
9

11111
A geographic data model is a representation of
the real world that can be used in a GIS to
produce maps, perform interactive queries, and
execute analysis.

Contemporary developments in database and
software technology is enabling a new
generation of geographic data models. These
are the topics in this chapter:

• Modeling objects with GIS

• The progress of geographic data models

• The geodatabase, store of geographic data

• Features in an object-oriented data model

• Serving and accessing geographic data

• Building data models

• Viewing and designing geodatabases

• Guide to reading UML object diagrams

• Technology trends

ObjectObjectObjectObjectObject
modeling andmodeling andmodeling andmodeling andmodeling and
geodatabasesgeodatabasesgeodatabasesgeodatabasesgeodatabases

123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789

D r a f t
Modeling Our World

The ESRI guide to
GEOdatabase design

ArcInfo 8.0
pre-release

july 23, 1999
Copyright © 1999

Environmental Systems Research Institute, Inc.
All rights reserved.

10 • Modeling Our World—Draft for Pre-Release

The purpose of a Geographic Information System
(GIS) is to provide a spatial framework to support
decisions for the intelligent use of Earth’s resources
and to manage the man-made environment.

Most often, a GIS presents information in the form of
maps and symbols. Looking at a map gives you the
knowledge of where things are, what they are, how
they can be reached through roads or other
transport, and what things are adjacent and nearby.
A GIS can also disseminate information through an
interactive session with maps on a personal
computer. This interaction reveals information that
is not apparent on a printed map.

For example, you can query all known attributes of
a feature, create a list of all things connected from
one point on a network to another, and perform
simulations to gauge qualities such as water flow,
travel time, or dispersion of pollutants.

The information display and analyis you wish to
support depends upon how you model geographic
objects from the world.

MANY WAYS TO MODEL A SYSTEM

Our interaction with objects in the world is diverse
and you can model them in many ways.

Consider one example, rivers. Rivers are interesting
because they are natural features, they are used for
transportation, they delimit political or administrative
areas, and they are an important feature in the
shape of a surface. Here are a few of the many
ways you can think about modeling rivers in a GIS:

• As a set of lines that form a network. Each
section of line has flow direction, volume, and
other attributes of a river. You can apply a linear
network model to analyze hydrographic flow or
ship traffic.

• As a border between two areas. A river can
delimit political areas such as provinces or
counties, or can be a barrier for natural regions
such as wildlife habitats.

• As an areal feature with an accurate
representation of its banks, braids, and navigable
channels on the river.

• As a sinuous line forming a trough in a surface
model. From the river’s path through a surface,
you can calculate its profile and rate of descent,
the watershed it drains, and its flooding potential
for a prescribed rainfall.

MAP USE GUIDES THE DATA MODEL

It’s clear that even a common type of geographic
feature such as a river can be represented in a GIS
in a variety of ways. No model is intrinsicly
superior; the type of map you want to create and
the context of the problems to be solved will guide
which model is best.

MODELING OBJECTS WITH GIS

Chapter 1 • Object modeling with geodatabases • 11

The geodatabase stores locators
and addresses. A locator interpolates
a location from an address using
local postal conventions. You can find
a geographic location for any address.

A network is a set of features that
participate in a linear system such
as utility network, stream network,
or road network. Networks are well
suited for tracing analysis.

Rasters (images) are an efficient
technology to capture large amounts
of imaged data. They provide an
informative background display
to feature layers on a map

Features are discrete objects on a
map. Small objects are represented
as points, long objects with lines and
broad objects with polygons.

location
image

surface

network

227 East Palace Avenue

representations of geography
features

The earth's surface can be kept in
a geodatabase in several forms; as
a triangulated irregular network (TIN),
as elevation values on pixels in
a raster, or as contour lines.

12 • Modeling Our World—Draft for Pre-Release

THE PROGRESS OF GEOGRAPHIC DATA MODELS

A geographic data model is an abstraction of the
real world that employs a set of data objects to
support map display, query, editing, and analysis.

ArcInfo 8 introduces a new object-oriented data
model—the geodatabase data model—with the
benefit of representing natural behaviors and
relationships of features. To understand the impact
of this new model, it is instructive to review three
generations of geographic data models.

I THE CAD DATA MODEL

The very first computerized mapping systems drew
vector maps with lines displayed on cathode ray
tubes and raster maps using overprinted characters
on line printers. From this genesis, the 1960’s and
70’s saw the refinement of graphics hardware and
mapping software that could render maps with
reasonable cartographic fidelity.

In this era, maps were typically created with general
purpose CAD (Computer Aided Drafting) software.
The CAD data model stored geographic data in
binary file formats with representations for points,
lines, and areas. Scant information about attributes
was kept in these files; map layers and annotation
labels were the primary representation of attributes.

II THE COVERAGE DATA MODEL

In 1981, ESRI introduced its first commercial GIS
software, ArcInfo, which implemented a second
generation geographic data model, the coverage
data model (also known as the georelational data
model). This model has two key facets:

• Spatial data is combined with attribute data. The
spatial data is stored in indexed binary files
which are optimized for display and access. The
attribute data is stored in tables with a number of
rows equal to the number of features in the
binary tables and joined by a common identifier.

• Topological relationships between vector features
can be stored. This means that the spatial data
record for a line contains information about
which nodes delimit that line, and by inference,
which lines are connected, and also which
polygons are on its right and left side.

The major advance of the coverage data model was

the ability for the user to customize feature tables;
not only could fields be added, but database relates
could be set up to external database tables.

Arc
Polygon

Label
point

Polygon Attribute Table

Arc Attribute Table

Point Attribute Table

Coverage Attributes in
relational tables

Spatial data
in relational tables

Due to the performance limitations of computer
hardware and database software of the time, it was
not practical to store spatial data directly in a
relational database. Rather, the coverage data model
combined spatial data in indexed binary files with
attribute data in tables.

Despite this compromise of partitioning spatial and
attribute data, the coverage data model has become
the dominant data model in GIS. This has been for
good reason—the coverage data model made high-
performance GIS possible and stored topology
facilitated improved geographic analysis and more
accurate data entry.

Limitations of the coverage data model

Yet, the coverage data model has an important
shortcoming—features are aggregated into
homogeneous collections of points, lines, and
polygons with generic behavior. The behavior of a
line representing a road is identical to the behavior
of a line representating a stream.

The generic behavior supported by the coverage
data model enforces the topological integrity of a
dataset. An example is if you add a line across a
polygon, it is automatically split into two polygons.

But it is desirable to also support the special
behaviors of streams, roads, and other real-world
objects. An example is that a stream flows in one
direction and when two stream segments combine,
the flow of the downstream segment is the addition
of the two upstream flows. Another example is that
when two roads cross, there ought to be a traffic
intersection at their junction unless one of the roads
is an overpass or underpass.

Chapter 1 • Object modeling with geodatabases • 13

Customizing features in coverages

With the coverage data model, ArcInfo application
developers had some notable success in adding this
type of behavior to features through macro code
written in the Arc Macro Language (AML). Many
successful, large-scale, industry-specific applications
were built.

However, as applications became more complex, it
became apparent there needed to be a better way to
associate behavior with features. The problem was
that the developer had the task of keeping the
application code in synchronicity with feature
classes—no easy task. The time had come for a
new geographic data model with an infrastructure
to tightly couple behavior with features.

III THE GEODATABASE DATA MODEL

ArcInfo 8 introduces a new object-oriented data
model called the geodatabase data model. The
defining purpose of this new data model is to let
you make the features in your GIS datasets smarter
by endowing them with natural behaviors and to
allow any sort of relationship to be defined among
features.

The geodatabase data model brings a physical data
model closer to its logical data model. The data
objects in a geodatabase are mostly the same
objects you would define in a logical data model,
such as owners, buildings, parcels, and roads.

Further, the geodatabase data model lets you
implement the majority of custom behavior without
writing any code. Most behavior is implemented
through domains, validation rules, and other
functions of the framework provided in ArcInfo.
Writing software code is only necessary for the
more specialized behaviors of features.

SCENARIOS OF OBJECT INTERACTIONS

To get a sense of why an object-oriented data model
is important, here are scenarios that illustrate
common tasks you might perform with features.
From these scenarios, we’ll sift out the benefits of
an object-oriented data model and then review
some specific characteristics of the geodatabase
data model.

Adding and editing features

When you add geographic features to your GIS
database, you want to ensure that features are
placed correctly according to rules such as these:

residential
agricultural
commercial
industrial

table

row

column

• That the values that you assign to an attribute falls
within a prescribed set of permissible values. A
parcel of land may only have certain land uses
such as 'residential', 'agricultural', or 'industrial'.

highway

transition

road

• That a feature can be placed adjacent or
connected to another feature only if certain
constraints are met. Placing a liquor store near a
school is not permitted by law. Or, a city road
cannot be connected to an highway without a
transition segment such as an on-ramp.

• That collections of certain features conform to
their natural spatial arrangement. A stream
system should always flow downhill. Flow down
from a junction is the sum of flows upstream.

• That the geometry of a feature follows its logical
placement. The lines and curves that make up a
road should be tangent. And, building corners
most often form right angles.

14 • Modeling Our World—Draft for Pre-Release

Relationships among features

All objects in the world are entangled in
relationships with other objects. From the
perspective of a GIS, these relationships can be
considered to fall within three general categories;
topological, spatial, and general.

These are some examples of each of these types of
relationships:

• When you edit features in an electric utility
system, you want to be sure that the ends of
primary and secondary lines connect exactly and
that you are able to perform tracing analysis on
that electric network. A set of topological
relationships are defined for you when loading
or editing features within a connected system.

• When you work with a map with buildings,
blocks, and school districts, you might want to
determine which block contains a particular
building, the set of all buildings within a school
district, and which blocks contain no buildings.
A fundamental function of a GIS is to determine
whether a feature is inside, touching, outside, or
overlapping another feature. Spatial relationships
are inferred from the geometry of features.

transformermeter

parcel

owner

• Some objects have relationships which are not
present on a map. A parcel has a relationship to
an owner, but the owner is not a feature on a

map. A general relationship connects the parcel
and the owner. Some features on a map have
relationships, but their spatial relationship is
ambiguous. A utility meter is in the general
vicinity of an electric transformer, but it is not
touching the transformer. The meter and the
transformer might not be reliably related by their
spatial proximity in crowded areas, so a general
relationship ties the two features together.

Cartographic display

Most of the time, you will draw features on a map
with pre-defined symbols, but sometimes you want
more control over how your features are drawn.
These are some specialized drawing behaviors:

5280

5280

• When you display a contour line, you want its
elevation annotated along a flat section of the
contour, at an average interval such as four
inches, and not obscuring other features.

• When you draw roads on a detailed map, you
would like the road drawn as parallel lines with
clean intersections wherever there is a road
intersection.

Circuit C

Circuit A
Circuit B

Pole

• When multiple electrical wires are physically
mounted on the same set of utility poles, but you
would like to depict them as spread in a set of
parallel lines with a standard offset in map units.

Chapter 1 • Object modeling with geodatabases • 15

Interactive analysis

Dynamic map displays invite the user to touch
features and find properties, relationships, and to
launch analyses. These are examples of some tasks
you may want to support upon selected features:

• Touch a feature on a map display and invoke a
form to query and update its properties.

• Select a part of an electric network where line
maintenance is planned, find all affected
downstream customers, and make a mailing list
to notify them.

BENEFITS OF THE GEODATABASE DATA MODEL

The common thread throughout these scenarios is
that it is very useful to apply object-oriented data
modeling to features. Object-oriented data modeling
lets you characterize features more naturally by
letting you define your own types of objects, by
defining topological, spatial, and general
relationships, and by capturing how these objects
interact with other objects. Some of the benefits of
the geodatabase data model are:

• A uniform repository of geographic data. All of
your geographic data can be stored and centrally
managed in one database.

• Data entry and editing is more accurate. Fewer
mistakes are made because most of them can be
prevented by intelligent validation behavior. For
many users, this alone is a compelling reason to
adopt the geodatabase data model.

• Users work with more intuitive data objects.
Properly designed, a geodatabase contains data
objects that corresponds to the user’s model of

data. Instead of generic points, lines, and areas,
the user works with their objects of interest such
as transformers, roads, and lakes.

• Features have a richer context. With topological
associations, spatial representation, and general
relationships, you not only define a feature’s
qualities, but its context with other features. This
lets you specify what happens to features when
a related feature is moved, changed, or deleted.
This context also lets you locate and inspect a
feature that is related to another.

• Better maps can be made. You have more control
over how features are drawn and you can add
intelligent drawing behavior. You can apply
sophisticated drawing methods directly in
ArcInfo’s mapping application, ArcMap. Highly
specialized drawing methods can be executed
through writing software code.

• Features on a map display are dynamic. When
you work with features in ArcInfo, they can
respond to changes in neighboring features. You
can also associate custom queries or analytic
tools with features.

• Shapes of features are better defined. The
geodatabase data model lets you use define the
shapes of features using straight lines, circular
curves, elliptical curves, and Bezier splines.

• Sets of features are continuous. By their design,
geodatabases can accomodate very large sets of
features without tiles or other spatial partitions.

• Many users can edit geographic data
simultaneously. The geodatabase data model
supports work flows where many people can
edit features in a local area, and then reconcile
any differences that emerge.

To be sure, you can realize some of these benefits
without an object-oriented data model, but you
would be at a disadvantage—you would need to
write external code that would be loosely coupled
to features and prone to complexity and error. A
principal advantage of the geodatabase data model
is that you have a framework that makes it as easy
as possible to create intelligent features that mimic
the interactions and behaviors of real world objects.

16 • Modeling Our World—Draft for Pre-Release

A geodatabase can contain four representations of
geographic data:

• vector data for representing features,

• raster data for representing images, gridded
thematic data, and surfaces,

• triangulated irregular networks (TINs) for
representing surfaces, and

• locators and addresses for finding a geographic
position from an address.

A geodatabase stores all of these representations of
geographic data in a commercial relational
database. This lets geographic data be administered
centrally by information technology professionals
and allows ArcInfo to leverage and keep pace with
developments in database technology.

REPRESENTING FEATURES WITH VECTORS

Many of the features in the world have well defined
shapes. Vector data represents the shapes of
features precisely and compactly as an ordered set
of coordinates with associated attributes. This
representation supports geometric operations such
as calculating length and area, identifying overlaps
and intersections, and finding other features which
are adjacent or nearby.

Vector data can be classified by dimension:

• Points are zero-dimensional shapes represent
geographic features too small to be depicted as
lines or areas. Points are stored as a single x,y
coordinate with attributes.

• Lines are one-dimensional shapes that represent
geographic features too narrow to depict are
areas. Lines are stored as a series of ordered x,y
coordinates with attributes. The segments of a
line can be straight, circular, elliptical, or splined.

• Areas are two-dimensional shapes that represent
broad geographic features that are stored as a
series of segments that enclose an area. These
segments form a set of closed areas.

Another type of vector data is annotation. These are
descriptive labels that are associated with features to
display names and attributes.

THE GEODATABASE, STORE OF GEOGRAPHIC DATA

Vector data in a geodatabase has a structure that
directs the storage of features by their dimension
and relationships. A feature dataset is the container
of spatial entities (features), non-spatial entities
(objects), and the relationships between them.
Topological associations are represented with
geometric networks and planar graphs.

A geodatabase also stores validation rules and
domains to ensure that when features are created or
updated, their attributes remain valid in the context
of related features and objects.

REPRESENTING GRIDDED DATA WITH RASTERS

Much of the data collected in a geodatabase is in
gridded form. This is because cameras and imaging
systems record data as pixel values in a two-
dimensional grid, or raster.

A pixel is a cell element of a raster and its values
can depict a variety of data. A pixel can store the
reflectance of light for part of the spectrum, a color
value for a photograph, a thematic attribute such as
vegetative type, or surface value, or elevation.

REPRESENTING SURFACES WITH TINS

A triangulated irregular network (TIN) is a model of
a surface. A geodatabase stores TINs as an
integrated set of nodes with elevations and triangles
with edges through which an elevation (or z value)
can be interpolated for any point within the
geographic extent of a TIN.

TINs enable surface analysis such as watershed
studies, visibility of a surface from an observation
point, and delineation of surface features such as
ridges, streams and peaks. TINs can also depict the
physical relief of terrain.

Note: In ArcInfo 8.0, a geodatabase does not yet store
TINs. For the interim, TINs can be stored in coverage
workspaces.

FINDING ADDRESSES WITH LOCATORS

Perhaps the most common geographic task is to
locate a place by an address. A geodatabase can
store locators and addresses. Locators are methods
that apply national postal conventions to convert an
address to a position. You can interact with these
points as any other point feature on the map.

Chapter 1 • Object modeling with geodatabases • 17

inside a geodatabase
Geodatabase

Feature datasets

Coordinate system

Geometric networks

Planar graphs

Domains

Raster datasets

Rasters

Validation rules

Locators

Addresses

77 Sunset

raster
surface

vector

location

Raster datasets can represent an imaged map, a surface, an
environmental attribute sampled on a grid, or photographs of
objects referenced to features. Some raster data is collected
in bands which commonly represent different spectral
ranges of camera filters.

TIN datasets are triangulations of sets of irregularly located
points with z-values (elevations) sampled from a surface.
TINs are most often used to model the Earth's surface, but
are also used to study the distribution of a continuous
environmental factor such as chemical concentration.

Corporate and agency databases have many records with
addresses. These addresses can be located within a
geodatabase. A locator is a method to convert an address to
a geographic position. The found locations are displayed as
features on the map.

topology

data integrity

entities
relationships

Feature classes , subtypes

Object classes , subtypes

Relationship classes

A feature dataset contains objects and features and the
relationships among them. An object is a non-spatial entity
and a feature is a spatial entity. A relationship links two
entities.

Objects of the same kind are stored in a object class.
Features of the same kind and with the same type of
geometric shape are stored in a feature class.

A relationship class stores relationships between entities in
two object or feature classes.

A

Geometric networks model linear systems such as utility
networks and transportation networks. They support a rich
set of network tracing and solving functions.

Domains are sets of valid attribute values for object
attributes. They can be textual or numeric.

Validation rules enforce data integrity through relationship
rules and connectivity rules.

can be

inside or

outside of

feature

datasets

spatial reference
All feature classes in a feature dataset share a common
coordinate system. Because the feature dataset is the
container of topological associations, it is important to
guarantee a common spatial reference.

Planar graphs model systems of line and area features as a
continuous coverage of an area. Planar graphs allows
features to share common boundaries, such as counties
sharing an outer boundary with a state.

TIN datasets

nodes edges

faces

18 • Modeling Our World—Draft for Pre-Release

FEATURES IN AN OBJECT-ORIENTED DATA MODEL

What differentiates ArcInfo 8 from antecedent
releases is that object-oriented methodology is
applied to geographic data modeling. A developer
interacts with data objects through a framework of
object-oriented software classes called the
geodatabase data access objects.

There are three key hallmarks of object-orientation:
polymorphism, encapsulation, and inheritance.

• Polymorphism means that the behaviors (or
methods) of an object class can adapt to
variations of objects. An example of this is that
the core behavior of features, such as draw, add
or delete operations, is mostly the same whether
the features reside in a geodatabase, coverage, or
shapefile.

• Encapsulation means that an object is accessed
only through a well-defined set of software
methods, organized into software interfaces. The
geodatabase data access objects mask the
internal details of data objects and provide a
standard programming interface.

• Inheritance means that an object class can be
defined to include the behavior of another
object class and have additional behaviors. You
can create custom feature types in ArcInfo and
inherit the behavior of standard features. For
example, a transformer object can be extended
(or sub-typed) from a standard ArcInfo feature
type such as a simple junction feature.

UNIFIED DATA MODEL

The geodatabase data access objects is a software
technology that provides uniform access to
geographic data from several data sources such as
geodatabases, coverages, and shapefiles.

ArcInfo developers interact with geographic data
through a set of data objects, such as datasets,
tables, feature classes, rows, objects, and features.
These objects comprise a common and consistent
view of geographic data.

Because of this unified data model, the ArcInfo
user can work with geodatabases, coverages, and
shapefiles in the same way. The unified data model
simplifies how users work with data by emphasizing
the common characteristics of data.

EXTENSIBLE FEATURES

An important aspect of a geodatabase is that you
can optionally create custom features such as
transformers and roads, instead of points and lines.

To the ArcInfo user, this means that a transformer
or road has all of the standard display, query, and
edit behavior of standard point features and line
features, but with additional behaviors. You can
specify that a transformer must be drawn touching
a power pole and perpendicular to the electric line
through the pole. Or, when a road is edited, all of
its segments must be tangent.

A data modeler can use standard feature types to
implement a rich data model. For advanced
applications, a developer can extend the standard
feature types and create custom features using the
object-oriented technique of type inheritance.

Any custom feature that you create enjoys the same
performance and functionality as the standard
feature types provided by ArcInfo. This offers
limitless opportunities for sophisticated application
development.

FEATURES AND OBJECT-ORIENTATION

Features in a geodatabase are implemented as a set
of relational tables. Some of these tables represent
collections of features. Other tables represent
relationships between features, validation rules, and
attribute domains.

ArcInfo manages the structure and integrity of these
tables and presents an object-oriented geographic
data through the geographic data access objects.

All users and most developers will neither know nor
care about the details of the internal structure of a
geodatabase. The ArcCatalog application is your
user interface to establish, modify, and refine the
structure of your geodatabase.

The object view of data lets you focus your efforts
on building a geographic data model and hides
most of the physical database structure of the
geodatabase. For more information on the physical
implementation of geodatabases, read the [SDE
conceptual guide].

Chapter 1 • Object modeling with geodatabases • 19

data
components

data
sources

ArcInfo
applications

geodatabase data access objects

geodatabase coverage shapefile

Junction-
Feature

Simple-
Junction-
Feature

Complex-
Junction-
Feature

Transformer Switch SwitchGear-
Cabinet

custom
feature

types

standard
feature

types

Data can be viewed in three ways.

The relational table view of data
exposes the internal details of the

physical storage as database tables.

The simple feature view presents data
in the form of features without the

structure of topology and relationships.

The object view of data encapsulates
 the internal details and presents a

higher level of structure that is closer
 to the user's conceptual model of data.

The geodatabase data access objects include
a number of software components that represent

the types of features that are ready for use.
Shown here are some of the network feature

types. These have intrinsic behavior that
guarantee the topological integrity of features
 in a geometric network. Most data modelers
use standard feature types without extending

 them through custom programming.

ArcInfo is versatile at
displaying and analyzing

geographic features.
ArcInfo supports a number

of data sources, among
them geodatabases,

coverages and shapefiles.

features in a geodatabase

The geodatabase data
access objects are a

programming interface
that largely hides any

 differences among feature
types from geodatabases,

coverages, and shapefiles.

These are some custom features which
 have been extended from the standard

feature types. They implement
specialized behaviors for custom

applications developed by data modelers
 and programmers.

unified
data model

extensible
features

data access

polymorphism

inheritance

encapsulation
Feature-
Dataset Table

Dataset

Relationship
ClassObjectClass

Feature-
Class

object view of data

relational table

geometry
column

rules, domains

relationships

attribute
columns

relational table
view of data

simple feature
view of data

points

lines

polygons

geometric shapes
with attributes

20 • Modeling Our World—Draft for Pre-Release

SERVING GEOGRAPHIC DATA

ArcInfo accesses geographic data served through
ArcSDE, the Arc Spatial Database Engine. ArcSDE is
the software technology that enables you to create
geodatabases that range from small to very large
sets of geographic data and provides an open
interface to the relational database of your choice.

HOW A GEODATABASE EXTENDS A DATABASE

These are some of the facets of a geodatabase that
enhance relational database technology:

• A geodatabase can represent geographic data in
four manifestations: discrete objects as vector
features, continuous phenomena as rasters,
surfaces as TINs, and references to places as
locators and addresses.

• A geodatabase stores shapes of features and
ArcInfo provides functions for performing spatial
operations such as finding objects that are
nearby, touch, or intersect. A geodatabase has a
framework for defining and managing the
geographic coordinate system for a set of data.

• A geodatabase can model topologically
integrated sets of features such as transportation
or utility networks and subdivisions of land
based on natural resources or land ownership.

• A geodatabase can define general and arbitrary
relationships between objects and features.

• A geodatabase can enforce the integrity of
attributes through domains and validation rules.

• A geodatabase can bind the natural behavior of
features to the tables which store features.

• A geodatabase can present multiple versions so
that many users can edit the same data.

PERSONAL AND MULTI-USER GEODATABASES

Geodatabases comes in two variants—personal and
multi-user.

Personal geodatabase support is built into ArcInfo
and is suitable for project-oriented GIS. A personal
geodatabase is implemented as a Microsoft Access
database. When you install ArcInfo, Microsoft Jet is
also installed, which provides the services for
ArcInfo to create and update Access databases. You
do not need to separately install Microsoft Access.

For large enterprises, you can deploy multi-user
geodatabases with ArcSDE—the multi-user data
access extension to ArcInfo. ArcSDE is installed on
a data server that administers your organization’s
relational database. Through a TCP/IP network,
ArcSDE serves geodatabases to the ArcInfo
applications running on personal computers.
ArcSDE can be deployed on Windows NT or UNIX.

ArcSDE allows remote access to geographic data
and allows many users to view and edit the same
geographic data. ArcSDE is centrally tuned and
managed by your database administrator.

AN OPEN AND SCALABLE DATA SERVER

ArcInfo allows you to configure and deploy small
to very large geodatabases. If you are working with
moderately sized datasets, you can deploy personal
geodatabases in ArcCatalog. This configuration
yields good performance for datasets up to
approximately 250,000 objects and supports one
editor and several simultaneous viewers.

For more demanding datasets and to support many
concurrent editors, you can deploy the ArcSDE
extension to ArcInfo on the relational database best
suited for your organization.

These are some reasons to add the ArcSDE
extension to your ArcInfo installation:

• You have limitless flexibility in scaling databases.

• You can deploy the relational database of your
choice.

• You can serve geographic data from UNIX or
Windows NT.

• You can serve data to other applications such as
MapObjects, ArcIMS (Arc Internet Map Server),
ArcView, and CAD client applications.

• You can centrally store and administer
geodatabases.

• You can build Open GIS Consortium (OGC)
compliant applications.

• You can build SQL applications to access the
tables and rows in a geodatabase.

Chapter 1 • Object modeling with geodatabases • 21

Geodatabase

Feature dataset

Feature class

Feature class

Relationship class

Geometric network

Feature class

Geodatabase

Feature dataset

Feature class

Feature class

Feature class

Object class

Relationship class

Geodatabase

Object class

Relationship class

Feature class

Feature class

Feature class

Object class

open data framework
geographically enhanced

databases
Geodatabase

Raster dataset
Raster

Feature class

Raster dataset
Raster

A personal geodatabase is
directed towards personal or
small work-group use. It can
handle small to moderately

sized datasets.

A geodatabase served through ArcSDE can manage very large sets of geographic
data and serve large numbers of viewers and editors. Geographic data is

accessed from a data server on a network. This GIS data is centrally administered
in large databases and integrates well with other corporate data. These databases

require a system administrator for permissions, tuning, and optimization.

Personal geodatabases are
implemented on the Microsoft

Jet engine which stores data as
Access databases.

ArcSDE operates on any leading relational database. The ArcInfo developer can
interact with a geodatabase through the geodatabase data access objects. A

developer can access an ArcSDE geodatabase outside of ArcInfo through a C API
(application programmer interface) or a SQL API.

To model work flow processes, a geodatabase served through ArcSDE supports
long transactions and version management. A versioned geodatabase allows
many editors to work concurrently and includes a framework for resolving edit

conflicts.

A personal geodatabase has all the
functionality of a geodatabase

served through ArcSDE, except for
versioning.

Geodatabases on any supported relational database operate identically.

relational databases

Personal
geodatabase

Personal
geodatabase
support is built into
ArcInfo and
provides access to
local data.

ArcSDE

ArcSDE is a technology that uses the
native data types and operators in a
relational or object-relational database
and extends them to provide the complete
functionality of a geodatabase.

project GIS enterprise GIS

Geodatabase

Locator
Addresses

TIN dataset

Object class

A geodatabase is an
instance of a relational or

object-relational database
that has been enhanced

by adding geographic data
storage, referential

integrity constraints, map
display, feature editing,
and analysis functions.

ArcSDE is the multi-user extension to ArcInfo

Access Oracle 8
SQL

Server
Informix DB2 Others

22 • Modeling Our World—Draft for Pre-Release

ACCESSING GEOGRAPHIC DATA

A developer can access data in a geodatabase at
three basic levels:

• Through the geodatabase data access objects, a
subset of ArcObjects, the software components
on which the desktop ArcInfo applications are
built.

• As simple non-topological features through the
ArcSDE API that complies with the Open GIS
Consortium simple feature specification.

• As raw rows, columns, and tables through the
native SQL interface of the relational database.

ACCESSING DATA THROUGH ARCOBJECTS

The richest level of accessing geographic data is
through the geodatabase data access objects. At this
level, the full structure of a geodatabase is revealed;
topology, relationships, integrity rules, behavior, as
well as raster, surface, and location representations.

You can programmatically access data through
ArcObjects using Visual Basic for Applications
(VBA) inside ArcInfo or with Visual C++ or any
other COM compliant development environment.

This is a simplified UML diagram of a portion of the
geodatabase data access objects in ArcObjects. This
model is discussed further in Chapter 4, The
structure of geographic data.

Feature-
Dataset

Table

Geometric-
Network

GeoDataset

Rule

1..*

1..* 1..*

Attributed-
Relationship-

Class

Relationship
Class

ObjectClass

Feature-
Class

Graph

WorkspaceDomain

Dataset

Raster-
Dataset

TinDataset

0..1

ACCESSING DATA AS SIMPLE FEATURES

For many spatial applications, it is sufficient and
desirable to access geographic data in the form of
simple non-topological features. This approach is
especially suitable for building integrated
applications for which geographic data is a vital
component, but perhaps not the focus. Examples
include facilities management and traffic analysis.

ArcSDE exposes a simple feature application
programmer interface (API) in C and Java that is
compliant with the Open GIS Consortium (OGC)
simple features specification.

OGC is an organization that includes all of the
leading spatial data vendors and has the purpose of
developing standard software interfaces for the free
exchange of spatial information among
heterogeneous geographic information systems.

Organizations that have geographic data in various
formats on a networks can build applications that
integrate this data in the form of simple features.

ESRI is a leading contributor to the OGC technical
specifications and is committed to the open
interchange of geographic data.

ACCESSING DATA THROUGH SQL

A geographic information system is a rich repository
of data about natural features or facilities such as
transportation or utility networks. While this data is
collected and managed as a geodatabase, external
database applications can effectively access and
share this data for non-geographic use.

Using the native SQL interfaces of your relational
database, you can build applications to mine data
from your geodatabases and use them for tasks
such as managing inventory, processing work
orders, or statistical analysis.

In this view, a geodatabase is a set of tables, rows,
and columns. Through the SQL interfaces, you can
see the internal database structure of a geodatabase,
which includes metadata tables for objects such as
networks. This structure is not directly visible in
ArcInfo and is managed through the user interface
of ArcCatalog. You can selectively update attributes
of rows that represent features, but you should take
care not to corrupt the structure of the geodatabase.

Chapter 1 • Object modeling with geodatabases • 23

accessing geodatabases

ArcInfo is a general purpose GIS application with
advanced editing and map display, spatial analysis, and
topological processing. Through ArcInfo, features in
your geodatabase act with full object awareness as
expressed with domains, validation rules, and custom
code. The developer uses the geodatabase data
access objects in Visual Basic, Visual C++, or other
COM compliant development environment.

relational databases

Personal geodatabase ArcSDE

GIS applications

spatial applications

Access Oracle 8
SQL

Server
Informix DB2 Others

through the
geodatabase
data access
objects in
ArcInfo,
ArcSDE

through
ArcSDE API,
OGC Simple
Features API

through SQL
interface in
relational
databases

Some applications process spatial queries from a large
geodatabase and serve highly specialized functions.
Examples are emergency response and business
location. Geodatabases can be accessed as simple
features though the ArcSDE simple feature API. This
includes both C and Java APIs. ArcSDE's simple
feature API is open and adheres to the OGC simple
feature specification. This allows features in a
geodatabase to be used outside of ArcGIS applications.

Database applications sometimes need to extract data
from a geodatabase, but not to display or spatially
process that data. An example would be to pull or join
utility pole attributes from a geodatabase to a relational
database so that an inventory can be taken. The
database programmer can interact with the tables in a
geodatabase through the native SQL interfaces. The
developer should refrain from modifying any geographic
shapes or geodatabase system tables.

database applications

Geometry

Multipoint

Segment

CircularArc

CurvePoint

EllipticArc

BezierCurve

Line

Polycurve

Polyline

Polygon

Ring

Path

Spatial
application
developer

Geodatabase

Object class

Relationship class

Feature class

Feature class

Raster dataset
Raster

ArcInfo
developer

Database
developer

Developers can access a geodatabase through the
geodatabase data access objects in ArcInfo, through APIs
that expose simple features, or by the internal tables.Geodatabase

24 • Modeling Our World—Draft for Pre-Release

Designing a geodatabase is fundamentally the same
as designing any database. That’s because a
geodatabase is an instance of a relational
database—albeit one that contains a structure for
representing geographic data.

The geodatabase extends, yet simplifies, the design
process by presenting an object-oriented data
structure that expresses the spatial and topological
relationships of geographic features. Part of this
structure is a special facility for representing sets of
objects as integrated systems—such as stream and
road networks or sets of land parcels. This structure
on a set of features is called topology.

The geodatabase data model is the bridge between
people’s cognitive perception of the objects
surrounding them in the world and how those
objects are stored in relational databases.

GEODATABASE DESIGN

Traditional relational database design spans two
basic steps—the articulation of a logical data model
and the physical implementation of database
models (or schemas).

The logical data model captures the user’s view of
data and the database model implements the data
model within the framework of relational database
technology.

Designing a logical data model

The key task in building a logical data model is to
precisely define the set of objects of interest and to
identify the relationships between them.

Some examples of objects you might consider are
streets, parcels, owners, and buildings. Some
examples of their relationships are ‘located at’,
‘owned by’, and ‘is part of’.

Once you have an initial logical data model, you
can validate it against the user’s requirements for
entering, updating, and accessing data and by
testing it against the organization’s practices and
procedures (or, business rules).

It is especially important to involve representatives
from each prospective user group. A logical data
model built for a subset of users is guaranteed to

have deficiencies for overlooked users.

Building a logical data model is an iterative process
and is an art that is acquired through experience.
There is no single ‘correct’ model, but there are
good models and bad models. It’s difficult to
determine precisely when a model is correct and
complete, but an indication that you are drawing
close is when you can answer these questions in
the affirmative:

• Does the logical data model represent all data
without duplication?

• Does the logical data model support an
organization’s business rules?

• Does the logical data model accomodate
different views of data for distinct groups of
users?

Representing logical data models

In the past, logical data models were often drawn in
what are known as ‘entity-relationship diagrams’. A
number of leading object-oriented modelers put
forward various design methodologies and diagram
notations.

These methodologies emphasized different aspects
such as data flow or use-case scenarios, but a
problem with entity-relationship diagrams is that
their appearance varied with the design
methodology.

More recently, most object-oriented modelers have
adopted the Unified Modeling Language (UML),
which is a standard notation for expressing object
models and is endorsed by leading software and
database companies.

It is important to note that UML is not a design
methodology, but rather a diagrammatic notation.
With UML, you can adopt the object-oriented
design methodology of your choosing and then
express the model in a standard way with UML.

This book uses UML for drawing ArcInfo’s object
model, called ArcObjects, and for drawing the
custom object models you can create in a
geodatabase.

BUILDING DATA MODELS

Chapter 1 • Object modeling with geodatabases • 25

Implementing a physical database model

A physical database model is built from the logical
data model. Typically, a specialist in relational
databases receives the logical data model from the
data modeler and uses the database administration
tools to define the database schema and create new
databases ready for data transfer and entry.

The physical database design has some similarity to
the logical data model, but there are differences.
Classes of objects may be split or joined when
implemented in tables. Rules and relationships can
be expressed in several ways.

An important benefit of the geodatabase is that it is
a physical implementation of data, but it lets you
structure your data in a fashion that is close to the
logical data model.

Elements of the logical and database models

These are the basic elements of the logical data
model and their corresponding database elements.

Object

Attribute

Class

Row

Column, Field

Table

Database elementsLogical elements

A logical data model is an abstraction of the objects
that we encounter in a particular application. This
abstraction is converted into database elements.

An object represents an entity such as a house,
lake, or customer. An object is stored as a row.

An object has a set of attributes. Attributes
characterize qualities of an object, such as its name,
a measure, a classification, or an identifier (or key)
to another object. Attributes are stored in a database
in columns (or fields).

A class is a set of similar objects. Each object in a
class has the same set of attributes. A class is stored
in a database as a table. The rows and columns in
a table form a two-dimensional matrix.

Handling complex data

Relational databases enjoy their commercial
dominance because they implement a simple,
elegant and well understood theory. This simplicity
is at once a strength and a weakness—it is
conceptually straight-forward to build relational
databases, but difficult to model complex data.

Geographic databases contain complex data. The
shapes of line and area features are structured sets
of coordinates that cannot be well represented with
standard atomic field types such as integer, real,
string. Further, features are gathered into systems
that have explicit topological relationships, implicit
spatial relationships, or general relationships.

The relational database is the foundation for a
geodatabase. A key purpose of the geodatabase is
to handle the complexity of geographic data with a
uniform data model independent of the relational
database underneath.

Chapter 12, Geodatabase design guide, returns to
these topics in the context of designing and
building geodatabases.

logical data model
reality

database implementation

Building

Land
Parcel

Person building

person

ownership

parcel

A logical data model is constructed to
represent the objects of interest to an

application.
From the logical data model,
a database model is built in

a relational database.

26 • Modeling Our World—Draft for Pre-Release

GUIDELINES FOR GEODATABASE DESIGN

The structure of a geodatabase—feature datasets,
feature classes, topological groupings, relationships,
and other elements—lets you design geographic
databases that are close to their logical data models.
For a data modeler, this is the essential reason for
the introduction of geodatabases into ArcInfo 8.

These are the basic steps to design a geodatabase:

• Model the user’s view of data. Perform interviews
with users, understand an organization’s
structure, and analyze the business requirements.

• Define objects and relationships. Build the logical
data model with the set of objects and how they
are related to one another.

• Select geographic representation. Determine
whether vector, raster, surface, or location
representation is best for the data of interest.

• Match to geodatabase elements. Fit the objects in
the logical data model into the elements of a
geodatabase.

• Organize geodatabase structure. Build the
structure of a geodatabase with consideration of
thematic groupings, topological associations, and
department responsibility of data.

This topic is discussed in greater detail in Chapter
12, Geodatabase design guide.

steps to building a geodatabase

Building

Land
Parcel

Person

Geodatabase

Feature dataset

Geometric network

Feature class

1
2
3

4
5

model the user's view of data

define objects and relationships

select geographic representation

match to geodatabase elements

organize geodatabase structure

identify organizational functions
determine data needed to support functions
organize data into logical groupings

identify and describe objects
specify relationships between objects
document model in diagram

represent discrete features with points, lines, areas
characterize continuous phenomena with rasters
model surfaces with TINs or rasters

determine geometry type of discrete features
specify relationships between features
implement attribute types for objects

organize systems of features
define topological associations
assign coordinate systems
define relationships and rules

Chapter 1 • Object modeling with geodatabases • 27

GUIDE TO READING UML OBJECT DIAGRAMS

You can approach ArcInfo in two ways; as a user
of applications such as ArcMap and ArcCatalog or
as a software developer building custom
applications.

Data modelers straddle these two worlds—you use
the applications for most of your work in creating
geodatabases, but you will sometimes write software
code, especially if you are trying to create rich data
models that support powerful applications.

One aim of this book is to present the important
data modeling concepts both as they are applied in
the ArcInfo applications and the ArcInfo software
components, which are called ArcObjects.

A pattern through this book is to first present the
concepts for a topic as you experience it through the
ArcInfo application. Next, that topic is summarized
with an annotated diagram of the relevant section of
the ArcInfo object model diagram.

An example of this presentation is that the topic of
the structure of geodatabases, feature datasets, and
feature classes is first discussed with the user’s
perspective of the catalog. Next, the programmer’s
perspective is summarized with a diagram of part of
the geodatabase data components.

These two views have similarities, but subtle
differences. A user interface sometimes hides details
about software components that are important to the
programmer. One goal of this book is to give you
the insight to bridge the user and developer
perspectives.

Reading the class diagrams

This is the key for the object model diagrams you
will find throughout this book.

Abstract-
Class

Instantiable
Class

Type
inheritance

Instantiation

Association

Aggregation

Composition

1..*

Multiplicity

Createable
Class

This notation is based on the UML (Unified
Modeling Language) notation, an industry
diagramming standard for object-oriented analysis
and design.

The object model diagrams are an important
supplement to the information you receive in object
browsers. The development environment, Visual
Basic or other, lists all of the many classes and
members, but does not hint at the structure of those
classes. These diagrams complete your
understanding of the ArcInfo components.

This book uses UML to document the ArcInfo
software components, ArcObjects, and to illustrate
custom data models that you can build.

Classes and objects

There are three types of classes shown in the UML
diagrams—abstract classes, createable classes, and
instantiable classes.

An abstract class cannot be used to create new
objects, but it is a specification for subclasses. An
example is that a ‘line’ could be an abstract class
for ‘primary line’ and ‘secondary line’ classes.

A createable class represents objects that you can
directly create using the object declaration syntax in
your development environment. In Visual Basic,
this is written with the Dim As New <object> or
CreateObject(<object>) syntax.

An instantiable class cannot directly create new
objects, but objects of this class can be created as a
property of another class or created by functions
from another class.

In the Visual Basic object browser, you can inspect
all of the ArcInfo createable and instantiable
classes, but not the abstract classes.

Relationships

Among abstract classes, createable classes, and
instantiable classes, there are several types of class
relationships possible.

Associations represent relationships between classes.
They have defined multiplicities at both ends.

28 • Modeling Our World—Draft for Pre-Release

1..*1..*Owner Land parcel

In this diagram, an owner can own one or many
land parcels and a land parcel can be owned by
one or many owners.

A Multiplicity is a constraint on the number of
objects that can be associated with another object.
This is the notation for multiplicities:

 1 - One and only one. Showing this multiplicity is
optional; if none is shown, ‘1’ is implied.
 0..1 - Zero or one
 M..N - From M to N (positive integers)

 * or 0..* - From zero to any positive integer
 1..* - From one to any positive integer

Type inheritance defines specialized classes which
share properties and methods with the superclass
and have additional properties and methods.

Line

Primary
Line

Secondary
Line

This diagram shows that a primary line (createable
class) and secondary line (createable class) are
types of a line (abstract class).

Instantiation specifies that one object from one
class has a method with which it creates an object
from another class.

TransformerPole

A pole object might have a method to create a
transformer object..

Aggregation is an asymmetric association in which
an object from one class is considered to be a
‘whole’ and objects from the other class are
considered ‘parts’.

Transformer
Bank

Transformer
3

A transformer bank has exactly three transformers.
In this design, transformers can be associated with
a transformer bank, but may also exist after the
transformer bank is removed.

Composition is a stronger form of aggregation in
which objects from the ‘whole’ class control the
lifetime of objects from the ‘part’ class.

CrossarmPole
1..*

A pole contains one or many crossarms. In this
design, a crossarm cannot be recycled when the
pole is removed. The pole object controls the
lifetime of the crossarm object.

Expressing models with diagram notation

If you are unaccustomed to this type of diagram
notation, practice reading the examples above and
conceive of your own examples. Before long, you’ll
read these diagrams with ease.

You’ll find that it is worth your effort to understand
this notation. It describes object models in a concise
and expressive way and will facilitate your
conceptual understanding of the ArcInfo software
components.

Understanding this notation is also critical if you
create custom features by extending the
geodatabase data access objects. With ArcCatalog,
you can launch a CASE environment to create
custom data models with a visual user interface.
This interface is based on manipulating graphical
symbols from the UML notation.

Chapter 1 • Object modeling with geodatabases • 29

TECHNOLOGY TRENDS

A geographic information system is at its core a
database management system enhanced to store,
index, and display geographic data.

ArcInfo 8 is a significant release of new GIS
technology that exploits several important
technology trends just as they have become ready
for commercial implementation. These trends
collectively realize the vision of GIS as a
geographically-enabled database.

The timing of ArcInfo 8 is fortuitous as it occurs
during the convergence of several critical
developments in software and database technology.
These are the principal trends that shape the
technological framework of ArcInfo 8.

Spatial data and databases

When the coverage data model was first
implemented, practical considerations led to the
spatial component of geographic data being
contained in binary files with unique identifiers to
rows in relational database tables that stored feature
attributes.

With performance and functional advances in
database technology, it is now possible and
advantageous to store all spatial data directly within
the same database tables as attribute data.

The gain from storing spatial data directly within
commercial databases is improved data
administration, the utilization of data access and
management services, and closer integration with the
other databases that an organization manages.

Moreover, the ArcInfo user can select from any of
the industry-leading relational databases to host their
geographic databases.

User interface

Applications developed for Microsoft Windows have
set a new standard for ease-of-use and consistency.
Users have become accustomed to expected
behaviors for mouse interaction, menus, dialogs, and
the like. These user interface standards have made
powerful applications accessible and usable by
people who are not computer experts.

ArcInfo 8 thoroughly implements the Windows

standards for user interface and stands as a new
milestone in making GIS software easier to use.

Software component architecture

Modern software is built on software component
architectures, examples of which are Microsoft COM
(Component Object Model), CORBA (Common
Object Request Broker Architecture), and Java RMI
(Remote Method Invocation).

The idea behind components is to divide software
functionality into discrete, independent pieces that
can be developed, tested, and combined into
programs. By their design, components can be used
to build any number of applications without
modification. This is a high level of software re-use.

The benefit of software component architectures is
better software quality, better performance, and the
ability to update software versions without affecting
other installed software.

ArcInfo 8 is built on the Microsoft COM architecture
because it is the most robust and reliable
component framework for desktop applications.

Programming environment

Visual programming environments such as Visual
Basic have become the norm for application
development.

The benefits of using these languages are the large
pool of experienced programmers and the richness
of these environments. It is no longer necessary or
desirable to use proprietary macro languages.

ArcInfo 8 uses Visual Basic for Applications as its
embedded macro language for customizing its
applications, ArcMap and ArcCatalog. Other COM
compliant languages such as Visual C++ can be
used to extend the geodatabase data model.

Trends in summary

The common theme of these technology trends is
open standards and interoperability.

The benefit of implementing these trends is to
leverage technology from other segments which
enables ESRI to concentrate its research and
development on core GIS functionality.

