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Using recent results obtained for the transition to turbulence via spatiotemporal intermittency in extended dynamical 
systems, critical cellular automata rules are built. Thanks to a systematic procedure, the continuous phase transition 
observed in a coupled map lattice is translated into a sequence of cellular automata rules for which the critical properties 
of the original system are reproduced as precisely as desired. It is shown that criticality, as understood from the point 
of view of statistical mechanics, is intimately related to the various characteristics of Wolfram's class IV rules. This 
suggests in turn the picture of a "critical surface" in the space of rules and provides the basis for a discussion of the 
problem of classification schemes. We review recent cellular automata gtudies where questions linked to criticality arise 
and argue that they are unified in light of our results, leaving the relationship between computational and statistical 
characterizations of critical rules as the central problem for future studies on this subject. 

1. I n t r o d u c t i o n  

Whereas  complexi ty  is a no t ion  often invoked in 
the field of cel lular  a u t o m a t a  (CA) [1], "critical- 
i ty" is much  less c o m m o n l y  encountered ,  except 
perhaps  in the s tudy  of the phase t r ans i t ions  of 
probabi l i s t ic  cel lular  a u t o m a t a  (PCA)  such as di- 
rected percola t ion  [2]. For de te rmin is t ic  cellular  
a u t o m a t a  (DCA),  pa r t ly  due to their  lack of con- 
t i nuous  "control  pa ramete r s" ,  phase t r ans i t ions  
and  crit ical  p h e n o m e n a  in the sense of s ta t is t i -  
cal mechanics  have only recent ly become topics 
of interest ,  a long wi th  the p rob lem of the struc-  
tu re  of the space of rules. This  la t te r  p roblem is 
obviously  connected  to the various a t t e m p t s  to 
define classifications of CA, ei ther  after their  ob- 
served behavior  (phenotypic  classification) or af- 
ter  their  rule table  (genotypic classification).  In- 
deed, once defined, classes of CA can be seen as 
phases,  b r ing ing  up the ques t ion of the t r ans i t ions  

between these phases, i.e. n o n - a r b i t r a r y  pa ths  in 
the space of rules tha t  connect  CA belonging  to 
different classes. 

It  is well known tha t  the t r ad i t iona l  classifica- 
t ion of Wolfram [3] suffers drawbacks,  the most  se- 
rious of which p robab ly  being its non-dec idab i l i ty  
[4]. I t  seems to us tha t  the ma in  problem is the 
exact s t a tus  of class IV, and  it may well be tha t  
its best  def ini t ion remains  founded on a negat ive  
s t a tement :  class IV rules are the rules which do 
n o t  belong to any of the three other  classes. Let 
us briefly recapi tu la te  the (positive) defini t ions of 
these classes for infinite-size CA [3]. 

Class I a u t o m a t a  evolve to a unique ,  homoge- 
neous,  s t a t iona ry  s ta te  after a finite t r ans ien t  from 
almost  any  in i t ia l  condi t ion.  

Class II  rules genera te  spat ia l ly  inhomogeneous ,  
s t a t i ona ry  or periodic (with a short  per iod) ,  
a sympto t i c  s tates after a finite t rans ien t .  

Class I I I  a u t o m a t a  evolve to a unique ,  chaotic,  
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statistically well-defined s tate  from almost any ini- 
tial configuration in a finite number  of t imesteps.  
These qualitative definitions can be made quanti- 
tat ive using various statistical quantities. 

Class IV was initially defined by various crite- 
ria (existence of propagative structures,  arbi t rary  
long transients, no smooth infinite volume limit, 
influence of low probabil i ty configurations on av- 
erage quantities, etc.) but was mainly linked to 
the proper ty  of a rule to be a universal computer ,  
i.e. of being able to perform any digital compu- 
tat ion given a suitable initial configuration. But  
until now, the equivalence between this computa-  
tional proper ty  and various statistical character- 
izations of class IV rules has remained an open 
question, mainly because proving that  a rule is a 
universal computer  is usually very difficult in the 
absence of any systematic  approach.  

Without  a positive definition of class IV CA 
based on statistical properties,  the completeness of 
Wolfram's  classification cannot be ensured. Also, 
and part icularly as defined above, the first three 
classes are not "closed": for example,  it is practi- 
cally impossible to decide membership  in the case 
of very long transients.  

Moreover, this phenotypic classification, togeth- 
er with other similar a t t empts  to distinguish CA 
from their behavior [5,6], also suffers from its in- 
trinsic inability to provide clues on the s t ructure  
of the space of CA tha t  would relate to the rule ta- 
bles themselves. Ideally, one would like to at least 
be able to make an educated guess on the general 
behavior  of a CA given some features of its rule 
table, and in part icular  see whether  it is close to 
a transit ion point, possibly showing some critical 
dynamical  properties.  

In this paper,  we take advantage of our recent 
work on the transit ion to spat io temporal  disorder 
in dynamical  systems with many  degrees of free- 
dom to at tack the above-mentioned problems, fo- 
cusing on the possibility of critical behavior in CA 
and the relative importance  of the corresponding 
models in the space of rules. Our point of view 
will often be that  of statistical mechanics and we 
will mostly use the tools common in this domain 
of physics. 

In a series of articles [7], we have shown that  
spatially extended dynamical  systems such as par- 
tial differential equations, coupled ordinary differ- 

ential equations, and coupled map  lattices (CML), 
can exhibit transit ions to disorder akin to phase 
transit ions as defined in statistical mechanics. For 
all these models, these t rans i t ions  to turbulence 
via spat iotemporal  i n t e r m i t t e n c y  are observed 
when varying a continuous parameter ,  and the 
eventual critical points are well-characterized by 
means of the physical quantities similar to those 
used in the field of critical phenomena.  

Here, after a brief presentation of this set of re- 
sults, we focus on one part icular  such transit ion 
observed for a CML (section 2). Then,  we con- 
nect those results to CA themselves, thanks to a 
systematic  approximat ion scheme that  enables us 
to construct CA rules with well-controlled criti- 
cal properties (section 3). Section 4 is devoted to 
a general discussion of the relationships between 
various approaches to criticality in CA, with spe- 
cial a t tent ion to the aspects unveiled by our own 
results and their implications for the problem of 
the s tructure of the space of rules. 

2. Critical behavior of a coupled map 

lattice 

Before presenting the continuous phase transi- 
tion observed in a CML that  we will t ranslate to a 
sequence of rules in the space of CA, let us briefly 
review the physical background that  led us to this 

p r o b l e m .  

2.1. Transi t ion to turbulence via spatiotemporal  

i n t e r m i t t e n c y  

Hydrodynamical  turbulence is a phenomenon 
that  may  seem far away from the concerns usually 
at play in CA studies. Latt ice gas models represent 
one way of connecting the two fields at a "micro- 
scopic" level. Recently, Pomeau suggested a higher 
level, macroscopic connection between some hy- 
drodynamical  situations and simple PCA such as 
directed percolation [8]. 

Among the flows most defiant of both  analysis 
and experiments  are those which exhibit the coex- 
istence of a regular (laminar) s tate  together with 
a disordered ( turbulent)  one. The corresponding 
dynamical  regimes are characterized by patches of 
both  states bordered by well-defined fronts evolv- 
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ing in space and time. Such spatiotemporal in- 
termittency regimes are ubiquitous (e.g. turbu-  
lent spots in the Blasius boundary  layer [9]), and 
Pomeau  argued tha t  their essential feature lies in 
the a s y m m e t r y  between the two states. As a mat-  
ter of fact, the intrinsic fluctuations of the dis- 
ordered state allow the nucleation of the laminar  
s tate  in a turbulent  region, whereas the absence 
of such fluctuations in the regular state prevents 
the spontaneous emergence of disorder within a 
laminar  patch. In the language of PCA, this is 
quali tatively equivalent to saying that  the lami- 
nar  s tate  is absorbing and that  the propagat ion of 
disorder can only happen through the contamina- 
t ion/recession process governing the dynamics of 
the local fronts separat ing two patches. I t  is then 
natural  to propose a link between the relevant hy- 
drodynamical  si tuations and directed percolation 
which can be seen as one of the simplest two-state 
P C A  with one absorbing phase. 

Directed percolation is best known for exhibit- 
ing a continuous (second order) phase transit ion 
with rather  well-understood critical properties in 
the infinite-size limit [2]. Such critical behavior 
is observed when varying a paramete r  governing 
the local transit ion probabilit ies defining the rule. 
Pursuing the analogy between PCA of the di- 
rected percolation type and systems showing spa- 
t io temporal  intermittency, one is led to imagine 
the occurence of similar scaling regimes in dynam- 
ical systems with many  degrees of freedom when 
varying a control pa ramete r  through some criticial 
point. 

This general picture was first confirmed by a 
s tudy of a simple partial  differential model be- 
lieved to have some relevance to hydrodynamics  
[10]. We then introduced a simple CML designed 
to retain only the dynamical  features necessary 
for exhibiting spat io temporal  in termit tency [11]. 
This "minimal"  model, to be presented below, was 
studied for space dimensions 1 < d < 4 [11,12]. It  
was shown that  the transit ion to turbulence via 
spat io temporal  in termit tency can be of different 
types depending on the details of the system and 
the lattice dimension d. For d < 2, transit ions 
are either discontinuous (first-order-like) or con- 
tinuous (second-order-like) with possible compli- 
cations due to the superposit ion of deterministic 
features on the general picture of a phase transi- 

tion [13]. The equivalence with directed percola- 
tion suggested by Pomeau is thus not complete, 
but the conjecture is valid at a qualitative level, 
and remarkably anticipated the novel relevance of 
statistical mechanics in the field of spatially ex- 
tended dynamical  and physical systems brought 
to light by our findings. 

In the next section, we exemplify these results 
by detailing a continuous phase transit ion ob- 
served in our minimal CML. 

2.2. A typical continuous phase transition 

A coupled map lattice consists of a collection 
of N identical local maps f of one or more real 
variables sitting on a lattice of space dimension 
d. The sites are updated  synchronously by the it- 
eration of the local map f and a coupling proce- 
dure involving the sites of a regular neighborhood. 
Most of the time, the evolution can be decomposed 
into two steps, i teration and coupling. This can be 
writ ten as 

. . .  9 X,~ f , y n  g , xn+l  ~ y n + l  ~ . . .  

where g is the coupling function involving a site 
and its neighbors, and the superscripts symbolize 
the (discrete) time. Although we will briefly men- 
tion other situations, we restrict ourselves here to 
the most  studied case of a chain (d = 1) of maps 
of one real variable (X, Y G R), coupled to their 
nearest neighbors by the linear "diffusive" cou- 
pling function g: 

1 (y /_  _~ g / + l ) ,  g(Y/_I, Y/, Y/+l) = (1 - c )Y/+  i :  1 

where : is the coupling strength,  and the sub- 
scripts denote the spatial  indices of the sites. 

The local map f designed to fulfill the minimal  
requirements for exhibiting spat iotemporal  inter- 
mit tency reads [11]: 

f ( X )  = s X  if X e [0,1/2], 
f ( X )  s ( 1 - X )  if X • [1/2,1], 
f ( X )  = X  if X > 1, 

with s > 2. 
When uncoupled to its neighbors (:  = 0), each 

map eventually experiences a chaotic transient in 
the " turbulent"  par t  of its phase space, X < 1, be- 
fore reaching a fixed point in the laminar  region, 
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s/2 

1 

f (x) 

0 1/2 1 s/2 

X 
Fig. 1. Local map f of the minimal CML showing spa- 
tiotemporal intermittency. The turbulent state is the 
chaotic tent map (X _< 1), and the l a m i n a r  s ta te  is the 
continuum of marginally stable fixed points (X > 1). 

X > 1 (see fig. 1). It  is easy to show that  the 
laminar  state is absorbing in the coupled system. 
For strong enough E and when s tar t ing from inho- 
mogeneous initial conditions, the finite-amplitude 
per turbat ions  introduced by the coupling may be 
large enough to take one quiescent site adjacent to 
an active one from the laminar  state back to the 
turbulent  state, and the CML then exhibits sus- 
tained regimes of spat io temporal  intermittency. 
There exists a threshold value E¢ (well-defined in 
the infinite size limit) above which this occurs, 
and the transit ion region shows scaling proper- 
ties characteristic of continuous phase transit ions 
(fig. 2). 

The spat io temporal  in termit tency regimes ob- 
served above threshold (~ > e¢) possess well- 
defined statistical properties.  For example,  the av- 
erage density of " turbulent"  sites (X > 1), of- 
ten considered as an order parameter ,  is the same 
whether  the averaging is done in space, in time, 
or both. The following scaling propert ies  are ob- 
served in the critical region: 
- continuous decrease of the average density of 
turbulent  sites when approaching the threshold 
from above (exponent/3);  
- divergence of the fluctuations of the instanta-  
neous density of turbulent  sites at threshold; 
- divergence at threshold of the average transient 
t ime before a s teady regime is reached; 
- continuous decrease of the largest Lyapunov ex- 

ponent when approaching threshold from above 
(prel iminary result); 
- algebraic distribution of the sizes and durations 
of clusters of laminar  sites at threshold (exponents 

~± and ~11); 
- divergence of the coherence length ~± and the 
coherence t ime ~ll as defined from the character- 
istic scales extracted from the exponential  distri- 
butions of sizes and durations of laminar clusters 
above threshold (fig. 3). 

Most of these criteria will be used in the next 
section to characterize the critical CA rules emerg- 
ing from our approximat ion of this CML. The 
scales mentioned in the last point are not the tra- 
ditional quantities used to measure the coherence 
of a many-body  system. Although this is still a 
point of ongoing controversy [14], let us mention 
here that  autocorrelat ion functions do not pro- 
vide clear-cut est imates of correlation scales for 
this system or for most systems of this type. The 
coherence scales defined above, on the other hand, 
are based on a reduction of the states of the CML 
deeply rooted in its dynamical  propert ies and are 
relatively easy to interpret.  

The equivalence with directed percolation ini- 
tially proposed by Pomeau is not verified even in 
the case of a well-defined continuous transition. 
For example,  the exponent ~x characterizing the 
distribution of sizes of laminar  clusters at thresh- 
old takes two different values for s = 2.1 and s = 3 
(~± : 1.78 and ~± : 1.99) which are different 
from the corresponding value for directed perco- 
lation (~± : 1.75). This nonuniversality was par t  
of our motivat ion to translate the problem into 
the field of DCA. 

3. S e q u e n c e s  o f  C A  ru le s  a p p r o x i m a t i n g  a 
c o n t i n u o u s  t r a n s i t i o n  

In a previous work [15], we introduced an ap- 
proximation of CML by CA in order to obtain in- 
sights on the various problems posed by the tran- 
sition to turbulence via spat io temporal  intermit-  
tency and in part icular  the question of its nonuni- 
versality. Here, we present a slightly different ap- 
proximation scheme designed to produce CA as 
close as desired to a given critical point and s tudy 
in some detail the sequences of rules equivalent to 



126 H. Chat@ and P. Manneville / Criticality in cellular automata 

%, 
,~ \NL,  

Fig. 2. Spatiotemporal intermittency in the critical regime for the minimal CML. Sites in the laminar (turbulent) state are 
black (white), following the natural binary reduction built in the local map .f. The chain of N -- 200 maps with periodic 
boundary conditions is shown just above the spatiotemporal intermittency threshold, and time is running upward. (a) s = 3, 

= 0.360, 200 iterations; (b) s = 2.1, e = 0.0047, 200 × 16 iterations. 

the cont inuous t rans i t ion  descr ibed in the previ- 
¢ 

ous section. 

3.1. Approx imat ing  CML by CA 

Only  the discreteness of their  local phase space 
dis t inguish D C A  from CML. Indeed,  a CML 
whose local m a p  takes only discrete values (i.e. 
a step funct ion)  is equivalent to a D C A  defined 
on the same latt ice,  the same ne ighborhood  and a 
number  of possible s tates  equal to the number  of 
steps of different heights in the step funct ion (if 
the a u t o m a t o n  is "observed" after the i terat ion 
step, cf. section 2.2). The  approx imat ion  s imply 
consists  of choosing a step funct ion ] preserving 
the essential features of the original  local m a p  f .  

This  very simple idea provides a sys temat ic  way 
of cons t ruc t ing  sequences of rules approx imat ing  
the var ia t ion of (cont inuous)  parameters  in the 
CML.  Having an under ly ing  "physical"  significa- 
t ion, these sequences form non-a rb i t r a ry  pa ths  in 
the space of CA. 

Vir tua l ly  all pa ramete r s  can be varied, includ- 
ing the space d imension and the size of the cou- 
pling ne ighborhood ,  so tha t  the sequences of rules 
are not l imited to a subset of the space of CA. For 
example,  cons t ruc t ing  CML based on the same lo- 

cal map  f but  with coupling funct ions g approx-  
imat ing  the diffusion opera tor  at higher orders 
(on larger and larger neighborhoods)  creates a se- 
quence of rules of increasing radius whose dynam-  
ics are very similar [16]. Thus,  a l though obviously 
not a sys temat ic  way of exploring the s t ruc ture  of 
the space of CA, this type of approach  produces  
well-controlled pa ths  along all the dimensions of 
this space. 

3.2. Previous results 

In  ref. [15], we cons t ruc ted  the step funct ion 
] approximat ing  the local map  f of  our  minimal  
CML by considering the preimages of  the laminar  
s tate  (X  > 1) backward  in time. This  solution pro- 
vided insights into the processes at  play in the spa- 
t io tempora l  in te rmi t tency  regimes of the original 
CML. In part icular ,  the cases s = 2.1 and s = 3 
were found to produce  very different sequences of  
rules when varying the coupling s t rength  ~. 

For s - 2.1, the rules of the sequence were all 
of class I and II ,  failing thus to reproduce the 
spa t io tempora l  in te rmi t tency  regimes, whereas for 
s = 3, complex rules (class I I I  and IV) were 
found above a threshold value cc depending  on the 
order  of the approximat ion .  This  indicated tha t  
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Fig. 3. (a) His togram of the sizes of the clusters of laminar  sites for the minimal  CML above the spa t io tempora l  in termi t tency 
threshold  (s = 3, ¢ = 0.400 > ¢¢ = 0.360). Statist ics cumula ted  over space and t ime for a N -- 5000 site chain with periodic 
bounda ry  condit ions during 5000 i terations.  Exponent ia l  d is t r ibut ion wi th  characterist ic scale ~± ~ 3.7 sites. (b) Same 
as (a) but  at the spa t io tempora l  in te rmi t tency  threshold  (¢ = 0.360) for a lattice of 10000 sites during 10000 iterations• 
Algebraic dis t r ibut ion with critical exponent  4±- (c) Variation with ~ of the coherence length ~± defined in (a). (d) Variation 
with ¢ of the coherence t ime ~ll defined in (a). 

for s = 2.1 the local processes at the origin of 
the spatiotemporal  disorder are due to the quasi- 
probabilistic mixing occuring during the long ex- 
cursions of each site in the turbulent  state. For 
s = 3, on the other hand, the spatiotemporal  inter- 
mit tency regimes are similar to those produced by 

class III and class IV rules, i.e. quasi-deterministic 
processes characterized by propagating structures 
and triangular clearings (fig. 2). The transitions, 
although both continuous for the CML, are very 
different, as already indicated by the nonuniver- 
sality of the critical exponents. 
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For s = 2.1, the critical regimes of the CML are 
close to those exhibited by a PCA rule interpo- 
lated between trivial (class I and II) DCA rules. 
Note that directed percolation falls into this cat- 
egory and indeed exhibits no particular structure 
in its spatiotemporal evolution, just as the mini- 
mal CML for s = 2.1. This may explain why the 
values of the critical indices of the transitions are 
close to each other for these two systems. 

For s = 3, the transition is qualitatively differ- 
ent: the critical regimes of the CML are similar to 
those exhibited by class IV and class III  rules, and 
one is led to imagine that there exist DCA rules as 
close as desired to this well-defined critical point. 

The general picture of a critical surface in the 
space of rules emerges, a critical surface that  can 
be reached either by interpolation between two 
rules lying apart from it (PCA) or by constructing 
DCA rules close to it. It is this latter possibility 
that interests us here, with the final aim of con- 
structing critical CA models. 

s/2 

1 

/\ 
J 

/ 
/ 

0 1/2 1 s/2 

X 

Fig. 4. Equa l -w id th  s tep  func t ion  ]3 a p p r o x i m a t i n g  the  
local m a p  .f of  the  m i n i m a l  C M L  at  order  k = 3. 

(k > 2). This also allows a simple comparison with 
the original CML. 

3.4. Results for the minimal CIVIL with s = 3 

3.3. An equal-step approximation 

The approximation of the local map f based on 
the preima.ges of the laminar state I15] creates step 
functions f that  do not converge to f when the or- 
der of the approximation increases. In order to en- 
sure this convergence, we use here step functions 
]k (k > 2) which divide the turbulent part of the 
local phase space of f (0 < X _~ 1) in 2 k -  1 steps 
of equal width having k different heights. The lam- 
inar part of the phase space (1 < X ~_ r /2)  is 
then also divided in steps whose heights match 
those.previously defined. Fig. 4 shows a step func- 
tion f3 defined this way. The CML built on the 
step functions ]k is a k-state DCA. For the one- 
dimensional case presented in section 2, the DCA 
have radius r = 1 (nearest-neighbor coupling in 
the CML) and their particular rule table depends 
on the parameters of the CML, s and c. 

The transition observed when varying contin- 
uously e is translated into a discrete sequence of 
rules. The absorbing property of the laminar state 
is conserved in a global way: a configuration with 
all sites in the states corresponding to X > 1 will 
produce a site in one of those states. This justifies 
the continuing use of a binary representation (see 
fig. 2) even for the DCA with more than two states 

Here we describe the sequences of rules pro- 
duced by the approximation for the minimal CML 
defined in section 2.2 with s = 3 and c varying 
from 0 to 1. 

At first order (k = 2), the approximation is ex- 
actly equivalent to the one introduced in ref. [15]: 
independently of s (2 < s _< 3), the sequence is 
composed of 7 of the 32 two-state three-neighbor 
legal rules studied in detail by Wolfram [17] (ta- 
ble 1). 

Already at such a crude level, the transition 
to spatiotemporal intermittency observed for the 
CML is recovered, with a threshold c¢ separating 
class I and II rules from class III  ones. 

Increasing the order k of the approximation, 
more and more features of the original transition 
are recovered. Given the cardinal of the set of pos- 
sible rules at fixed k, it is actually of no interest to 
define exactly the rules of the sequences for k > 2, 
so that we study them mostly through numerical 
simulations. 

The number of rules in the sequence for 0 < c < 
1 varies slightly with s but increases strongly with 
the order k of the approximation. Similarly, the 
mean normalized Hamming distance between con- 
secutive rules in a given sequence decreases when 
k increases (fig. 5). 
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Table 1 
Equivalent rules for the deterministic cellular automata approximating the minimal coupled map lattice at 
order k = 2 when the coupling ~ is varied between 0 and 1 (results valid for 2 < s < 3 only). 

2 / s  - 4 / s  2 1 - 2 / s  4 / s  - 8 / s  ~ 2 - 4 / s  2 / s  1 - 2 / s  + 4 / s  2 

Rule 32 [ 3~ I 4 I 7~ I 94 I o0 t 12: 
Dynamics trivial (class I and II) complex (class III) 
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k k 
Fig. 5. (a) Variation with k of the number of rules in the sequences approximating the CML. (b) Variation with the order 
of the approximation k of the mean normalized Hamming distance dH between rules in a sequence. Rules yielding different 
states for every parental neighborhood lie at distance 1 from each other after normalization. 

Th i s  is not  su rp r i s ing  since the  phase  space is 
then  less and  less coarse -g ra ined ,  and  the  scheme 
converges  to the  or ig ina l  CML as k ~ co. At  a 
given order ,  the re  is a t h r e sho ld  value e¢ sepa-  
r a t i ng  t r iv ia l  f rom complex  rules.  Table  2 shows 
t h a t  th is  t h r e sho ld  r a p i d l y  converges  to the  cor- 
r e s p o n d i n g  value for the  or ig ina l  CML.  At  high 
orders ,  say k > 5, the  con t igu i ty  in the  space  
of  rules  does  i m p l y  a con t igu i ty  in the  dynamics .  
Th is  conf i rms the  genera l  r e m a r k  t h a t  rules  wi th  
s imi l a r  rule  t ab les  a re  l ikely to exh ib i t  s imi l a r  be-  
hav iors ,  in r e l a t ion  wi th  the  obse rva t ion  t h a t  nev- 
e r the less  ce r ta in  conf igura t ion  o u t p u t s  can qual i -  
t a t i v e l y  mod i fy  the  d y n a m i c s  ( "ho t  b i t s"  [5]). 

One  of the  mos t  r e m a r k a b l e  facts  is t ha t  even 
at  low orders  of the  a p p r o x i m a t i o n  the  rules in 
the  t r an s i t i on  region a p p e a r  to have mos t  of  the  
p r o p e r t i e s  of class IV  rules.  Fig .  6 shows such 
rules  wi th  cha rac t e r i s t i c  p r o p a g a t i n g  s t ruc tu re s ,  
very  long t r ans i en t s ,  and  seeming ly  u n p r e d i c t a b l e  
a s y m p t o t i c  s ta tes .  

In  the  nex t  sect ion,  we s t u d y  the  sequence gen- 
e r a t e d  by  the  a p p r o x i m a t i o n  scheme a t  o rde r  k = 
10 and  c o m p a r e  it d i r ec t l y  wi th  the  or ig ina l  t r an -  
s i t ion  to  s p a t i o t e m p o r a l  i n t e r m i t t e n c y  in the  min-  

imal  CML.  

3.5. T h e  s equence  o f  r u l e s ] o r s  = 3 a n d  k = 10  

At o rde r  k = 10, the  t r a n s i t i on  to  s p a t i o t e m p o -  
ral  i n t e r m i t t e n c y  of  the  m i n i m a l  C M L  wi th  s = 3 
and  0 < E < 1 is r e p r o d u c e d  by a sequence of  210 
D C A  rules.  At  th is  m o d e r a t e l y  high order ,  the re  
are  enough  rules  to  be  ab le  to c o m p a r e  wi th  the  
o iginal  t r a n s i t i o n  of  the  m i n i m a l  C M L  presen ted  
in sec t ion  2.2. 

T h e  d y n a m i c s  of  these  210 rules  show the  exis- 
tence  of  a t h r e sho ld  value  cc -~ 0.39 be low which 
only  class I and  I I  rules  are  observed .  The  rules 
above  the  t r a n s i t i o n  region possess  the  t r i angu-  
la r  c lear ings  and  the  wel l -def ined s t a t i s t i c a l  prop-  
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Fig. 6. Rules in the critical region of the sequences approximating the transition to turbulence via spatiotemporal inter- 
nfittency in the minimal CML. Evolution of a lattice of 200 sites shown during 200 iterations under the binary reduction 
separating "turbulent" (white) from "laminar" (black) local states. Periodic boundary conditions, random initial conditions; 
time is running upward. (a) k 6, ~ = 0.33; (b) k = 8, ~ = 0.28. 

Table 2 
Variation with order k of the threshold value ec separating 
trivial from complex rules in the sequences generated by 
the approximation. The paranteter region comprising pos- 
sibly critical rules is indicated within brackets. For higher 
orders of the approximation, there is no sharp limit defin- 
ing the transition region. The spatiotemporal intermittency 
threshold for the minimal CML is ec = 0.360. 

k ec Transition region 
2 0.67 
3 0.50 
4 0.33 
5 0.50 [0.33-0.50] 
6 0.42 [0.25 -0.42] 
7 0.472 [0.32-0.47] 
8 0.434 [0.28-0.43] 
9 0.42 [0.28-0.42] 

10 0.30 [0.33-0.39] 
11 0.376 
12 0.37 
13 0.364 

erties character is t ic  of class I I I  CA. The  t rans i -  
t ion region consists  of highly complex,  seemingly  
unpred ic t ab le  rules. These rules exhibi t  i r regular  
and  somet imes  very long t r ans ien t s  when evolv- 
ing from r a n d o m  in i t ia l  condi t ions  to a sympto t i c  
states,  which usual ly  depend  on these ini t ia l  con- 
di t ions.  Most of the features general ly  a t t r i b u t e d  
to class IV rules are in fact observed. Fig. 7 shows 

the spa t io tempora l  evolut ion of four typical  rules 
of the sequence. 

A somewhat  more quan t i t a t ive  compar ison  can 
be made  with the cont inuous  phase t r ans i t ion  of 
the original  CML. The  character is t ic  propert ies  
discussed in section 2.2 are easily verified for the 
rules along the sequence, at least at a crude level, 
t hanks  to the na t u r a l  b ina ry  reduc t ion  rooted in 
the dynamics  of bo th  the CML and  the D CA  pro- 

duced by the approx ima t ion  scheme. The  t r iangu-  
lar clearings of the class III  rules appear ing  above 
threshold  correspond to the l a mi na r  clusters of the 
spa t io tempora l  i n t e r mi t t e nc y  regimes of the CML. 
Indeed the cor responding  states of the D CA  are 
absorbing.  The  coherence scales 4± and  ~ll defined 
in section 2.2 for the CML are equivalent  to the 
character is t ic  length  and  t ime ext rac ted  front the 
exponent ia l  d i s t r ibu t ion  of tile sizes of t r i angu la r  
clearings for class I I I  D CA  evolving from r a n d o m  
ini t ia l  condi t ions  [3]. 

This  proper ty  of class I I I  rules is conserved 
here when collapsing all absorb ing  s ta tes  into a 
un ique  " l aminar"  s ta te  under  the b ina ry  reduc- 
t ion.  Fig. 8b shows the increase of ~u_ for the rules 
of the sequence when approaching  ~¢ from above. 

As for the crit ical exponents  ~± and  ~U given by 
the algebraic  d i s t r ibu t ion  of the sizes of the lam- 
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Fig. 7. Spatiotemporal evolution of four typical rules of the sequence generated by the approximation at order k = 10 for 
the transition of the minimal CML at s = 3. The lattice of 200 sites with periodic boundary conditions is shown under the 
natural binary reduction discussed in the text during the 200 iterations following random initial conditions. As in fig. 6, 
black sites are in one of the laminar (absorbing) states, white sites are "turbulent". (a) Class I rule well below threshold 
(e ~ 0.23). (b) Rule slightly below threshold (e = 0.34) (class IV ?) showing extremely long transients. (c) At threshold 
(e ~ 0.39), first rule with a unique chaotic asymptotic state showing very long transients and quasi-algebraic distribution 
of laminar cluster sizes. (d) Class III rule above threshold (e = 0.50). Note that the characteristic size of the triangular 
clearings is smaller far from threshold (d) than just above it (c). 

i n a r  c l u s t e r s  a t  t h r e sho ld , :  i t  is n o t  c l ea r  w h e t h e r ,  

i n c r e a s i n g  t h e  o r d e r  o f  t h e  a p p r o x i m a t i o n ,  t h e y  
" c o n t i n u o u s l y "  r e a c h  t h e  c o r r e s p o n d i n g  v a l u e  

m e a s u r e d  for t h e  C M L .  A c t u a l l y ,  as seen  f r o m  

fig. 8a,  t h e  ru les  in t h e  t r a n s i t i o n  r eg ion  o f  t h e  
k = 10 s e q u e n c e  do  n o t  s h o w  a c l ea r  a l g e b r a i c  dis-  

t r i b u t i o n  of  l a m i n a r  c lus ter ,  s izes,  b u t  r a t h e r  lie in 

a c r o s s o v e r  r e g i m e  s ince  e x p o n e n t i a l  f i ts  a re  n o t  

va l id  e i t he r .  A t  h i g h e r  o r d e r s  of  t h e  a p p r o x i m a -  

t ion ,  t h e  ru les  l o c a t e d  a r o u n d  ec h a v e  a low m e a n  

d e n s i t y  of  " t u r b u l e n t "  s i tes ,  a n d  t h e  s p a t i o t e m -  

p o r a l  p a t t e r n s  t h e y  d e v e l o p  l oca l l y  r e s e m b l e  t h e  

f r a e t a l  o n e s  s h o w n  by  c lass  I I I  ru les  e v o l v i n g  f r o m  

s i m p l e  seeds.  Fo r  a D C A  w i t h  ~a s m a l l  n m n b e r  
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Fig. 8. (a) His togram of  the  sizes of the  " laminar"  clusters  for the  rule of the  sequence at  order  k = 10 and  ~ = e¢ ~- 0.39 
ob ta ined  on a lat t ice of  5000 sites during 5000 i tera t ions  following a long t ransient .  (b) Variat ion along the  sequence of the  
coherence length  ~± ex t rac ted  from the  exponent ia l  d is t r ibut ion  of sizes of laminar  clusters  for the  class III  rules of the  
sequence at order  k = 10 above threshold .  Note  tha t  at  this  level of discret izat ion,  only the  rough qual i ta t ive  varat ion of  
~± is recovered,  which indicates  the  still relatively impor t an t  role of "hot  bi ts"  in the  rule table.  

of local states, there are but few possible corre- 
sponding fractal dimensions. But  for the large-k 
limit of our approximat ion scheme, there are po- 
tentially many  such dimensions. Since they are di- 
rectly related to the critical exponents ~± and ~11 
(4 = 1 + dr), one is led to envision a continuum of 
possible critical indices in the k --* c~ limit. 

4. D i s c u s s i o n  

4.1. Critical surface in the space of CA 

The results given by our approximat ion of CML 
by CA provide insights into the general problem 
of the s tructure of the space of rules. In particu- 
lar, the translat ion of the transit ion to turbulence 
via spat io temporal  intermit tency (cf. section 2) 
into paths of DCA rules leads us to picture the 
existence of a critical surface on which lie "criti- 
cal rules" defined by the usual criteria for critical 
points in statistical mechanics. 

We have shown tha t  the transit ion of the one- 
dimensional minimal CML defined in section 2.2 
exhibits very different paths of rules under the ap- 

proximation for s = 2.1 and s = 3. This indicates 
that  there exist essentially two qualitatively dis- 
tinct ways of approaching the critical surface and 
suggests that  any rule close to it combines these 
two aspects in some proport ion.  

For s = 2.1, none of the rules produced by the 
approximation at low orders resides near the crit- 
ical surface, and the critical regimes of the CML 
correspond to the probabilistic interpolation be- 
tween the class I or class I I  rules appearing in the 
sequences, i.e. to a PCA of the type of directed 
percolation. The critical regimes of the CML can 
presumably be recovered only at very high orders, 
when the strong chaotic mixing occurring in the 
turbulent  part  of the phase space of the maps is 
reproduced by the complex interplay between the 
numerous local states of the DCA generated by 
the approximation.  In this limit, these determin- 
istic rules become equivalent to probabilistic ones, 
very much as the diadic map is related to a coin 
toss process [18]. 

In contrast ,  results from the approximat ion 
scheme in the s -- 3 case pointed out that  there 
are simple (small k) rules lying close enough to 
the critical surface to exhibit critical properties 
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(over a range of scales depending on the distance 
to the critical point).  In this case, the complex- 
ity observed in the spat io temporal  evolution arises 
from very elementary features of these rules ra ther  
than  from the mixing of a quasi-continuum of local 
states. 

A priori, we can conceive intermediate  cases for 
which these two aspects could be present in any 
proport ion.  These cases could be generated for ex- 
ample by the approximat ion of the minimal CML 
for 2.1 < s < 3, a l though the variat ion of s would 
not produce a continuous and monotonous vari- 
ation in the propert ies  of the critical rules (for 
example,  ¢c does not vary continuously with s for 
the minimal  CML [19]). Nevertheless, given the 
potential  richness of large-k DCA, there may ex- 
ist a continuous set of possible critical propert ies 
for the rules on the surface. 

4.2. Classifications of CA 

The results gathered also shed light on Wol- 
f ram's  classification. Critical rules, if they are to 
be defined by the statistical criteria used here, ap- 
pear as limit cases of class I, I I  and I I I  CA. This 
is easily seen, for example,  from the point of view 
of the mean durat ion of transients separat ing ran- 
dom initial conditions from an eventual asymp- 
totic state. I f  this quant i ty  or the corresponding 
r.m.s, diverge, as is the case when approaching the 
transit ion region under our approximat ion scheme 
(from below for class I and II,  from above for 
class III) ,  the rules can no longer be classified. 
The critical surface can thus be seen as the limit 
of class I, I I  and I I I  rules having infinite transients,  
fluctuations, coherence scales, etc. 

This  conclusion also s tems from the iterative 
parametr ic  genotypic classification provided by lo- 
cal s t ructure  theory [20]. This mean-field type of 
analysis has to be pushed to higher and higher 
orders if one wants to account satisfactorily for 
the statistical propert ies  of rules with increasing 
correlation scales. Eventually, the approach can- 
not be made precise enough for rules lying very 
close to the critical surface. The breakdown of 
local s t ructure  theory can thus be a clear signal 
of criticality. Incidentally, the coherence scales ~± 
and ~ll introduced here directly provide est imates 
of the order below which the analysis will fail. 

For t ruly critical rules, other methods  should be 
considered, such as a renormalizat ion-group treat- 
ment,  which precisely tries to take advantage of 
the scaling properties [21]. 

4.3. Criticality and computational properties 

If  critical rules are defined as limit cases of 
class I, I I  or I I I  CA, a central question is still 
the relationship between the existence of a crit- 
ical surface and the universal computer  proper ty  
often used to characterize class IV rules. There is 
no systematic  way of at tacking this problem, but 
some comments  already stated elsewhere [22,23] 
can be made. Critical rules may be character- 
ized by their ability to undergo arbi t rar i ly  long 
transients.  This is equivalent to s tat ing the un- 
predictabil i ty of these rules. The undecidabili ty of 
the finiteness of transients is also equivalent to the 
problem of the halting of a Turing machine. 

Under our approximat ion scheme, critical rules 
often lie at the border between class I I  and class I I I  
CA. Following Wootters  and Langton [23], this 
can be expressed in terms of the minimal  require- 
ments for a system to be able to perform calcu- 
lations. Class I I I  rules have good "communica- 
tion" propert ies between sites (as seen from their 
positive Lyapunov exponents [17]) but  almost no 
ability to store information (they reach a unique 
chaotic asymptot ic  state for almost  all initial con- 
ditions). Class I I  rules, on the other hand, possess 
very good storage properties,  but no communi- 
cation is possible after they reach their spatially 
complex temporal ly  trivial asymptot ic  state. In 
this context,  critical rules seem to fulfill the nec- 
essary compromise between storage and conmm- 
nication at the root of any complex digital calcu- 
lation. 

4.4. Criticality and marginal stability 

Recently, a number  of ra ther  simple CA models 
have been introduced and shown to exhibit scaling 
propert ies "spontaneously" [24]. We shall not dis- 
cuss here their relevance to the physical phenom- 
ena they are taken as models of, but merely make 
the observation that  these models of self-organized 
criticality may be seen as critical rules from our 
point of view. Given the picture of the critical sur- 
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face of rules developed here, it is not surprising 
that  such models exist, so that  the main question 
is why they sit close to the critical surface. 

A key concept for self-organized criticality is 
m a r g i n a l  stabili ty.  Typically, a system is marginal- 
ly stable when in the state for which the propa- 
gation of a local per turba t ion  is just  able to go to 
infinity in t ime and in space. How does the notion 
of marg ina l  stabil i ty relate to the critical CA rules 
constructed here? 

In the context of the continuous transit ion to 
turbulence via spat io temporal  intermittency, the 
transit ion point can be seen as the threshold in 
pa ramete r  space beyond which disorder will prop- 
agate to infinity in space and t ime (cf. the anal- 
ogy with directed percolation [7]). The critical 
regimes of spat io temporal  intermit tency can thus 
be seen as marginally stable states. Moreover, for 
the minimal  CML presented in section 2, the con- 
tinuous character of the transit ion (i.e. its criti- 
cality) seems to be int imately related to the fact 
that  the laminar  region is made of a continuum 
of marginally stable fixed points. Indeed, in the 
case of a unique stable fixed point, the transit ion 
is discontinuous [13]. Criticality is linked to the 
possibility for an infinitesimal local per turbat ion  
to bring a site from the laminar  to the turbulent  
s tate  and thus allow propagat ion of disorder at a 
negligible cost. Marginal stabili ty appears  to be 
an essential ingredient for an extended system to 
undergo a continuous transit ion to spat iotempo- 
ral intermittency. Coming back to the approxima- 
tion of CML by CA presented here, it is clear that  
marginal  stabili ty is also inscribed in the critical 
rules generated in the transit ion region. 

This point of view has also been recently dis- 
cussed by Gutowitz [25] and McIntosh [26] at the 
level of mean-field theory. In this context, class I 
and class I I  rules can easily, al though not strictly, 
be related to the existence of a unique stable 
fixed point at the origin of their mean-field map,  
whereas class I I I  rules are characterized by the ex- 
istence of a non-trivial stable fixed point. Critical 
rules are then natural ly  conjectured to represent,  
here again, the intermediate  .cases, among which 
the presence of a marginal ly stable fixed point for 
the mean-field map is generic. 

Although mean-field theory in known to be un- 
able to account for the details of the statistical 

properties of CA, it is usually believed to pro- 
vide good estimates of certain impor tan t  quan- 
tities [27]. This justifies the above conjecture, but 
it is not an absolute criterion to decide whether a 
rule will show critical properties. The indications 
given by the mean-field analysis are never quanti- 
tat ive (for example, the mean-field map  overesti- 
mates  the mean densities). Moreover, their use for 
critical rules seems part icularly daring since these 
rules are characterized by their long range correla- 
tions whereas the mean-field analysis consists pri- 
marily of neglecting them. Nevertheless, the work 
of McIntosh does bring evidence that  a marginally 
stable fixed point in the mean-field map  is a good 
indication of critical behaviors for CA. 

5. Conclusion 

The approximat ion scheme first introduced in 
[15] and presented here in a slightly different ver- 
sion has permit ted the construction of CA rules 
whose critical properties are well controlled. Al- 
though not a tool for a systematic and compre- 
hensive exploration of the space of CA, it allows 
the design of sequences of rules mimicking phase 
transitions occurring in extended dynamical  sys- 
tems and ensures the existence of critical rules, 
pictured to lie on a critical surface. 

From the results, a certain unity in the various 
statistical characterizations of Wolfram's  class IV, 
now seen as a limit case of the other classes, is 
recovered. 

A central problem remains, then, which is the 
nature of the relationship between the statistical 
characterizations of critical rules and the compu- 
tat ional  properties discussed in section 1. When 
does a rule with scaling properties have the prop- 
erty of being a universal computer?  Conversely, 
how critical is such a rule? These are the key ques- 
tions for a further progress in understanding crit- 
icality in cellular au tomata .  
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