fert_B3, %) 

 

Figure 3-23: humidity (clima_humi_min_3_ave, %) 
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Environmental factors from CPTEC-PVM 

These two environmental variables are derived by the water balance model of the CPTEC-

PVM. The wetnessindex relates to soil wetness to distinguish between wet and dry climate 

conditions, the seasonalityindex represents soil moisture seasonality. 

 

Figure 3-24: wetnessindex (weti) 

 

Figure 3-25: seasonalityindex (seai) 
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Integrating altimetry and slope data 

For a possible improvement in discriminating pasture and agriculture patterns altimetry 

and slope data are included as additional environmental factors at scale 25x25km
2
. The 

variables are derived from data of the Shuttle Radar Topography Mission (SRTM), which 

had the objective to generate the most complete high-resolution digital topographic 

database of the Earth by obtaining elevation data (SRTM Website, 2010). The data for the 

Brazilian Amazon is freely available with a spatial resolution of 3 arc-seconds 

(approximately 90 meters). 

Four variables are introduced, one regarding altitude and three regarding slope. The 

altitude variable contains the average elevation in meters in each cell. For the generation of 

the slope variables three classes are defined: flat (0°-5°), moderately sloped (5°-15°) and 

steeply sloped (>15°). The three variables: slope_flat, slope_mod, slope_steep represent 

the fraction of each of the corresponding classes in each cell in terms of total cell area.  

 

Figure 3-26: altitude (altitude_avg) 
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Figure 3-27: flat areas (slope_flat) 

 

Figure 3-28: moderately sloped areas (slope_mod) 
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Figure 3-29: steeply sloped areas (slope_steep) 

3.3.2 Statistical Analysis 

Followed by a preliminary survey of the variables from the list of factors defined in 

(Aguiar, 2006), the potential land-use determining factors listed in Table 3-1 are selected 

for further analysis. The objective of the statistical analysis is to find a statistical model 

that is capable of explaining the deforestation and land-use patterns in the Brazilian 

Amazon with the help of explanatory variables. Correlation analysis and linear regression 

analysis are used to detect relationships between the dependent land-use variables 

(deforested areas, pasture, temporary and permanent agriculture, non-used agricultural 

land, planted forest and forest) and the independent explanatory variables. Several 

regression models are defined and compared with special emphasis on the newly integrated 

environmental variables. Thereafter the most suitable models are selected for the 

AmazonClueINPE model to test their abilities for allocation and projection of several land-

use types. 

3.3.2.1 Exploratory Data Analysis 

Before carrying out the regression analysis, the potential land-use determining factors and 

the land-use variables are visually analyzed and undergo a correlation analysis. The 

Pearson correlation coefficient is defined by 
)(*)(

),(

YVarXVar

YXCov
, where Cov(X,Y) stands 
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for the covariance of the two random variables X and Y and Var(X) and Var(Y) for their 

variance. It is a measure for the linear stochastic relation of X and Y, but it does not 

describe explicit causal relations (Navratil & Staudinger, 2006). 

3.3.2.2 Regression Analysis 

Based on the exploratory data analysis, multiple linear regression analysis is used to 

investigate the importance of a number of independent factors on the dependent land-use 

variables. The mathematical model for each land-use variable is defined by   XY , 

where Y  is a (n x 1) vector of values for the dependent land-use variable in n cells, X  is a 

(n x k) matrix of a column of ones and (k-1) columns of explanatory variables in n cells,   

is an (k x 1) vector of regression coefficients (including intercept) and   an (n x 1) 

disturbance vector. The regression coefficients are estimated using the method of linear 

least squares. 

To compare the regression models different criteria are used.  One of them is the 

coefficient of determination R
2
, the fraction of variance explained by the model (R 

Reference Index, 2009), which is defined by 






2

2

2

)][(

][
1

yiy

iR
R , where  2][iR  is the 

residual sum of squares and   2)][( yiy  the total sum of squares. The adjusted R
2
, which 

penalizes for a higher number of explanatory variables, is also used. The Akaike 

Information Criterion (AIC) is another measure used to rank statistical models and hence 

applicable for model selection. It is defined by edfkLAIC *log*2  , where L is the 

likelihood and edf  the equivalent degrees of freedom. The smaller the value of the AIC, 

the better is the model. The Akaike Information Criterion is used in a stepwise procedure 

as a criterion for the selection of variables. To analyze the importance of the factors for a 

certain land-use the standardized regression coefficients (Beta values) are calculated. They 

can be interpreted as a measure of how many standard deviations of change in the 

dependent variable are related to a one standard deviation increase in the independent 

variable (Lesschen, Verburg, & Staal, 2005). Thus the importance of the different variables 

can be compared in terms of standard deviation units, disregarding their originally diverse 

units. 
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3.3.2.3 Alternative model construction 

The potential explanatory variables are grouped into different models for the regression 

analysis. Difficulties arise when trying to distinguish the effects of explanatory variables 

due to their tendency to be highly correlated, which is fairly common in land-use analysis 

(Lesschen, Verburg, & Staal, 2005). Thus the limitation that the correlation coefficients 

between variables in the same model are not allowed to have an absolute value higher than 

0.5, is considered. Hence probable important factors, for example distance to urban areas, 

distance to roads, connection to markets or the wetnessindex can not all be used together in 

the same model. This leads to the definition of several models with as little correlation 

between the factors but as much explanatory power as possible.  

One of the objectives of this thesis is to further improve the statistical models defined in 

(Aguiar, 2006) for the Densely Populated Arch macro region, to allow better 

discrimination of pasture and temporary agriculture patterns. This is attempted by 

including additional environmental variables from the water balance model of the CPTEC-

PVM and altimetry and slope data. The decision to build the statistical models at the fine 

scale for the Densely Populated Arch and not for the whole Brazilian Amazon is based on 

results in (Aguiar, 2006) where using a regression model of the Densely Populated Arch in 

all spatial regions led to more realistic spatial patterns in the dynamical modeling results. 

(compare section 2.1.3) 

The models are shown in Table 3-2 and Table 3-3 and are named after the probable most 

influential variables. The label environment includes the wetnessindex (weti), the altitude 

(altitude_avg) and the slope (slope_flat) variable. 

Table 3-2: Models at scale 100x100km
2
 

100.A
2
 100.B

2
 100.C 100.D 

urban + humidity roads + humidity urban + wetness roads + wetness 

    

log_dist_urban_areas  log_dist_roads  log_dist_urban_areas  log_dist_roads  

agr_area_small  agr_area_small  agr_area_small  agr_area_small  

conn_ports_inv_p  conn_ports_inv_p  conn_ports_inv_p  conn_ports_inv_p  

soils_fert_B1  soils_fert_B1  soils_fert_B1  soils_fert_B1  

soils_fert_B3  soils_fert_B3  soils_fert_B3  soils_fert_B3  

prot_all1  prot_all1  prot_all1  prot_all1  

log_dist_large_rivers  log_dist_large_rivers  log_dist_large_rivers  log_dist_large_rivers  

clima_humi_min_3_ave clima_humi_min_3_ave weti  weti  

                                                 
2
 adapted from (Aguiar, 2006) 
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Table 3-3: Models at scale 25x25km
2
 

25.A
2
 25.B  25.C 25.D 

roads + connection to markets 
roads + wetness + 

connection to São Paulo 

roads + environment + 

connection to São Paulo 

roads + environment + 

humidity 

    

log_dist_non_paved_road log_dist_non_paved_road log_dist_non_paved_road log_dist_non_paved_road 

log_dist_paved_roads log_dist_paved_roads log_dist_paved_roads log_dist_paved_roads 

agr_area_small  agr_area_small  agr_area_small  prot_all1 

log_setl_nfamilies_70_99  log_setl_nfamilies_70_99  log_setl_nfamilies_70_99 soils_fert_B1 

prot_all1  prot_all1  prot_all1 soils_fert_B3 

log_dist_large_rivers  log_dist_large_rivers  log_dist_large_rivers weti 

log_dist_min_deposits  log_dist_min_deposits  log_dist_min_deposits conn_sp_inv_p 

conn_ports_inv_p  conn_ports_inv_p  conn_ports_inv_p altitude_avg 

soils_fert_B1  soils_fert_B1  soils_fert_B1 slope_flat 

soils_fert_B3  soils_fert_B3  soils_fert_B3 clima_humi_min_3_ave 

conn_markets_inv_p weti weti  

log_dist_wood_extr_poles log_dist_wood_extr_poles log_dist_wood_extr_poles  

  conn_sp_inv_p conn_sp_inv_p  

  altitude_avg  

  slope_flat  

3.3.3 Dynamical modeling: AmazonClueINPE 

The LUCC model used in this work is based on the CLUE (Conversion of Land-Use and 

its Effects) model (De Koning, Veldkamp, Kok, & Bergsma, 1998; Kok, Farrow, 

Veldkamp, & Verburg, 2001; Veldkamp & Fresco, 1996; Verburg, De Koning, Kok, 

Veldkamp, & Bouma, 1999) and was adapted by (Aguiar, 2006) to be applicable for the 

Brazilian Amazon. It has the objective to provide a spatially-explicit, multi-scale, 

quantitative description of land-use changes. AmazonClueINPE is available in C++ and 

TerraME. In this thesis the TerraME version introduced in (Moreira, 2009) has been used. 

A review of the CLUE modeling framework and its adaptation to the Amazon is given in 

section 2.1.3. 

The AmazonClueINPE model consists of a demand and an allocation module. In the non-

spatial demand module scenarios of the quantity of change define how much change takes 

place every year in each land-use type. These demand values are calculated by multiplying 

the yearly deforestation rate, published by INPE (INPE, 2010), with a ratio for each land-

use type (Table 3-4).  

Table 3-4: area of land-use type per deforestation area in 1997 

Pasture 
Temporary 

agriculture 

Permanent 

agriculture 

Non-used agricultural 

areas 
Planted forest 

0.68 0.14 0.03 0.14 0.01 
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These ratios – area of land-use type per deforestation area – are calculated on basis of the 

Census of Agriculture in 1996 (IBGE, 1996) and assumed to not change in the time of 

study. Though values of the Census of Agriculture 2006 (IBGE, 2009) could have been 

used to interpolate the ratios for the intermediate years, it would have lead to problems, 

since the land-use type non-used agricultural land, which accounted for approximately 

14% of total deforested area in 1996, was not included in the agricultural census in 2006. 

The following parameters are used in the allocation module (Table 3-5). The model starts 

in 1997 and runs in one year time-steps until 2006. The deforestation threshold (lim_forest) 

that tries to slow down deforestation after a certain limit is reached in each cell is set to 0.2, 

which means that if less than 20% of the cell area is forest, a different allocation algorithm, 

which limits further deforestation is used. The maximum change value (max_change) per 

year is set to 0.5, which limits the change of a land-use type to a maximum of 50% of the 

cell area per time-step. The minimum elasticity (min_elasticity) is 0.1 for all land-use types 

and has an influence on the magnitude of change in the cells. The scale factor can be used 

to provide one of the two scales with higher importance. It is set to 1, hence no scale is 

favored. The number of iterations per time step is set to 2000. The maximum allowed 

difference (max_demand_diff) between demand and allocated areas is 0.01 times the 

demand. 

Table 3-5: Parameters for the AmazonClueINPE allocation module 

parameter description value 

lim_forest forest threshold to preserve 20% of cell area from deforestation 0.2 

max_change upper limit for change in one period of time 0.5 

scale_fact to favor one scale in respect of the other 1 

max_iter maximum number of iterations 2000 

max_demand_diff maximum allowed difference between demand and allocated change 0.01 

Some of the potential land-use determining variables are updated during the 

AmazonClueINPE model runs. These are the connection to markets and ports variables (in 

2000), as well as the distance to roads (in 2000) and the protected areas variables (in 2005). 

3.3.3.1 Exploration of alternative regression models 

An AmazonClueINPE model test plan is developed to test the different models of the 

regression analysis in a dynamical modeling approach. The attempt is to use as much 

complementary information at both scales as possible to test the ability of regression model 

combinations to simulate deforestation patterns and to discriminate different land-use 

types. Due to dissimilarities between the statistical models different spatial patterns are 
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reproduced for each test. The objective of defining a test plan is to analyze the strengths 

and constraints of the different regression models and their combinations to find models 

that are capable of reproducing the actual deforestation and land-use patterns in Legal 

Amazon. 

The hypothesis of this thesis states that the inclusion of hydrological, slope and altimetry 

variables improves the ability to discriminate pasture and agriculture patterns in the 

Brazilian Amazon. The following test plan (Table 3-6) is defined to explore this 

assumption. 

- Analysis A uses regression models without newly integrated variables. 

- Analysis B uses regression models which include the wetnessindex from CPTEC-

PVM. 

- Analysis C uses regression models which include the wetnessindex from CPTEC-

PVM as well as slope and altimetry variables. 

Table 3-6: AmazoniaClueINPE model test plan 

 Test # regressionmodel 100 regressionmodel 25 

    

Analysis A 

A1 100.A urban + humid 
25.A roads + connection to 

markets 

A2 100.B roads + humid 
25.A roads + connection to 

markets 

    

Analysis B 

B1 100.C urban + wetness 
25.B roads + wetness + 

connection to São Paulo 

B2 100.D roads + wetness 
25.B roads + wetness + 

connection to São Paulo 

    

Analysis C 

C1 100.C urban + wetness 
25.C roads + environment + 

connection to São Paulo 

C2 100.C urban + wetness 
25.D roads + environment + 

humidity 

 

3.3.3.2 Evaluation of dynamic modeling results 

The results of the AmazonClueINPE model runs are presented for the Legal Amazon at 

scale 25x25km
2
. The maps for deforested areas, pasture and temporary agriculture are 

compared with special emphasis on some of the current hotspots of change (section 

3.3.1.2). Due to the absence of the land-use type non-used agricultural land in the 

agricultural census data of 2006 and the fact that this class remains in the 



 Methods 

AmazonClueINPE model, quantitative analysis is difficult to accomplish. Hence the 

evaluation of the AmazonClueINPE model results is mainly carried out visually and not on 

a cell to cell basis as in different quantitative map comparison methods. Nevertheless, 

ratios of change are compared per state where appropriate. Thus the analysis focuses more 

on the formation of new spatial patterns than on comparing specific cell values. Besides 

looking at the spatial patterns in general, it will be analyzed if the selected variables are 

capable of forcing the model to allocate the land-use changes in reasonable areas, i.e. areas 

which currently are or recently have been under human pressure. 

3.4 Software 

The statistical analysis is carried out in R
3
, a free software environment for statistical 

computing and graphics. The AmazonClueINPE model is run with TerraME
4
 RC4 (for 

TerraLib
5
 3.2), the DBMS used is Microsoft Access. The results of the AmazonClueINPE 

model are analyzed and visualized in TerraView
6
 3.2.0. 

                                                 
3
 www.r-project.org 

4
 www.terrame.org 

5
 www.terralib.org 

6
 www.dpi.inpe.br/terraview 
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4 Results 

In this chapter the results of the CPTEC-PVM implementation and the LUCC modeling are 

presented. 

4.1 CPTEC-PVM 

The CPTEC-PVM and its water balance model are implemented in the TerraME modeling 

environment as described in section 3.2. As a result the environmental variables from the 

water balance model are stored in the database and can be used by the AmazonClueINPE 

model. In addition to that the potential biome distribution is stored and visualized using 

TerraView 3.2.0 in Figure 4-1 on a global scale and in Figure 4-3 for the Brazilian 

Amazon. The spatial patterns of the wetnessindex and the seasonalityindex are shown in 

section 3.3.1.3. Figure 4-2 shows the potential vegetation map of the original version 

(Oyama & Nobre, 2004). 

 

Figure 4-1: TerraView screenshot visualizing the result of the PVM implementation in TerraME 
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Figure 4-2: Potential vegetation (Oyama & Nobre, 2004)
 1
 

 

Figure 4-3: Potential vegetation in Legal Amazon 

Only the two environmental variables from the water balance model of CPTEC-PVM are 

used for analysis in this thesis. Hence the potential biome classification has no effect on the 

land-use change modeling in the following section. 

                                                 
1
 (Oyama, 2005) changed some threshold values in the biome classification algorithm after the publication of 

(Oyama & Nobre, 2004), which lead to the generation of CPTEC-PVM v2. The implementation in TerraME 

and the screenshot in this section correspond to this version (v2), which results in minor differences between 

the figure from the original paper (v1, Figure 4-2) and the screenshot from TerraView (v2, Figure 4-1). 
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4.2 Land-use change modeling 

The hypothesis, that the newly integrated environmental variables can improve the 

discrimination of pasture and temporary agriculture patterns, is under investigation in this 

chapter. The following sections show the results of the statistical analysis and a 

comparison of the land-use change model outcomes. 

4.2.1 Statistical Analysis results 

The statistical analysis is carried out for two scales, 100x100km
2
 and 25x25km

2
, as 

described in section 3.3.2. The descriptions of the used potential land-use determining 

factors can be found in Table 3-1. The statistical models are listed in Table 3-2 and Table 

3-3. 

4.2.1.1 Exploratory Data Analysis 

The potential land-use determining factors are tested using the Pearson Correlation 

Coefficient (compare section 3.3.2.1) to find stochastic relations with special emphasis on 

the new environmental variables. 

The two variables that were derived from the water balance model of the CPTEC-PVM 

wetnessindex and seasonalityindex are almost perfectly positive correlated (0.99), which is 

strengthened by looking at their spatial patterns (Figure 3-24 and Figure 3-25). Due to their 

similarity only one of the two indices is used for further analysis. The decision for the 

wetnessindex is based on a comparison of the correlation coefficients of the two 

environmental variables with the different land-use types. The correlation coefficients 

between the wetnessindex and the land-use variables show in general higher absolute 

values than the corresponding coefficients for the seasonalityindex (Table 4-1). Thus the 

assumption is made that the wetnessindex is likely to have more explanatory power and 

therefore used in the successive analysis.  

Table 4-1: Correlation coefficients for the wetnessindex and the seasonalityindex with land-use variables in 

the Legal Amazon 25 

 forest deforestation(log) pasture(log) 
temp 

agric(log) 

perm 

agric(log) 

non-used 

land(log) 

planted 

forest(log) 

wetnessindex 0.38 -0.21 -0.21 -0.30 -0.16 -0.34 -0.16 

seasonalityindex 0.31 -0.16 -0.15 -0.25 -0.13 -0.30 -0.15 
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In the Densely Populated Arch at scale 25x25km
2
 the only variable, apart from the 

seasonalityindex, that has an absolute correlation coefficient higher than 0.5 with the 

wetnessindex is the connection to markets variable (-0.70, Table 4-2). 

Table 4-2: Highest correlation coefficients for the wetnessindex in the Arch 25 

 seai conn_mkt log_pop_dens_96 altitude_avg clima_humi_min_3_ave log_dist_urban_areas 

weti 0.99 -0.70 -0.48 0.40 0.38 0.37 

Hence the wetnessindex can be combined with any other variable in the regression models. 

The connection to São Paulo variable is not correlated to the wetnessindex (-0.04) and can 

therefore be used as a connection measure to the southeastern market. The correlation 

coefficient with the former climate variable clima_humi_3_ave is the forth largest value 

(0.38) after the population density in 1996 (-0.48) and the average altitude (0.40). As 

Figure 3-24 and Figure 3-23 illustrate, the wetnessindex and the humidity variable 

(average humidity in the three driest consecutive months) do not show the same spatial 

patterns. To test whether the wetnessindex is the more adequate environmental variable in 

terms of explanation of deforestation and land-use patterns or delivers additional 

information will be under investigation. It could lead to an improvement of the statistical 

models and furthermore to better simulations of deforestation and land-use processes.  

The correlation coefficients for the soils variables (fertile and wet soils) with the 

wetnessindex are small (Table 4-3). There is almost no correlation with the wet soils 

variable (0.05) and only a small negative correlation with the fertile soils variable (-0.14). 

Table 4-3: Correlation between the wetnessindex and other environmental variables in the Arch 25 

 clima_humi_min_3_ave fertile soils wet soils 

weti 0.38 -0.14 0.05 

Considering the slope and altitude variables, the correlation coefficients (Table 4-4) 

indicate that the average altitude is negatively correlated with the fraction of flat slopes (-

0.23) and positively correlated with the fraction of moderately (0.23) and steeply sloped 

areas (0.20). The slope variables show comprehensible correlations, e.g. slope_flat is 

almost perfectly negative correlated with slope_mod (-0.99) and highly negative correlated 

with slope_steep (-0.58). Hence only the slope_flat and the altitude_avg variable are used 

in the regression models. 

Table 4-4: Correlation coefficients for the environmental variables in the Arch 25 

 altitude_avg slope_flat slope_mod slope_steep 

altitude_avg 1 -0.23 0.23 0.20 

slope_flat -0.23 1 -0.99 -0.58 

slope_mod 0.23 -0.99 1 0.50 
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slope_steep 0.20 -0.58 0.50 1 

The potential important variables in the regression models do not show high correlation 

coefficients with the new environmental variables (Table 4-5). Only the connection to São 

Paulo variable almost reaches the 0.5 limit for excluding variables due to their correlation. 

Table 4-5: Correlation coefficients for the environmental variables with important variables in the Arch 25 

 log_dist_paved_roads log_dist_non_paved_roads prot_all1 conn_sp_inv_p 

altitude_avg 0.25 -0.05 0.12 0.45 

slope_flat 0.03 -0.06 -0.09 0.04 

Correlation coefficients of the environmental variables with the land-use types (Table 4-6) 

reveal a strong negative correlation between the wetnessindex and the land-use temporary 

agriculture (-0.51) and weaker correlations to deforestation (-0.34) and pasture (-0.27). The 

altitude variable shows a negative correlation to temporary agriculture (-0.18) and almost 

no correlation to deforestation (-0.03) and pasture (0.03). For the slope variable the 

correlation coefficients show only small values and thus no clear indication for a 

connection to the land-use types in the Densely Populated Arch. 

Table 4-6: Correlation coefficients for the environmental variables with land-use types in the Arch 25 

 forest deforestation (log) pasture (log) 
temp agric 

(log) 

perm agric 

(log) 

non-used 

land (log) 

planted forest 

(log) 

weti 0.49 -0.34 -0.27 -0.51 -0.19 -0.17 -0.52 

altitude_avg 0.21 -0.03 0.03 -0.18 -0.29 -0.16 -0.21 

slope_flat 0.02 0.00 -0.02 -0.01 0.06 -0.02 0.06 

clima_humi_min_3 0.23 -0.26 -0.27 -0.28 0.13 0.05 -0.24 

soils_fert_B1 -0.35 0.31 0.28 0.33 0.34 0.18 0.33 

soils_fert_B3 0.08 -0.08 -0.10 -0.04 -0.05 0.00 -0.04 

In general potential important variables like distance to urban areas, distance to roads, 

connection to markets and population density are to a high degree correlated (Table 4-7).  

Table 4-7: Correlations for the Arch 25 

 log_dist_urban_areas log_dist_paved_road log_dist_n_pav_road conn_mkt log_pop_dens_96 weti 

log_dist_urban_areas 1 0.51 0.44 -0.46 -0.56 0.37 

log_dist_paved_road 0.51 1 0.12 -0.44 -0.63 0.32 

log_dist_n_paved_road 0.44 0.12 1 -0.27 -0.29 0.09 

conn_mkt -0.46 -0.44 -0.27 1 0.48 -0.70 

log_pop_dens_96 -0.56 -0.63 -0.29 0.48 1 -0.48 

weti 0.37 0.32 0.09 -0.70 -0.48 1 

4.2.1.2 Regression Analysis 

The results of the multiple linear regression analysis are presented for the Densely 

Populated Arch at scale 25x25km
2
 for deforestation and the land-use types pasture and 
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temporary agriculture with special emphasis on the environmental variables. Variables that 

are not significant at the 5% level, i.e. their p-values are greater than 0.05, are eliminated. 

Twelve variables are included in the model 25.A – roads + connection to markets. The two 

soil variables (soil_fert_B1 and soil_fert_B3) are the only environmental variables in this 

model. The humidity variable (clima_humi_min_3_ave) can not be used because of its 

correlation with the connection to markets variable (-0.59). The 25.B – roads + wetness + 

connection to São Paulo model uses the wetnessindex from the CPTEC-PVM and replaces 

the connection to markets with the connection to São Paulo variable. The 25.C – roads + 

environment + connection to São Paulo model further adds the altimetry and slope factors. 

The 25.D – roads + environment + humidity model uses all environmental variables, 

including the humidity variable, but excludes some factors describing economic 

attractiveness and accessibility. 

Deforestation 

Considering the adjusted coefficient of determination (adj. R
2
) and the Akaike Information 

Criterion (AIC) the performance of the regression models for deforestation does not vary 

significantly (Table 4-8). The adjusted R
2
 ranges from 0.64 to 0.66. The most important 

factors are the accessibility variables like connection to markets or connection to São 

Paulo, which show a positive relation to deforestation, and distance to roads with a 

negative relation to deforestation. The highest absolute values in terms of standardized 

regression coefficients in all four models are represented by the protected areas (prot_all1) 

variable, which shows negative beta values between -0.36 and -0.38 and hence strong 

indications for a deforestation avoiding factor. The most important environmental variable 

in the models is the wetnessindex with a maximum value of -0.19 in models 25.B – roads + 

wetness + connection to São Paulo and 25.C – roads + environment + connection to São 

Paulo. The soils variables do not exceed beta values of 0.10 and also the slope variable 

shows small statistical relation to deforestation. Some variables are not significant and 

therefore excluded from the regression models like connection to ports, distance to large 

rivers and average altitude. 

Table 4-8: regression models of deforestation for the Arch 25 

25.A - roads + connection to markets 25.B - roads + wetness + connection to São Paulo 

 beta p-value  beta p-value 

log_dist_non_paved_road  -0.21 0.00 log_dist_non_paved_road  -0.18 0.00 

log_dist_paved_roads  -0.21 0.00 log_dist_paved_roads  -0.20 0.00 

agr_area_small  -0.08 0.00 log_setl_nfamilies_70_99  0.03 0.02 
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log_setl_nfamilies_70_99  0.05 0.00 prot_all1  -0.36 0.00 

prot_all1  -0.37 0.00 log_dist_min_deposits  -0.06 0.00 

log_dist_min_deposits  -0.05 0.00 soils_fert_B1  0.09 0.00 

soils_fert_B1  0.10 0.00 soils_fert_B3  0.07 0.00 

soils_fert_B3  0.04 0.01 weti  -0.19 0.00 

conn_markets_inv_p  0.34 0.00 log_dist_wood_extr_poles  -0.10 0.00 

log_dist_wood_extr_poles  -0.11 0.00 conn_sp_inv_p  0.33 0.00 

        

 adj. R
2
 AIC  adj. R

2
 AIC 

 0.64 -1786.79  0.65 -1879.95 

       

25.C - roads + environment + connection to São Paulo 25.D - roads + environment + humidity 

 beta p-value  beta p-value 

log_dist_non_paved_road  -0.19 0.00 log_dist_non_paved_road  -0.22 0.00 

log_dist_paved_roads  -0.20 0.00 log_dist_paved_roads  -0.24 0.00 

prot_all1  -0.37 0.00 prot_all1  -0.38 0.00 

log_dist_min_deposits  -0.04 0.00 weti  -0.15 0.00 

soils_fert_B1  0.10 0.00 soils_fert_B1  0.10 0.00 

soils_fert_B3  0.07 0.00 soils_fert_B3  0.06 0.00 

weti  -0.19 0.00 conn_sp_inv_p  0.31 0.00 

log_dist_wood_extr_poles  -0.10 0.00 slope_flat  -0.07 0.00 

conn_sp_inv_p  0.33 0.00    

slope_flat  -0.06 0.00    

      

 adj. R
2
 AIC  adj. R

2
 AIC 

 0.66 -1893.54  0.65 -1843.59 

Pasture 

The major land-use type in the Brazilian Amazon in 1997 was pasture with approximately 

68% of all deforested areas (compare section 3.3.3). Hence the regression for this land-use 

type shows similar results to the regression results of deforestation. The adjusted R
2
 

reaches values between 0.63 and 0.66. The most important factors are again the protected 

areas variable and the accessibility factors. In comparison to the standardized regression 

coefficients for deforestation the distance to roads variables lost some explanatory power, 

whereas the connection to markets and the connection to São Paulo increased their 

importance. As a result the connection measures exceed the protected areas variable in 

absolute beta value in three of the models. The wetnessindex and the soils variable show 

also smaller absolute values for the standardized regression coefficients, while the values 

for the slope factor slightly increase. 

Table 4-9: regression models of pasture for the Arch 25 

25.A - roads + connection to markets 25.B - roads + wetness + connection to São Paulo 

 beta p-value  beta p-value 

log_dist_non_paved_road  -0.22 0.00 log_dist_non_paved_road  -0.17 0.00 

log_dist_paved_roads  -0.20 0.00 log_dist_paved_roads  -0.17 0.00 
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agr_area_small  -0.14 0.00 log_setl_nfamilies_70_99  0.05 0.00 

log_setl_nfamilies_70_99  0.07 0.00 prot_all1  -0.35 0.00 

prot_all1  -0.36 0.00 log_dist_min_deposits  -0.08 0.00 

log_dist_min_deposits  -0.08 0.00 soils_fert_B1  0.06 0.00 

conn_ports_inv_p  -0.04 0.02 soils_fert_B3  0.06 0.00 

soils_fert_B1  0.09 0.00 weti  -0.13 0.00 

soils_fert_B3  0.04 0.02 log_dist_wood_extr_poles  -0.09 0.00 

conn_markets_inv_p  0.35 0.00 conn_sp_inv_p  0.41 0.00 

log_dist_wood_extr_poles  -0.11 0.00    

      

 adj. R
2
 AIC  adj. R

2
 AIC 

 0.63 -1837.88  0.65 -1980.98 

      

25.C - roads + environment + connection to São Paulo 25.D - roads + environment + humidity 

 beta p-value  beta p-value 

log_dist_non_paved_road  -0.18 0.00 log_dist_non_paved_road  -0.21 0.00 

log_dist_paved_roads  -0.18 0.00 log_dist_paved_roads  -0.21 0.00 

log_setl_nfamilies_70_99  0.05 0.00 prot_all1  -0.37 0.00 

prot_all1  -0.35 0.00 weti  -0.07 0.00 

log_dist_min_deposits  -0.07 0.00 soils_fert_B1  0.07 0.00 

soils_fert_B1  0.08 0.00 soils_fert_B3  0.05 0.00 

soils_fert_B3  0.07 0.00 conn_sp_inv_p  0.41 0.00 

weti  -0.13 0.00 altitude_avg  -0.04 0.03 

log_dist_wood_extr_poles  -0.09 0.00 slope_flat  -0.10 0.00 

conn_sp_inv_p  0.40 0.00    

slope_flat  -0.08 0.00    

agr_area_small  -0.04 0.03    

      

 adj. R
2
 AIC  adj. R

2
 AIC 

 0.66 -2007.27  0.65 -1946.34 

Temporary agriculture 

For the land-use type temporary agriculture the adjusted coefficients of determination have 

values around 0.70, only the 25.D – roads + environment + humidity model shows a 

smaller value of 0.65. The connection to markets and the connection to São Paulo variables 

are together with the protected area variable and the wetnessindex among the most 

important factors. A strong positive factor for temporary agriculture is the agrarian 

structure variable (agr_area_small). The paved roads variable shows significantly more 

impact than the non-paved roads variable. Considering the environmental variables the 

wetnessindex shows large negative beta values. Out of the other environmental factors the 

soil fertility factor (soil_fert_B1) has the most influence on the land-use type temporary 

agriculture. 

Table 4-10: regression models of temporary agriculture for the Arch 25 

25.A - roads + connection to markets 25.B - roads + wetness + connection to São Paulo 

 beta p-value  beta p-value 
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log_dist_non_paved_road  -0.08 0.00 log_dist_non_paved_road  -0.07 0.00 

log_dist_paved_roads  -0.19 0.00 log_dist_paved_roads  -0.20 0.00 

agr_area_small  0.18 0.00 agr_area_small  0.23 0.00 

log_setl_nfamilies_70_99  0.07 0.00 log_setl_nfamilies_70_99  0.06 0.00 

prot_all1  -0.27 0.00 prot_all1  -0.26 0.00 

soils_fert_B1  0.11 0.00 log_dist_large_rivers  0.03 0.04 

soils_fert_B3  0.04 0.01 soils_fert_B1  0.10 0.00 

conn_markets_inv_p  0.46 0.00 soils_fert_B3  0.06 0.00 

log_dist_wood_extr_poles  -0.13 0.00 weti  -0.32 0.00 

   log_dist_wood_extr_poles  -0.11 0.00 

   conn_sp_inv_p  0.32 0.00 

      

 adj. R
2
 AIC  adj. R

2
 AIC 

 0.69 -3184.99  0.70 -3196.60 

      

25.C - roads + environment + connection to São Paulo 25.D - roads + environment + humidity 

 beta p-value  beta p-value 

log_dist_non_paved_road  -0.07 0.00 log_dist_non_paved_road  -0.16 0.00 

log_dist_paved_roads  -0.20 0.00 log_dist_paved_roads  -0.30 0.00 

log_setl_nfamilies_70_99  0.06 0.00 prot_all1  -0.27 0.00 

prot_all1  -0.26 0.00 weti  -0.26 0.00 

log_dist_large_rivers  0.03 0.04 soils_fert_B1  0.14 0.00 

soils_fert_B1  0.10 0.00 soils_fert_B3  0.06 0.00 

soils_fert_B3  0.06 0.00 conn_sp_inv_p  0.23 0.00 

weti  -0.32 0.00 altitude_avg  -0.11 0.00 

log_dist_wood_extr_poles  -0.11 0.00 slope_flat  -0.08 0.00 

conn_sp_inv_p  0.32 0.00 clima_humi_min_3_ave  -0.06 0.01 

agr_area_small  0.23 0.00    

      

 adj. R
2
 AIC  adj. R

2
 AIC 

 0.70 -3196.60  0.65 -2962.19 

The regression analysis shows that the beforehand defined potential leading factors like 

distance to roads and connection to markets are amongst the most important variables in 

the various models. The variable for protected areas (prot_all1) plays a decisive role for all 

land-use types. The wetnessindex and the agrarian structure variable show especially for 

temporary agriculture high importance. An interesting aspect is that the agrarian structure 

variable has negative regression coefficients for deforested areas and pasture, but positive 

coefficients for temporary agriculture. The relatively low importance of the humidity 

variable in model 25.D – roads + environment + humidity might be a result of the 

simultaneous usage of this environmental variable and the connection to São Paulo 

variable, since the latter already carries a lot of information, which might be redundant, 

although with different sign. These two variables share a correlation coefficient of -0.51, 

but nevertheless it was decided to include both variables to make the environmental 

variables comparable without excluding a potential important variable. 
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The regression results indicate that the environmental variables are – apart from the 

wetnessindex in some models – not amongst the main land-use determining factors. 

Although they seem to carry only a small fraction of information at this scale, they can 

contribute as additional variables to help explaining land-use decisions.  

4.2.2 Dynamic modeling: AmazonClueINPE 

The AmazonClueINPE model is used as dynamic modeling approach to simulate land-use 

change processes in the Brazilian Amazon. The LUCC model and its parameters are 

described in section 3.3.3. 

The results of the AmazonClueINPE model are presented for deforestation and the land-

use types pasture and temporary agriculture for scale 25x25km
2
. To allow for visual 

comparison with the actual maps of change between the years 1997 and 2006 (Figure 3-3, 

Figure 3-5 and Figure 3-7), the relative change between these years has been computed. 

4.2.2.1 Analysis of deforestation patterns 

Analysis A 

The regression models in Analysis A do not include the newly integrated variables. The 

spatial outcomes of model A1 (Figure 4-4) and A2 (Figure 4-5) vary due to the different 

regression models at the coarse scale. The results show spatial patterns that are mostly 

aligned along the roads because of the importance of the distance to paved and unpaved 

roads variables in the regression models. The two models do not reproduce the actual 

intensification of forest destruction in northern Mato Grosso and eastern Pará, but have 

especially in the result of A1 a strong diffusive pattern close to Porto Velho (RO) and 

Humaitá (AM) spreading along the BR-319 road to Manaus (AM). The BR-319 is 

currently in bad condition and for the most part not feasible for transportation purposes 

(Fearnside & Graça, 2006), but according to the governmental plans to reconstruct this 

connection, new deforestation areas could emerge as (Barni, Fearnside, & Graça, 2009) 

point out. The strong deforestation patterns around São Félix do Xingu in Pará that 

advance into the region of Terra do Meio are in a limited amount reproduced by the 

models, but their simulated pattern sprawls more along the road in comparison to the 

diffusive pattern present at the actual deforestation map (Figure 3-3). The forest 

destruction along the BR-163 connecting Cuiabá (MT) and Santarem (PA) is to some 

extent captured. 
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Figure 4-4: A1 – deforestation 

 

Figure 4-5: A2 – deforestation 

Analysis B 

The models B1 (Figure 4-6) and B2 (Figure 4-7) apply regression models including the 

wetnessindex. In addition to the environmental variable a connection measure to the south-

eastern market is used at the fine scale. The consequence is that deforestation remains at a 
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low level in the states of Roraima, Amapá and Acre, due to their distance to São Paulo. In 

states which are better connected to São Paulo, deforestation is allocated close to roads, 

e.g. in Mato Grosso and Rondônia. The outcomes are more reasonable results in the 

mentioned states in consideration of the actual reference deforestation map (Figure 3-3). 

But apart from these desirable changes simulated deforestation patterns also exist in the 

state of Amazonas around Humaitá and along the BR-319, where only small changes in 

forest cover took place in this period. 

The humidity variable has higher absolute standardized regression coefficient values in the 

coarse scale models of Analysis A than the wetnessindex in Analysis B and thus more 

influence in the regression models. This fact is not obvious when analyzing the results of 

the AmazonClueINPE model. The difference between using the wetnessindex or the 

humidity variable in the coarse scale models is quite small and hence influences the results 

only to a small extent. The resulting deforestation patterns are almost the same, only the 

intensity slightly differs. Probably the two environmental variables are in the coarse scale 

regression models not important enough to produce significant differences in the results of 

the AmazonClueINPE model for deforestation. 

 

Figure 4-6: B1 – deforestation 
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Figure 4-7: B2 – deforestation 

 

Analysis C 

In Analysis C the slope and altimetry variables are included in regression models at the 

fine scale of model C1 (Figure 4-8) and C2 (Figure 4-9). 

Considering the analysis of the regression results (section 4.2.1) it was assumed that the 

effect of adding the slope and the altitude variable would not bring major changes in the 

results of the AmazonClueINPE model because these environmental variables were not 

among the main land-use determining factors. This is verified by the comparison of 

deforestation patterns of model B1 and C1. No new patterns emerge, only the intensity of 

land-use change slightly differs in some areas. Comparing model C1 and C2, it can be 

noticed that even more concentrated deforestation patterns around the BR-319 road in 

Amazonas state exist in C2. In Mato Grosso, north of Sinop and close to the BR-163, 

patterns in the tests are similar, but more intense in model C1. In other parts of Mato 

Grosso C2 allocates more deforestation, which leads to a greater deforestation area in this 

state. In Pará and Maranhão the spatial patterns again do not differ significantly in the 

results of the two model runs.  
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Figure 4-8: C1 – deforestation 

 

Figure 4-9: C2 – deforestation 

The results of the AmazonClueINPE model for deforestation cannot fully explain the role 

of the newly integrated environmental factors on the allocation of specific land-use 

changes. Hence the resulting patterns for pasture and temporary agriculture are analyzed 

for some of the models separately to further determine the effect of environmental factors 

on the discrimination of pasture and temporary agriculture patterns. 
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4.2.2.2 Analysis of pasture and temporary agriculture patterns 

Analysis A 

The models in Analysis A serve as comparison to the models including the newly 

integrated variables in Analysis B and C to verify whether an improvement in explaining 

land-use patterns takes place.  

The pasture patterns of model A1 (Figure 4-10) and A2 show only minor differences, as 

they use the same fine scale regression model, but different models at the coarse scale. The 

land-use type pasture increases in all states and does not show any decreasing patterns in 

this period. Compared to the pasture reference map (Figure 3-5), which is based on the 

agricultural census, too little change is allocated in eastern Para and northern Mato Grosso. 

This corresponds to the analysis of deforestation patterns for these models in the previous 

section. 

 
Figure 4-10: A1 – pasture 

The temporary agriculture patterns of the models A1 (Figure 4-11) and A2 can not capture 

the increasing pattern in Mato Grosso. The change allocated in this state shows decreasing 

values. On the contrary temporary agriculture is favored in Rondônia and Amazonas state. 

Increasing patterns can also be found in north-eastern Pará and Maranhão. 



 Results 

 
Figure 4-11: A1 – temporary agriculture 

Analysis B 

The wetnessindex is included in the regression models used in Analysis B. The pasture 

patterns do not significantly differ from the patterns in Analysis A in most states. Acre 

builds an exception, as almost no change is allocated in models B1 (Figure 4-12) and B2 in 

this state. 

 

Figure 4-12: B1 – pasture 
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The models of temporary agriculture present similar results to the previous models. They 

again show the increasing spatial patterns in the southern part of the BR-319 road in 

Amazonas state as well as decreasing patterns in Mato Grosso. 

 

Figure 4-13: B1 – temporary agriculture 

Analysis C 

The increasing spatial pattern around Rio Branco in Acre in the pasture reference map 

(Figure 3-5) is not reproduced by the models C1 (Figure 4-14) and C2 (Figure 4-15). In 

Amazonas state the importance of the BR-319 road is overestimated by some variables as 

previously noticed in previous models that used the connection to São Paulo variable. 

Apparently some modification of the factors in this area needs to be incorporated to 

diminish this effect. In Rondônia the models show a significant pasture increase 

concentrated around the roads, while the pasture reference map shows a widespread pattern 

in almost the whole state, apart from an area in the west of the state. The positive pasture 

change in Mato Grosso state is to some extent captured by the models, but again it does not 

show the diffusive character visible in the reference map in the north of the state. In central 

Mato Grosso, where the census data shows a decrease in pasture, no decline is simulated in 

the models C1 and C2. In Pará the models show some increasing pasture patterns along the 

BR-163 road, but no distinctive pattern as in the census map. Also the spatial patterns 

concentrated along the BR-230 are, apart from some changes close to the BR-163, not 
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captured by the models. In northeastern Pará the increasing patterns are reproduced quite 

well, but the decreasing pasture pattern in this area is not correctly simulated by the 

models. The spatial patterns in the area around São Félix do Xingu are limited to areas 

close to roads, a possible spreading northeastwards as shown in the reference map is 

possibly suppressed by the protected areas in this region and the importance of the 

corresponding variable in the regression models.  

There is a discrepancy in the amount of land-use change between the AmazonClueINPE 

model results and the census reference map, as the AmazonClueINPE model uses fixed 

demand ratios based on the agricultural census of 1996. Thus the relative change per state 

in terms of total amount of land-use change in Legal Amazon is calculated and compared. 

Figure 4-16 confirms the overestimation of change of land-use type pasture in the time of 

study in the state of Amazonas, which accounts for 18% (model C1) and 25% (model C2) 

of the overall pasture change in the Legal Amazon, while the census data shows only an 

increase of 5%. In Pará and Rondonia too little change is allocated, compensating for the 

surplus in Amazonas. The Mato Grosso values fit quite well. The other states consist of too 

few cells to make an assumption. 

 

Figure 4-14: C1 - pasture 
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Figure 4-15: C2 - pasture 

 

AC AM AP MA MT PA RO RR TO

0

5

10

15

20

25

30

35

40

change of land-use type pasture between 1997 and 2006

per state, in % of pasture change in Legal Amazon

C1

C2

Census

 
Figure 4-16: change of land-use type pasture per state between 1997 and 2006 
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Figure 4-17: change of land-use type pasture per state between 1997 and 2006 

In the census reference map for the land-use type temporary agriculture (Figure 3-7) two 

clear spatial patterns are visible. The first one is located in Mato Grosso and shows an 

increase in temporary agriculture for the period of 1997 to 2006, while the other one in 
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Maranhão shows a decrease in temporary agriculture. These two distinct processes are not 

captured by the models C1 (Figure 4-18) and C2 (Figure 4-19). Both models show a 

general increase around the BR-319 road in Amazonas state, in northeastern Pará and 

Maranhão, while some of the temporary agriculture patterns in Mato Grosso show a 

decrease, especially in model C1. Comparing the land-use changes per state (Figure 4-20), 

it can be seen that model C1 allocates more change of temporary agriculture in Amazonas 

than model C2. The opposite is true for pasture (Figure 4-17) where model C2 promotes 

better conditions than model C1. This might be due to the exclusion of the variable 

agr_area_small in the fine scale regression model of C2. This variable, an indicator for the 

agrarian structure, has a standardized regression coefficient of 0.23 (Table 4-10) for 

temporary agriculture in the fine scale regression model of C1 and relative high values in 

Amazonas state. The other dominant variables in the two regression models do not show 

significant differences in their regression coefficients. 

 

Figure 4-18: C1 - temporary agriculture 
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Figure 4-19: C2 - temporary agriculture 
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Figure 4-20: change of land-use type temporary agriculture per state between 1997 and 2006 

4.3 Discussion 

The implementation of the CPTEC-PVM in the TerraME modeling framework allows the 

integration of additional environmental factors in the AmazonClueINPE model. The 

consideration of supplementary biophysical parameters for slope and altimetry adds further 

possibilities to explore different factor combinations. The statistical analysis investigates 

the role of several variables and especially the importance of the environmental factors on 

land-use change processes. These statistics reveal that the environmental variables are in 

general not amongst the main land-use determining factors in the Brazilian Amazon. The 

wetnessindex, which originates from the water balance model of the CPTEC-PVM, builds 
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an exception and shows relevant contribution especially for the land-use type temporary 

agriculture. The defined regression models serve as basis for the spatially-explicit 

AmazonClueINPE model. This dynamic modeling approach allows further exploration of 

the potential land-use determining factors. The objective is to distinguish the effect of the 

environmental variables in the allocation process of pasture and temporary agriculture 

changes.  

The results of the AmazonClueINPE model indicate that the inclusion of the additional 

environmental variables does not result in major differences in deforestation patterns 

compared to models that do not use these variables. Analyzing the land-use types pasture 

and temporary agriculture it can be noticed that different regression models promote better 

or worse conditions for a land-use type in a specific region, depending on which variables 

are included. The pasture patterns can to some extent be reproduced by the models, but the 

temporary agriculture patterns can not be captured correctly. This statement holds for the 

tested models, no matter if the new environmental variables are included or not. Hence no 

improvement in the discrimination of pasture and temporary agriculture patterns due to the 

inclusion of new environmental factors can be stated.  

Nevertheless the integration of slope and altimetry data and environmental variables like 

the wetnessindex or the humidity variable is capable of giving additional information on 

the formation of spatial patterns of land-use change, even though they do not show the 

explanatory power that other more dominant factors like distance to roads or connection to 

markets demonstrate. 

Although the results do not promote an improvement through the inclusion of the new 

variables, the implementation of the CPTEC-PVM in the dynamic modeling environment 

can be seen as an important step, as it establishes new interaction possibilities to land-use 

change models like AmazonClueINPE or other models written in the TerraME modeling 

language. 
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5 Conclusion 

After a short summary of the results of this thesis, the hypothesis will be evaluated, 

followed by a general discussion and an outlook on possible future work. 

5.1 Summary 

The hypothesis of this thesis is the following. 

The inclusion of hydrological, slope and altimetry variables improves the ability to 

discriminate pasture and agriculture patterns in the Brazilian Amazon. 

This hypothesis was tried to be corroborated by feeding a multi-scale LUCC model with 

data from a water balance model, SRTM and other data. Various combinations of 

regression models at two scales were tested to draw conclusions about the influence and 

explanatory power of each of the used factors. The results from Chapter 4 are shortly 

summarized below.  

By following an AmazonClueINPE model test plan the statistical models were tested in a 

dynamical modeling approach. The preliminary regression analysis revealed that some 

factors like distance to roads, distance to urban areas or connection to markets determine 

most of the deforestation patterns. The wetnessindex has important character, especially 

for the land-use type temporary agriculture. At the fine scale, models lead by the distance 

to roads variables were used instead of the distance to urban areas variable, as these 

produced more reasonable spatial patterns. The connection to markets and the connection 

to São Paulo measure showed to be good factors to limit patterns to emerge in remote 

areas. Interchanging the humidity variable and the wetnessindex at the coarse scale did not 

reveal major changes in the model results.  

For a better understanding of the role of the wetnessindex and the new biophysical 

variables the spatial patterns of pasture and temporary agriculture were analyzed. The 

pasture patterns were to some extent captured by the AmazonClueINPE model simulations, 
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while the temporary agriculture patterns could not be reproduced. The results intensify the 

assumption that some sort of overestimation of land-use changes in the state of Amazonas 

takes place in most models. The spatial outcome of the AmazonClueINPE model also 

indicate that the resulting patterns are dominated by factors like accessibility to markets, 

distance to roads or presence of protected areas and only to a smaller degree by the slope, 

altimetry and other environmental variables. However the newly integrated variables 

influence the AmazonClueINPE model results, but their explanatory power is rather small 

in comparison to the dominant factors.  

5.2 Hypothesis 

On basis of the results and the analysis in Chapter 4 no improvement in the discrimination 

of pasture and temporary agriculture patterns solely on basis of the newly implemented 

variables could be verified. Despite this fact, the conclusion that these variables can in 

general not serve as auxiliary measures in LUCC models is unsuitable. But for the 

conducted analysis, the selected scales and the choice of potential land-use determining 

factors it could not be validated that the wetnessindex or the altimetry and slope variables 

advance simulations of land-use changes in the Brazilian Amazon. 

Nevertheless integrating a combination of hydrological and biophysical data is thought to 

be a good and reasonable asset in the modeling approach to study land-use type 

conversions. Albeit these variables do not act as the main determinant factors they can 

support LUCC model simulations to discriminate pasture and agriculture patterns. 

5.3 Discussion and Outlook 

5.3.1 Statistical analysis 

Several assumptions are usually made when using conventional statistical methods like 

multiple linear regression, e.g. data should be statistically independent and identically 

distributed (Aguiar, 2006; Cliff & Ord, 1981; Lesschen, Verburg, & Staal, 2005; Overmars 

& Veldkamp, 2003). These assumptions can not be fully satisfied by LUCC models, as 

land-use data usually has the tendency to be dependent, i.e. to show spatial autocorrelation 

(Aguiar, 2006; Overmars & Veldkamp, 2003). This spatial dependence is on one hand 

undesirable, but is also what gives information on spatial pattern (Aguiar, 2006; Gould, 

1970; Overmars & Veldkamp, 2003).  
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As it is fairly common that collinearity exists in land-use analysis, it is difficult to separate 

the effects of each variable (Lesschen, Verburg, & Staal, 2005). As a way to reduce 

collinearity in this thesis a correlation analysis between the independent variables and a 

stepwise regression has been applied. Though this procedure might eliminate important 

factors, it is expected to be capable of selecting an adequate subset of variables through 

disregarding of non significant variables (Lesschen, Verburg, & Staal, 2005). 

(Aguiar, 2006) tested a spatial lag model to simulate deforestation in the Brazilian Amazon 

and compared it to a multiple linear regression model. The findings were that by using the 

spatial lag model the resulting model allocates land-use changes mainly in previously 

occupied areas and thus prohibits the appearance of new patterns. Therefore the linear 

regression model was favored, while incorporating the diffusive nature of deforestation 

through scenario-dependent variables like distance to roads or connection to markets. 

Based on these conclusions by (Aguiar, 2006) it was decided to use a multiple linear 

regression model in this thesis. 

5.3.2 Data Quality 

The connection to markets and the connection to São Paulo measure proved to be good 

factors to limit patterns to emerge in remote areas, but have to be further improved as 

already mentioned in (Aguiar, 2006). The connection measures should also incorporate 

river networks. In addition to this the distinction between paved and non-paved roads is not 

sufficient. Quality of roads or waterways has to be incorporated as a proxy for the usability 

of a connection to get better measures for travel and transportation costs. 

The CPTEC-PVM and its corresponding water balance model were initially developed for 

global purposes with a coarser resolution than used in this thesis, thus the question arises if 

the wetnessindex fed with detailed meteorological data is also feasible for finer resolutions 

or if better estimates for hydrological processes and regional climate exist for studies 

covering the Brazilian Amazon. 

5.3.3 The wetnessindex and its relation to the connection to markets 
variable 

In the Densely Populated Arch at the fine scale the wetnessindex and the connection to 

markets variable are to a high degree negative correlated (-0.70, Table 4-2). Visual analysis 

supports that similar patterns occur in the Arch, which raises the question, if there is some 
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relation between these two variables. Are actors of land-use change taking environmental 

conditions, as represented by the wetnessindex, in their decisions into account to build 

stronger connections to favored places? And if so, is the wetnessindex an accurate variable 

to serve as a fundament for these decisions? If the statistical correlation is just a 

coincidence resulting from the generation of the variables or the scale of analysis or if 

there is a causal relation between them is an important question. 

5.3.4 Regional models – local studies 

Regarding (Lesschen, Verburg, & Staal, 2005) the scale of modeling has an effect on the 

type of pattern that will occur. (Zhang, Drake, & Wainwright, 2004) add that correlations 

found at one scale might not be applicable at another, as different processes are primarily 

dominant at different scales. Thus the question can be asked if the applied spatial scales 

and factors in this thesis are suitable to model deforestation processes in the study area. To 

simulate processes in large areas like the Brazilian Amazon with one set of regressions, 

assuming that the same factors are important everywhere, is an ambitious challenge. The 

region is probably too diverse to be represented by one model, thus intra-regional 

heterogeneity should be taken into account (Aguiar, 2006). Local studies and regional 

models both have their individual strengths, thus both types of land-use analysis 

approaches can strongly benefit from one another. They do not only differ in the size of the 

study area, but also often in the methods used to simulate land-use change processes. 

(Geist & Lambin, 2001) mention that a systematic comparison of local-scale case studies is 

a powerful tool to extract generalities on processes and causes of land-use change and 

provides more realistic insights than cross-national statistical analyses. The 

AmazonClueINPE model as applied in this thesis allows for a comprehensible way to 

model land-use change processes with the help of a set of factors, based on statistical 

relations between them, without the necessity of expert knowledge, but not leading to the 

explanatory power that some local studies might reveal. Being aware of the strengths and 

limitations of the utilized methodology is essential for correctly evaluating the results of 

LUCC modeling studies. 

5.3.5 Outlook 

To further test the AmazonClueINPE model based on the data used in this thesis, one 

possibility would be to adapt the land-use classes of the agricultural census 1996 to 

exclude the non-used agricultural areas and change the demand values based on yearly 
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PRODES deforestation data and the census data from 2006 to allow for quantitative 

comparison between the model results and the data. Besides adapting the variables, like the 

connection measures, further improvement could be reached by optimizing the regression 

models for each land-use type with the help of expert knowledge. 

The implementation of the CPTEC-PVM and its corresponding water balance model in the 

TerraME modeling environment opens new possibilities to study the interaction between 

vegetation and LUCC models like the AmazonClueINPE model. Future studies could 

investigate the benefit of dynamic coupling of these two models. 
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