
Remote Access to Large Spatial Databases ∗

Egemen Tanin
František Brabec

Hanan Samet

Computer Science Department
Center for Automation Research

Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742

{egemen,brabec,hjs}@umiacs.umd.edu

www.cs.umd.edu/{~egemen,~brabec,~hjs}

ABSTRACT
Enterprises in the public and private sectors have been mak-
ing their large spatial data archives available over the In-
ternet. However, interactive work with such large volumes
of online spatial data is a challenging task. We propose
two efficient approaches to remote access to large spatial
data. First, we introduce a client-server architecture where
the work is distributed between the server and the individ-
ual clients for spatial query evaluation, data visualization,
and data management. We enable the minimization of the
requirements for system resources on the client side while
maximizing system responsiveness as well as the number of
connections one server can handle concurrently. Second, for
prolonged periods of access to large online data, we intro-
duce APPOINT (an Approach for Peer-to-Peer Offloading
the INTernet). This is a centralized peer-to-peer approach
that helps Internet users transfer large volumes of online
data efficiently. In APPOINT, active clients of the client-
server architecture act on the server’s behalf and communi-
cate with each other to decrease network latency, improve
service bandwidth, and resolve server congestions.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Client/server, Distributed applications,
Distributed databases; H.2.8 [Database Management]:
Database Applications—Spatial databases and GIS

∗This work was supported in part by the National Sci-
ence Foundation under Grants EIA-99-00268, EIA-99-01636,
EAR-99-05844, IIS-00-86162, and EIA-00-91474.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GIS’02, November 8–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-591-2/02/0011 . . .$5. 00.

General Terms
Performance, Management

Keywords
GIS, Internet, Client/server, Peer-to-peer

1. INTRODUCTION
In recent years, enterprises in the public and private sec-

tors have provided access to large volumes of spatial data
over the Internet. Interactive work with such large volumes
of online spatial data is a challenging task. We have been de-
veloping an interactive browser for accessing spatial online
databases: the SAND (Spatial and Non-spatial Data) In-
ternet Browser. Users of this browser can interactively and
visually manipulate spatial data remotely. Unfortunately,
interactive remote access to spatial data slows to a crawl
without proper data access mechanisms. We developed two
separate methods for improving the system performance, to-
gether, form a dynamic network infrastructure that is highly
scalable and provides a satisfactory user experience for in-
teractions with large volumes of online spatial data.

The core functionality responsible for the actual database
operations is performed by the server-based SAND system.
SAND is a spatial database system developed at the Uni-
versity of Maryland [12]. The client-side SAND Internet
Browser provides a graphical user interface to the facilities
of SAND over the Internet. Users specify queries by choos-
ing the desired selection conditions from a variety of menus
and dialog boxes.

SAND Internet Browser is Java-based, which makes it de-
ployable across many platforms. In addition, since Java has
often been installed on target computers beforehand, our
clients can be deployed on these systems with little or no
need for any additional software installation or customiza-
tion. The system can start being utilized immediately with-
out any prior setup which can be extremely beneficial in
time-sensitive usage scenarios such as emergencies.

There are two ways to deploy SAND. First, any standard
Web browser can be used to retrieve and run the client piece
(SAND Internet Browser) as a Java application or an applet.
This way, users across various platforms can continuously
access large spatial data on a remote location with little or

15

no need for any preceding software installation. The second
option is to use a stand-alone SAND Internet Browser along
with a locally-installed Internet-enabled database manage-
ment system (server piece). In this case, the SAND Internet
Browser can still be utilized to view data from remote loca-
tions. However, frequently accessed data can be downloaded
to the local database on demand, and subsequently accessed
locally. Power users can also upload large volumes of spatial
data back to the remote server using this enhanced client.

We focused our efforts in two directions. We first aimed at
developing a client-server architecture with efficient caching
methods to balance local resources on one side and the sig-
nificant latency of the network connection on the other. The
low bandwidth of this connection is the primary concern in
both cases. The outcome of this research primarily addresses
the issues of our first type of usage (i.e., as a remote browser
application or an applet) for our browser and other similar
applications. The second direction aims at helping users
that wish to manipulate large volumes of online data for
prolonged periods. We have developed a centralized peer-
to-peer approach to provide the users with the ability to
transfer large volumes of data (i.e., whole data sets to the
local database) more efficiently by better utilizing the dis-
tributed network resources among active clients of a client-
server architecture. We call this architecture APPOINT —
Approach for Peer-to-Peer Offloading the INTernet. The
results of this research addresses primarily the issues of the
second type of usage for our SAND Internet Browser (i.e.,
as a stand-alone application).

The rest of this paper is organized as follows. Section 2 de-
scribes our client-server approach in more detail. Section 3
focuses on APPOINT, our peer-to-peer approach. Section 4
discusses our work in relation to existing work. Section 5
outlines a sample SAND Internet Browser scenario for both
of our remote access approaches. Section 6 contains con-
cluding remarks as well as future research directions.

2. THE CLIENT-SERVER APPROACH
Traditionally, Geographic Information Systems (GIS)

such as ArcInfo from ESRI [2] and many spatial databases
are designed to be stand-alone products. The spatial
database is kept on the same computer or local area network
from where it is visualized and queried. This architecture
allows for instantaneous transfer of large amounts of data
between the spatial database and the visualization module
so that it is perfectly reasonable to use large-bandwidth pro-
tocols for communication between them. There are however
many applications where a more distributed approach is de-
sirable. In these cases, the database is maintained in one lo-
cation while users need to work with it from possibly distant
sites over the network (e.g., the Internet). These connections
can be far slower and less reliable than local area networks
and thus it is desirable to limit the data flow between the
database (server) and the visualization unit (client) in order
to get a timely response from the system.

Our client-server approach (Figure 1) allows the actual
database engine to be run in a central location maintained
by spatial database experts, while end users acquire a Java-
based client component that provides them with a gateway
into the SAND spatial database engine.

Our client is more than a simple image viewer. Instead, it
operates on vector data allowing the client to execute many
operations such as zooming or locational queries locally. In

Figure 1: SAND Internet Browser — Client-Server
architecture.

essence, a simple spatial database engine is run on the client.
This database keeps a copy of a subset of the whole database
whose full version is maintained on the server. This is a
concept similar to ‘caching’. In our case, the client acts as
a lightweight server in that given data, it evaluates queries
and provides the visualization module with objects to be
displayed. It initiates communication with the server only
in cases where it does not have enough data stored locally.

Since the locally run database is only updated when ad-
ditional or newer data is needed, our architecture allows the
system to minimize the network traffic between the client
and the server when executing the most common user-side
operations such as zooming and panning. In fact, as long
as the user explores one region at a time (i.e., he or she is
not panning all over the database), no additional data needs
to be retrieved after the initial population of the client-side
database. This makes the system much more responsive
than the Web mapping services. Due to the complexity of
evaluating arbitrary queries (i.e., more complex queries than
window queries that are needed for database visualization),
we do not perform user-specified queries on the client. All
user queries are still evaluated on the server side and the
results are downloaded onto the client for display. However,
assuming that the queries are selective enough (i.e., there are
far fewer elements returned from the query than the number
of elements in the database), the response delay is usually
within reasonable limits.

2.1 Client-Server Communication
As mentioned above, the SAND Internet Browser is a

client piece of the remotely accessible spatial database server
built around the SAND kernel. In order to communicate
with the server, whose application programming interface
(API) is a Tcl-based scripting language, a servlet specifically
designed to interface the SAND Internet Browser with the
SAND kernel is required on the server side. This servlet lis-
tens on a given port of the server for incoming requests from
the client. It translates these requests into the SAND-Tcl
language. Next, it transmits these SAND-Tcl commands or
scripts to the SAND kernel. After results are provided by
the kernel, the servlet fetches and processes them, and then
sends those results back to the originating client.

Once the Java servlet is launched, it waits for a client to
initiate a connection. It handles both requests for the actual
client Java code (needed when the client is run as an applet)
and the SAND traffic. When the client piece is launched,
it connects back to the SAND servlet, the communication
is driven by the client piece; the server only responds to
the client’s queries. The client initiates a transaction by

6

sending a query. The Java servlet parses the query and
creates a corresponding SAND-Tcl expression or script in
the SAND kernel’s native format. It is then sent to the
kernel for evaluation or execution. The kernel’s response
naturally depends on the query and can be a boolean value,
a number or a string representing a value (e.g., a default
color) or, a whole tuple (e.g., in response to a nearest tuple
query). If a script was sent to the kernel (e.g., requesting
all the tuples matching some criteria), then an arbitrary
amount of data can be returned by the SAND server. In this
case, the data is first compressed before it is sent over the
network to the client. The data stream gets decompressed
at the client before the results are parsed.

Notice, that if another spatial database was to be used
instead of the SAND kernel, then only a simple modifica-
tion to the servlet would need to be made in order for the
SAND Internet Browser to function properly. In particu-
lar, the queries sent by the client would need to be recoded
into another query language which is native to this different
spatial database. The format of the protocol used for com-
munication between the servlet and the client is unaffected.

3. THE PEER-TO-PEER APPROACH
Many users may want to work on a complete spatial data

set for a prolonged period of time. In this case, making an
initial investment of downloading the whole data set may be
needed to guarantee a satisfactory session. Unfortunately,
spatial data tends to be large. A few download requests
to a large data set from a set of idle clients waiting to be
served can slow the server to a crawl. This is due to the fact
that the common client-server approach to transferring data
between the two ends of a connection assumes a designated
role for each one of the ends (i.e, some clients and a server).

We built APPOINT as a centralized peer-to-peer system
to demonstrate our approach for improving the common
client-server systems. A server still exists. There is a cen-
tral source for the data and a decision mechanism for the
service. The environment still functions as a client-server
environment under many circumstances. Yet, unlike many
common client-server environments, APPOINT maintains
more information about the clients. This includes, invento-
ries of what each client downloads, their availabilities, etc.
When the client-server service starts to perform poorly or
a request for a data item comes from a client with a poor
connection to the server, APPOINT can start appointing
appropriate active clients of the system to serve on behalf
of the server, i.e., clients who have already volunteered their
services and can take on the role of peers (hence, moving
from a client-server scheme to a peer-to-peer scheme). The
directory service for the active clients is still performed by
the server but the server no longer serves all of the requests.
In this scheme, clients are used mainly for the purpose of
sharing their networking resources rather than introducing
new content and hence they help offload the server and scale
up the service. The existence of a server is simpler in terms
of management of dynamic peers in comparison to pure peer-
to-peer approaches where a flood of messages to discover
who is still active in the system should be used by each peer
that needs to make a decision. The server is also the main
source of data and under regular circumstances it may not
forward the service.

Data is assumed to be formed of files. A single file forms
the atomic means of communication. APPOINT optimizes

requests with respect to these atomic requests. Frequently
accessed data sets are replicated as a byproduct of having
been requested by a large number of users. This opens up
the potential for bypassing the server in future downloads for
the data by other users as there are now many new points of
access to it. Bypassing the server is useful when the server’s
bandwidth is limited. Existence of a server assures that
unpopular data is also available at all times. The service
depends on the availability of the server. The server is now
more resilient to congestion as the service is more scalable.

Backups and other maintenance activities are already be-
ing performed on the server and hence no extra administra-
tive effort is needed for the dynamic peers. If a peer goes
down, no extra precautions are taken. In fact, APPOINT
does not require any additional resources from an already
existing client-server environment but, instead, expands its
capability. The peers simply get on to or get off from a table
on the server.

Uploading data is achieved in a similar manner as down-
loading data. For uploads, the active clients can again be
utilized. Users can upload their data to a set of peers other
than the server if the server is busy or resides in a distant
location. Eventually the data is propagated to the server.

All of the operations are performed in a transparent fash-
ion to the clients. Upon initial connection to the server,
they can be queried as to whether or not they want to share
their idle networking time and disk space. The rest of the
operations follow transparently after the initial contact. AP-
POINT works on the application layer but not on lower lay-
ers. This achieves platform independence and easy deploy-
ment of the system. APPOINT is not a replacement but
an addition to the current client-server architectures. We
developed a library of function calls that when placed in a
client-server architecture starts the service. We are devel-
oping advanced peer selection schemes that incorporate the
location of active clients, bandwidth among active clients,
data-size to be transferred, load on active clients, and avail-
ability of active clients to form a complete means of selecting
the best clients that can become efficient alternatives to the
server.

With APPOINT we are defining a very simple API that
could be used within an existing client-server system easily.
Instead of denial of service or a slow connection, this API
can be utilized to forward the service appropriately. The
API for the server side is:
start(serverPortNo)

makeFileAvailable(file,location,boolean)

callback receivedFile(file,location)

callback errorReceivingFile(file,location,error)

stop()

Similarly the API for the client side is:
start(clientPortNo,serverPortNo,serverAddress)

makeFileAvailable(file,location,boolean)

receiveFile(file,location)

sendFile(file,location)

stop()

The server, after starting the APPOINT service, can make
all of the data files available to the clients by using the
makeFileAvailable method. This will enable APPOINT
to treat the server as one of the peers.

The two callback methods of the server are invoked when
a file is received from a client, or when an error is encoun-
tered while receiving a file from a client. APPOINT guar-

7

Figure 2: The localization operation in APPOINT.

antees that at least one of the callbacks will be called so
that the user (who may not be online anymore) can always
be notified (i.e., via email). Clients localizing large data
files can make these files available to the public by using the
makeFileAvailable method on the client side.

For example, in our SAND Internet Browser, we have the
localization of spatial data as a function that can be chosen
from our menus. This functionality enables users to down-
load data sets completely to their local disks before starting
their queries or analysis. In our implementation, we have
calls to the APPOINT service both on the client and the
server sides as mentioned above. Hence, when a localization
request comes to the SAND Internet Browser, the browser
leaves the decisions to optimally find and localize a data set
to the APPOINT service. Our server also makes its data
files available over APPOINT. The mechanism for the lo-
calization operation is shown with more details from the
APPOINT protocols in Figure 2. The upload operation is
performed in a similar fashion.

4. RELATED WORK
There has been a substantial amount of research on re-

mote access to spatial data. One specific approach has
been adopted by numerous Web-based mapping services
(MapQuest [5], MapsOnUs [6], etc.). The goal in this ap-
proach is to enable remote users, typically only equipped
with standard Web browsers, to access the company’s spa-
tial database server and retrieve information in the form of
pictorial maps from them. The solution presented by most
of these vendors is based on performing all the calculations
on the server side and transferring only bitmaps that rep-
resent results of user queries and commands. Although the
advantage of this solution is the minimization of both hard-
ware and software resources on the client site, the resulting
product has severe limitations in terms of available function-
ality and response time (each user action results in a new
bitmap being transferred to the client).

Work described in [9] examines a client-server architec-
ture for viewing large images that operates over a low-
bandwidth network connection. It presents a technique
based on wavelet transformations that allows the minimiza-
tion of the amount of data needed to be transferred over
the network between the server and the client. In this case,

while the server holds the full representation of the large im-
age, only a limited amount of data needs to be transferred
to the client to enable it to display a currently requested
view into the image. On the client side, the image is recon-
structed into a pyramid representation to speed up zooming
and panning operations. Both the client and the server keep
a common mask that indicates what parts of the image are
available on the client and what needs to be requested. This
also allows dropping unnecessary parts of the image from the
main memory on the server.

Other related work has been reported in [16] where a
client-server architecture is described that is designed to pro-
vide end users with access to a server. It is assumed that
this data server manages vast databases that are impractical
to be stored on individual clients. This work blends raster
data management (stored in pyramids [22]) with vector data
stored in quadtrees [19, 20].

For our peer-to-peer transfer approach (APPOINT), Nap-
ster is the forefather where a directory service is centralized
on a server and users exchange music files that they have
stored on their local disks. Our application domain, where
the data is already freely available to the public, forms a
prime candidate for such a peer-to-peer approach. Gnutella
is a pure (decentralized) peer-to-peer file exchange system.
Unfortunately, it suffers from scalability issues, i.e., floods of
messages between peers in order to map connectivity in the
system are required. Other systems followed these popular
systems, each addressing a different flavor of sharing over
the Internet. Many peer-to-peer storage systems have also
recently emerged. PAST [18], Eternity Service [7], CFS [10],
and OceanStore [15] are some peer-to-peer storage systems.
Some of these systems have focused on anonymity while oth-
ers have focused on persistence of storage. Also, other ap-
proaches, like SETI@Home [21], made other resources, such
as idle CPUs, work together over the Internet to solve large
scale computational problems. Our goal is different than
these approaches. With APPOINT, we want to improve ex-
isting client-server systems in terms of performance by using
idle networking resources among active clients. Hence, other
issues like anonymity, decentralization, and persistence of
storage were less important in our decisions. Confirming
the authenticity of the indirectly delivered data sets is not
yet addressed with APPOINT. We want to expand our re-
search, in the future, to address this issue.

From our perspective, although APPOINT employs some
of the techniques used in peer-to-peer systems, it is also
closely related to current Web caching architectures. Squir-
rel [13] forms the middle ground. It creates a pure peer-to-
peer collaborative Web cache among the Web browser caches
of the machines in a local-area network. Except for this re-
cent peer-to-peer approach, Web caching is mostly a well-
studied topic in the realm of server/proxy level caching [8,
11, 14, 17]. Collaborative Web caching systems, the most
relevant of these for our research, focus on creating ei-
ther a hierarchical, hash-based, central directory-based, or
multicast-based caching schemes. We do not compete with
these approaches. In fact, APPOINT can work in tan-
dem with collaborative Web caching if they are deployed
together. We try to address the situation where a request
arrives at a server, meaning all the caches report a miss.
Hence, the point where the server is reached can be used to
take a central decision but then the actual service request
can be forwarded to a set of active clients, i.e., the down-

8

load and upload operations. Cache misses are especially
common in the type of large data-based services on which
we are working. Most of the Web caching schemes that are
in use today employ a replacement policy that gives a pri-
ority to replacing the largest sized items over smaller-sized
ones. Hence, these policies would lead to the immediate re-
placement of our relatively large data files even though they
may be used frequently. In addition, in our case, the user
community that accesses a certain data file may also be very
dispersed from a network point of view and thus cannot take
advantage of any of the caching schemes. Finally, none of
the Web caching methods address the symmetric issue of
large data uploads.

5. A SAMPLE APPLICATION
FedStats [1] is an online source that enables ordinary citi-

zens access to official statistics of numerous federal agencies
without knowing in advance which agency produced them.
We are using a FedStats data set as a testbed for our work.
Our goal is to provide more power to the users of FedStats
by utilizing the SAND Internet Browser. As an example,
we looked at two data files corresponding to Environmen-
tal Protection Agency (EPA)-regulated facilities that have
chlorine and arsenic, respectively. For each file, we had the
following information available: EPA-ID, name, street, city,
state, zip code, latitude, longitude, followed by flags to indi-
cate if that facility is in the following EPA programs: Haz-
ardous Waste, Wastewater Discharge, Air Emissions, Aban-
doned Toxic Waste Dump, and Active Toxic Release.

We put this data into a SAND relation where the spatial
attribute ‘location’ corresponds to the latitude and longi-
tude. Some queries that can be handled with our system on
this data include:

1. Find all EPA-regulated facilities that have arsenic and
participate in the Air Emissions program, and:

(a) Lie in Georgia to Illinois, alphabetically.
(b) Lie within Arkansas or 30 miles within its border.
(c) Lie within 30 miles of the border of Arkansas (i.e.,

both sides of the border).

2. For each EPA-regulated facility that has arsenic, find
all EPA-regulated facilities that have chlorine and:

(a) That are closer to it than to any other EPA-
regulated facility that has arsenic.

(b) That participate in the Air Emissions program
and are closer to it than to any other EPA-
regulated facility which has arsenic. In order to
avoid reporting a particular facility more than
once, we use our ‘group by EPA-ID’ mechanism.

Figure 3 illustrates the output of an example query that
finds all arsenic sites within a given distance of the border of
Arkansas. The sites are obtained in an incremental manner
with respect to a given point. This ordering is shown by
using different color shades.

With this example data, it is possible to work with the
SAND Internet Browser online as an applet (connecting to
a remote server) or after localizing the data and then open-
ing it locally. In the first case, for each action taken, the
client-server architecture will decide what to ask for from
the server. In the latter case, the browser will use the peer-
to-peer APPOINT architecture for first localizing the data.

6. CONCLUDING REMARKS
An overview of our efforts in providing remote access to

large spatial data has been given. We have outlined our
approaches and introduced their individual elements. Our
client-server approach improves the system performance by
using efficient caching methods when a remote server is ac-
cessed from thin-clients. APPOINT forms an alternative ap-
proach that improves performance under an existing client-
server system by using idle client resources when individual
users want work on a data set for longer periods of time
using their client computers.

For the future, we envision development of new efficient al-
gorithms that will support large online data transfers within
our peer-to-peer approach using multiple peers simultane-
ously. We assume that a peer (client) can become unavail-
able at any anytime and hence provisions need to be in place
to handle such a situation. To address this, we will augment
our methods to include efficient dynamic updates. Upon
completion of this step of our work, we also plan to run
comprehensive performance studies on our methods.

Another issue is how to access data from different sources
in different formats. In order to access multiple data sources
in real time, it is desirable to look for a mechanism that
would support data exchange by design. The XML pro-
tocol [3] has emerged to become virtually a standard for
describing and communicating arbitrary data. GML [4] is
an XML variant that is becoming increasingly popular for
exchange of geographical data. We are currently working
on making SAND XML-compatible so that the user can in-
stantly retrieve spatial data provided by various agencies in
the GML format via their Web services and then explore,
query, or process this data further within the SAND frame-
work. This will turn the SAND system into a universal tool
for accessing any spatial data set as it will be deployable on
most platforms, work efficiently given large amounts of data,
be able to tap any GML-enabled data source, and provide
an easy to use graphical user interface. This will also con-
vert the SAND system from a research-oriented prototype
into a product that could be used by end users for access-
ing, viewing, and analyzing their data efficiently and with
minimum effort.

7. REFERENCES
[1] Fedstats: The gateway to statistics from over 100 U.S.

federal agencies. http://www.fedstats.gov/, 2001.

[2] Arcinfo: Scalable system of software for geographic
data creation, management, integration, analysis, and
dissemination. http://www.esri.com/software/
arcgis/arcinfo/index.html, 2002.

[3] Extensible markup language (xml).
http://www.w3.org/XML/, 2002.

[4] Geography markup language (gml) 2.0.
http://opengis.net/gml/01-029/GML2.html, 2002.

[5] Mapquest: Consumer-focused interactive mapping site
on the web. http://www.mapquest.com, 2002.

[6] Mapsonus: Suite of online geographic services.
http://www.mapsonus.com, 2002.

[7] R. Anderson. The Eternity Service. In Proceedings of
the PRAGOCRYPT’96, pages 242–252, Prague, Czech
Republic, September 1996.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and Zipf-like distributions:

9

Figure 3: Sample output from the SAND Internet Browser — Large dark dots indicate the result of a query
that looks for all arsenic sites within a given distance from Arkansas. Different color shades are used to
indicate ranking order by the distance from a given point.

Evidence and implications. In Proceedings of the IEEE
Infocom’99, pages 126–134, New York, NY, March
1999.

[9] E. Chang, C. Yap, and T. Yen. Realtime visualization
of large images over a thinwire. In R. Yagel and
H. Hagen, editors, Proceedings IEEE Visualization’97
(Late Breaking Hot Topics), pages 45–48, Phoenix,
AZ, October 1997.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the ACM SOSP’01, pages 202–215,
Banff, AL, October 2001.

[11] A. Dingle and T. Partl. Web cache coherence.
Computer Networks and ISDN Systems,
28(7-11):907–920, May 1996.

[12] C. Esperança and H. Samet. Experience with
SAND/Tcl: a scripting tool for spatial databases.
Journal of Visual Languages and Computing,
13(2):229–255, April 2002.

[13] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A
decentralized peer-to-peer Web cache. Rice
University/Microsoft Research, submitted for
publication, 2002.

[14] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad,
R. Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and
Y. Yerushalmi. Web caching with consistent hashing.
Computer Networks, 31(11-16):1203–1213, May 1999.

[15] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,

P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An architecture for global-scale persistent
store. In Proceedings of the ACM ASPLOS’00, pages
190–201, Cambridge, MA, November 2000.

[16] M. Potmesil. Maps alive: viewing geospatial
information on the WWW. Computer Networks and
ISDN Systems, 29(8–13):1327–1342, September 1997.
Also Hyper Proceedings of the 6th International World
Wide Web Conference, Santa Clara, CA, April 1997.

[17] M. Rabinovich, J. Chase, and S. Gadde. Not all hits
are created equal: Cooperative proxy caching over a
wide-area network. Computer Networks and ISDN
Systems, 30(22-23):2253–2259, November 1998.

[18] A. Rowstron and P. Druschel. Storage management
and caching in PAST, a large-scale, persistent
peer-to-peer storage utility. In Proceedings of the ACM
SOSP’01, pages 160–173, Banff, AL, October 2001.

[19] H. Samet. Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

[20] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1990.

[21] SETI@Home. http://setiathome.ssl.berkeley.edu/,
2001.

[22] L. J. Williams. Pyramidal parametrics. Computer
Graphics, 17(3):1–11, July 1983. Also Proceedings of
the SIGGRAPH’83 Conference, Detroit, July 1983.

10

