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Abstract
Spatial-Query-by-Sketch is the design of a query language for geographic information systems. It
allows a user to formulate a spatial query by drawing the desired configuration with a pen on a
touch-sensitive computer screen and translates this sketch into a symbolic representation that can
the processed against a geographic database. Since the configurations queried usually do not match
exactly the sketch, it is necessary to relax the spatial constraints drawn. This paper describes the
representation of a sketch and outlines the design of the constraint relaxation methods used during
query processing.

1 . Introduction
Traditional methods for spatial querying are tedious [17]. The difficulties of communicating a
user’s request to a spatial database through conventional spatial query languages becomes most
apparent when several users have to work together. Fundamental to this problem is the fact that
verbal descriptions of spatial situations are frequently ambiguous and may easily lead to
misinterpretations, particularly in multi-language groups. The use of traditional spatial query
languages has serious limitations, because geographic concepts are often vague, imprecise, little
understood, or not standardized. As an example, take the notion of the spatial predicate cross
whose semantics may vary depending on the context in which it is used, the meaning of the objects
to which the predicate relates, and the topology and the metric of the particular configuration [39].
These drawbacks make most current spatial query languages error-prone and difficult to use.
Graphical user interfaces provide only little improvement for such query languages, because they
use the same type of syntax and grammar as the typed languages, and their primary advantage is
that they release users from remembering the particular syntax.

We attempt to overcome the limitations of conventional spatial query languages by considering
alternative interaction methods between users and geographic data in a geographic information
system. With the advent of pen-based user interfaces, a more intuitive style of interaction with
spatial data is made possible than typing a query or composing it from menus. Pen-based user
interfaces are expected to become more important in the future with an increasing demand for
multi-media systems in most any application domain [31]. Particularly for the interaction with
geographic data, pen-based user interfaces provide a series of advantages over current interaction
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techniques. By their very nature, geographic data are spatial and it is most appealing to refer to
them in terms of explicit spatial concepts. Rather than expressing a spatial query in lexical terms,
users may prefer to sketch a spatial query. Sketching is an interaction mode that more directly
supports human spatial thinking than interactions through a verbal spatial query language alone,
because users frequently have an image-like representation in their minds when they query about
spatial configurations. It also provides immediate graphical feedback and, therefore, is an
inherently more natural process to formulate many spatial constraints than a textual language. In
lieu of forcing users to express a spatial configuration in some (semi)-formal or natural language, it
is a major step towards the successful use of spatial information systems if users are allowed to
draw a picture of the image they have in their minds, in order to retrieve the spatial data of interest.
Such a spatial query language is Spatial-Query-by-Sketch [10], which will allow users to express
spatial queries closer to the way they think about many spatial problems and incorporates powerful
reasoning mechanisms to infer geometric variations in the sketch. Spatial-Query-by-Sketch is a
design and a prototype implementation is currently under development. An area of particular
interest is the access to digital image libraries [22, 42] through a language like Spatial-Query-by-
Sketch, where users may want to retrieve, for instance, remotely-sensed images on which features
match a particular geometric configuration drawn.

Besides many interesting considerations about interaction by sketching, Spatial-Query-by-
Sketch poses challenging questions with respect to the processing of sketched queries. If the
database were to retrieve only those configurations that provide an exact match with the geometry
of the drawing, standard methods used in image matching and image retrieval could be applied. In
a geographic context, however, it may be necessary to relax some of the constraints of the sketch,
because trying to retrieve a situation that fits exactly the geometry of the sketch would only rarely
result in a match. There is an important conceptual difference, however, between finding a picture
that matches a sketch vs. finding a geographic configuration that matches a sketched query. In
pictorial queries, the shape of the objects, their relative sizes, and their proportions are considered
to be known [26]. The match between the picture and the sketch—the outline of some features that
must appear on the image of interest—could be established through modest variations of the
metric. The processing task is then to match the outlines with the boundaries on the pictures.
Deviations between the image and the sketch occur due to inevitable inaccuracies in the user’s
drawing. To compensate for them, methods like epsilon bands around the boundaries, within
which valid matches would be found, are acceptable solutions. In queries about geographic data,
however, this is not the case, because such spatial properties as the orientation of the objects may
be immaterial for the query or relative distances among the objects may be highly distorted.

To decide which constraints might be relaxed and which constraints should be maintained, it is
necessary to base the query processing on a computational model for similarity of spatial relations.
For this goal, we use a powerful computational model to represent spatial relations and extend this
model where necessary to account for various degrees of similarity. This approach enables us to
retrieve not only those situations that provide a perfect match with the sketch, but also those that
capture the essence of the sketch; therefore, Spatial-Query-by-Sketch enables spatial similarity
retrieval [26]. Experiments in psychology and cartography showed that topology is among the
most critical information people refer to when they assess spatial relationships in geographic space
[38, 49, 52], while metrical changes are frequently considered to be of lesser importance. To
reflect such human behavior, Spatial-Query-by-Sketch is based on the premise topology matters,
metrical refines [19].

The remainder of this paper first reviews previous approaches to spatial querying, focusing on
traditional spatial query languages, visual spatial query languages, and sketching. Section 3
introduces the principles of Spatial-Query-by-Sketch and gives a guided tour through some
fundamental interactions in Spatial-Query-by-Sketch. Section 4 focuses on the internal
representation of a sketched query in the form of a semantic network with spatial objects and their
spatial relationships. Query processing of spatial relations, relaxation of spatial constraints,
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prioritization of query results are described in Sections 5, 6, and 7, respectively. Conclusions and
future work are discussed in section 8.

2 . Spatial Querying
Spatial-Query-by-Sketch builds on state-of-the-art knowledge in spatial query languages,
particularly visual spatial query languages, and extends the sketching paradigm. This section
reviews relevant approaches in these fields.

2 .1 . Spatial Query Languages
Query languages for geographic databases and geographic information systems are either complex
macro languages or extensions of SQL. There exists a large variety of Spatial SQL dialects [7, 28,
32, 47]. Such SQL extensions are relevant to Spatial-Query-by-Sketch, because they provide the
means for accessing geographic databases and retrieving data from a database. Most critical is the
support for spatial relations. Many SQL dialects include some notions of spatial relations,
however, the semantics of the operations provide varying levels of detail and differ quite
dramatically. Spatial extensions to SQL are currently being addressed by the SQL3 Multimedia
working group.

Similar to SQL extensions, there are several spatial query languages that are derivatives of
Query-by-Example. Query-by-Pictorial-Example [5] and Picquery [33] are examples for the
Query-by-Example approach of inserting example values in tables, without exploiting the 2-
dimensional characteristics of the language for spatial (2-dimensional) querying.

2 .2 . Visual Spatial Query Languages
More advanced user interfaces and spatial query languages include concepts similar to Spatial-
Query-by-Sketch. The query language Cigales, for example, allows users to draw a query [4].
Unlike Spatial-Query-by-Sketch, Cigales requires the users, prior to drawing the sketch, to select
the type of spatial relation they are addressing [37]. For instance, to specify that the road enters the
park, the user would have to select the “intersect” operation, and then draw the particular
configuration [1]. This leads to moded interfaces, which are tedious to use.

In a similar attempt, Lee and Chin [36] designed an iconic query language in which users
compose a query by selecting spatial relations from a predefined set represented as icons. They
only consider a small subset of topological relations, so that a user can select them from a set of
icons.

A visual spatial query language that is based on a comprehensive algebra is Query-by-Visual-
Example [43], an extension of Query-by-Example. Users of Query-by-Visual-Example construct
templates of scenes in an array-like framework, describing primarily cardinal directions. While this
approach comes closer to the way people think about space and its objects, it has its limitations
through the equal resolution of the space. The grid also favors the specification of direction
relations, but makes it more difficult to state approximate distances and topological relations
independent of directions.

All of these visual spatial query languages lack a method to cope with the fact that an acceptable
answer—even the best fit—may actually differ from the geometry in the query configuration.

2 .3 . Sketching
Sketching was used in the past primarily in CAD for design. Sketchpad [51] and ThingLab [2]
were initial approaches to formulate constraints graphically. Pizano et al. [46] used spatial
constraints for describing consistency in spatial databases; however, unlike describing situations
that should match the configuration of interest, they focused on constructing those situations that
would establish unacceptable database states. Although their language was iconic rather than
sketch-based, it shares much similarity with the principles of sketching.

Sketching for querying was used in Query by Visual Example [29, 30, 34, 35] and Query by
Image Content [22], which are targeted for content-based image retrieval. While the interaction
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mode of these query languages is similar to the basics of Spatial-Query-by-Sketch [10]—in both
cases users draw an approximate spatial configuration of what to retrieve—scope and sketch
interpretation are considerably different. Sketches for content-based image retrieval assume that the
user draws something that matches quite closely the target and that all relations are intended as
drawn. Their query processors accommodate primarily metrical variations and they are very
sensitive to variations in sizes, orientations, and shapes. On the other hand, Spatial-Query-by-
Sketch assumes that the user’s sketch and the targets may vary considerably, as long as they match
in the most important criteria.

Spatial relations have been considered as a secondary criterion in an image retrieval system that
focuses on shape similarity [6]. The measures for shape are quantitative and thus expensive to
process in a spatial database, and the spatial relations considered use rough approximations based
on minimum-bounding rectangles. In contrast, Spatial-Query-by-Sketch prefers qualitative
measures, starting with the spatial relations among the objects drawn, and resorts to quantitative
methods only to prioritize hits.

The concepts of Spatial-Query-by-Sketch come closest to the Electronic Cocktail Napkin [25],
which uses free-hand drawings to interact with architectural images, and a query language for
sketch-based querying of geographic databases [40]. While their interactions modes and intention
for similarity retrieval closely match with Spatial-Query-by-Sketch, their models used for
representing sketches and processing them use an ad-hoc collection of spatial relations, which
distinguishes Spatial-Query-by-Sketch as it is founded on a solid mathematical model of spatial
relations and their relaxations.

3 . Spatial-Query-by-Sketch
Spatial-Query-by-Sketch is designed to use a touch-sensitive input device—ideally a touch screen
with a pen, such as Apple’s Newton. Simulations may be obtained with a mouse or a trackball, but
sketching with these devices is more cumbersome and therefore less effective. Users draw with a
pen a geometric configuration that matches closely the spatial situation(s) they expect to retrieve
from the geographic database. While composing the sketch, they may annotate the sketch to
describe desired properties of the sketched objects. Spatial-Query-by-Sketch parses the sketch and
translates it into a topological vector data model [27]. Subsequently, Spatial-Query-by-Sketch
develops a query processing plan and executes the query against the spatial database. If several
scenes match the query, the results are prioritized such that scenes with the best match to the query
are presented first.

The following scenario provides a cursory outline of the envisioned interaction a user may
perform when sketching a query. This user interface is organized into three major interaction areas:
the sketch region in which the user draws the configuration of interest; the overview area which
displays the sketch in its entirety and allows users to pan and zoom; and the control panel from
which the user selects database commands, the type of feature he or she is drawing, and the
confidence level for the placement of a feature. Users employ a pen to sketch an example of what
they want to find in the database. In this particular case, the user is interested in all land parcels that
have a wooded area and a river crossing the parcel. The user first sketches the parcel by selecting
the class of the object (in this case a Parcel), and drawing its boundary (Figure 1a). Then she
describes the location of the forest by drawing part of the forest’s boundary (Figure 1b). Since it is
unclear on which side of the line the forest is located, the user fills the interior of the forest (Figure
1c). Finally the user draws a river such that it crosses the land parcel (Figure 1d). Since the user is
satisfied with the drawing, she requests that all configurations that match the sketch be retrieved
from the database by pressing the Go! button on the control panel.
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Figure 1: (a) The user draws the geometry of a land parcel; (b) the user adds the boundary of
a forest; (c) to determine the location of the forest, the user fills the forest’s interior;
and (d) the user adds the location of a stream such that it crosses the land parcel, but
does not intersect with the forest.

4 . Symbolic Representation of a Sketch
While a bitmap representation would provide an accurate snapshot of such a sketch, it would be
difficult to interpret it and match it against elements in other datasets whose relations, sizes, and
shapes are distorted or not to scale with the sketch or whose orientations among elements differ to
some degree. Instead, we select an object representation for the sketch, which allows us to abstract
away some details of the sketch while it emphasizes its salient parts. This representation stresses
objects, their spatial and non-spatial properties, and the spatial relations among the objects drawn.
The latter are of particular importance for processing a query in Spatial-Query-by-Sketch as they
capture the essence of a spatial scene.

We represent the sketch internally as a semantic network of spatial objects and their binary
spatial relations. In this network, each object drawn corresponds to a node whose values are given
by the semantics assigned in the sketch. They may include the class of an object, a name, other
attribute values, or such metrical constraints as the size of the area or length of an object. Directed
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edges between nodes stand for binary spatial relations between the spatial objects. For this
purpose, we distinguish five different types of spatial relations: coarse binary topological relations,
detailed binary topological relations, metrical refinements, coarse cardinal directions, and detailed
cardinal directions. With these five types of binary spatial relations, a qualitative model of a sketch
is built in the form of a multi-resolution semantic network, called a scene network. Such a network
serves as a symbolic, qualitative representation of the sketch. Its elements translate into predicates
in spatial queries. See [44] for a discussion about the completeness of the approach of using binary
relations for spatial queries. The scene network may be constructed at different levels of detail, for
instance only at a coarse level of detail with topological and direction relations, or only as a
topological representation with coarse and detailed topological relations. For the most detailed
analysis, a complete scene network would be derived with all five types of spatial relations. Such a
representation translates easily into database queries in the form of first-order predicates or
extended-SQL statements. Depending on the configuration, fewer binary relations may be
sufficient to describe the scene completely if they allow to drive uniquely the eliminated relations
through compositions of elementary or inferred relations [20]. There are additional dependencies
among the different types of binary relations that could further reduce the smallest number of
relations required to fully specify a scene. For example, detailed cardinal directions imply their
corresponding coarse cardinal directions. The actual number of spatial relations to be considered
for processing a particular query is an issue of spatial query optimization [8]. In the following, we
discuss the models used for the five types of spatial relations.
4.1 Coarse Topological Relations
We base the analysis of topological relations on the 9-intersection, a comprehensive model for
binary topological relations that applies to objects of type area, line, and point [13, 15]. It
characterizes the topological relation between two point sets, A  and B , by the set intersections of
A ’s interior, boundary, and exterior with the interior, boundary, and exterior of B , called the 9-
intersection. With each of these nine intersections being empty or non-empty, the model has 512
possible topological relations between two point sets, some of which cannot be realized. For two
simple regions without holes embedded in R2, the categorization shows eight distinct topological
relations. They have been called disjoint, meet, equal, overlap, inside, contains, covers, and
coveredBy (Figure 2). For two simple lines (non-branching, no self-intersections) embedded in
R2, 33 different topological relations can be realized with the 9-intersection, and for a line and a
region, 19 different situations are found [16].
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B
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A
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A
B
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Figure 2: The eight topological relations that can be realized between two spatial regions
embedded in R2.

4.2 Detailed Topological Relations
More detailed distinctions about topological relations are possible if further criteria are employed to
evaluate the non-empty intersections. In order to establish topological-relation equivalence between
two regions (i.e., to decide whether or not two pairs of objects have the same topological
relations), it is sufficient to describe topological invariants for the components (or separations) of
the boundary-boundary intersection [14] and the approach generalizes to line-line and line-region
relations. The necessary invariants to consider for region-region relations are:
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• the sequence of components counted in a consistent orientation of the plane along the boundaries
of the regions (Figure 3a);

• the dimension of each component—0-dimensional for boundary-boundary intersections in a
single point and 1-dimensional for boundary-boundary intersections that form a common line
(Figure 3b);

• the type of boundary-boundary component intersection—touching if the boundary enters and
leaves the component intersection from the same part, or crossing if the boundary enters from a
different part than it leaves (Figure 3c);

• the crossing direction of boundary-boundary components—into and out of the interior (Figure
3d);

• the boundedness, i.e., whether a 1-dimensional boundary-boundary component is inside or
along the border of the union of the two objects (Figure 3e); and

• the complement relationship, i.e., whether a component is a next to an open or closed exterior
(Figure 3f).
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Figure 3: Six pairs of relations each of which distinguishes by different detailed topological
relations: (a) component sequences, (b) component dimensions, (c) types of
boundary-boundary component intersections, (d) crossing directions, (e)
boundedness, and (f) complement relationships.

Detailed topological relations between two regions are expressed by the component invariant
table for non-empty boundary-boundary sequences,  which lists the sequence of boundary-
boundary components and each component’s dimension, type, crossing direction, boundedness,
and complement relationship [12, 14].
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4.3 Metrical Refinements
Occasionally, topology per se is insufficient to characterize the essence of spatial relations. For
instance, in order to capture the semantics of the spatial relation between Interstate I-95 and the
state of New Hampshire requires the consideration of some metrical properties in addition to
topological concerns—I-95 divides New Hampshire into a very small area on one side of I-95 and
a larger piece on the other side. To describe metrical details, we apply measures about areas and
lengths as refinements of the topological properties [48]. These measures are normalized values
with respect to the areas or lengths of interiors and boundaries and, therefore, scale-independent.
These measures are defined as refinements of the 9-intersection, adding length and area measures
to quantify non-empty intersections. The same concepts apply to the 9-intersections of line-region
and line-line relations, although the number of measures that are applicable may vary with the
geometric types of the objects involved. Figure 4 shows the eight measures that apply to region-
region relations—six splitting ratios that capture how object A’s parts separate object B, and two
closeness measures that describe relative distances from A’s boundary to B’s boundary. The same
types of measures apply as ratios of A’s metrical properties over B’s.
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Figure 4: Metrical refinements of topological relations.
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4.4 Cardinal Directions
Analogous to the role metrical properties may play in the interpretation of a scene, direction
relations may provide a basis for certain decisions about matching and similarity. Direction
relations are well understood for point objects; however, for extended spatial objects, such as
linear or areal features, no generally accepted models exist and a variety of semantically different
approaches have been proposed [45]. In this case, we adapt the projection-based method [23, 43]
around a the minimum bounding rectangle of an object, partitioning space into nine regions for an
areal object. These partitions are named north (N), northeast (NE), east (E), southeast (SE), south
(S), southwest (SW), west (W), northwest (NW), and at the same location (0). The cardinal
direction from an object to a target direction is described by recording the partitions into which at
least some parts of the target object fall (Figure 5). Further refinements would be possible to
describe if a target’s outline coincides with the boundaries between partitions [24].

N

S

W E

NW

SW

NE

SE

0

Figure 5: Projection-based cardinal directions for extended spatial objects.

4.5 Detailed Cardinal Directions
Cardinal directions are often a coarse approximation such that an interpretation of the mere fact that
an object falls within some direction partition(s) of another object may be misleading or
inappropriate. To provide more detail about directions among objects, we extend the cardinal-
direction method, recording for each object that falls into more than one direction partition the
percentage of the common intersection between a partition and the object (Figure 6). The range of
each detailed cardinal direction x is 0 < x <1.0 . The sum of all percentages for an object with
respect to the partitions of another object must be 1.0. The refinement measure does not apply to
empty partitions nor would it provide any additional information if the entire object falls into a
single partition.
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Figure 6: The cardinal directions are described by the partitions in which object B fall (N, E,
SE, S, 0) and the detailed cardinal directions are described by the percentages that B
extends over the different partitions (N=28%, 0=42%, E=16%, SE= 8%, S=6%).

4.6 An Example
Figure 7 illustrates the use of the five types of spatial relations for the construction of a scene
network. The sketch (Figure 7a) shows six areal objects, which received unique identifiers that
also reflect the objects’ classes. These identifiers are used consistently throughout the scene
network. Figures 7b-f show subsets of the scene network, focusing on the spatial relations with
respect to object A. Corresponding representations exist for each other object in the scene network.
Figure 7b depicts for object A the binary topological relations that were derived from the 9-
intersection. Details about these topological relations are described in Figure 7c through the
component invariant table for those relations where detailed topological descriptions are possible
(in this case for the relation overlap between objects A and D). The sketch’s splitting and closeness
ratios for metrical details are shown in Figure 7d. For the two disjoint relations with objects B3
and C, only the outer closeness (OC), i.e., the relative distance to A, applies. The two inside
relations with objects B1  and B2  are specified by the relative sizes of their areas with respect to
A’s area—inner area splitting (IAS) and outer area splitting (OAS)—and how far A’s boundary is
from the enclosed objects—the inner closeness (IC). The greatest detail is provided for the overlap
relation between A and D: the inner area splitting (IAS), which describes how much of D’s interior
coincides with A’s interior; the outer area splitting (OAS) for the portion of A that is outside of D;
the inner traversal splitting (ITS), which captures the length of A’s perimeter that runs through D’s
interior; the length of A’s perimeter that is outside of D—the outer traversal splitting (OTS); and
the length of the common boundaries, called the alongness splitting (AS). Figures 7e and 7f
describe the direction relations at a coarse and a more detailed level. Coarse cardinal directions are
determined through a grid that aligns with A’s minimal bounding rectangle. Three objects fall
completely into a single partition (B1 , B2 , and B3), while C and D span respectively over two
and three partitions. Details about the distribution over multiple partitions are captured in Figure 7f,
recording by how much an object extends over multiple partitions.
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Figure 7: A sketch (a) and the scene networks of (b) topological relations, (c) detailed
topological relations, (c) metrical refinements, (d) cardinal directions, and (e)
detailed cardinal directions (only the relations for object A are shown).
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5 . Processing Sketched Queries
The scene network forms the basis for processing a sketched query and for presenting the query
results in a prioritized order to the user. The spatial relations captured in the scene network relate to
different query processing stages, because the relations are of different levels of importance for
capturing the semantics of a spatial scene; therefore, different strategies may be pursued, such as
multiple querying of a geographic database using each time a different part of the scene description.

We use the 9-intersection relations as the key for pre-processing spatial relations sketched and
querying, because they describe topological relations at a coarse level and, therefore, group
sketches into classes of similar relations. By mapping the sketched relations onto 9-intersection
relations, we capture the most salient features of a sketch in a form that is independent of
orientations and sizes. This abstraction is critical for the translation of a sketched configuration into
a database query.

The component invariants are the key for analyzing the intentional complexity of the spatial
relations sketched, because the component invariants capture complexity of topological relations. A
greater number of component intersections indicates more complexity [12]. If a user draws a
sketch with a high level of complexity, then we assume that this complexity was intended and that
it provides the lower bound of what should be retrieved; therefore, a configuration in a spatial
database with the same 9-intersection relation, but lower-rated component invariants, would not
qualify as a match. On the other hand, a sketch of a low-complexity spatial relation may indicate
that more complex configurations under the same 9-intersection category should be considered as
well.

With the metrical refinements of the 9-intersection relations we formalize detailed geometric
constraints about sketched spatial relations. In Spatial-Query-by-Sketch, metrical details play two
roles. First, they are critical to decide whether the query processor should also search for
configurations that deviate from the topology sketched. For instance, a particularly short closeness
measure for two disjoint regions may indicate that the user also would accept as an answer a
configuration in which the two objects meet topologically. Second, the metrical properties are the
key to prioritizing query results that have the same topology as the sketch, but differ in relative
sizes of the objects, common lengths and areas, and distances between boundaries.

We exploit the cardinal directions for those queries in which the user explicitly states the
importance of orientation relations, for instance, if the user drew a north arrow to give a global
orientation to the sketch. Cardinal directions are also used to prioritize query results, i.e., as a tie-
breaker among configurations with the same topology.

Finally, detailed cardinal directions are used to rank the query results such that the situation that
matches most closely the sketch is presented first. Unlike the use of topological and detailed
topological relations, the transition from coarse to detailed cardinal directions is used as a mere
refinement and no intended complexity of the configuration is derived from the detailed direction
relations.

A strategy that makes use of the dependencies among the different types of spatial relations is
outlined below. Since the five types of spatial relations play different roles in the interpretation of a
sketch, we employ a multi-step query processing strategy.
• First, the topological scene description is used to formulate a spatial database query. A

topological relation is relaxed if its metrical refinements have small values indicating that
alternative topological configurations may be considered as well. In addition, if the user
specifies explicitly an orientation of the sketch, the cardinal directions are incorporated into the
query.

• Second, for a non-empty result set of such a spatial query, each configuration is analyzed
according to topological details, metrical details, and detailed cardinal directions, eliminating
false hits and prioritizing the remaining configurations.

• If the query result is an empty set (i.e., no configuration was found that matches the relations
specified), the initial constraints may be relaxed, from which a revised spatial query gets
formulated.
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6 . Relaxing Spatial Relations
The comparison of the sketched spatial relations with the spatial relations recorded in a geographic
database may not necessarily provide an exact match. The sketch may, for instance, be distorted
leading to different relations than intended or the user may be satisfied with a configuration that is
an approximation of what he or she drew. For this purpose it is necessary to consider not only
exact matches, but also similar matches [3, 41]. The challenging aspect of determining similar
configurations is that spatial relations represent discrete concepts that are usually thought of as
being on a nominal scale. In order to assess similarity among elements, however, it is necessary to
introduce some non-arbitrary order over the elements. Spatial-Query-by-Sketch establishes
similarity over different types of spatial relations through a formal model, including a metric, that
assesses deviations of a spatial relation from a target relation.

An important basis for the similarity assessment is Stevens’s categorization of scales of
measurements, which distinguishes nominal, ordinal, interval, and ratio type data [50].
Topological relations are discrete values on a nominal scale, therefore, no linear order can be
established among them. Similarity among topological relations is described in terms of the
conceptual neighborhood graph, which links most similar relations to each other. It is based on the
computational model of determining for each relation those relations with the least number of
differences in the 9-intersection matrices. For instance, disjoint and meet are conceptually closer to
each other than disjoint and overlap, because disjoint and meet differ in one entry in their 9-
intersections—they have different boundary-boundary intersections—while disjoint and overlap
differ in four entries. Conceptual neighborhood graphs have been derived for the eight region-
region relations [11] (Figure 8), line-line relations [21], and line-region relations [18].

inside

overlap

coveredBy

contains equal

covers

meet

disjoint

Figure 8: Conceptual neighborhood graph of the eight region-region relations.
Relaxing a topological relation corresponds to changing a constraint from a topological relation

to include its conceptual neighbors. For example, if a user drew a scenario in which a region was
fully included in the interior of another region, then a relaxation would consider not only those
configurations that match exactly its topological relation, but also those that match the relation’s
conceptual neighbors [3]. Figure 9 shows the relaxation of all topological constraints for the sketch



Journal of Visual Languages and Computing, Vol. 8, No. 4, pp. 403-424, 1997.

in Figure 7a. Higher degrees of dissimilarity can be achieved by recursively moving from the
conceptual neighbors to their conceptual neighbors (without moving back). The more the
topological relation gets relaxed, the less similar a relation becomes to its target.

B1 B2 B3 C D

A

B1

B2

B3

C

Figure 9: First-degree relaxation of all topological relations for the objects in figure 7a.
A more controlled way of relaxing topological relations exploits the metrical details as well.

Metrical details are refinements of topological relations and a small value for a particular metrical
detail indicates that an alternative topological relation may be considered as well. For example, the
configuration in Figure 7a shows objects A and B3  being disjoint, but close together (the outer
closeness from A to B3  is 1.92), whereas A and C are disjoint as well, but further apart from each
other (the outer closeness from A to C is 6.12). If a threshold for the outer closeness was set to
2.0, A disjoint B3  may be relaxed into A disjoint or meet B3 . This type of relaxation implies a
direction on the conceptual neighborhood graph, i.e., not all conceptual neighbors are used. For
example, an overlap with a small value for inner area splitting, but large value for outer area
splitting, gets relaxed from overlap to overlap or meet, but not covers or coveredBy.

If cardinal directions are an explicit part of a sketch, they may be subject to relaxation during
query processing in the same way topological relations are. For this purpose, it is necessary to
model the conceptual neighborhoods of cardinal directions such that the most similar direction can
be determined. For the projection-based model with nine direction values, a simple model arranges
the relations in a 3 × 3 grid, reflecting the nine partitions such that conceptual neighborhoods are
established both in horizontal and vertical directions (Figure 10). The conceptual neighbor of a
direction relation are then its immediate horizontal and vertical neighbors in the graph. If an object
extends through more than one partition, the conceptual neighbors of its cardinal direction
comprise the union of the neighbors of each relation in the set.
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N
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NW

W

SW

NE

E

SE

Figure 10: The conceptual neighbors of the nine projection-based cardinal directions.
Figure 11 shows the first-degree relaxation of all cardinal directions for the sketch depicted in

Figure 7a. Only the direction relations between and object and itself—located in the diagonal of the
table—cannot be relaxed. Unlike the topological relations, the cardinal directions do not form
converse pairs and, therefore, it is necessary to consider in the relaxation of direction relations
n2 − n  relations among n  objects.



Journal of Visual Languages and Computing, Vol. 8, No. 4, pp. 403-424, 1997.
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B1

B2

B3

C

D

Figure 11: First-degree relaxation of all cardinal directions among the objects in Figure 7a.

7 . Prioritizing Query Results
Independent of whether the query is relaxed or not, the result that is returned from a spatial
database may contain multiple configurations, all of which fulfill the constraints of the query
(Figure 12); however, in such a set of configurations there will be some that fit the original sketch
better than others. Since the query acts as a filter, it is necessary to sort through the query result
during the subsequent phase of query result prioritization and to rank the configurations retrieved
according to their similarity with the sketch. This assessment requires difference measures for all
five types of spatial relations. All measures introduced are such that lower difference values
represent more similar configurations, while larger values indicate more differences. A value of 0
indicates no difference according to the type of spatial relation.
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Coarse topological difference:  0
Detailed topological difference:  0
Metrical difference:  14.6
Coarse direction difference: 17
Detailed direction difference:  9.9

Coarse topological difference:  0
Detailed topological difference:  3
Metrical difference: N/A
Coarse direction difference:  43
Detailed direction difference:  20.1

Coarse topological difference:  0
Detailed topological difference:  0
Metrical difference:  62.5
Coarse direction difference:  40
Detailed direction difference:  16.0

Figure 12: The sketched configuration (top) and three configurations retrieved based on coarse
topological constraints (bottom).

For coarse topological relations, the measure is the number of differences in the conceptual
neighborhoods found between the sketch and the configuration in the query result. For example, if
two objects are related by a disjoint relation in the sketch, while the corresponding objects overlap
in the query result, then their coarse topological difference would be 2, because it takes two steps
along the conceptual neighborhood graph of topological relations to get from disjoint to overlap.
For the example in Figure 12, all three configurations have the same coarse topological relations
between all corresponding pairs of objects as the target, therefore, the coarse topological difference
is 0 for all three configurations contained in the query result.

For detailed topological relations, the difference measure is the number of elementary
deformations (i.e., adding or removing an intersection) that are necessary to obtain topological
equivalence between the sketch and the configuration in the query result [3]. In Figure 12, the first
and third configuration have the same detailed topology as the target; however, the second
configuration differs in the way objects A and D overlap. In order to transform one into the other,
two elementary deformations are necessary; therefore, the detailed topological difference for this
configuration is 2, while it is 0 for the other two configurations.

Metrical details are used only for configurations that expose the same counts for detailed
topological differences. For each metrical parameter, we calculate the ratio between the result
configuration and the target, and take the absolute value of the deviation from 1. If both are exactly
the same their ratio is 1 and, therefore, the metrical difference 0. For each pair of scenes, the
metrical difference measure is the sum of all metrical ratios. For the example in Figure 12, the
metrical difference measures apply to the first and third configuration, because they have the same
detailed topological difference. The third configuration turns out to be metrically less similar to the
query than configuration one, because B1  is more distant from D and B3  is more remote from A,
B1 , and B2; therefore, their outer closeness ratios are much higher, while the remaining metrical
ratios are relatively small, giving the third configuration a much higher metrical difference measure
than the first.
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As the measure for coarse direction differences we determine for each corresponding pair of
objects the shortest path between their cardinal directions along their conceptual neighborhoods.
For example, the shortest path from N to SW is 3; from NW to SE it is 4; from N to N it is 0, from
NW and W to SW and S it is 4; and from NW and W to SW it is 3. The direction difference
measure between two configurations is the sum of all shortest paths along the conceptual
neighborhoods. For the example in Figure 12, the first configuration in the query result has the
best match with respect to the target. The other two configurations differ more strongly from the
sketch primarily due to the significantly different locations of objects B3  and C, which leads to
high scores for the direction differences of the relations between B3  and C, but also between B3
and B2 .

The difference measure for detailed cardinal directions gives weights to the counts of the steps
of the coarse direction differences according to the percentages of changes. For example, from the
detailed direction relations E (0.98) and NE (0.02) to E (1.00), the weighted count is 0.02, while
from E (0.98) and NE (0.02) to NE (1.00) would be 0.98; the count from E (0.10) and SE (0.70)
and S (0.20) to S (1.00) is 2 * 0.10 + 1 * 0.70 = 0.90. The difference measure for detailed
directions also applies if both directions span the same partitions, but are differently distributed.
For example, the weighted count from E (0.98) and NE (0.02) to E (0.04) and NE (0.96) is 0.98 –
0.04 = 0.94. For the example in Figure 12, the detailed direction differences confirm the similarity
rankings of the query results obtained from the coarse direction differences. Comparisons with the
detailed direction differences, however, may lead to different results than the coarse direction
differences if the individual counts are primarily small values.
8 . Conclusions
This paper presented the design principles of Spatial-Query-by-Sketch, a visual spatial query
language for geographic information systems. Users interact through Spatial-Query-by-Sketch by
using a pen to draw an example of the configuration they are interested in. Spatial-Query-by-
Sketch parses this graphical input, analyzes it, and translates it into a database query. We base its
query processing mechanisms on a powerful computational model for spatial relations that allows
us to emphasize cognitively important criteria of the sketch, and to suppress aspects that may be of
lesser importance. Spatial-Query-by-Sketch uses five types of spatial relations: coarse topological
relations, detailed topological relations, metrical details, coarse cardinal directions, and detailed
cardinal directions. This approach is tailored for geographic similarity retrieval, where frequently
the orientation, size, and shape of an object may not matter, but the relationship with respect to
other objects is critical. Each set of spatial relations is formally defined, including computational
methods to address similarity among pairs of relations of the same type. These models of spatial
relations are used when translating the sketch into a database query, when relaxing spatial
constraints, and when sorting query results according to highest similarity with the sketch.

A prototype of Spatial-Query-by-Sketch is under development with methods implemented for
the assessment and relaxation of topological and direction relations. From experiments with the
prototype we expect to gain new insights into the match between different querying strategies and
people’s intuition about similarity retrieval. Such future experiments also will provide us with
guidance as to whether and how a single similarity measure as a weighted combination of the five
individual measures would useful. To work efficiently with a spatial database system, indexing
and access methods for spatial relations are required that would support the query execution in a
database system. Current spatial access methods are limited to the location of spatial objects and,
therefore, only support fast retrieval based on coordinate values, such as point-in-polygon or
window queries. Since Spatial-Query-by-Sketch is based on a different paradigm—spatial relations
rather than location in space—either a mapping onto existing methods or the development of new
methods will be necessary.

Spatial-Query-by-Sketch is on the opposite scale of a verbal spatial query language. While
drawing spatial configurations is an intuitive interaction with geographic data, there are some
spatial concepts, such as intentional orientation, distance, or shape, that may be difficult to express
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through a sketch alone. A sketch-based spatial query language may benefit from an embedding into
a multi-modal interaction, where sketching may be augmented by verbal instructions [9].
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