Open GIS Consortium, Inc.

OpenGIS"” Simple Features Specification
For SQL

Revision 1.0

Release Date: 13 March, 1998

WARNING: The Open GIS Consortium (OGC) releases this specification to the public without
warranty. It is subject to change without notice. This specification is currently under active revision
by the OGC Technical Committee

Requests for clarification and/or revision can be made by contacting the OGC at
revisions@opengis.org.

Copyright 1997, 1998, Environmental Systems Research Institute
Copyright 1997, 1998, IBM Corporation

Copyright 1997, 1998, Informix Software, Inc.

Copyright 1997, 1998, MaplInfo Corporation

Copyright 1997, 1998, Oracle Corporation

The companies listed above have granted the Open GIS Consortium, Inc. (OGC) a nonexclusive, royalty-free, paid up, worldwide
license to copy and distribute this document and to modify this document and distribute copies of the modified version.

Each of the copyright holders list above has agreed that no person shall be deemed to have infringed the copyrighididthe incl
material of any such copyright holder by reason of having used the specification set forth herein or having conformed teny compu
software to the specification.

NOTICE
The information contained in this document is subject to change without notice.

The material in this document details an Open GIS Consortium specification in accordance with the license and noticea set forth
this page. This document does not represent a commitment to implement any portion of this specification in any compatsy’s produc

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OPEN GIS CONSORTIUM

AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. The Open GIS Consortium and the companies list above shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the furnishing, performance or use of this material.

The copyright holders list above acknowledge that the Open GIS Consortium (acting itself or through its designees) iataaild shall
times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks,
trademarks, or other special designations to indicate compliance with these materials.

This document contains information, which is protected by copyright. All Rights Reserved. No part of this work covereddby copyr
herein may be reproduced or used in any form or by any fegmaghic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval sysienithout permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in subdivision
(c)(1)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OpenGIS® is a trademark or registered trademark of Open GIS Consortium, Inc. in the United States and in other countries.

Table of Contents

0 PREFACE

0.1 SUBMITTING COMPANIES .. .ceuteieteieeteee et e ettt et e et e e e e e et e e et e e eaa e e et e s et e e eanessanesesneeraneesnnerees 0-1
0.2 SUBMISSION CONT ACT POINT S, ettt ittt et e e et e et s e e e et e e e e s e s aa e e s s ba s e an et sbneeaneeraerans 0-1
0.3 DOCUMENT CONVENTIONS. ...ttt tttttttt et st e eaee i es e et e s e et s st e ea s st e e b e et s et e s b s ea s st e sasstsesnssnssenaes 0-2
0.4 [SV EST]l ST 0= 2N 0-2
0.5 [DTy F Y I AN [=S T 0-2

L OVERVIEW. ...ttt e et e e st e e e st e e e s bt e e enb e e e e sta e e e eabaeeeanneeaesanes 1-1
IO == 1o 7Y SO 1-1..

Y AN 1 o T = O U OO 2-1
21 GEOMETRY OBJIECTIMIODEL ...ttt e e et ettt e e e e e e e e et e eete e e e s e e e e e e e e e eeassbaba e e e e e e aaeeeeeeesnnnnnan 2-1

211
21.2
2.13
2.14
2.15
2.1.6

(C1=To] 1011 1 AU PP 2-2
GEOMELIY COlBCHON ...ttt e e e e e e e e e e e e e e e e s 2:4...

LineString, Line, LinearRing

2.1.7 IMUITCUIVE ..ttt e e ettt e e s ettt e e e e s st bt e e e+« s
2.1.8 Y10 T 1= 1] o PSSP
2.1.9 UG -ttt ettt e e e e e e e e e e e e e e e e ——
P22 I O =o' 1Yo o o TSR
2. 111 MURISUITACE ...ttt et e e e e e e e e e e e e e e e eaananes 2-10
2.1.12 MURIPOIYGON ettt e e e e e e« s 2:10
2.1.13 RelationNal OPEIratOrsSccccuuuiiitiiiieeiee et et e e e e e e e e e e e e e e et eeeeaaaaaaaaaeaeaesanae 2:12.

2.2 ARCHITECTURE—SQL92 MPLEMENTATION OF FEATURE TABLES......cuiiiiiiiiiieeeeeiiiieeeeeviineeeeens 2-20
221 Feature Table Metadata VIEWScoooiiiiiiiiie et e e 2-21
2.2.2 Geometry Columns Metadata VIEWS.........uuuiiiiiiiiiiieeee e e e e e ces s e e e e e e aa e e e e e e s s e s aananns 2-21
2.2.3 Spatial Reference System INformation VIEWS............uuviiiiiiiiiiiiiieie e 2-21
224 Feature Tables and VIBWS.........c.uuiiii it 2:22.......
2.2.5 Geometry and Geometric EIeMENt VIBWScccciviiiiiiiiiiiiiieeccee e 2-22
2.2.6 NoOtes 0N SQLO2 data tYPES ...cceeeeieeei ettt e e e :23........ 2
2.2.7 Notes on ODBC Access to Geometry Values stored in Binary form...........cccccccvviviieeeennen. 2-24

2.3 ARCHITECTURE—SQL92WITH GEOMETRY TYPESIMPLEMENTATION OF FEATURE TABLES..... 2-24
2.3.1 Feature Table Metadata VIEWSoooi ittt e e e e e e e e 2-24
2.3.2 Geometry Columns Metadata VIBWS..........ueeiiiiiiiiiiaaaa ettt e e e e e e e e e e e 2-24
2.3.3 Spatial Reference System Information VIEWS.............uuuiiiiiiiiiiiiiiii e 2-24
234 Feature Tables and VIBWS.........c.uuiiii it 2:25.......

4

5

2.3.5 Background Information on SQL Abstract Data TYPESuvvvviiiiiiiieeeeeeeeei e e 2-25

2.3.6 Scope of this OpenGIS Geometry Types SPecCifiCation..........ccccvvveeeeeeeiieiiiicccceeeeeeee 2-25
2.3.7 SQL Geometry Type HIEIrarChyeeeeeiiiiiiiiiiia et 2-26
2.3.8 Geometry Values and Spatial Reference SYyStemSeuueiiiiiiiiiiiiiiiiai e 2-27
2.3.9 ODBC Access to Geometry Values in the SQL with Geometry Types casecccceeen.... 2-28
COMPONENT SPECIFICATIONS ..ottt ettt sttt ettt e e e e s sttt e e e e s s sntaaeeaeesssbaeeaaaeaas 3-1
3.1 COMPONENTS—SQL92 MPLEMENTATION OF FEATURE TABLEScvuuiiiiiiiieeeeeeiee e e e 3-1
3.1.1 Spatial Reference System INfOrmationuuveiiiiiiiiiiiie e 3-1
3.1.2 Geometry Columns Metadata VIEWcccccuuuriiiiiiiiiiieiiees e e e e e s s s e e e e e eeaaaaeaee s 3-2
3.1.3 Feature Tables and VIBWS........oc.uuuiiiiiiiiiiiiie et 34.......
3.1.4 GEOMEtry TabIES OF VIBWSueiiiiiiiiiiiiiie ettt e e e e e e 34........
3.15 (O] 01T = 1o £SO URUPUURTR 3-6
3.2 COMPONENTS—SQL92WITH GEOMETRY TYPESIMPLEMENTATION OF FEATURE TABLES.......... 3-7
3.2.1 Spatial Reference System INformation VIEWcc.uuiiiiiiiiiiiiiii e 3-7
3.2.2 Geometry Columns Metadata VIBWcccuuuiiiiiiiiiiiieei e e e e e e e e e e e e as 3-7
3.2.3 SQL GEOMELIY TYPES ..ottt e e et et e ettt e e e e e e e e e eeeeeseabnnannan 3-8......
3.24 Feature Tables and VIBWS..........uuiiie i 3:10.......
3.25 SQL Textual Representation 0f GEOMELIYuuuiiiiiiiiiiiiieee e e e 3-10
3.2.6 SQL Functions for Constructing a Geometry Value given its Well-known Text
L= 0] C=TST=T g1 1o o 3-12
3.2.7 SQL Functions for Constructing a Geometry Value given its Well-known Binary
REPIESENTALION ...ttt ettt et e e et e e e e e e e e e e e e e e s e s s aeeaeaaeaaaaaneeas 3-14
3.2.8 SQL functions for obtaining the Well-known Text Representation of a Geometry 3-15
3.29 SQL functions for obtaining the Well-known Binary Representation of a Geometry 3-15
3.2.10 SQL FUuNCtions 0N TYPE GEOMELIYcceiiiiiiiiie ittt ettt e e e e e e e e e e e e e e e e e e eeeeeeeeeas 3-16
3.2.11 SQL FUuNnctions 0N TYPE POINT.......uuuiiiiiiiiiiiiaaae et a e e e e 17....... 3-
3.2.12 SQL FUNCLONS ON TYPE CUIVEeeiiieiiiieiieiaeaa ettt e e e e e e e e e e e e e e e e e e e aaannes VAT 3-1
3.2.13 SQL Functions on TYPe LINESIING........coooiiiiiiiiiiiieeeeeer e e e e e eeeeeeee e 3-18
3.2.14 SQL FUNCtioNS 0N TYPE SUIMACEeevviiiiiieeieee e s e et e e e e e e e e e e e e e e s e e s e e s sesnasennrnnes 3-18
3.2.15 SQL FuNnctions 0N TYPE POIYGON ...t e e e e e e e e e s e e s e st e e e e e aaaaaaeaeaeaeas 3-18
3.2.16 SQL Functions on Type GeometryColleCtioNcooviiiiiiiiiiiie e 3-19
3.2.17 SQL Functions on TYPE MUIICUIVEceeviiiieeeeeee et e e e e e e e e e e e e e e e e e e snnnnnnees 3-19
3.2.18 SQL Functions on Type MUtISUIACEccoeeeeii it 3-20
3.2.19 SQL functions that test Spatial Relationships.............uuuiiiiiiiiiiii, 3-20
3.2.20 SQL Functions for Distance RelationShipS..........ceeiiiiiiiiaiii e 3-22
3.2.21 SQL Functions that implement Spatial OPeratorseeeeeeieiiiiiaaaaiaii e 3-23
3.2.22 SQL Function usage and References t0 GEOMELIYeeviiiiiiiiiaiiiiaiii e 3-23
3.3 THEWELL-KNOWN BINARY REPRESENTATION FORGEOMETRY (WKBGEOMETRY)ccccvv..... 3-24
331 COMPONENT OVEIVIEW......eeiieiieeeiteee e e ettt ettt e e e e e e aaaaeaa e s e e s aaannnennnneeen 3:24......
3.3.2 CoMPONENE DESCHPLION ...uuviiiiieiieeii i et e e e e e e e e e e s e s e s e e e e e e e e eaeaaaaeeaeseesasannnene 3-24......
3.4 WELL-KNOWN TEXT REPRESENTATION OFSPATIAL REFERENCESYSTEMSvvvviiiiiieiieiieeaeeaanns 3-28
3.4.1 COMPONENT OVEIVIEW.....utiieiiiiiirieeeeee e e e e e e s s e s ee st e e e e e taaaaeeaaeeesessasansnnennnnneen 3:28......
3.4.2 CoMPONENE DESCHPLION ...uuviiiiieiieeie it e e e e e e e e e e e e e s s e s e e e e e e e eaeaaaaeaeesaesaeannnene 3-28......
SUPPORTED SPATIAL REFERENCE DATA ..ottt ettt 4-1
4.1 SUPPORTEDLINEAR UNITS .. iiiiittttiee et ettt ettt e e e e et e et ettt b s e e e e e e e e e e e eeeesbbbba s e e e aeaaaaaeeees 4-1
4.2 SUPPORTEDANGULAR UNITS ..ttt e e e ettt ettt e e e e e e e e e e e et ee bbbt e e e e e e e e e e e e eesbnbana e e e e aaaeaas 4-1
4.3 SUPPORTEDSPHEROIDS. ... tttttteetitttttteaesatteeteeessantteeeeeesaastaeeeeessanttaeeeeesaasttseeeessasbaseeeessanssneeeaesanses 4-1
4.4 SIPPORTEDGEODETICDATUMS ...uuiiiieiiiiititiee e s itittteeeessitteeeeeessntbeeeeeesssntbeeeeessansbbeeeeeesnnnbeeeeesannnees 4-2
4.5 SIPPORTEDPRIME IMERIDIANScetetiutttettesiiittteteesaanntteeeeesaanntteeaeesaasstteeeessannsbseeeessantbeeeeessannsees 4-3
4.6 SIPPORTEDMAP PROJECTIONS . ..ceietiuutttettessiutttettesaanttseeaesaanntaeeeessannssseeeessannstaeeeessanssreeeesssansseees 4-3
4.7 MAP PROJECTIONPARAMETERS.uutttttietittiteeeeeaatttteeeesaastteeeeaessstsseeeessansstseeeesaanssseeeeesannnneeeenns 4-4
REFERENGCESottt ettt ettt e e e e sttt e e e e e sab bt e e e e s st bb e e e e e s anbbeeeeseeannnaneenas 4-1

Page ii

0 Preface

0.1 Submitting Companies

The following companies submitted this implementation specification in response to the OGC
Request 1, Open Geodata Model Working Group, A Request for Proposals: OpenGIS Features

(OpenGIS Project Document Number 96-021):

« Environmental Systems Research Institute, Inc.

IBM Corporation.

* Informix Software, Inc.

Maplnfo Corporation.

e Oracle Corporation.

0.2 Submission Contact Points

All questions about the joint submission should be directed to:

David Beddoe

ESRI-Washington DC.

2070 Chain Bridge Road, Suite 180
Vienna, VA 22182

Phone: (703) 506-9515

Email: dbeddoe@esri.com

Paul Cotton

IBM Corporation

1150 Eglinton Ave.
Toronto, Ontario M3C 1H7
Canada
cotton@vnet.ibm.com

Ed Katibah

Informix Software, Inc.

300 Lakeside Drive, Suite 2700
Oakland, CA 94556
ekatibah@illustra.com

Page 0-1

OpenGIS Simple Features Specification for SQL, Revision 0

Sandra Johnson

Maplnfo Corp.

One Global View

Troy N.Y. 12180-8399
sandra_johnson@mapinfo.com

Dr. John R. Herring

Oracle Corporation

196 VanBuren Street
Herndon, Virginia 22070, USA
phone: 1 703 736 8124

fax: 1 703 708 7233
jrherrin@us.oracle.com

0.3 Document Conventions

TheCourier New font has been used to indicate SQL or other code segments.

0.4 Revision History

Revision 1.0 includes the following changes from Revision 0:

» Replaced the term “byte stream” with “representation”. The source for this change was proposal #1
from Revision Request 97-402.

« Made several minor corrections concerning typographical errors, fixed the definition of the
GEOMETRY_COLUMNS table to remove foreign key constraints that accessed
INFORMATION_SCHEMA, fixed several functions to replace the Boolean return values with integer
returns, and made a clarification on the example in section 3.1.3. The source for these changes was
Revision Request 97-403.

0.5 Editorial Notes

Page 0-2

1 Overview

The purpose of this specification is to define a standard SQL schema that supports storage, retrieval, query
and update of simple geospatial feature collections via the ODBC API. A simple feature is defined by the
OpenGIS Abstract specification to have both spatial and non-spatial attributes. Spatial attributes are
geometry valued, and simple features are based on 2D geometry with linear interpolation between vertices.

1.1 Approach

Simple geospatial feature collections will conceptually be stored as tables with geometry valued columns in
a Relational DBMS (RDBMS), each feature will be stored as a row in a table. The non-spatial attributes of
features will be mapped onto columns whose types are drawn from the set of standard ODBC/SQL92 data
types. The spatial attributes of features will be mapped onto columns whose SQL data types are based on
the underlying concept of additional geometric data types for SQL. A table whose rows represent Open GIS
features will be referred to adeature table Such a table will contain one or more geometry valued

columns. Feature table implementations are described for two target SQL enviroi8Qar#2:and

SQL92 with Geometry Types

In theSQL92 environment, a geometry-valued column is implemented as a Foreign Key reference into a
geometry table. A geometry value is stored using one or more rows in the geometry table. The geometry
table may be implemented using either standard SQL numeric types or SQL binary types, schemas for both
alternatives are described.

The termSQL92 with Geometry Typesis used to refer to a SQL92 environment that has been extended
with a set of Geometry Types. In this environment a geometry-valued column is implemented as a column
whose SQL type is drawn from the set of Geometry Typlis. specification describes a standard set of

SQL Geometry Types based on the OpenGIS Geometry Model, together with the SQL functions on those
types This specification doasot attempt to standardize any part of the mechanism by which the Geometry
Types are added to and maintained in the SQL environment: The standard SQL3 mechanism for extending
the type system of a SQL database is through the definition of user defined Abstract Data Types.
Commercial implementations of SQL92 environments with user defined type support are available as of
mid 1997. The SQL3 standard should be ratified in 1998.

Both theSQL92 and theSQL92 with Geometry Typesimplementations extend the SQL92 Information
Schema in a uniform manner so as to support standard Metadata Queries that return;

1. The list of feature tables in a database.

2. The list of geometry columns for any feature table in the database.

Page 1-1

OpenGIS Simple Features Specification for SQL, Revision 0

3. The Spatial Reference System for any geometry column in the database.
Both theSQL92 and theSQL92 with Geometry Typesimplementations are accessed from ODBC using
the support already built into ODBC for fetching and storing standard integer, chanaracter and binary
ODBC SQL types.
In order to be compliant with this OpenGIS ODBC/SQL specification for geospatial feature collections an
implementers can choose to implemeany oneof three alternativeq 1a, 1b or 2)described in this
specification:
1. SQL92implementation of feature tables

a) using numeric SQL types for geometry storage and ODBC access.

b) using binary SQL types for geometry storage and ODBC access.

2. SQL92 with Geometry Typesimplementation of feature tables supporting both textual and binary
ODBC access to geometry.

The remainder of this specification is structured as follows:
» Chapter 2 describes the architecture of the system for both the SQL92 environment an8@he
with Geometry Typesenvironment. It begins with a Distributed Computing Platform neutral
conceptual object model for Geometry. Upon this object model, the detailed specification for geometry

values, geometry types and the SQL functions that operate upon geometry types is based.

» Chapter 3 specifies the architectural components of the system for the SQL92 environment and for the
SQL92 with Geometry Typesenvironment.

» Chapter 4 details supported spatial reference system data for use with this specification.

« Chapter 5 contains the references utilized by the specification.

Page 1-2

2 Architecture

2.1 Geometry Object Model

This section describes the object model for geometry. It is Distributed Computing Platform neutral and uses
OMT notation. The object model for geometry is shown in Figure 2.1. The base Geometry class has
subclasses for Point, Curve, Surface and Geometry Collection. Each geometric object is associated with a
Spatial Reference System, which describes the coordinate space in which the geometric object is defined.

Figure 2.1 is based on extending the Geometry Model specified in the OpenGIS Abstract Specification with
specialized 0, 1 and two-dimensional collection classes named MultiPoint, MultiLineString and
MultiPolygon for modelling geometries corresponding to collections of Points, LineStrings and Polygons
respectively. MultiCurve and MultiSurface are introduced as abstract superclasses at this RFP that
generalize the collection interfaces to handle Curves and Surfaces. The figure shows aggregation lines
between the leaf collection classes and their element classes, the aggregation lines for non-leaf collection
classes are described in the text.

The attributes, methods and assertions for each geometry class are described below. In describing methods,
thisis used to refer to the receiver of the method (the object being messaged). The scope of the methods
and attributes is based on the scope of RFP1 (SimpleFeatures).

Page 2-1

OpenGIS Simple Features Specification for SQL, Revision 0

Geometry SpatialReferenceSystem
Point Curve Surface GeometryCollection
e Zt A
>
LineString Polygon MultiSurface MultiCurve MultiPoint
1+
2& B
Line LinearRing MultiPolygon MultiLineString
1+

Figure 2.10 Geometry Class Hierarchy

2.1.1 Geometry

Geometry is the root class of the hierarchy. Geometry is an abstract (non-instantiable) class.

The instantiable subclasses of Geometry defined in this specification are restricted to 0, 1 and two-
dimensional geometric objects that exist in two-dimensional coordinate §pce (

All instantiable geometry classes described in this specification are defined so that valid instances of a
geometry class are topologically closed (i.e. all defined geometries include their boundary).
2.1.1.1 Attributes of Geometry

Dimension—The inherent dimension dlfiis geometric object, which must be less than or equal to the
coordinate dimension.

CoordinateDimension—The dimension of the coordinates that definie geometry, which must be the

same as the coordinate dimension of the spatial reference system for this geometry. This specification is
restricted to geometries in two-dimensional coordinate space.

2.1.1.2 Basic Methods on Geometry

Spatial ReferencBpatialReference()—Returns the Spatial Reference Systentlitrgeometry.

EnvelopeEnvelopg)—The minimum bounding box fdhis geometry, returned as an instance of the helper
class Envelope.

Page 2-2

Chapter 2 Architecture

Well-known RepresentatioBxport()—Exportsthis geometry to a DCP specific well-known
representation of Geometry.

BooleanisEmpty()—Returns TRUE ithis geometry is the empty geometry . If true, thigis geometry
represents the empty point sgt, for the coordinate space.

BooleanlsSimple()—Returns TRUE if the geometry has no anomalous geometric points, such as self
intersection or self tangency. The description of each instantiable geometric class will include the specific
conditions that cause an instance of that class to be classified as not simple.

GeometryBoundary()—Returns the closure of the combinatorial boundary of the geometry. The
combinatorial boundary is defined as described in section 3.12.3.2 of [1]. Because the result of this function
is a closure, and hence topologically closed, the resulting boundary can be represented using
representational geometry primitives as discussed in [1], section 3.12.2.

2.1.1.3 Methods for testing Spatial Relations between geometric objects :

The methods in this section are defined and described in more detail following the description of the sub
types of Geometry.

BooleanEqual(Geometry anotherGeometry)—Tests if this geometry is ‘spatially equal’ to another
geometry.

BooleanDisjoint (Geometry anotherGeometry)—Tests if this geometry is ‘spatially disjoint’ from another
geometry.

Booleanintersect(Geometry anotherGeometry)—Tests if this geometry ‘spatially intersects’ another
geometry.

BooleanTouch(Geometry anotherGeometry)—Tests if this geometry ‘spatially touches’ another geometry.
BooleanCrosqGeometry anotherGeometry)—Tests if this geometry ‘spatially crosses’ another geometry.

BooleanWithin (Geometry anotherGeometry)—Tests if this geometry is ‘spatially within’ another
geometry.

BooleanContains(Geometry anotherGeometry)—Tests if this geometry ‘spatially contains’ another
geometry.

BooleanOverlap(Geometry anotherGeometry)—Tests if this geometry ‘spatially overlaps’ another
geometry.

BooleanRelatg(Geometry anotherGeometry, String intersectionPatternMatrix)—Tests if this geometry is
spatially related to anotherGeometry, by testing for intersections between the Interior, Boundary and
Exterior of the two geometries as specified by the values in the intersectionPatternMatrix.

2.1.1.4 Methods that support Spatial Analysis

DoubleDistancgGeometry anotherGeometry)—Returns the shortest distance between any two points in
the two geometries as calculated in the spatial reference systeimgdometry.

GeometryBuffer (distance)—Returns a geometry that represents all points whose distance from this
geometry is less than or equal to distance. Calculations are in the Spatial Reference System of this
geometry.

Page 2-3

OpenGIS Simple Features Specification for SQL, Revision 0

GeometryConvexHull()—Returns a geometry that represents the convex hull of this geometry.

Geometrylntersection(Geometry anotherGeometry)—Returns a geometry that represents the point set
intersection of the source geometry with anotherGeometry.

GeometryUnion(Geometry anotherGeometry)—Returns a geometry that represents the point set union of
the source geometry with anotherGeometry.

GeometryDifference(Geometry anotherGeometry)—Returns a geometry that represents the point set
difference of the source geometry with anotherGeometry.

GeometrySymmetricDifferenceGeometry anotherGeometry)—Returns a geometry that represents the
point set symmetric difference of the source geometry with anotherGeometry.

2.1.2 Geometry Collection

A GeometryCollection is a geometry that is a collection of 1 or more geometries.

All the elements in a GeometryCollection must be in the same Spatial Reference. This is also the Spatial
Reference for the GeometryCollection.

GeometryCollection places no other constraints on its elements. Subclasses of GeometryCollection may

restrict membership based on dimension and may also place other constraints on the degree of spatial
overlap between elements.

2.1.2.1 Methods

GeometrylteratoGeometrieg)—Returns an iterator over the collection. The specific form or type of the
iterator will depend on the distributed computing platform.

2.1.3 Point

A Point is a 0-dimensional geometry and represents a single location in coordinate space. A point has an x-
coordinate value and a y-coordinate value.

The boundary of a point is the empty set.

2.1.3.1 Attributes :

X—The x-coordinate value for the point.

Y—The y-coordinate value for the point.

2.1.4 MultiPoint

A MultiPoint is a 0 dimensional geometric collection. The elements of a MultiPoint are restricted to Points.
The points are not connected or ordered.

A MultiPoint is simple if no two Points in the MultiPoint are equal (have identical coordinate values).

The boundary of a MultiPoint is the empty set.

Page 2-4

Chapter 2 Architecture

2.1.5 Curve

A curve is a one-dimensional geometric object usually stored as a sequence of points, with the subtype of
curve specifying the form of the interpolation between points. This specification defines only one subclass
of curve, LineString, which uses linear interpolation between points.
Topologically a curve is a one-dimensional geometric object that is the homeomorphic image of a real,
closed, intervaD = [a, b] = {x R Ja <= x <= b} under a mapping[a,b] — 0%as defined in [1],
section 3.12.7.2.
A curve is simple if it does not pass through the same point twice ([1], section 3.12.7.3)
[Jc [JCurve, [a, b] = c.Domain,

c.IsSimple= ([Jx1, x2[J(a, b] x1zx2 [0 f(x1)zf (x2)) J(x1, x2[0[a, b) x1# x2 [J f(x1) # f(x2))
A curve is closed if its start point is equal to its end point. ([1], section 3.12.7.3)
The boundary of a closed curve is empty.
A Curve that is simple and closed is a Ring.

The boundary of a non-closed curve consists of its two end points. ([1], section 3.12.3.2).

A Curve is defined as topologically closed.

2.1.5.1 Methods

DoubleLength()—The length of the curve in its associated spatial reference.
PointStartPoint()—The start point of the curve.

PointEndPoint()—The end point of the curve.

2.1.6 LineString, Line, LinearRing

A LineString is a curve with linear interpolation between points. Each consecutive pair of points defines a
line segment.

A Line is a LineString with exactly 2 points.
A LinearRing is a LineString that is both closed and simple. The curve in Figure 2.2—(3) is a closed

LineString that is a LinearRing. The curve in Figure 2.2—(4) is a closed LineString that is not a
LinearRing.

Page 2-5

OpenGIS Simple Features Specification for SQL, Revision 0

204

1) @ (©) 4
simple non-simple closed closed
simple non-simple

Figure 2.2 (1) a simple LineString, (2) a non-simple LineString, (3) a simple, closed LineString (a
LinearRing), (4) a non-simple closed LineString

2.1.7 MultiCurve

A MultiCurve is a one-dimensional GeometryCollection whose elements are Curves (Figure 2.3).

MultiCurve is a non-instantiable class in this specification, it defines a set of methods for its subclasses and
is included for reasons of extensibility.

A MultiCurve is simple if and only if all of its elements are simple and the only intersections between any
two elements occur at points that are on the boundaries of both elements.

The boundary of a MultiCurve is obtained by applying the “mod 2" union rule: A point is in the boundary
of a MultiCurve if it is in the boundaries of an odd number of elements of the MultiCurve. ([1], section
3.12.3.2).

A MultiCurve is closed if all of its elements are closed. The boundary of a closed multicurve is always
empty.

A MultiCurve is defined as topologically closed.

2.1.7.1 Methods

DoubleLength()—The Length othis MultiCurve which is equal to the sum of the lengths of the element
Curves.

Page 2-6

Chapter 2 Architecture

2.1.8 MultiLineString

A MultiLineString is a MultiCurve whose elements are LineStrings.

s €2 S1 S, €,
SZ e2
s, &
el
€ s,

(€] 2 (©)]

simple non-simple closed

simple

Figure 2.3 (1) a simple MultiLineString, (2) a non-simple MultiLineString with 2 elements, (3) a
simple, closed MultiLineString with 2 elements

The boundaries for the MultiLineStrings in Figure 2.3 arél{B), e2}, (2Y1{s1, el}, (31 O

2.1.9 Surface

A Surface is a two-dimensional geometric object.

The OpenGIS Abstract Specification defines a simple surface as consisting of a single ‘patch’ that is
associated with one ‘exterior boundary’ and O or more ‘interior’ boundaries. Simple surfaces in three-
dimensional space are isomorphic to planar surfaces. Polyhedral surfaces are formed by ‘stitching’ together
simple surfaces along their boundaries, polyhedral surfaces in three-dimensional space may not be planar as
a whole ([1], sections 3.12.9.1, 3.12.9.3).

The boundary of a simple surface is the set of closed curves corresponding to its ‘exterior’ and ‘interior
boundaries. ([1], section 3.12.9.4).

The only instantiable subclass of surface defined in this specification, Polygon, is a simple surface that is
planar.

2.1.9.1 Methods

DoubleArea()—The area of the surface, as measured in its spatial reference system.

DoublePerimeter()—The perimeter of the surface, as measured in its spatial reference system.

Page 2-7

OpenGIS Simple Features Specification for SQL, Revision 0

DoubleCentroid()—The mathematical centroid for the surface. The result is not guaranteed to be on the
surface.

DoublePointOnSurfacg)—A point guaranteed to be on the surface.

2.1.10 Polygon

A Polygon is a planar surface, defined by 1 exterior boundary and 0 or more interior boundaries. Each
interior boundary defines a hole in the polygon.

The assertions for polygons (the rules that define valid polygons) are:
1. Polygons are topologically closed.

2. The boundary of a polygon consists of a set of LinearRings that make up its exterior and interior
boundaries.

3. No two rings in the boundary cross, the rings in the boundary of a polygon may intersect at a point but
only as a tangent :

[P [JPolygon,[Jcl, c2[0 P.Boundary(), c¥ c2,1p, qJ Point, p, g7 cl, p£q, [pdc2 0 qJc2]
4. A Polygon may not have cut lines, spikes or punctures:

[P [JPolygon, P = Closure(Interior(P))
5. The Interior of every Polygon is a connected point set.

6. The Exterior of a Polygon with 1 or more holes is not connected. Each hole defines a connected
component of the Exterior.

In the above assertions, Interior, Closure and Exterior have the standard topological definitions. The
combination of 1 and 3 make a Polygon a Regular Closed point set.

Polygons are simple geometries.
Figure 2.4 shows some examples of Polygons. Figure 2.5 shows some examples of geometric objects that

violate the above assertions and are not representable as single instances of Polygon. The objects shown in
Figure 2.5—(1) and 2.5—(4) can be represented as 2 separate Polygons.

Page 2-8

Chapter 2 Architecture

‘og

@ @ 3

Figure 2.40 Examples of Polygons with 1, 2 and 3 rings respectively .

0o el

) 2 (3) (4)

Figure 2.5 Examples of objects not representable as a single instance of Polygon. (1) and (4) can be
represented as 2 separate Polygons.

Page 2-9

OpenGIS Simple Features Specification for SQL, Revision 0

2.1.10.1 Methods

GeometryExteriorRing ()—Returns the exterior ring of the Polygon.
Int NuminteriorRings ()—Returns the number of interior rings in the Polygon.

List<Geometry>InteriorRings ()—Returns the interior rings for the Polygon.

2.1.11 MultiSurface

A MultiSurface is a two-dimensional geometric collection whose elements are surfaces. The interiors of
any two surfaces in a MultiSurface may not intersect. The boundaries of any two elements in a
MultiSurface may intersect at most at a finite number of points.

MultiSurface is a non-instantiable class in this specification, it defines a set of methods for its subclasses

and is included for reasons of extensibility. The instantiable subclass of MultiSurface is MultiPolygon,
corresponding to a collection of Polygons.

2.1.111 Methods

DoubleArea()—The area of the MultiSurface, as measured in its spatial reference system.
DoublePerimeter()—The perimeter of the MultiSurface, as measured in its spatial reference system.

DoubleCentroid()—The mathematical centroid for the MultiSurface. The result is not guaranteed to be on
the MultiSurface.

DoublePointOnSurface()—A point guaranteed to be on the MultiSurface.

2.1.12 MultiPolygon

A MultiPolygon is a MultiSurface whose elements are Polygons..

The assertions for MultiPolygons are :

1. The interiors of 2 Polygons that are elements of a MultiPolygon may not intersect.
OM [JMultiPolygon, 7 Pi, Pj [M.Geometries() A, Interior(Pi) n Interior(Pj) = [J

2. The Boundaries of any 2 Polygons that are elements of a MultiPolygon may not ‘cross’ and may touch
at only a finite number of points. (Note that crossing is prevented by assertion 1 above).

OM [MultiPolygon,J Pi, Pj O M.Geometries()[J ci [J Pi.Boundaries(), c[J Pj.Boundaries()
cincj={pl, , Pk | piJ Point, 1 <= i <=k}

3. A MultiPolygon is defined as topologically closed.

4. A MultiPolygon may not have cut lines, spikes or punctures, a MultiPolygon is a Regular, Closed point
set:

M [JMultiPolygon, M = Closure(Interior(M))

5. The interior of a MultiPolygon with more than 1 Polygon is not connected, the number of connected
components of the interior of a MultiPolygon is equal to the number of Polygons in the MultiPolygon.

Page 2-10

Chapter 2 Architecture

The boundary of a MultiPolygon is a set of closed curves (LineStrings) corresponding to the boundaries of
its element Polygons. Each curve in the boundary of the MultiPolygon is in the boundary of exactly 1
element Polygon, and every curve in the boundary of an element Polygon is in the boundary of the
MultiPolygon.

The reader is referred to work by Worboys, et. al (7, 8) and Clementini, et. al (5, 6) for work on the
definition and specification of MultiPolygons.

Figure 2.6 shows 4 examples of valid MultiPolygons with 1, 3, 2 and 2 polygon elements respectively.

>
q®

(€] (@) (©) 4)

Figure 2.6 Examples of MultiPolygons
Figure 2.7 shows examples of geometric objects not representable as single instances of MultiPolygons.
Note that the subclass of Surface named Polyhedral Surface described in the [1], is a faceted surface whose

facets are Polygons. A Polyhedral Surface is not a MultiPolygon because it violates the rule for
MultiPolygons that the boundaries of the element Polygons intersect only at a finite number of points.

Page 2-11

OpenGIS Simple Features Specification for SQL, Revision 0

1) 2 3)

Figure 2.70 Geometric objects not representable as a single instance of a MultiPolygon.

2.1.13 Relational Operators

This section provides a more detailed specification of the relational operators on geometries.

2.1.13.1 Background

The Relational Operators are Boolean methods that are used to test for the existence of a specified
topological spatial relationship between two geometries. Topological spatial relationships between two
geometric objects have been a topic of extensive study in the literature [4,5,6,7,8,9,10]. The basic approach
to comparing two geometries is to make pair-wise tests of the intersections between the Interiors,
Boundaries and Exteriors of the two geometries and to classify the relationship between the two geometries
based on the entries in the resulting ‘intersection’ matrix.

The concepts of Interior, Boundary and Exterior are well defined in general topology. For a review of these
concepts the user is referred to Egenhofer, et al [4]. These concepts can be applied in defining spatial
relationships between two-dimensional objects in two-dimensional spicer(order to apply the

concepts of Interior, Boundary and Exterior to 1 and 0 dimensional objeats ancombinatorial topology
approach must be applied. ([1], section. 3.12.3.2). This approach is based on the accepted definitions of the
boundaries, interiors and exteriors for simplicial complexes [12] and yields the following results:

The boundary of a geometry is a set of geometries of the next lower dimension. The boundary of a Point or
a MultiPoint is the empty set. The boundary of a non-closed Curve consists of its two end Points, the
boundary of a closed Curve is empty. The boundary of a MultiCurve consists of those Points that are in the
boundaries of an odd number of its element Curves. The boundary of a Polygon consists of its set of Rings.
The boundary of a MultiPolygon consists of the set of Rings of its Polygons. The boundary of an arbitrary
collection of geometries whose interiors are disjoint consists of geometries drawn from the boundaries of
the element geometries by application of the “mod 2” union rule ([1], section 3.12.3.2).

Page 2-12

Chapter 2 Architecture

The domain of geometric objects considered is those that are topologically closed. The interior of a
geometry consists of those points that are left when the boundary points are removed. The exterior of a
geometry consists of points not in the interior or boundary.

Studies on the relationships between two geometries both of maximal dimensibaridJ* considered

pair-wise intersections between the Interior and Boundary sets and led to the definition of a 4 Intersection
Model [8]. The model was extended to consider the exterior of the input geometries, resulting in a nine
intersection model [11] and further extended to include information on the dimension of the results of the
pair-wise intersections resulting in a dimensionally extended nine intersection model [5]. These extensions
allow the model to express spatial relationships between points, lines and areas, including areas with holes
and multi component lines and areas [6].

2.1.13.2 The Dimensionally Extended Nine-Intersection Model

Given a geometry a, Iéfa), B(a) andE(a) represent the Interior, Boundary and Exterior of a respectively.
The intersection of any two &fa), B(a) andE(a) can result in a set of geometrigspf mixed dimension.

For example, the intersection of the boundaries of two polygons may consist of a point and a line. Let
dim(x) return the maximum dimension (-1, 0, 1, or 2) of the geometrigswith a numeric value of -1
corresponding tdim(J). A dimensionally extended nine-intersection matrix (DE-9IM) then has the form:

Interior Boundary Exterior

Interior dim(I(a)nI(b)) dim(i(@nB(®)) dim(@nE(b))
Boundary dm@Bapi(b)) dimB@nBML)) dimB(@nE(D))

Exterior dmE@pIb) dimE@NB(L)) dim(E@NE(D))

Table 2.10 The DE-9IM

For regular, topologically closed input geometries, computing the dimension of the intersection of the
Interior, Boundary and Exterior sets does not have as a prerequisite the explicit computation and
representation of these sets. For example to compute if the interiors of two regular closed polygons
intersect, and to ascertain the dimension of this intersection, it is not necessary to explicitly represent the
interior of the two polygons (which are topologically open sets) as separate geometries. In most cases the
dimension of the intersection value at a cell is highly constrained given the type of the two geometries. For
example, in the Line-Area case the only possible values for the Interior-Interior cell are drawn from {-1, 1}
and in the Area-Area case the only possible values for the Interior-Interior cell are drawn from {-1, 2}. In
such cases no work beyond detecting the intersection is required.

Figure 2.8 shows an example DE-9IM for the case whearedb are two polygons that overlap.

Page 2-13

OpenGIS Simple Features Specification for SQL, Revision 0

Interior Boundary Exterior
Interior 2 1 2
Boundary 1 0 1
Exterior 2 1 2

Figure 2.80 An example instance and its DE-9IM

A spatial relationship predicate can be formulated on two geometries that takes as input a pattern matrix
representing the set of acceptable values for the DE-9IM for the two geometries. If the spatial relationship
between the two geometries corresponds to one of the acceptable values as represented by the pattern

matrix, then the predicate returns TRUE.

The pattern matrix consists of a set of 9 pattern-values, one for each cell in the matrix. The possible pattern-
valuesp are {T, F, *, 0, 1, 2} and their meanings for any cell wheigthe intersection set for the cell are

as follows:
p=T=>dim(x) O, 1, 2}, i.e.xzJ
p=F=>dimXx)=-1iex=0
p=*=>dim(x) J{-1, 0, 1, 2} i.e. Don’t Care
p=0=>dimx)=0
p=1=>dimx)=1

p=2=>dim(x)=2

The pattern matrix can be represented as an array or list of nine characters in row major order. As an
example the following code fragment could be used to test for “Overlap” between two areas:

char * overlapMatrix = “T*T***T**";
Geometry* a, b;

Boolean b = a->Relate(b, overlapMatrix);

Page 2-14

Chapter 2 Architecture

2.1.13.3 Named Spatial Relationship predicates based on the DE-9IM

The Relate predicate based on the pattern matrix has the advantage that clients can test for a large number
of spatial relationships and fine tune the particular relationship being tested. It has the disadvantage that it
is a lower level building block and does not have a corresponding natural language equivalent. Users of the
proposed system include IT developers using the COM API from a language such as Visual Basic, and
interactive SQL users who may wish, for examfileselect all features ‘spatially within’ a query polygon

in addition to more spatially ‘sophisticated’ GIS developers.

To address the needs of such users a set of named spatial relationship predicates have been defined in [5,6]
for the DE-9IM. The five predicates are named Disjoint, Touch, Cross, In and Overlap and have the
following properties:

1. They are mutually exclusive.

2. They provide a complete covering of all topological cases.

3. They apply to spatial relationships between two geometries of either the same or different dimension.

4. Each predicate can be expressed in terms of a corresponding set of DE-9IM matrix patterns.

5. Any realizable DE-9IM can be expressed as a boolean expression over the 5 predicates, given the
Boundary method on Geometry and the StartPoint and EndPoint method on Curve.

The definition of these predicates [5,6] is given below. In these definitions the term P is used to refer to 0
dimensional geometries (Points and MultiPoints), L is used to refer to one-dimensional geometries
(LineStrings and MultiLineStrings) and A is used to refer to two-dimensional geometries (Polygons and
MultiPolygons).
Disjoint
Given two (topologically closed) geometrizandb,

a.Disjoint(b) = an b =0
Expressed in terms of the DE-9IM:

a.Disjoint(b) = (I@)nl(b) = 1) ((1(a) n B(b) = 1) (B(a) nl(b) = J) [(B(a) n B(b) = (1)
= a.Relate(b, “FF*FF***)

Touch

The Touch relation between two geometries a and b applies to the A/A, L/L, L/A, P/A and P/L groups of
relationships but not to the P/P group. It is defined as:

a.Touch(b)= (I(a)nl(b) = [J) (a n b) 20
Expressed in terms of the DE-9IM:

a.Touch(b)= (I(a)nl(b) =) O((B(a) n I(b) 20) 0(I(a) nB(b) 20) L (B(a)B(b) Z))
~ a.Relate(b, “FT** [Ja Relate(b, “F*T***" [Ja.Relate(b, “Fr*T+**")

Figure 2.9 shows some examples of the Touch relation.

Page 2-15

OpenGIS Simple Features Specification for SQL, Revision 0

Polygon/Polygon

(@)) E]<>

LineString/LineString

(@) ‘%\‘; (b) / \2

Polygon/LineString

OK»

Polygon/Point

G

LineString/Point

/

Figure 2.910 Examples of the Touch relationship
Cross
The Cross relation applies to P/L, P/A, L/L and L/A situations. It is defined as:
a.Cross(b)= (dim(l(a) n 1(b) < max(dim(l(a)), dim(I(b))))J(a n bZa) J(a n b zb)
Expressed in terms of the DE-9IM:
Casea JP,bJLor Casea JP,bJAor Casea [JL, b JA:
a.Cross(b)= (I(a) n I(b) 2J) (1(a) n E(b) 20) = a.Relate(b, “T*Trx****")

Casea JL,bOL:

a.Cross(b)= dim(l(@)nl(b)) = 0 = a.Relate(b, “Q****x+**).

Figure 2.10 shows some examples of the Cross relation.

Page 2-16

Chapter 2 Architecture

Polygon/LineString

LineString/LineString

Figure 2.1 Examples of the Cross relationship
In (Within)
The Within relation is defined as:
a.Within(b) = (an b=a)0((a) nE(b) #Z 0J)
Expressed in terms of the DE-9IM:
a.Within(b) = (I(@)nl(b) #) OJ(I(a) nE(b) =) O(B(@)nE(b) =L7)) = a.Relate(b, “TF*Frx++*")

Figure 2.11 shows some examples of the Within relation.

Page 2-17

OpenGIS Simple Features Specification for SQL, Revision 0

Polygon/Polygon

@) (@®

LineString/LineString

NS

Polygon/LineString

)

Polygon/Point

(0

Figure 2.110 Examples of the Within relationship
Overlap
The Overlap relation is defined for A/A, L/L and P/P situations.
It is defined as:
a.Overlap(b)= (dim(l(a)) = dim(I(b)) = dim(l(@)nl(b))) J(an bza) J(@an b#b)
Expressed in terms of the DE-9IM:
Casea JP,bJPor Casea A, bOA
a.Overlap(b)= (I(a) nl(b)z0) O(1(a) nE(b)2) [O(E(a) nl(b)Z]) = a.Relate(b, “T*T***T**")
Casea JL,bOL:
a.Overlap(b)= (dim(l(a) nl(b) = 1) L (I(a) nE(b)20) [J(E(a) nl(b)£[]) = a.Relate(b, “1*T***T**")

Figure 2.12 shows some examples of the Overlap relation.

Page 2-18

Chapter 2 Architecture

Polygon/LineString

LineString/LineString

Figure 2.127 Examples of the Overlap relationship
The following additional named predicates are also defined for user convenience:
Contains
a.Contains(b)= b.Within(a)
Intersects
a.Intersects(b)= ! a.Disjoint(b)
Based on the above operators the following methods are defined on Geometry:

BooleanEqual(Geometry anotherGeometry)—Tests if this geometry is ‘spatially equal’ to another
geometry.

BooleanDisjoint (Geometry anotherGeometry)—Tests if this geometry is ‘spatially disjoint’ from another
geometry.

Booleanintersect(Geometry anotherGeometry)—Tests if this geometry ‘spatially intersects’ another
geometry.

BooleanTouch(Geometry anotherGeometry)—Tests if this geometry ‘spatially touches’ another geometry.
BooleanCrosqGeometry anotherGeometry)—Tests if this geometry ‘spatially crosses’ another geometry.

BooleanWithin (Geometry anotherGeometry)—Tests if this geometry is ‘spatially within’ another
geometry.

Page 2-19

OpenGIS Simple Features Specification for SQL, Revision 0

BooleanContains(Geometry anotherGeometry)—Tests if this geometry ‘spatially contains’ another
geometry.

BooleanOverlaps(Geometry anotherGeometry)—Tests if this geometry ‘spatially overlaps’ another
geometry.

BooleanRelatg(Geometry anotherGeometry, char * intersectionPatternMatrix)—Tests if this geometry is
spatially related to anotherGeometry, by testing for intersections between the Interior, Boundary and
Exterior of the two geometries.

2.2 Architecture—SQL92 Implementation of Feature Tables

A SQL92 implementation of OpenGIS simple geospatial feature collections defines a schema for storage of
feature table, geometry and spatial reference system informatio@QI#2 implementation doesot

defineSQL functions for access, maintenance, or indexing of geometry, as these functions cannot be
uniformly implemented across database systems using the SQL92 standard.

The figure below describes the database schema necessary to support the OpenGIS simple feature data
model. A feature table or view corresponds to an OpenGIS feature class. Each feature view contains some
number of features represented as rows in the view. Each feature contains some number of geometric
attribute values represented as columns in the feature view. Each geometric column in a feature view is
associated with a particular geometric view or table that contains geometry instances in a single spatial
reference system. The correspondence between the feature instances and the geometry instances is
accomplished through a foreign key that is stored in the geometry column of the feature table. This foreign
key references the GID primary key of the geometry table.

rGID (Geometry Column)
<Attributes>

X<MAX_PPR>
Y<MAX_PPR>

GEOMETRY_COLUMNS SPATIAL_REFERENCE_SYSTEMS|
~F_TABLE_CATALOG — SRID
-E- F_TABLE_SCHEMA AUTH NAME
-F_TABLE_NAME AUTH SRID
—F_GEOMETRY_COLUMN SRTEXT
G_TABLE_CATALO®&
G_TABLE_SCHEM#A
G_TABLE_NAME-
STORAGE_TYPE
GEOMETRY_TYPE
COORD_DIMENSION
MAX_PPR
SRID GEOMETRY_COLUMNS GEOMETRY_COLUMNS
T GID GID
ESEQ XMIN
ETYPE YMIN
SEQ XMAX
Feature Table/View X1 or YMAX
Y1 WKB_GEOMETRY
<Attributes> -

Figure 2.131 Schema for feature tables under SQL92

Depending upon the type of storage specified by the geometry metadata, Geometry instances are stored as
either arrays of coordinate values or as binary values using an OpenGIS defined Well-known Binary

Page 2-20

Chapter 2 Architecture

Representation for Geometry. In the former case, SQL numeric types are used for the coordinates and client
side functions are needed to build OpenGIS geometry objects from the retrieved coordinate numeric values.
In the latter case clients can feed the retrieved well-known binary representation directly into the Geometry
factory of the client side computing environment (e.g., an OLE/COM or CORBA geometry factory) or

choose to access the individual coordinate values by unpacking the well-known representation.

2.2.1 Feature Table Metadata Views

A feature table is any table having 1 or more foreign key reference to a geometry table or view. The set of
feature tables in a database can be determined using the above rule from the TABLES,
REFERENTIAL_CONSTRAINTS and COLUMNS metadata views in the SQL92
INFORMATION_SCHEMA. The set of feature tables can also be determined by issuing a query over the
GEOMETRY_COLUMNS metadata view described below.

2.2.2 Geometry Columns Metadata Views

Each geometry column will be represented as a row in the standard COLUMNS metadata view in the
SQL92 INFORMATION_SCHEMA. Spatial Reference System Identity is however not a standard part of
the SQL92 INFORMATION_SCHEMA. To represent this information we introduce an additional
metadata view named GEOMETRY_COLUMNS.

The GEOMETRY_COLUMNS table or view consists of a row for each geometry column in the database.
The data stored for each geometry column includes:

» the identity of the feature table of which it is a member,

» the spatial reference system ID,

» the type of geometry for the column,

* the coordinate dimension for the column,

» the identity of the geometry table that stores its instances, and

« the information necessary to navigate the geometry tables in the case of normalized geometry storage.

2.2.3 Spatial Reference System Information Views

Every geometry column is associated with a Spatial Reference System. The Spatial Reference System
identifies the coordinate system for all geometries stored in the column, and gives meaning to the numeric
coordinate values for any geometry instance stored in the column. Examples of commonly used Spatial
Reference Systems include “Latitude Longitude”, and “UTM Zone 10".

The SPATIAL_REFERENCE_SYSTEMS table stores information on each Spatial Reference System in
the database. The columns of this table are the Spatial Reference System Identifier (SRID), the Spatial
Reference System Authority Name (AUTH_NAME) , the Authority Specific Spatial Reference System
Identifier (AUTH_SRID) and the Well-known Text description of the Spatial Reference System
(SRTEXT). The Spatial Reference System Identifier (SRID) constitutes a unique integer key for a Spatial
Reference System within a database.

Interoperability between clients is achieved via the SRTEXT column which stores the Well-known Text
representation for a Spatial Reference System as described in Section 5.4.

Page 2-21

OpenGIS Simple Features Specification for SQL, Revision 0

2.2.4 Feature Tables and Views

A Feature is an object with geometric attributes [1]. Features are stored as rows in tables, each geometric
attribute is a foreign key reference to a geometry table or view. Relationships between Features are defined
as FOREIGN KEY references between feature tables.

2.2.5 Geometry and Geometric Element Views

There are two implementations for storing geometries in SQL92: using a normalized geometry SQL92
schema, and using a binary geometry SQL92 schema. The binary geometry schema uses the Well-known
Binary Representation for Geometry (WKBGeometry) described in section 3.3. The normalized geometry
implementation defines fixed width SQL92 tables such as the example in Figure 2.14. Each primitive
element in the geometry is distributed over some number of adjacent rows in the table ordered by a
sequence number (SEQ), and identified by a primitive type (ETYPE). Each geometry identified by a key
(GID), consists of a collection of elements numbered by an element sequence (ESEQ).

The rules for geometric entity representation in the normalized SQL92 schema are defined as follows:
« ETYPE designates the geometry type.
» Geometries may have multiple elements. The ESEQ value identifies the individual elements.

* An element may be built up from multiple parts (rows). The rows and their proper sequence are
identified by the SEQ value.

» Polygons may contain holes, as described in the geometry object model.

» Polygon rings must close when assembled from an ordered list of parts. The SEQ value designates the
part order.

» Coordinate pairs that are not used must be set to Nil in complete sets (both X and Y). This is the only
way to identify the end of list of coordinates.

» For geometries that continue onto an additional row (as defined by an constant element sequence
number or ESEQ) the last point of one row is equal to the first point of the next.

e There is no limit on the number of elements in the geometry, or the number of rows in a element.

Page 2-22

Chapter 2 Architecture

(0,60) (30,60) (60,60) SEQ1

(40,20 / (45,20)

GID3 GID4 (30.15)
(0.30) (60,30) (45.15)
ESEQ1 ESEQ2
T @// L
GID1 GID2 (405 (505)
(0,0) (30,0) (60,0)

GID | ESEQ | ETYPE | SEQ | XO| YOI X1 | Y1 | X2 Y2]| X3] Y3 | X4 | Y4

2 1 3 1 30| O 30| 30| 60f 39 6d 0) 3

2 2 3 1 40 5 40 20| 45| 29 49 1 5 il

2 2 3 2 50| 15[50 5 40| 5| Nill Nilj Nilf o Nil

Figure 2.141 Example of geometry table for Polygon Geometry using SQL

The binary geometry implementation is illustrated in Table 2.2, and uses the same GID as a key, but stores
the geometry using the Well-known Binary Representation for Geometry (WKBGeometry) described in
section 3.3. The geometry table includes the minimum bounding rectangle for the geometry as well as the
WKBGeometry for the geometry. This permits construction of spatial indexes without accessing the actual
geometry structure, if desired.

GID | XMIN [YMIN [XMAX MAX GEOMETRY
1 0 0 30 30 < WKBGeometry>
2 30 0 60 30 < WKBGeometry >
3 0 30 30 60 < WKBGeometry >
4 30 30 60 60 < WKBGeometry >

Table 2.21 Example of geometry table for above Polygon Geometry using the Well-known Binary
Representation for Geometry.

2.2.6 Notes on SQL92 data types

There are various ways to store the same values in a relational database. For example, there are usually
several ways to store numbers. In this specification, the use of a storage alternative is not meant to be
binding. Since the storage type of any column is available in the data dictionary, and such casting operators
between similar types are available, any particular implementation may use alternative storage formats as
long as casting operations would not lead to difficulties.

Page 2-23

OpenGIS Simple Features Specification for SQL, Revision 0

2.2.7 Notes on ODBC Access to Geometry Values stored in Binary form.

ODBC provides standard mechanisms to bind character, numeric and binary data values.

This section describes the process of retrieving geometry values for the case where the binary storage
alternative is chosen.

The WKB_GEOMETRY column in the geometry table for a geometry column surfaces in ODBC as one of
the ODBC binary SQL data types (SQL_BINARY, SQL_VARBINARY, or SQL_LONGVARBINARY).
An application binds to this column using the ODBC 2.0 C datatype SQL_C_BINARY.

For example, the application would use the SQL_C_BINARY value for the fCType parameter of
SQLBindCol (or SQLGetData) in order to describe the application data buffer that will receive the fetched
Geometry data value. Similarly, a dynamic parameter whose value is a Geometry would be described using
the SQL_C_BINARY value for the fCType parameter of SQLBindParameter.

This allows binary values to be both retrieved from and inserted into the geometry tables.

2.3 Architecture—SQL92 with Geometry Types Implementation of Feature
Tables

2.3.1 Feature Table Metadata Views

A feature table is any table having one or more columns whose SQL Type is drawn from the set of
Geometry SQL Types defined in section 3.2.3. The set of feature tables in a database can be determined
from the TABLES and COLUMNS metadata views in the SQL92 INFORMATION_SCHEMA. The set of
feature tables can also be determined by querying the GEOMETRY_COLUMNS metadata view as
described below.

2.3.2 Geometry Columns Metadata Views

Each geometry column will be represented as a row in the standard COLUMNS metadata view in the
SQL92 INFORMATION_SCHEMA. Spatial Reference System Identity is however not a standard part of
the SQL92 INFORMATION_SCHEMA. To represent this information we introduce an additional
metadata view named GEOMETRY_COLUMNS.

The GEOMETRY_COLUMNS table or view consists of a row for each geometry column in the database.
The data stored for each geometry column includes the identity of the feature table of which it is a member,
the spatial reference system ID, the type of geometry for the column, and the coordinate dimension.

The columns in the GEOMETRY_COLUMNS metadata view forSte 92 with Geometry Types
environment are a subset of the columns in the GEOMETRY_COLUMNS view defined 8QL92
environment.

2.3.3 Spatial Reference System Information Views

Every geometry column is associated with a Spatial Reference System. The Spatial Reference System
identifies the coordinate system for all geometries stored in the column, and gives meaning to the numeric
coordinate values for any geometry instance stored in the column. Examples of commonly used Spatial
Reference Systems include “Latitude Longitude”, and “UTM Zone 10”.

The SPATIAL_REFERENCE_SYSTEMS table stores information on each Spatial Reference System in
the database. The columns of this table are the Spatial Reference System Identifier (SRID), the Spatial

Page 2-24

Chapter 2 Architecture

Reference System Authority Name (AUTH_NAME) , the Authority Specific Spatial Reference System
Identifier (AUTH_SRID) and the Well-known Text description of the Spatial Reference System
(SRTEXT). The Spatial Reference System Identifier (SRID) constitutes a unique integer key for a Spatial
Reference System within a database.

Interoperability between clients is achieved via the SRTEXT column which stores the Well-known Text
representation for a Spatial Reference System as described in section 3.4.

The Spatial Reference System Information View forS 92 with Geometry Typesimplementation is
identical to the Spatial Reference System Information View fo8@E92 implementation.

2.3.4 Feature Tables and Views

A Feature is an object with geometric attributes [1]. Feature are stored in tables, each geometric attribute is
stored in a geometric column whose type is drawn from the set of SQL Geometry Types described in
section 3.2.3. Relationships between Features are defined as FOREIGN KEY references between feature
tables.

2.3.5 Background Information on SQL Abstract Data Types

The term Abstract Data Type (ADT) refers to a data type that extends the SQL type system.

ADT types can be used to define the column types for tables, this allows values stored in the columns of a
table to be instances of ADTs.

SQL functions may be declared to take ADT values as arguments, and return ADT values as results.

An ADT may be defined as a subtype of another ADT, referred to as its supertype. This allows an instance
of the subtype to be stored in any column where an instance of the supertype is expected and allows an
instance of the subtype to be used as an argument or return value in any SQL function that is declared to
use the super type as an argument or return value.

The above definition of ADTs is value based, and value based ADTs with the above properties are defined
as part of the current draft SQL3 standard.

SQL implementations that support Abstract Data Types may also support the concept of References to
Abstract Data Type instances that are stored as rows in a table whose type corresponds to the type of the
Abstract Data Type. The terms RowType and Reference to RowType are also used to describe such types.
The above concepts of Types that support tables whose rows are instances of the Type and that support
References to Type instances are also part of the current draft SQL3 standard.

This specification allows Geometry Types to be implemented as either pure value based Types or as Types
that support persistent References.

2.3.6 Scope of this OpenGIS Geometry Types specification

This specificatiordoesnot attempt to standardiznd does not depend upany part of the mechanism by
which Types are added and maintained in the SQL environment including

e The syntax and functionality provided for defining types
e The syntax and functionality provided for defining SQL functions

* The physical storage of type instances in the database

Page 2-25

OpenGIS Simple Features Specification for SQL, Revision 0

e The specific terminology used to refer to types, for example, ADT.

This specificatiordoesstandardize:

* The names and geometric definitions of the OpenGIS SQL Types for Geometry.

* The names, signatures and geometric definitions of the OpenGIS SQL Functions for Geometry.

The types for geometry are definedblack boxterms, i.e. all access to information about a geometry type
instance is through SQL functions. No attempt is made to distinguish functions that may access type
instance attributes (such as timensiorof a geometry instance) from functions that may compute values
given a type instance (such as teatroidof a polygon). In particular, a SQL3 implementation of this
specification would be free to nominate any set of functions as Observer Functions on SQL3 ADT
attributes as long as the signatures of the SQL functions described in this specification are preserved.

This specification does not place any requirements on when or how or who defines the Geometry Types. In
particular, a compliant system may be shipped to the database user with the set of Geometry Types and
Functions already built into the RDBMS server, or with the set of Geometry Types and Functions supplied
to the database user as a dynamically loaded extension to the RDBMS server or in any other manner not
mentioned in this specification.

2.3.7 SQL Geometry Type Hierarchy

The SQL Geometry Types are organized into a type hierarchy based on the Open GIS Geometry Model and
are shown in the figure below.

Geometry
A
Point Curve Surface GeometryCollection
A
LineString Polygon MultiSurface MultiCurve MultiPoint
JAN JAN
MultiPolygon MultiLineString

Figure 2.191 SQL Geometry Type Hierarchy

The root type, named Geometry, has subtypes for Point, Curve, Area and GeometryCollection. A
GeometryCollection is a Geometry that is a collection of possibly heterogeneous Geometries. MultiPoint,

Page 2-26

Chapter 2 Architecture

MultiCurve and MultiSurface are specific subtypes of GeometryCollection used to manage homogenous
collections of Points, Curves and Surfaces. The 0 dimensional geometric Types are Point and MultiPoint.
The one-dimensional geometric Types are Curve and MultiCurve together with their subclasses. The two-
dimensional geometric Types are Surface and MultiSurface together with their subclasses.

SQL functions are defined to construct instances of the above types given well-known textual or binary
representations of the types. SQL functions defined on the types implement the methods described in the
Geometry Model of section 2.1.

2.3.8 Geometry Values and Spatial Reference Systems

In order to model Spatial Reference System information each geometry valuS®L&2 with

Geometry Typesimplementation is associated with a Spatial Reference System. Capturing this association
at the level of the individual geometry value allows literal geometry values that are not yet part of a column
in the database, to be associated with a Spatial Reference System. Examples of such geometry values are
geometry values that are used as a parameter to a spatial query or a geometry value that is part of an insert
statement. Capturing this association at the level of the individual geometry value also allows functions that
take two geometry values to check for compatible spatial reference systems.

A geometry value is associated with a Spatial Reference System by storing the Spatial Reference System
Identity (SRID) for the Spatial Reference System as a part of the geometry value. As explained in the

Spatial Reference System Metadata views, each Spatial Reference System in the database is identified by a
unique value of SRID.

The SRID for a geometry is assigned to it at construction time. This alloB&Ih@? with Geometry
Typesimplementation to ensure that

1. the geometry values being inserted into a geometry column match the Spatial Reference System
declared for the geometry column

2. queries that spatially join columns from different tables operate on geometry columns with compatible
Spatial Reference Systems.

If either of these conditions are violated, a run time SQL error is generated. These compatible spatial
reference system checks are not possible i5@k92 implementation.

The SRID function, defined on the Geometry type, returns the integer SRID of a geometry value.

Before a geometry can be constructed and inserted into a table, the corresponding row for its SRID must
exist in the SPATIAL_REFERENCE_SYSTEMS table, else construction of the geometry will fail. When
defining a table, a SQL check constraint can be used to enforce the rule that all geometries in a geometry
column have the same SRID as that defined for the column in the GEOMETRY_COLUMNS table. The
following example shows the definition of a table, named Countries, with two columns named Name and
Geometry of type VARCHAR and POLYGON respectively.

CREATE TABLE Countries (
Name VARCHAR(200) NOT NULL PRIMARY KEY,
Location Polygon NOT NULL,
CONSTRAINT spatial_reference

CHECK (SRID(Geometry) in (SELECT SRID from GEOMETRY_COLUMNS where
F_TABLE_CATALOG = <catalog> and F_TABLE_SCHEMA = <schema> and
F_TABLE_NAME = ‘Countries’ and F_GEOMETRY_COLUMN = ‘Location’))

Page 2-27

OpenGIS Simple Features Specification for SQL, Revision 0

We expect that most implementations will use Stored Procedures similar to those shown below for the
purpose of adding and dropping geometry columns to and from a feature table.

The AddGeometryColumn(FEATURE_TABLE_CATALOG, FEATURE_TABLE_SCHEMA, FEATURE_TABLE_NAME,
GEOMETRY_COLUMN_NAME, SRID procedure will :

1. ensure that an entry for the SRID exists in the SPATIAL_REFERENCE_SYSTEMS table.

2. add an entry to the GEOMETRY_COLUMNS table that stores the SRID for the geometry column.
3. add the geometry column to the feature table using aAQ@ER TABLE statement

4. add the Spatial Reference Check Constraint to the feature table

The DropGeometryColumn(FEATURE_TABLE_CATALOG, FEATURE_TABLE_SCHEMA,
FEATURE_TABLE_NAME, GEOMETRY_COLUMN_NAME stored procedure will :

1. drop the spatial reference Check Constraint on the feature table
2. drop the entry from the GEOMETRY_COLUMNS table

3. drop the geometry column from the feature table

2.3.9 ODBC Access to Geometry Values in the SQL with Geometry Types case

Spatial data are accessed using the SQL query language extended with SQL functions on Geometry Types
as described in section 3.2.3. The SQL pass through capabilities of ODBC allow a client to pass these or
any extended SQL statements containing RDBMS specific SQL extensions to a server. (Applications are
free to send any SQL statements to an RDBMS even if the statement is not described within the ODBC
conformance levels).

Geometry columns are implemented using the Geometry data types described above.

GIS applications will be able to determine the existence of a Geometry column based on the Geometry data
type or one of its subtypes using one or more of the following ODBC programming techniques:

The SQLTypelnfo function can be used to determine both the TYPE_NAME and the underlying
SQL_DATA_TYPE of an ODBC SQL Type.

The SQLColumns catalog function can be used to determine the TYPE_NAME and the underlying
SQL_DATA_TYPE of a column in a table.

The SQLDescribeCol and SQLColAttributes functions can be used to determine a column’s data type and
description.

An ODBC client application uses either one of two SQL functions

GeometryFromText ([in] String, [in] Integer) : Geometry, or

GeometryFromWKB([in] Blob,[in] Integer) : Geometry

or their type specific versions (for example, PolygonFromText and PolygonFromWKB) to pass geometry

values into the database from a client application that represents them using either the well-known text or
the well-known binary representations.

Page 2-28

Chapter 2 Architecture

Theinput arguments to the above functions a@DBC standard character, binary and integer data types
(SQL_C _CHAR, SQL_C BINARY, SQL_C_INTEGER) and clients bind to these parameters using
standard ODBC binding methods.

An ODBC client application uses either one of two SQL functions

AsText([in]|Geometry) : String, or

AsBinary([in]Geometry) : Blob

to extract geometry values from the database as either text or well-known binary values.

Theoutput argumentsto the above functions a@DBC standard character and binary data types

(SQL_C _CHAR, SQL_C_ BINARY) and clients bind to these parameters using standard ODBC binding

methods.

The above SQL functions are described in sections 3.2.8 and 3.2.9.

Page 2-29

3 Component Specifications

In order to be compliant with this OpenGIS ODBC/SQL specification for geospatial feature collections an
implementer can choose to implement the components described in this sedioyndoeof three
alternativeq1a, 1b or 2Jisted below andiescribed in this specification:

1. SQL92implementation of feature tables
a) using numeric SQL types for geometry storage and ODBC access.
b) using binary SQL types for geometry storage and ODBC access.

2. SQL92 with Geometry Typesimplementation of feature tables supporting both textual and binary
ODBC access to geometry.

The components for tH&QL92 implementation of feature tables are described in section 3.1. Alternatives
1la) and 1b) listed above differ only in the implementation of the geometry table component as described in
section 3.1.4.

The components for tH8QL92 with Geometry Typesimplementation of feature tables are described in
section 3.2.

3.1 Components—SQL92 Implementation of Feature Tables

The components of the ODBC OpenGIS specification for feature table implementation in a SQL92
environment consists of the tables or views discussed in this section. Since the existence of some unknown
table is prerequisite for a view, most of the definitions below are stateRE#STE TABLEStatements.

Views that create the same logical structure are equally comglarie names and column names have

been restricted to 18 characters in length to allow for the widest possible implementation

3.1.1 Spatial Reference System Information

3.1.1.1 Component Overview

The Spatial Reference Systems table, which is na@8RedIAL_REF_SYS stores information on each
spatial reference system used in the database.

Page 3-1

OpenGIS Simple Features Specification for SQL, Revision 0

3.1.1.2 Table or View Constructs

The followingCREATE TABLEStatement creates an appropriately structured Spatial Reference Systems
table.

CREATE TABLE SPATIAL_REF_SYS
(

SRID INTEGER NOT NULL PRIMARY KEY,
AUTH_NAME VARCHAR (256),

AUTH_SRID INTEGER,

SRTEXT VARCHAR (2048)

)

3.1.1.3 Field Description
The meanings of the attributes in the view are as follows:

e SRID—an integer value that uniquely identifies each Spatial Reference System within a database.

* AUTH_NAME-the name of the standard or standards body that is being cited for this reference system.
EPSG would be a validUTH_NAME

* AUTH_SRIB-the ID of the Spatial Reference System as defined by the Authority citedrin NAME
* SRTEXFThe Well-known Text representation of the Spatial Reference System.

3.1.1.4 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.1.2 Geometry Columns Metadata View

3.1.2.1 Component Overview

The Geometric Columns Metadata view provides metadata information on the spatial reference for each
geometry column in the database.

3.1.2.2 Table or View Constructs

The followingCREATE TABLEStatement creates an appropriately structured table. This should be either an

actual table or an updateable view so that insertion of reference system information can be done directly
with SQL.

CREATE TABLE GEOMETRY_COLUMNS (

F_TABLE_CATALOG VARCHAR(256) NOT NULL,
F_TABLE_SCHEMA VARCHAR(256) NOT NULL,
F_TABLE_NAME VARCHAR(256) NOT NULL,
F_GEOMETRY_COLUMN VARCHAR(256) NOT NULL,
G_TABLE_CATALOG VARCHAR(256) NOT NULL,
G_TABLE_SCHEMA VARCHAR(256) NOT NULL,
G_TABLE_NAME VARCHAR(256) NOT NULL,
STORAGE_TYPE INTEGER,

Page 3-2

Chapter 3 Component Specifications

GEOMETRY_TYPE INTEGER,
COORD_DIMENSION INTEGER,

MAX_PPR INTEGER,

SRID INTEGER REFERENCES SPATIAL_REF_SYS,

CONSTRAINT GC_PK PRIMARY KEY
(F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME, F_GEOMETRY_COLUMN)

)

3.1.2.3 Field Description

The fields in the Geometric Complex Information view are:

e F_TABLE_CATALOGF TABLE_SCHEMA- TABLE_NAME-the fully qualified name of the feature table
containing the geometry column.

e F_GEOMETRY_COLUMtthe name of the column in the feature table that is the geometry column. This
column will contain a foreign key reference into the geometry table 3102 implementation.

* G_TABLE_CATALOGS_TABLE_SCHEMA_TABLE_NAME-the name of the geometry table and its
schema and catalog. The geometry table implements the geometry column.

* STORAGE_TYPRE-the type of storage being used for this geometry column.

0 = normalized geometi$QL92 implementation.
1 = binary geometr$QL92 implementation (Well-known Binary Representation for Geometry).

* GEOMETRY_TYPREthe type of geometry values stored in this column. The use of a non-leaf geometry
class name from the Geometry Object Model described in section 3.1 for a geometry column implies
that domain of the column corresponds to instances of the class and all of its subclasses.

0 = GEOMETRY
1=POINT
2=CURVE

3 = LINESTRING

4 = SURFACE
5=POLYGON

6 = COLLECTION

7 = MULTIPOINT

8 = MULTICURVE

9 = MULTILINESTRING
10 = MULTISURFACE
11 = MULTIPOLYGON

e« COORD_DIMENSIONthe number of ordinates used in the complex, usually corresponds to the number
of dimensions in the spatial reference system.

* MAX_PPR—(This value contains data for the normalized SQL92 geometry implementation only) points
per row, the number of points stored as ordinate columns in the geometry table.

» SRID—the ID of the spatial reference system used for the coordinate geometry in this table. It is a
foreign key reference to tt&PATIAL_REF_SYStable.

Page 3-3

OpenGIS Simple Features Specification for SQL, Revision 0

3.1.2.4 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns for ODBC.

3.1.3 Feature Tables and Views

The basic restriction in this specification for feature tables is that for each geometric attribute they include
geometry via &OREIGN KEYreference to a geometry table. Feature-to-feature relations would similarly

be defined afOREIGN KEYreferencesBy [1], features are simply objects that have geometric attributes.

In SQL92, these geometric attributes are stored in the geometry tables.

The general format of a feature table would be as follows:

CREATE TABLE <feature-name> (
<FID name> <FID type>,
<feature attributes> <other FID type> REFERENCES <other feature view>,
(other FID based attributes for feature relations)
(other attributes for feature)
<geometry attribute 1> <GID type>,
(other geometric attributes for feature)
PRIMARY KEY <FID name>,
(other geometric attributes foreign key statements)
FOREIGN KEY <geometric attribute 1> REFERENCES <geometry-table-name-1>,
FOREIGN KEY <FID relation name> REFERENCES <FEATURE table> <other FID name>,

(other geometric attributes foreign key statements)

)

The geometric attribute Foreign Key reference applies only for the case where the geometry table stores
geometry in binary form. In the case where geometry is stored in normalized form there may be multiple
rows in the geometry table corresponding to a single geometry value. In this case the geometry attribute
reference may be captured by a constraint that checks that the geometry column value stored in the Feature
Table corresponds to the GID value for some row in the Geometry Table.

The foreign key reference to the geometry table name creates an entry in the data dictionary that ties this
table to that geometry table. This is sufficient to identify this table as a feature table. Foreign keys also
define feature-to-feature relations. Alternatively, applications may che@&O®ETRY_COLUMMBW,

where all geometry columns and their associated feature tables and geometry tables are listed.

3.1.4 Geometry Tables or Views

3.1.4.1 Component Overview

Each Geometry View stores geometry instances corresponding to a geometry column in a feature table.
Geometries may be stored as individual ordinate values, using SQL types, or as binary objects, using the
OpenGIS Well-known Binary Representation for Geometry. Table schemas for both implementations are
provided.

Page 3-4

Chapter 3 Component Specifications

3.1.4.2 Geometry stored using ODBC/SQL numeric types

3.1.4.3 Table or View Constructs

The followingCREATE TABLEStatement creates an appropriately structured table for geometry stored as
individual ordinate values using SQL types. Implementations should either use this table format or provide
stored procedures to create, populate and maintain this table.

CREATE TABLE <table name> (

GID NUMBER NOT NULL,
ESEQ INTEGER NOT NULL,
ETYPE INTEGER NOT NULL,
SEQ INTEGER NOT NULL,

X1 <ordinate type>,

Y1 <ordinate type>,

... <repeated for each ordinate, repeated for each point>

X<max_ppr> <ordinate type>,
Y<max_ppr> <ordinate type>,
<attribute name> <attribute type>

CONSTRAINT GID_PK PRIMARY KEY (GID, ESEQ, SEQ)
)

3.1.4.4 Field Descriptions :

The fields of a geometric view are:

e GIDO identity of this geometry

e ESEQ—identifies multiple components within a geometry

* ETYPE—element type of this primitive element for the geometry

* SEG—identifies the sequence of rows to define a geometry component
* X1—first ordinate of first point

e Yl—second ordinate of first point

» ..[0O(repeated for each ordinate, for this point)

» .. (repeated for each coordinate, for this row)

* X<MAX_PPR>first ordinate of last point,. The maximum number of points per k&X' PPRis
consistent with the information in tiBEEOMETRY_COLUMN®Dle.

* Y<MAX_PPR>-second ordinate of last point

Page 3-5

OpenGIS Simple Features Specification for SQL, Revision 0

» .. (repeated for each ordinate, for this last point)

e <ATTRIBUTE>0 other attributes can be carried in the geometry view for specific feature schema

3.1.4.5 Geometry stored using ODBC/SQL binary types

3.1.4.6 Table or View Constructs

The followingCREATE TABLEStatement creates an appropriately defined table for geometry stored using
the OpenGlIS Well-known Binary Representation for Geometry defined in section 4.3. Implementations
should either use this table format or provide stored procedures to create, populate and maintain this table.

CREATE TABLE <table name> (
GID NUMBER NOT NULL PRIMARY KEY,
XMIN <ordinate type>,
YMIN <ordinate type>,
XMAX <ordinate type>,
YMAX <ordinate type>,
WKB_GEOMETRY VARBINARY,
<attribute name> <attribute type>
)

3.1.4.7 Field Descriptions

The fields of a geometric view are:

* GID—identity of this geometry

e XMIN—the minimum x-coordinate of the geometry bounding box

* YMIN—the minimum y-coordinate of the geometry bounding box

e XMAX-the maximum x-coordinate of the geometry bounding box

* YMAX-the maximum y-coordinate of the geometry bounding box

* WKB_GEOMETRMhe well-known binary representation of the geometry

* <ATTRIBUTE>—other attributes can be carried in the geometry view for specific feature schema

3.1.4.8 Exceptions, Errors, and Error Codes

Error handling will use the standard SQL status returns for ODBC.

3.1.5 Operators

No SQL92 spatial operators are defined as part of this specification.

Page 3-6

Chapter 3 Component Specifications

3.2 Components—SQL92 with Geometry Types Implementation of Feature
Tables

The components of the ODBC OpenGIS specification for feature table implementati@ir9a with

Geometry Typesenvironment consists of the tables or views, SQL types and SQL functions discussed in
this section.

Since the existence of some unknown table is prerequisite for a view, most of the definitions below are
stated a€REATE TABLEstatements. Views that create the same logical structure are equally compliant.

3.2.1 Spatial Reference System Information View

3.2.1.1 Component Overview

This component is identical to the corresponding Component described QL2 implementation:

3.2.1.2 Table or View Constructs

The followingCREATE TABLEStatement creates an appropriately structured Spatial Reference Systems
table.

CREATE TABLE SPATIAL_REF_SYS
(

SRID INTEGER NOT NULL PRIMARY KEY,
AUTH_NAME VARCHAR (256),

AUTH_SRID INTEGER,

SRTEXT VARCHAR (2048)

)

3.2.1.3 Field Description
The meanings of the attributes in the view are as follows:

e SRID—an integer value that uniquely identifies each Spatial Reference System within a database.

* AUTH_NAME-the name of the standard or standards body that is being cited for this reference system.
EPSG would be a validUTH_NAME

* AUTH_SRID—the ID of the Spatial Reference System as defined by the Authority citeirihn NAME
* SRTEXTThe Well-known Text representation of the Spatial Reference System.
3.2.1.4 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.2 Geometry Columns Metadata View

3.2.2.1 Component Overview

The Geometric Columns Information view provides metadata information on the spatial reference for eac
geometry column in the database. The columns for this view B@h®2 with Geometry Types
implementation are a subset of the columns iIrSE92 implementation.

Page 3-7

OpenGIS Simple Features Specification for SQL, Revision 0

3.2.2.2 Table or View Constructs

The followingCREATE TABLEStatement creates an appropriately structured table. This should be either an
actual table or an updateable view so that insertion of reference system information can be done directly
with SQL.

CREATE TABLE GEOMETRY_COLUMNS (

F_TABLE_CATALOG VARCHAR(256) NOT NULL,
F_TABLE_SCHEMA VARCHAR(256) NOT NULL,

F_TABLE_NAME VARCHAR(256) NOT NULL,
F_GEOMETRY_COLUMN VARCHAR(256) NOT NULL,
COORD_DIMENSION INTEGER,

SRID INTEGER REFERENCES SPATIAL_REF_SYS,

CONSTRAINT GC_PK PRIMARY KEY
(F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME, F_GEOMETRY_COLUMN)

)

3.2.2.3 Field Description

The fields in the Geometric Complex Information view are:

e F_TABLE_CATALOGF_TABLE_SCHEMAF TABLE_NAME-the fully qualified name of the feature
table containing the geometry column.

* F_GEOMETRY_COLUMMthe name of the geometry column in the feature table.

* COORD_DIMENSIGNthe coordinate dimension for the geometry values in this column, which will be
equal to the number of dimensions in the spatial reference system.

* SRID—the ID of the spatial reference system used for the coordinate geometry in this table. It is a
foreign key reference to tI8PATIAL_REFERENCESable.

3.2.2.4 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns for ODBC.

3.2.3 SQL Geometry Types

3.2.3.1 Component Overview

The SQL Geometry Types extend the set of available SQL92 types to include Geometry Types.

3.2.3.2 Language Constructs

The SQL language will support a subset of the following set of SQL Geometry T@zesndtry , Point ,
Curve , LineString , Surface , Polygon , GeometryCollection , MultiCurve , MultiLineString ,
MultiSurface , MultiPolygon , MultiPoint ~ }. The permissible type subsets that an implementer may
choose to implement are described in Table 3.1 below.

Page 3-8

Chapter 3 Component Specifications

An implementation must preserve the subtype relationships between geometry types shown in Figure 3.1
below for the types that are implemented. An implementation that implements 2 types A and B where B is
an immediate subtype of A in Figure 3.1 is free to introduce additional types C, outside the scope of this
specification, between A and B as long as A continues to be a supertype of B.

Geometry

A

Point Curve Surface GeometryCollection
LineString Polygon MultiSurface MultiCurve MultiPoint

MultiPolygon MultiLineString

Figure 3.10 Subtype relationships between Types

Geometry , Curve , Surface , MultiCurve andMultiSurface
No constructors are defined for these types.

are defined to be non-instantiable types.

The remaining seven types are defined to be instantiable. An implementation may support only a subset of
these seven types as instantiable as defined in the table below

Type Level | Available Types Instantiable Types

1 Geometry, Point, Curve, Point, LineString, Polygon,
LineString, Surface, Polygon, GeometryCollection
GeometryCollection

2 Geometry, Point, Curve, Point, LineString, Polygon,
LineString, Surface, Polygon, MultiPoint,
GeometryCollection, MultiPoint, MultiLineString,MultiPolygon
MultiCurve, MultiLineString,
MultiSurface, MultiPolygon

3 Geometry, Point, Curve, Point, LineString, Polygon,
LineString, Surface, Polygon, GeometryCollection, MultiPoint,
GeometryCollection, MultiPoint , MultiLineString, MultiPolygon
MultiCurve, MultiLineString,
MultiSurface, MultiPolygon

Table 3.10 Available and instantiable types by implementation type level

Page 3-9

OpenGIS Simple Features Specification for SQL, Revision 0

Any implemented SQL geometry type can be used as the type for a column. Declaring a column to be of a
particular type implies that any instance of the type or of any of its subtypes can be stored in the column.

3.2.4 Feature Tables and Views

3.2.4.1 Component Overview

The basic restriction in this specification for feature tables is that each geometric attribute is modeled using
a column whose type corresponds to a SQL Geometry Type as defined in section 3.2.3. Feature-to-feature
relations are defined &OREIGN KEY references

3.2.4.2 Table or View Constructs

The general format of a feature table in 8@L92 with Geometry Typesimplementation would be as
follows:

CREATE TABLE <feature-name> (
<FID name> <FID type>,
<feature attributes> <other FID type> REFERENCES <other feature view>,
(other FID based attributes for feature relations)
(other attributes for feature)
<geometry attribute 1> <Geometry type>,
(other geometric attributes for feature)
PRIMARY KEY <FID name>,
FOREIGN KEY <FID relation name> REFERENCES <FEATURE table> <other FID name>

CONSTRAINT SRS_1 CHECK (SRID(<geometry attribute 1>) in (SELECT SRID from
GEOMETRY_COLUMNS where F_TABLE_CATALOG = <catalog> and
F_TABLE_SCHEMA = <schema> and F_TABLE_NAME = <feature-name> and
F_GEOMETRY_COLUMN = <geometry attribute 1>))

... (spatial reference constraints for other geometric attributes)

)

The use of a SQL Geometry Type for one of the columns in the table identifies this table as a feature table.
Alternatively, applications may check tBOMETRY_COLUMNMSBW, where all geometry columns and
their associated feature tables and geometry tables are listed.

3.2.4.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.5 SQL Textual Representation of Geometry

3.2.5.1 Component Overview

Each Geometry Type has a Well-known Text representation that can be used both to construct new
instances of the type and to convert existing instances to textual form for alphanumeric display.

Page 3-10

Chapter 3 Component Specifications

3.2.5.2 Language Constructs

The Well-known Text representation of Geometry is defined below; the nofgtiodenotes 0 or more
repetitions of the tokens within the braces, the braces do not appear in the output token list. The text
representation of the instantiable geometric types implemented must confirm to this grammar.

<Geometry Tagged Text> ;=
<Point Tagged Text>
| <LineString Tagged Text>
| <Polygon Tagged Text>
| <MultiPoint Tagged Text>

| <MultiLineString Tagged Text>

| <MultiPolygon Tagged Text>

| <GeometryCollection Tagged Text>
<Point Tagged Text> :=

POINT <Point Text>
<LineString Tagged Text> :=

LINESTRING <LineString Text>
<Polygon Tagged Text> :=

POLYGON <Polygon Text>
<MultiPoint Tagged Text> :=

MULTIPOINT <Multipoint Text>
<MultiLineString Tagged Text> :=

MULTILINESTRING <MultiLineString Text>
<MultiPolygon Tagged Text> :=

MULTIPOLYGON <MultiPolygon Text>
<GeometryCollection Tagged Text> :=

GEOMETRYCOLLECTION <GeometryCollection Text>
<Point Text> := EMPTY | (<Point>)
<Point> := <x> <y>
<x> := double precision literal
<y> := double precision literal
<LineString Text> := EMPTY

| (<Point > {, <Point > }*)
<Polygon Text> := EMPTY

| (<LineString Text > {, < LineString Text > }*)
<Multipoint Text> := EMPTY

| (<Point Text > {, <Point Text > }*)
<MultiLineString Text> := EMPTY

| (<LineString Text > {, < LineString Text > }*)
<MultiPolygon Text> := EMPTY

| (< Polygon Text > {, < Polygon Text > }*)
<GeometryCollection Text> := EMPTY

| (<Geometry Tagged Text> {, <Geometry Tagged Text> }*)

Page 3-11

OpenGIS Simple Features Specification for SQL, Revision 0

The above grammar has been designed to support a compact and readable textual representation of
geometric instances. The representation of a geometry that consists of laosebgéneousomponents
does not include the tags for each embedded component.

3.2.5.3 Examples

Examples of SQL textual representations of Geometry Types are shown below. The coordinates are shown
as integer values, in general they may be any double precision value.

Geometry Type SQL Text Literal Representation Comment

Point ‘POINT (10 10Y’ aPoint

LineString ‘LINESTRING (10 10, 20 20, 30 40)’ alLineString with 3 points

Polygon ‘POLYGON ((10 10, 10 20, 20 20, aPolygon with 1 exterior
20 15, 10 10)) ring and O interior rings

Multipoint ‘MULTIPOINT (10 10, 20 20) aMultiPoint with 2 point

MultiLineString ‘MULTILINESTRING ((10 10, 20 20), aMultiLineString with
(15 15, 30 15)) 2 linestrings

MultiPolygon ‘MULTIPOLYGON (aMultiPolygon with 2
((10 10, 10 20, 20 20, 20 15, 10 10)), polygons
((60 60, 70 70, 80 60, 60 60))Y’

GeometryCollection| ‘GEOMETRYCOLLECTION (POINT (10 10), aGeometryCollection
POINT (30 30), consisting of 2Point values
LINESTRING (15 15, 20 20)) and aLineString value

3.2.6 SQL Functions for Constructing a Geometry Value given its Well-known
Text Representation
3.2.6.1 Component Overview

The functions are used to constrGetometry instances from their text representations.

3.2.6.2 Language Constructs

The GeometryFromText function, takes a geometry textual representatiaiGgometry Tagged
Text> as described in the grammar above), and a Spatial Reference Sys®RiOPand creates an
instance of the appropriate geometry type. This function plays the role @éd¢heetry factory in SQL.

An implementation may substitute any SQL type suitable for representing text dataAR@-HARfor the
typeString below.

GeometryFromText(Construct &Seometry value given its well-

geometryTaggedText String, known textual representation.
SRID Integer) : Geometry

Page 3-12

Chapter 3 Component Specifications

The return type of th6eometry function is theGeometry supertype. For construction @eometry
values to be stored in columns restricted to a particular subtype, an implementation must also provide a
type specific construction function for each instantiable subtype as described in the table below.

PointFromText (

pointTaggedText String, SRID Integer): Point Construct &oint

LineStringFromText(Construct d.ineString
lineStringTaggedText String,
SRID Integer) : LineString

PolygonFromText(
polygonTaggedText String,
SRID Integer): Polygon

Construct @olygon

MultipointFromText (multiPointTaggedText Construct aMultiPoint
String, SRID Integer): MultiPoint

MultiLineStringFromText (Construct avultiLineString
multiLineStringTaggedText String,
SRID Integer): MultiLineString

MultiPolygonFromText(Construct avultiPolygon
multiPolygonTaggedText String,
SRID Integer): MultiPolygon

GeometryCollectionFromText(Construct aGeometryCollection
geometryCollectionTaggedText String,
SRID Integer): GeometryCollection

As an optional feature, an implementation may also support ‘buildirgplpon or MultiPolygon
values given an arbitrary collection of possibly intersecting rings or clase®iring values.
Implementations that support this feature should include the following functions:

BuildPolygonFromText(Construct @Polygon given an arbitrary
multiLineStringTaggedText String, collection of closed linestrings as a
SRID Integer): Polygon MultiLineString text representation.
BuildMultiPolygonFromText(Construct aMultiPolygon given an
multiLineStringTaggedText String, arbitrary collection of closed linestrings as af
SRID Integer): MultiPolygon MultiLineString text representation.

3.2.6.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.6.4 Example

The following example shows the use of Hudygon type specific constructor:

INSERT INTO Countries (Name, Location)
VALUES (‘Kenya’, PolygonFromText(‘POLYGON ((x y, XY, XY, ..., XV)), 14))

Page 3-13

OpenGIS Simple Features Specification for SQL, Revision 0

3.2.7 SQL Functions for Constructing a Geometry Value given its Well-known
Binary Representation

3.2.7.1 Component Overview

The functions are used to construct geometry instances from their well-known binary representations.

3.2.7.2 Language Constructs

The GeometryFromWKB function, takes a well-known binary representation of geometkBGeometry as
described in section 3.3) and a Spatial Reference SystesRID)(and creates an instance of the
appropriate geometry type. This function plays the role of the Geometry Factory in SQL. An
implementation may substitute any SQL type used to represent binary values for BiedBpethe
definitions below.

GeometryFromWKB (WKBGeometry Blob, Construct &Geometry value given its well-known
SRID Integer) : Geometry binary representation.

The return type of theeometry function is theGeometry supertype. For construction @eometry

values to be stored in columns restricted to a particular subtype, an implementation must also provide a
type specific construction function for each instantiable subtype as described in the table below (the well-
known binary representations for eagkometry type are as described in section 3.3).

PointFromWKB (WKBPoint BLOB, SRID Integer): Point .
Construct @&oint

LineStringFromWKB(WKBLineString BLOB, Construct d.ineString
SRID Integer) : LineString

PolygonFromWKB(WKBPolygon BLOB, SRID Integer): Polygon
va (v ger) v Construct @olygon

MultipointFromWKB (WKBMultiPoint BLOB, Construct aMultiPoint
SRID Integer): MultiPoint
MultiLineStringFromWKB (WKBMultiLineString BLOB, Construct a
SRID Integer): MultiLineString MultiLineString
MultiPolygonFromWKB (WKBMultiPolygon BLOB, Construct aMultiPolygon
SRID Integer): MultiPolygon
GeometryCollectionFromWKB (WKBGeometryCollection BLOB, Construct a
SRID Integer): GeometryCollection GeometryCollection

As an optional feature, an implementation may also support ‘buildirgplpon or MultiPolygon
values given an arbitrary collection of possibly intersecting rings or clase®iring values
Implementations that support this feature should include the following functions:

BuildPolygonFromWKB(WKBMultiLineString BLOB, Construct @olygon given an arbitrary
SRID Integer): Polygon collection of closed linestrings as a
MultiLineString binary representation.
BuildMultiPolygonFromWKB(Construct avultiPolygon given an
WKBMultiLineString BLOB, arbitrary collection of closed linestrings as a
SRID Integer): MultiPolygon MultiLineString binary representation.

Page 3-14

Chapter 3 Component Specifications

3.2.7.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.7.4 Examples

The following example shows the use of the birRolygon type specific constructor in Dynamic SQL,
the:wkb and:srid parameters are bound to application program variables containing the binary
representation of Bolygon and of theSRID respectively :

INSERT INTO Countries (Name, Location)
VALUES (‘Kenya’, PolygonFromWKB(:wkb, :srid))

3.2.8 SQL functions for obtaining the Well-known Text Representation of a
Geometry

3.2.8.1 Component Overview

This function returns the well-known textual representation fesanetry .

3.2.8.2 Language Constructs

TheAsText function takes a single argument of typeometry and returns its well-known textual
representation. This function applies to all subtypeGeofnetry .

AsText (g Geometry) : String Returns the well-known textual representation

3.2.8.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.8.4 Examples

The following example shows the use of #sdext function to extract the name and textual
representation of geometry of all countries whose names begin with the letter K.

[SELECT Name, AsText(Location) FROM Countries WHERE Name LIKE ‘K%’ |

3.2.9 SQL functions for obtaining the Well-known Binary Representation of a
Geometry

3.2.9.1 Component Overview

This function returns the well-known binary representation fee@netry

3.2.9.2 Language Constructs

TheAsBinary function takes a single argument of typeometry and returns its well-known binary
representation. This function applies to all subtypeSeofmetry .

Page 3-15

OpenGIS Simple Features Specification for SQL, Revision 0

AsBinary (g Geometry) : Blob

Returns the well-known binary representation

3.2.9.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.9.4 Example

The following example shows the use of #sBinary function to extract the name and well-known
binary representation of geometry for all countries whose names begin with the letter K.

| SELECT Name, AsBinary(Location) FROM Countries WHERE Name LIKE ‘K%’

3.2.10 SQL Functions on Type Geometry

3.2.10.1 Component Description

The following SQL functions apply to all subtypesG&ometry .

3.2.10.2 Language Constructs

Dimension(g Geometry) : Integer

Returns the dimension of tieometry , which is less than or
equal to the dimension of the coordinate space.

GeometryType(g Geometry) : String

Returns the name of the instantiable subtyp@edmetry of
which this instance is a member, aStang

AsText(g Geometry) : String

Returns the well-known textual representation

AsBinary(g Geometry) : Blob

Returns the well-known binary representation

SRID(g Geometry) : Integer

Returns the Spatial Reference System ID for@&asmetry .

ISEmpty(g Geometry) : Integer

The return type itnteger , with a return value of 1 fofFRUE O
for FALSE and —1 folUNKNOW®brresponding to a function
invocation orNULL arguments.

TRUEIf this Geometry corresponds to the empty set.

IsSimple(g Geometry): Integer

The return type itnteger , with a return value of 1 fofFRUE O
for FALSE and —1 folUNKNOW®brresponding to a function
invocation onrNULL arguments.

TRUEIf this Geometry is simple, as defined in the Geometry
Model.

Boundary(g Geometry) : Geometry

Returns &Geometry that is the combinatorial boundaryggs
defined in the Geometry Model.

Envelope(g Geometry) : Geometry

Returns the rectangle boundigags aPolygon . The first point in
thePolygon will be the Lower Left corner of the rectangle. Th
third point in thePolygon will be the Upper Right corner of the

1%

Page 3-16

Chapter 3 Component Specifications

rectangle.

3.2.10.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.11 SQL Functions on Type Point

3.211.1 Component Description

The following SQL functions are defined enint .

3.2.11.2 Language Constructs

X(p Point) : Double Precision Return the x-coordinate &oint p as aDouble Precision
number

Y(p Point) : Double Precision Return the y-coordinate &foint p as aDouble Precision
number

3.2.11.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.12 SQL Functions on Type Curve

3.2.12.1 Component Overview

The following SQL functions apply to all subtypestuirve .

3.2.12.2 Language Constructs

StartPoint(c Curve) : Point Return aPoint containing the first point of
EndPoint(c Curve) : Point Return aPoint containing the last point af
IsClosed(c Curve) : Integer The return type itnteger , with a return value of 1 for

TRUE O for FALSE, and —1 folUNKNOW®brresponding to a
function invocation omNULL arguments.

ReturnTRUEIf ¢ is closed, i.e., if
StartPoint(c) = EndPoint(c)

IsRing(c Curve) : Integer The return type itnteger , with a return value of 1 for
TRUE 0 for FALSE, and —1 folUNKNOW®brresponding to a
function invocation omNULL arguments.

ReturnTRUEIf ¢ is aRing , i.e., ifc is closed and simple. A
simple curve does not pass through the same point more than
once.

Page 3-17

OpenGIS Simple Features Specification for SQL, Revision 0

Length(c Curve) : Double Precision Return the length of

3.2.12.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.13 SQL Functions on Type LineString

3.2.13.1 Component Overview :

The following SQL functions apply ticneString

3.2.13.2 Language Constructs :

NumPoints(l LineString) : Integer Return the number of points in thaeString

PointN(l LineString, n Integer) : Point Return aPoint containing point of |

3.2.13.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.14 SQL Functions on Type Surface

3.2.14.1 Component Overview

The following SQL functions apply to all subtypesSoiface .

3.2.14.2 Language Constructs

Centroid(s Surface) : Point Return the centroid of, which may lie outside
PointOnSurface(s Surface) : Point Return aPoint guaranteed to lie on the surface
Area(c Surface) : Double Precision Return the area of

3.2.14.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.15 SQL Functions on Type Polygon

3.2.15.1 Component Overview

The following SQL functions apply teolygon .

Page 3-18

Chapter 3 Component Specifications

3.2.15.2 Language Constructs

ExteriorRing(p Polygon) : LineString Return the exterior ring qf.

NuminteriorRings(p Polygon) : Integer Return the number of interior rings.

InteriorRingN(p Polygon, n Integer) : LineString Return thenth interior ring. The order of
rings is not geometrically significant.

3.2.15.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.16 SQL Functions on Type GeometryCollection

3.2.16.1 Component Overview

The following SQL functions apply @eometryCollection and all of its subtypes.

3.2.16.2 Language Constructs

NumGeometries(g GeometryCollection) : Integer Return the number of geometries in the
collection.
GeometryN(g GeometryCollection, Return thenth geometry in the collection. The
n Integer) : Geometry order of the elements in the collection is not
geometrically significant.

3.2.16.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.17 SQL Functions on Type MultiCurve

3.2.17.1 Component Overview

The following SQL functions apply to all subtypeswvfitiCurve

3.2.17.2 Language Constructs

IsClosed(mc MultiCurve) : Integer The return type itnteger , with a return value of 1
for TRUE 0 for FALSE, and —1 folUNKNOWN
corresponding to a function invocation NULL
arguments.

ReturnTRUEIf mcis closed.

Length(mc MultiCurve) : Double Precision Return the length ahc.

Page 3-19

OpenGIS Simple Features Specification for SQL, Revision 0

3.2.17.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.18 SQL Functions on Type MultiSurface

3.2.18.1 Component Overview

The following SQL functions apply to all subtypeswfitiSurface

3.2.18.2 Language Constructs

Centroid(ms MultiSurface) : Point Return the centroid ahs, which may lie outsidens
PointOnSurface(ms MultiSurface) : Point Return a Point guaranteed to lie on the multi surfage
Area(ms MultiSurface) : Double Precision Return the area aofs

3.2.18.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.19 SQL functions that test Spatial Relationships

3.2.19.1 Component Overview

The following functions test named spatial relationships between two geometries. The specific definitions
of these spatial relationships in terms of the DE-9IM may be found in section 2.1.13.2.

3.2.19.2 Language Constructs:

Equals(gl Geometry,g2 Geometry) : Integer The return type itnteger , with a return value
of 1 for TRUE O for FALSE, and -1 for
UNKNOW®brresponding to a function
invocation olNULL arguments.

TRUEIf g1 andg2 are equal.

Disjoint(gl Geometry, g2 Geometry) : Integer The return type ifnteger , with a return value
of 1 for TRUE 0 for FALSE, and -1 for
UNKNOW®brresponding to a function
invocation olNULL arguments.

TRUEIf the intersection of1 andg? is the
empty set.

Touch(gl Geometry, g2 Geometry) : Integer The return type itnteger , with a return value
of 1 for TRUE 0 for FALSE, and -1 for
UNKNOW®brresponding to a function
invocation olNULL arguments.

TRUEIf the only points in common between

Page 3-20

Chapter 3 Component Specifications

gl andg? lie in the union of the boundaries
of g1 andg2.

Within(gl Geometry, g2 Geometry) : Integer The return type ifnteger , with a return value
of 1 for TRUE 0 for FALSE, and -1 for
UNKNOW®brresponding to a function
invocation olNULL arguments.

TRUEIf g1 is completely contained uP.

Overlap(gl Geometry, g2 Geometry) : Integer The return type itnteger , with a return value
of 1 for TRUE O for FALSE, and -1 for
UNKNOW®brresponding to a function
invocation olNULL arguments.

TRUEIf the intersection o1 andg2 results
in a value of the same dimensiongasand
g2 that is different from both1 andg2.

Cross(gl Geometry, g2 Geometry) : Integer The return type itnteger , with a return value
of 1 for TRUE 0 for FALSE, and -1 for
UNKNOW®brresponding to a function
invocation olNULL arguments.

TRUEIf the intersection of1 andg2 results
in a value whose dimension is less than the
maximum dimension af1 andg2 and the
intersection value includes points interior o
bothgl andg2, and the intersection value jis
not equal to eithegl org2.

Intersects(gl Geometry, g2 Geometry) : The return type itnteger , with a return value
Integer of 1 for TRUE 0 for FALSE, and —1 for
UNKNOW®brresponding to a function
invocation olNULL arguments.

Convenience predicat&RUEIf the
intersection ofy1 andg2 is not empty.

Intersects(gl, g2 }» Not (Disjoint(gl, g2))

Contains(g1l Geometry, g2 Geometry) : Integer The return type itnteger , with a return value
of 1 for TRUE 0 for FALSE, and -1 for
UNKNOW®brresponding to a function
invocation olNULL arguments.

Convenience predicat€RUEIf g2 is
completely contained igl.

Contains(gl, g2 }» Within(g2 , g1)

The following function tests if the specified spatial relationship between two geometry values exists, where
the spatial relationship is expressed as a string encoding the acceptable values for the DE-9IM between the
two geometries, as described in the Geometry Object Model.

Page 3-21

OpenGIS Simple Features Specification for SQL, Revision 0

Relate(gl Geometry, g2 Geometry, The return type ifnteger , with a return

patternMatrix String) : Integer value of 1 forTRUE 0 for FALSE, and —1 for
UNKNOW®brresponding to a function
invocation onrNULL arguments.

ReturnsTRUEiIf the spatial relationship
specified by th@atternMatrix holds.

3.2.19.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.194 Example Queries

The functions and predicates in this section allow the expression of detailed spatial relationship queries.

Return all parcels that intersect a specified polygon:

SELECT Parcel.Name, Parcel.ld FROM Parcels
WHERE Intersects(Parcels.Location, PolygonFromWKB(:wkb, : srid)) = 1

Return all parcels completely contained in a specified polygon:

SELECT Parcel.Name, Parcel.ld FROM Parcels
WHERE Within(Parcels. Location, PolygonFromWKB(:wkb, :srid)) = 1

The following adjacency query may be used to select all parcels that are “adjacent” to a query parcel and
share one or more boundary lines with a query parcel while excluding parcels that share only corner points.

SELECT Parcel.Name, Parcel.ld FROM Parcels
WHERE Touch(Parcels. Location, PolygonFromWKB(:wkb, :srid)) = 1 and
Overlap(Boundary(Parcels. Location), Boundary(PolygonFromWKB(:wkb,

srid))) =1

3.2.20 SQL Functions for Distance Relationships

3.2.20.1 Component Overview

The distance function can be used to calculate the distance between two valuesedriygs .

3.2.20.2 Language Constructs

Distance(gl Geometry, Return the distance betwegh andg2.
g2 Geometry) : Double Precision

3.2.20.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.20.4 Example Query

SELECT Airport.Name FROM Airports
WHERE Distance(PointFromText(:pointTaggedText, :srid), Airport.Location) < 2000

Page 3-22

Chapter 3 Component Specifications

3.2.21 SQL Functions that implement Spatial Operators

3.2.21.1 Component Overview

These functions implement set-theoretic and constructive geometry operations on geometry values. These
operations are defined for all typesGdometry .

3.2.21.2 Language Constructs

Intersection (g1 Geometry, Return aGeometry that is the intersection of geometries
g2 Geometry) : Geometry gl and g2.

Difference (g1 Geometry, Return aGeometry that is the closure of the set
g2 Geometry) : Geometry difference of g1 and g2.

Union (g1 Geometry, Return aGeometry that is the set union gfL andg?2.

g2 Geometry) : Geometry

SymmetricDifference(gl Geometry, Return aGeometry that is the closure of the set
g2 Geometry) : Geometry symmetric difference a1 andg2 (logical XOR of
space).
Buffer (g1 Geometry, Return asGeometry defined by buffering a distance
d Double Precision) : Geometry aroundgl, whered is in the distance units for the Spatil

Reference ofj1.

ConvexHull(gl Geometry) : Geometry Return aGeometry that is the convex hull afl.

3.2.21.3 Exceptions, Errors, and Error Codes

Error handling will be accomplished by using the standard SQL status returns.

3.2.21.4 Example Query

The following query returns the name of the state and the fragment(s) of the state that fall within the query
polygon for each state that intersects the query polygon.

SELECT States.Name, Intersection(PolygonFromWKB(:wkb, :srid), States.Location)
FROM States

WHERE Intersects(PolygonFromWKB(:wkb, :srid), States.Location)

3.2.22 SQL Function usage and References to Geometry

The SQL Functions that operate on Geometry Types have been defined above to take geometry values as
arguments. This conforms to the model for value based ADTs under SQL3.

As described in section 2.3.5 a SQL Type may also support the concept of persistent references to instances
of the Type. To support the latter type of implementation, a reference to a geometry type instance,
REF(Geometry) , may be used in place of a Geometry value in the SQL functions defined in this section.

Page 3-23

OpenGIS Simple Features Specification for SQL, Revision 0

3.3 The Well-known Binary Representation for Geometry (WKBGeometry)

3.3.1 Component Overview

The Well-known Binary Representation for GeomeWKBGeometry), provides a portable representation
of aGeometry value as a contiguous stream of bytes. It per@itsnetry values to be exchanged
between an ODBC client and an SQL database in binary form.

3.3.2 Component Description

The Well-known Binary Representation for Geometry is obtained by serializing a geometry instance as a
sequence of numeric types drawn from the Besigned Integer , Double } and then serializing each

numeric type as a sequence of bytes using one of two well defined, standard, binary representations for
numeric types (NDR, XDR). The specific binary encoding (NDR or XDR) used for a geometry

representation is described by a one byte tag that precedes the serialized bytes. The only difference between
the two encodings of geometry is one of byte order, the XDR encoding is Big Endian, the NDR encoding is
Little Endian.

3.3.2.1 Numeric Type Definitions

An Unsigned Integer is a 32-bit (4-byte) data type that encodes a nonnegative integer in the range [0,
4294967295].

A Double is a 64-bit (8-byte) double precision data type that encodes a double precision number using the
IEEE 754 double precision format

The above definitions are common to both XDR and NDR.

3.3.2.2 XDR (Big Endian) Encoding of Numeric Types

The XDR representation of amsigned Integer is Big Endian (most significant byte first).

The XDR representation ofizouble is Big Endian (sign bit is first byte).

3.3.2.3 NDR (Little Endian) Encoding of Numeric Types

The NDR representation of amsigned Integer is Little Endian (least significant byte first).

The NDR representation oftamuble is Little Endian (sign bit is last byte).

3.3.2.4 Conversion between the NDR and XDR representations of
WKBGeometry

Conversion between the NDR and XDR data types/fsigned Integer andDouble numbers is a
simple operation involving reversing the order of bytes within émsigned Integer or Double
number in the representation.

3.3.2.5 Relationship to other COM and CORBA data transfer protocols

The XDR representation famsigned Integer andDouble numbers described above is also the
standard representation fonsigned Integer and forDouble number in the CORBA Standard Stream

Page 3-24

Chapter 3 Component Specifications

Format for Externalized Object Data that is described as part of the CORBA Externalization Service
Specification [15].

The NDR representation famsigned Integer andDouble number described above is also the
standard representation fonsigned Integer and forDouble number in the DCOM protocols that is
based on DCE RPC and NDR [16].

3.3.2.6 Description of WKBGeometry Representations

The Well-known Binary Representation for Geometry is described below. The basic building block is the
representation for Roint , which consists of twdouble numbers The representations for other
geometries are built using the representations for geometries that have already been defined.

/I Basic Type definitions
I/l byte : 1 byte
// uint32 : 32 bit unsigned integer (4 bytes)

// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing

Point {
double x;
double y;
h
LinearRing {
uint32 numPoints;
Point points[numPoints];
}

enum wkbGeometryType {
wkbPoint = 1,
wkbLineString = 2,
wkbPolygon = 3,
wkbMultiPoint = 4,
wkbMultiLineString = 5,
wkbMultiPolygon = 6,
wkbGeometryCollection = 7

5
enum wkbByteOrder {
wkbXDR = 0, // Big Endian
wkbNDR =1 /I Little Endian
h
WKBPoint {
byte byteOrder;
uint32 wkbType; /1
Point point;
}

WKBLineString {

Page 3-25

OpenGIS Simple Features Specification for SQL, Revision 0

byte byteOrder;
uint32 wkbType;
uint32 numPoints;
Point points[numPoints];
}
WKBPolygon {
byte byteOrder;
uint32 wkbType;
uint32 numRings;
LinearRing rings[numRings];
}
WKBMultiPoint {
byte byteOrder;
uint32 wkbType;
uint32 num_wkbPoints;
WKBPoint WKBPoints[num_wkbPaints];
}
WKBMultiLineString {
byte byteOrder;
uint32 wkbType;
uint32 num_wkbLineStrings;
WKBLineString WKBLineStrings[num_wkbLineStrings];
}
wkbMultiPolygon {
byte byteOrder;
uint32 wkbType;
uint32 num_wkbPolygons;
WKBPolygon wkbPolygons[num_wkbPolygons];
}
WKBGeometry {
union {
WKBPoint point;
WKBLineString linestring;
WKBPolygon polygon;
WKBGeometryCollection collection;
WKBMultiPoint mpoint;
WKBMultiLineString mlinestring;
WKBMultiPolygon mpolygon;
}
h
WKBGeometryCollection {
byte byte_order;
uint32 wkbType;
uint32 num_wkbGeometries;
WKBGeometry wkbGeometries[num_wkbGeometries];

114

12

I3

15

116

n7

Page 3-26

Chapter 3 Component Specifications

Figure 3.2 shows a pictorial representation of the Well-known Representatiordiggen with one
outer ring and one inner ring.

WKB Polygon

Ring 1 Ring 2
/ R AR \
- N

B=1 [T=3 INR=2|NP=3| X1 | Y1 [X2 | Y2 | X3 | Y3 |[NP=3| X1 [Y1 | X2 | Y2 | X3 | Y3

Figure 3.20 Well-known Binary Representation for aGeometry value in NDR format (B=1) of type
Polygon (T=3) with 2 linear rings (NR = 2) each ring having 3 points (NP = 3).

3.3.2.7 Assertions for Well-known Binary Representation for Geometry

The Well-known Binary Representation for Geometry is designed to represent instances of the geometry
types described in the Geometry Object Model and in the OpenGIS Abstract Specifiaation.

WKBGeometry instance must satisfy the assertions for the type Gfeometry that it describes These
assertions may be found in the section 2.1.

These assertions imply the following for Rings, Polygons and MultiPolygons:

3.3.2.8 Linear Rings

Rings are simple and closed, which means that Linear Ringaotaglf-touch.

3.3.2.9 Polygons

No two Linear Rings in the boundary of a Polygon may cross each other, the Linear Rings in the boundary
of a polygon may intersect at most at a single point but only as a tangent.

3.3.2.10 MultiPolygons

1. The interiors of 2 Polygons that are elements of a MultiPolygon may not intersect.

Page 3-27

OpenGIS Simple Features Specification for SQL, Revision 0

2. The Boundaries of any 2 Polygons that are elements of a MultiPolygon may touch afiitgy a
number of points.

For more details on the above assertions and for the assertions for each geometry type the reader is referred
to the Geometry Object Model section of this specification.

3.4 Well-known Text Representation of Spatial Reference Systems

3.4.1 Component Overview

The Well-known Text Representation of Spatial Reference Systems provides a standard textual
representation for spatial reference system information.

3.4.2 Component Description

The definitions of the well-known text representation are modeled after the POSC/EPSG coordinate system
data model.

A spatial reference system, also referred to as a coordinate system, is a geographic (latitude-longitude), a
projected (X,Y), or a geocentric (X,Y,Z) coordinate system.

The coordinate system is composed of several objects. Each object has a keyword in upper case (for
example DATUMor UNIT) followed by the defining, comma-delimited, parameters of the object in brackets.
Some objects are composed of objects so the result is a nested structure. Implementations are free to
substitute standard brackets () for square brackets [] and should be prepared to read both forms of
brackets.

The EBNF (Extended Backus Naur Form) definition for the string representation of a coordinate system is
as follows, using square brackets, see note above:

<coordinate system> = <projected cs> | <geographic cs> | <geocentric cs>

<projected cs> = PROJCS["<name>", <geographic cs>, <projection>, {<parameter>}* <linear
unit>]

<projection> = PROJECTION["<name>"]
<parameter> = PARAMETER["<name>", <value>]

<value> = <number>

A data set's coordinate system is identified byrtRe&JCSkeyword if the data are in projected coordinates,
by GEOGCH in geographic coordinates, or BEOCCH in geocentric coordinates.

The PROJCSkeyword is followed by all of the "pieces" which define the projected coordinate system. The

first piece of any object is always the name. Several objects follow the projected coordinate system name:
the geographic coordinate system, the map projection, 1 or more parameters, and the linear unit of measure.
All projected coordinate systems are based upon a geographic coordinate system so we will describe the
pieces specific to a projected coordinate system first. As an example, UTM zone 10N on the NAD83 datum
is defined as:

PROJCS["NAD_1983_UTM_Zone_10N",
<geographic cs>,
PROJECTION["Transverse_Mercator"],
PARAMETER["False_Easting",500000.0],
PARAMETER(["False_Northing",0.0],
PARAMETER(["Central_Meridian",-123.0],
PARAMETER["Scale_Factor",0.9996],

Page 3-28

Chapter 3 Component Specifications

PARAMETER]"Latitude_of_Origin",0.0],
UNIT["Meter",1.0]]

The name and several objects define the geographic coordinate system object in turn: the datum, the prime

meridian, and the angular unit of measure.

<geographic cs> = GEOGCS["'<name>", <datum>, <prime meridian>, <angular unit>]

<datum> = DATUM["<name>", <spheroid>]

<spheroid> = SPHEROID["<name>", <semi-major axis>, <inverse flattening>]

<semi-major axis> = <number> NOTE: semi-major axis is measured in meters and must be > 0.
<inverse flattening> = <number>

<prime meridian> = PRIMEM["<name>", <longitude>]

<longitude> = <number>

The geographic coordinate system string for UTM zone 10 on NAD83 is

GEOGCS["GCS_North_American_1983",
DATUM["D_North_American_1983",
SPHEROID["GRS_1980",6378137,298.257222101]),
PRIMEM["Greenwich",0],
UNIT["Degree",0.0174532925199433]]

The UNIT object can represent angular or linear unit of measures.

<angular unit> = <unit>
<linear unit> = <unit>

<unit> = UNIT["<name>", <conversion factor>]

<conversion factor> = <number>

<conversion factor> specifies number of meters (for a linear unit) or number of radians (for an

angular unit) per unit and must be greater than zero.

So the full string representation of UTM Zone 10N is

PROJCS['NAD_1983_UTM_Zone_10N",
GEOGCS["GCS_North_American_1983",
DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]],
PROJECTION["Transverse_Mercator"], PARAMETER["False_Easting",500000.0],
PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-123.0],
PARAMETER["Scale_Factor",0.9996],PARAMETER[Latitude_of_Origin",0.0],
UNIT["Meter",1.0]]

A geocentric coordinate system is quite similar to a geographic coordinate system. It is represented by

| <geocentric cs> = GEOCCS["<name>", <datum>, <prime meridian>, <linear unit>]

Page 3-29

4 Supported Spatial Reference Data

4.1 Supported Linear Units

Meter

Foot (International)

1.0

0.3048

U.S. Foot

Modified American Foot

Clarke's Foot
Indian Foot
Link

Link (Benoit)
Link (Sears)
Chain (Benoit)
Chain (Sears)
Yard (Indian)
Yard (Sears)
Fathom
Nautical Mile

12/39.37
12.0004584/39.37
12/39.370432
12/39.370141
7.92/39.370432
7.92/39.370113
7.92/39.370147
792/39.370113
792/39.370147
36/39.370141
36/39.370147
1.8288
1852.0

4.2 Supported Angular Units
Radian
Decimal Degree
Decimal Minute
Decimal Second
Gon
Grad

4.3 Supported Spheroids

Name

Airy

Modified Airy
Australian

Bessel

Modified Bessel
Bessel (Namibia)
Clarke 1866

Clarke 1866 (Michigan)
Clarke 1880

Clarke 1880 (Arc)
Clarke 1880 (Benoit)

1.0
180

(17180)/60

(17180)/36000

200
200

Semi-major Axis
6377563.396
6377340.189
6378160
6377397.155
6377492.018
6377483.865
6378206.4
6378693.704
6378249.145
6378249.145
6378300.79

Inverse Flattening
299.3249646
299.3249646
298.25
299.1528128
299.1528128
299.1528128
294.9786982
294.978684677
293.465
293.466307656
293.466234571

Page 4-1

OpenGIS Simple Features Specification for SQL, Revision 0

Clarke 1880 (IGN)
Clarke 1880 (RGS)
Clarke 1880 (SGA)
Everest 1830

Everest 1975

Everest (Sarawak and Sabah)
Modified Everest 1948
Fischer 1960

Fischer 1968

Modified Fischer (1960)
GEM10C

GRS 1980

Hayford 1909

Helmert 1906

Hough

International 1909
International 1924

New International 1967
Krasovsky

Mercury 1960

Modified Mercury 1968
NWL9OD

OSU_86F

OSU_91A

Plessis 1817

South American 1969
Southeast Asia

Sphere (radius = 1.0)
Sphere (radius = 6371000 m)
Sphere (radius = 6370997 m)
Struve 1860

Walbeck

War Office

WGS 1960

WGS 1966

WGS 1972

WGS 1984

4.4 Supported Geodetic Datums

Page 4-2

Adindan

Afgooye

Agadez

Australian Geodetic Datum 1966
Australian Geodetic Datum 1984
Ain el Abd 1970

Amersfoort

Aratu

Arc 1950

Arc 1960

Ancienne Triangulation Francaise
Barbados

Batavia

Beduaram

Beijing 1954

Reseau National Belge 1950
Reseau National Belge 1972
Bermuda 1957

Bern 1898

Bern 1938

Bogota

Bukit Rimpah

Camacupa

6378249.2 293.46602
6378249.145 293.465
6378249.2 293.46598
6377276.345 300.8017
6377301.243 300.8017
6377298.556 300.8017
6377304.063 300.8017
6378166 298.3
6378150 298.3
6378155 298.3
6378137 298.257222101
6378137 298.257222101
6378388 297.0
6378200 298.3
6378270 297.0
6378388 297.0
6378388 297.0
6378157.5 298.2496
6378245 298.3
6378166 298.3
6378150 298.3
6378145 298.25
6378136.2 298.25722
6378136.3 298.25722
6376523 308.64
6378160 298.25
6378155 298.3
1 0
6371000 0
6370997 0
6378297 294.73
6376896 302.78
6378300.583 296
6378165 298.3
6378145 298.25
6378135 298.26
6378137 298.257223563
Lisbon
Loma Quintana
Lome
Luzon 1911
Mahe 1971
Makassar
Malongo 1987
Manoca
Massawa
Merchich

Militar-Geographische Institute
Mhast
Minna
Monte Mario
M'poraloko
NAD Michigan
North American Datum 1927
North American Datum 1983
Nahrwan 1967
Naparima 1972
Nord de Guerre
NGO 1948
Nord Sahara 1959

Chapter 4

Supported Spatial Reference Data

Campo Inchauspe

NSWC 97-2

Cape Nouvelle Triangulation Francaise
Carthage New Zealand Geodetic Datum 1949
Chua OS (SN) 1980

Conakry 1905 OSGB 1936

Corrego Alegre OSGB 1970 (SN)

Cote d'lvoire Padang 1884

Datum 73 Palestine 1923

Deir ez Zor Pointe Noire

Deutsche Hauptdreiecksnetz Provisional South American Datum 1956
Douala Pulkovo 1942

European Datum 1950 Qatar

European Datum 1987 Qatar 1948

Egypt 1907 Qornoq

European Reference System 1989 RT38

Fahud South American Datum 1969
Gandajika 1970 Sapper Hill 1943

Garoua Schwarzeck

Geocentric Datum of Australia 1994 Segora

Guyane Francaise Serindung

Herat North Stockholm 1938

Hito XVIIl 1963 Sudan

Hu Tzu Shan Tananarive 1925

Hungarian Datum 1972 Timbalai 1948

Indian 1954 TM65

Indian 1975 TM75

Indonesian Datum 1974 Tokyo

Jamaica 1875
Jamaica 1969

Trinidad 1903
Trucial Coast 1948

Kalianpur Voirol 1875

Kandawala Voirol Unifie 1960

Kertau WGS 1972

Kuwait Oil Company WGS 1972 Transit Broadcast Ephemeris

La Canoa WGS 1984

Lake Yacare

Leigon Yoff

Liberia 1964 Zanderij

4.5 Supported Prime Meridians

Greenwich 0°0'0"
Bern 7°26'22.5"E
Bogota 74° 4'51.3"W
Brussels 4°22'471"E
Ferro 17°40'0" W
Jakarta 106° 48' 27.79" E
Lisbon 9° 7'54.862" W
Madrid 3°41'16.58" W
Paris 2°20'14.025"E
Rome 12°27'8.4"E
Stockholm 18°3'29"E

4.6 Supported Map Projections

Cylindrical Projections Pseudocylindrical Projections

Behrmann Craster parabolic
Cassini Eckert |
Cylindrical equal area Eckert Il
Equirectangular Eckert Il

Gall's stereographic Eckert IV
Gauss-Kruger Eckert V
Mercator Eckert VI

Miller cylindrical McBryde-Thomas flat polar quartic

OpenGIS Simple Features Specification for SQL, Revision 0

Oblique Mercator (Hotine) Mollweide
Plate-Carée Robinson
Times Sinusoidal (Sansom-Flamsteed)
Transverse Mercator Winkel |
Conic Projections Modified

Albers conic equal-area
Bipolar oblique conformal conic
Bonne

Equidistant conic

Lambert conformal conic
Polyconic

Simple conic

Azimuthal or Planar Projections
Azimuthal equidistant

General vertical near-side perspective
Gnomonic

Lambert Azimuthal equal-area
Orthographic

Polar Stereographic

Chamberlin trimetric
Two-point equidistant
Hammer-Aitoff equal-area

Miscellaneous

Alaska series E

Alaska Grid (Modified-Stereographic by Snyder)
Van der Grinten |

Stereographic

4.7 Map Projection Parameters

central_meridian
scale_factor
standard_parallel_1

standard_parallel_2
longitude_of _center
latitude_of_center
latitude_of_origin
false_easting
false_northing
azimuth

longitude_of _point_1
latitude_of _point_1
longitude_of_point_2
latitude_of_point_2
longitude_of_point_3
latitude_of point_3
landsat_number
path_number
perspective_point_height
fipszone

zone

Page 4-4

the line of longitude chosen as the origin of x-coordinates.
used generally to reduce the amount of distortion in a map projection.
a line of latitude that has no distortion generally. Also used for "latitude of
true scale.”
a line of latitude that has no distortion generally.
the longitude which defines the center point of the map projection.
the latitude which defines the center point of the map projection.
the latitude chosen as the origin of y-coordinates.
added to x-coordinates. Used to give positive values.
added to y-coordinates. Used to give positive values.
the angle east of north which defines the center line of an oblique
projection.
the longitude of the first point needed for a map projection.
the latitude of the first point needed for a map projection.
the longitude of the second point needed for a map projection.
the latitude of the second point needed for a map projection.
the longitude of the third point needed for a map projection.
the latitude of the third point needed for a map projection.
the number of a Landsat satellite.
the orbital path number for a particular satellite.
the height above the earth of the perspective point of the map projection.
State Plane Coordinate System zone number.
UTM zone number.

5 References

10.

11.

The OpenGIS Abstract Specification: An Object Model for Interoperable Geoprocessing, Revision 1,
OpenGIS Consortium, Inc, OpenGIS Project Document Number 96-015R1, 1996.

OpenGIS Project Document 96-025: Geodetic Reference Systems, OpenGIS Consortium, Inc, October

14, 1996.

POSC (Petrotechnical Open Software Consortium) Epicentre Model V2.1,
fttp://posc.org/public/geodetic, July 1995.

Clementini, Eliseo, Di Felice, P., van Oostrom, p., A Small Set of Formal Topological Relationships
Suitable for End-User Interaction, in D. Abel and B. C. Ooi (Ed.), Advances in Spatial Databases—
Third International Symposium. SSD '93. LNCS 692. Pp. 277-295. Springer-Verlag. Singapore
(1993).

Clementini E. and Di Felice P., A Comparison of Methods for Representing Topological
Relationships, Information Sciences 80, 1-34, 1994.

Clementini, Eliseo, Di Felice, P., A Model for Representing Topological Relationships Between
Complex Geometric Features in Spatial Databases, Information Sciences 90 (1-4):121-136 , 1996.

Clementini E., Di Felice P and Califano, G. Composite Regions in Topological Queries, Information
Systems, v 20, no 6, pp 33-48, 1995.

Egenhofer, M.F. and Franzosa, Point Set Topological Spatial Relations, International Journal of
Geographical Information Systems, vol 5, no 2, 161-174, 1991.

Egenhofer, M.J., Clementini, E. and Di Felice, P., Topological relations between regions with holes,
International Journal of Geographical Information Systems, vol 8, no 2, pp 129—142, 1994.

Egenhofer, M.J. and Herring, J., A mathematical framework for the definition of topological
relationships. Proceedings of the Fourth International Symposium on Spatial Data Handling,
Columbus, Ohi, pp. 803-813.

Egenhofer M.J. and Herring, J., Categorizing binary topological relationships between regions, lines
and points in geographic databases, Tech. Report., Department of Surveying Engineering, University
of Maine, Orono, ME 1991.

Page 4-1

OpenGIS Simple Features Specification for SQL, Revision 0

12. Egenhofer. M.J. and Sharma, J., Topological Relations between regiohsaimlZ?, Advances in
Spatial Databases—Third International Symposium, SSD '93, vol. 692, Lecture Notes in Computer
Science, pp. 36-52, Springer Verlag, Singapore (1993).

13. Worboys, M.F. and Bofakos, P. A Canonical model for a class of areal spatial objects, Advances in
Spatial Databases—Third International Symposium, SSD '93, vol. 692, Lecture Notes in Computer
Science, pp. 36-52, Springer Verlag, Singapore (1993).

14. Worboys, M.F. A generic model for planar geographical objects, International Journal of Geographical
Information Systems, 1992, vol 6, no 5, 353-372.

15. http://'www.omg.org/corba/sectrans.htm : CORBAservices : Common Object Services Specification,
Ch 8. Externalization Service Specification, OMG.

16. http://www.microsoft.com/oledev : Distributed Component Object Model Protocol Specification—
DCOM 1.0, Microsoft Corporation.

Page 4-2

