
Fields as a Generic Data Type
for Big Spatial Data

Gilberto Camara1,2, Max J. Egenhofer3, Karine Ferreira1, Pedro Andrade1,
Gilberto Queiroz1, Alber Sanchez2, Jim Jones2, Lubia Vinhas1

1 Image Processing Division, National Institute for Space Research (INPE),
Av. dos Astronautas, 1758, 12227-001 São José dos Campos, Brazil

2 Institute for Geoinformatics (ifgi),
University of Münster, Heisenbergstraße 2, 48149 Münster, Germany

3 National Center for Geographic Information and Analysis
and School of Computing and Information Science,
University of Maine, Orono, ME 04469-5711, USA

Abstract. This paper defines the Field data type for big spatial data.
Most big spatial data sets provide information about properties of real-
ity in continuous way, which leads to their representation as fields. We
develop a generic data type for fields that can represent di↵erent types
of spatiotemporal data, such as trajectories, time series, remote sensing
and, climate data. To assess its power of generality, we show how to rep-
resent existing algebras for spatial data with the Fields data type. The
paper also argues that array databases are the best support for processing
big spatial data and shows how to use the Fields data type with array
databases.

Keywords: field data type, spatial fields, spatiotemporal data, big spatial data

1 Introduction

One of the biggest changes in Geoinformatics in recent years arises from tech-
nologies that produce lots of data. Earth observation and navigation satellites,
mobile devices, social networks, and smart sensors create large data sets with
space and time references. Big spatial data enables real-time applications, such
as tracking environmental changes, detecting health hazards, analyzing tra�c,
and managing emergencies. Big data sets allow researchers to ask new scientific
questions, which is both an opportunity and a challenge [2]. However, there are
currently no appropriate conceptual models for big spatial data. Lacking sound
guidance, we risk building improvised and incompatible application, with much
e↵ort wasted.

A model for big spatial data should consider the nature of the data, which are
records of measurements and events in space-time. Sensors measure properties
of nature, such as temperature, soil moisture, and land surface reflectance, and
human events, such as locations of people and cars. Since these sensors observe

2

the world in real-time, we take big spatial data to be records of continuous
phenomena.

The terms fields and coverages describe real-world phenomena that vary
continuously in space and time [5,10,26]. Despite the abstract nature of the
concept, most work on fields deals with concrete data structures (e.g., triangu-
lations, cells, and contours). The OGC definition for coverages–“digital spatial
information representing space-time varying phenomena” [25]–is similar to the
definition of the Fields data type. Since OGC’s coverages focus on describing
operations on concrete spatial representations, they add complexity and reduce
generality [24,25]. Big spatial data, however, needs an inclusive model that starts
with the measurements (i.e., the data collected) and builds on top of them a
generic scheme for space-time analyses. The lack of such a high-level model is a
serious impediment in analyses of large, complex, and diverse data sets. To avoid
makeshift approaches, one needs a wide-ranging, yet simple model for fields at a
higher abstraction level than implementation-specific solutions.

Early work on spatial data modeling viewed fields as four-dimensional func-
tions f(x, y, z, t) that describe positions in space-time [15,21]. This approach was
later refined with geo-atoms, the minimal form common to all geographic infor-
mation and a basis for modeling spatial phenomena [16]. A geo-atom combines
a position in spacetime and a property, expressed as a tuple [x,Z, z(x)], where x
is a position in spacetime, Z is a property, and z(x) is the value of the property
at that position. To represent fields, we take the idea of geo-atoms one step
further and consider how one observes reality. Since one will never have complete
information about external reality, one needs to make inferences about positions
in space-time for which there are no observations [22]. Thus, field representations
have to combine observed and inferred measures of a phenomenon. One needs to
put together observations of properties of reality with a procedure that estimates
values of these properties at non-observed positions [8].

This paper defines fields as sets of geo-atoms {[x,Z, z(x)]} that are observa-
tions of a property Z in an space-time extent, and an estimator function that
estimates values of this property in non-observed locations of this extent. A field
has a space-time extent, a set of positions inside this extent, and a set of values
observed or estimated for each position. We define a Field data type based on ab-
stract specifications, following a line of research in Geoinformatics that considers
formal definitions precede reliable system implementation [13,12,31].

Although the Field data type is not specific for dealing with big spatial data,
it is particularly relevant for handling large data sets. Contemporary object-
relational data models are built around layers, which slice the geographic reality
in a particular area. The use of layers as a basis for spatial data organization
comes from how data is organized in thematic and topographic maps. When
applied to big spatial data, the organizing principle of geographic layers breaks
down, however. Instead of a set of static spatial layers (each with its legend),
big spatiotemporal data sets store information about changes in space and time.
Conceiving such information as fields captures their inherent nature better than
the traditional layer-oriented view.

3

After a brief discussion on generic programming and generic types in Section
2, we introduce the Field data type (Section 3). We show how to use the Field data
type to represent time series, sensor networks, trajectories, collections of satellite
images, and climate data, sharing common operations. Section 4 shows how to
implement existing spatiotemporal algebras using the Field data type. Section 5
discusses the nature of big spatial data; we make a case for array databases as
the best current support for handling these data sets. Section 6 shows how to
use the Field data type in connection with array databases for processing large
spatial data. The paper closes with a discussion of a road map for making the
Field data type a tool for developing new types of GIS applications.

2 Generic Programming and Generic Types

The design of the Field data type is based on the ideas of generic programming.
Generic programming uses abstract data types, which are formal tools that allow
an objective evaluation of computer representations [3]. Abstract data type
definitions have an externally viewable set of operations and a set of axioms
applicable to them [17]. The operations are generic, so they work for di↵erent
data structures and di↵erent implementations.

Generic programming is well-suited for building GIS [9]. Most spatial al-
gorithms can be designed to be independent of spatial data structure, relying
instead on basic properties that most of them provide. To find the mean value
of an attribute in a spatial data set, it is irrelevant whether the data structure
is a TIN, a grid, or a set of polygons. All one needs is to get from one data item
to the next, and to compare two items. Even algorithms that depend on spatial
properties can be expressed in an abstract form. One can define the local mean
of a data set using an abstract definition of neighborhood, leaving the details to
the implementation phase.

To define an abstract data type, we use the following notation. Type defini-
tions and operations use a monospaced font. Type names are capitalized (e.g.,
Integer). Sets of instances of a type are included in curly braces, for instance,
{Integer} is a set of variables of type Integer. We write an ordered pair of
variables of types A and B as (TypeA, TypeB).

Generic types are indicated by T:GenericType where T is a placeholder for
a concrete type. The notation I:Item defines a generic type of items, where the
concrete type can be, for example, Integer or Real. Types that use other generic
types are written as CompositeType [T:GenericType], so Stack[I:Item] de-
fines a composite type Stack that handles instances of the generic type I:Item.

To associate concrete types to a generic type, we write T:GenericType |=
ConcreteTypeA, ConcreteTypeB. To point out that one can replace the generic
type I:Item by concrete types Integer and Real, we write I:Item |= Integer,

Real.
Names of functions and operators begin with a lowercase letter. Examples are

top, pop, and new. Function signatures point out their input types and the output
type. The notation (TypeA x TypeB ! TypeC) describes a function where TypeA

4

and TypeB are the types of the input and TypeC is the type of the output. A
factorial function has (Integer ! Integer) as a signature. Functions can
use generic types. A generic sum function has I:Item x I:Item ! I:Item as a
signature.

Consider a stack, a last-in, first-out data structure, whose specification is
given in Fig. 1. It has three fundamental operations: push, pop, and top. The
push operation adds an item to the top of the stack, pop removes the item from
the top of the stack, while top returns the element at the top of the stack, without
changing the stack. The Stack data type is defined independently of the data
structures and algorithms that implement it. This specification provides support
for implementing stacks of di↵erent concrete types (e.g., stacks of integers, stack
of strings, or stacks of any other user-defined type including stacks of stacks).

Type Stack [I] uses I:Item

Functions

new: Stack

push: I x Stack ! Stack[I]

pop: Stack[I] ! Stack[I]

isEmpty: Stack[I] ! Boolean

top: Stack[I] ! I

Variables

s: Stack

i: Item

Axioms

isEmpty (new ()) = true

isEmpty (push(i, s)) = false

top (new ()) = error

top (push (i, s)) = i

pop (push (i, s)) = s

Fig. 1: Abstract specification of the data type stack

3 Fields as Generic Types

What is in common between a time series of rainfall in Mnster, the trajectory
of a car in Highway 61, a satellite image of the Amazon, and a model of the
Earth’s climate? They share the same inherent structure. They all have a space-
time extent, within which one measures values of a phenomenon, providing
observations of reality. Within this extent, one can also compute the values of
these phenomena at non-observed positions. We thus conceptualize these data
sets as fields, made of sets of geo-atoms {[x,Z, z(x)]} that are observations of
a property Z in an space-time extent, and an estimator function that estimates
values of this property in non-observed locations of this extent.

5

This definition of fields is a generalization of the traditional view of fields
as functions that map elements of a bounded set of locations in space onto a
value-set [14]. We extend this idea in two ways: (1) we consider di↵erent types of
locations in space and time and (2) we consider that the elements of the value-set
can also be positions in space-time. Thus, a field is a function whose domain is
an extent of space-time, where one can measure the values of a property in all
positions inside the extent.

The key step in this conceptualization is the generic definition of the concepts
of position and value, shown in Fig. 2. In a time series of rainfall, positions are
time instants, since space is fixed (the sensor’s location), while values are the
precipitation counts. In a remote sensing image, positions are samples in 2D space
(the extent of the image), since time is fixed (the moment of image acquisition),
while values are attributes, such as surface reflectance. Logistic and trajectory
models record moving objects by taking positions as time instances, while their
values are the objects’ locations in space.

P:Position |= Instant, 2DPoint, 3DPoint,

(2DPoint, Instant), (3DPoint, Instant)

V:Value |= Integer, Real, Boolean, String, P:Position

E:Extent |= [(3DCube, Interval)], [(3DPolygon, Interval)]

Fig. 2: Building blocks for the Fields data type

The generic type P:Position stands for positions in space-time. This type is
mapped onto concrete types that express di↵erent time and space cases. Some
non-exhaustive examples are Instant for time instants, 2DPoint and 3DPoint

for purely spatial positions, and pairs (2DPoint, Instant) and (3DPoint,

Instant) for space-time positions. The generic type V:Value stands for attribute
values. Concrete types linked to V:Value include Integer, Real, String, Boolean
and their combination. Values can also be associated to positions, as in the case
of trajectories.

The formal description of a Field data type is shown in Fig. 3. Each field
exists inside an extent of space-time, represented by the type E:Extent, whose
instances are sets of 3D compact regions in space-time. Each field has an associ-
ated G:Estimator function that enables estimating values at positions inside its
extent. This allows a field to infer measures at all positions inside the extent. The
estimator function use the field’s information and thus has a signature (F:Field
x P:Position ! V:Value).

The relationship between positions and extents is a key part of the model. All
positions of a field are contained inside the extent. Thus, the possible concrete
types for the generic type Position are those that can be topologically evaluated
as being part of a space-time hypercube or a space-time polygon. The definition
of an extent as a set of space-time hypercubes also avoids the problems with null
values. Thus, there are no null values inside a field extent in this Field model.

6

Field [E, P, V, G] uses E:Extent, P:Position, V:Value, G:Estimator

Operations

new: E x G ! Field

add: Field x (P, V) ! Field

obs: Field ! {(P, V)}
domain: Field ! {P}
extent: Field ! E

value: Field x P ! V

subfield: Field x E ! Field

filter: Field x (V ! Bool) ! Field

map: Field x (V ! V) ! Field

combine: Field x Field x (V x V ! V) ! Field

reduce: Field x (V x V ! V) ! V

neigh: Field x P x (P x P ! Bool) ! Field

Variables

f, f1, f2: Field

g: Estimator

p: Position

e: Extent

v: Value

Functions

uf: (V ! V) -- unary function on values

bf: (V x V ! V) -- binary function on values

ff: (V ! Bool) -- filter function on values

nf: (P x P ! Bool) -- neighborhood function on positions

Axioms

-- basic fields axioms: a field is dense relative to its extent

8 p 2 extent(f) =) 9 value(f, p) = g(f, p)

8 p /2 extent(f) =) value(f, p) = ;
-- axioms on operation behavior

8 f, domain(f) ✓ extent (f)
subfield(f, e) ✓ f () e ✓ extent (f)

filter(f, ff) ✓ f

obs (new(e, g)) = ;
obs (add (new(e, g)), (p, v))) =

(p, v) () p ⇢ e

subfield(f, extent(f)) = f

neigh (f, p, nf) ✓ f, 8 p 2 extent (f)

value (map (f, uf), p) =

uf (value (f, p)), 8 p 2 extent (f)

value (combine(f1, f2, bf), p) =

bf (value (f1, p), value (f2, p)) ()
p 2 extent (f1) and p 2 extent (f2)

reduce (f, bf) =

bf (reduce (f1, bf), reduce(f2, bf)) ()
f1 = subfield (f,e1) and f2 = subfield(f,e2) and

e1 \ e2 = ; and e1 [e2 = extent (f)

Fig. 3: Generic data type definition of Field

7

The operations of the Field data type are:

new Creates a new Field, given an extent and an estimator function.
add Adds one observation with a (position, value) pair to the Field.
obs Returns all observations associated to the Field.
domain Returns the full set of positions inside the Field’s extent. The actual

result of this operation depends on the Field’s granularity, but the operation
can be defined in a problem-independent way.

extent Returns the extent of the Field.
value Computes the value of a given position, using the estimator function.

The estimator ensures that a field will represent a continuous property inside
its extent.

subfield Returns a subset of the original Field according to an extent. This
function is useful to retrieve part of a Field.

filter Returns a subset of the original Field that satisfies a restriction based
on its values. Examples include functions such as ‘values greater than the
average.’

map Returns a new Field according to a function that maps values from the
original Field to the field to be created. Examples of map include unary
functions such as double and squareRoot. This function corresponds to a
map in functional programming.

combine Creates a new Field combining two fields with the same extent, ac-
cording to an operation to be applied for each element of the original Fields.
Examples of combine include binary functions such as sum and difference.

reduce Returns a value that is a combination of all the values of some positions
the Field. Examples include statistical summary functions such as maximum,
minimum, and mean.

neigh Returns the neighborhood of a position inside a Field. It uses a func-
tion that compares two positions and finds out whether they are neighbors.
One example of the function is a proximity matrix where each position is
associated to all its neighbors.

The Field definition is independent of granularity, which we take to be a
problem-dependent issue. Each concrete field will have its spatial and temporal
granularity that will determine how its operations are implemented. Temporal
granularity will be represented by the concrete implementation of types Interval
and Instant. The granularity of type Instant should be such that it is always
possible to test whether an instant is inside an interval.

The Fields data type distinguishes between the extent and the domain of a
field. The extent is the region of space-time where one is able to get a value for
each position. The domain of a field is the set of positions it contains, whose
granularity depends on how the field was constructed. For example, two fields
may have the same extent and di↵erent domains. For the same extent, one field
may have a set of scattered positions as its domain, while another may have its
positions organized in a regular grid in space-time. One can perform operations
between these fields without changing their granularities, since they adhere to
the same operations.

8

4 Implementing Existing Algebras with the Fields Data
Type

To show how to use the Fields data type, we consider how to express two existing
algebras for spatial data using it: Tomlin’s map algebra [30] and the STAlgebra [8].
Map Algebra is a set of procedures for handling continuous spatial distributions.
It has been generalized to temporal and multidimensional settings [11,4,23].
Tomlin defines the following map algebra operations:

Local functions: The value of a location in the output map is computed from
the values of the same location in one or more input maps.

Focal functions: The value of a location in the output map is computed from
the values of the neighborhood of the same location in the input map.

Zonal functions: The value of a location in the output map is computed from
the values of a spatial neighborhood of the same location in an input map.
This neighborhood is a restriction on a second input map.

Fig. 4 shows how to express Tomlin’s map algebra functions with the Field
data type.

Variables

f1, f2: Field -- input

f3: Field -- output

p, p1: Position

Functions

uf: (v:Value ! v:Value) -- unary function

bf: (v:Value x v:Value ! v:Value) -- binary function

nf: (p:Position x p:Position ! Bool) -- neighborhood function

Operators

localUnary (f1, uf) = map (f1, uf)

localBinary (f1, f2, bf) = combine (f1, f2, bf)

focalFunction (f1, nf, bf) =

8 p 2 domain (f3)

add(f3, (p, reduce (neigh (f1, p, nf), bf)))

zonalFunction (f1, f2, nf, bf) =

8 p 2 domain(f3)

add(f3, (p, reduce (subfield (f1,

extent (neigh (f2, p, nf), bf)))))

Fig. 4: A generic map algebra

To implement a generic map algebra, the local unary and local binary func-
tions are mapped onto the map and combine operators, respectively. Local func-
tions involving three or more maps can be broken down into unary and binary
functions. A focal function uses the functions neigh and reduce. The neigh

function returns a field with only those local values that are used by reduce

9

to get a new value for the position in the output field. The same combination
implements zonal functions. The di↵erence is that the neighborhood function is
defined on a second field. The extent of the neighborhood of the second field is
used to extract a subfield of the first field. The function reduce then produces
a unique value that is the new value of the position in the output field. The
mapping is dimension-independent and can be used to implement not only Tom-
lin’s 2D map algebra [30], but also a multidimensional map algebra [23] and a
temporal map algebra [11].

A second example is STAlgebra [8], which takes observations as its basic
building blocks. Based on Sinton’s view of the inherent nature of geograph-
ical data [28], STAlgebra singles out di↵erent types for spatiotemporal data:
Coverage, CoverageSeries, TimeSeries, and Trajectories. Operations on
these types allow queries and inferences on space-time data. Instances of these
types can be related to events. The mappings from the four spatiotemporal data
types TimeSeries, Trajectory, Coverage and CoverageSeries onto the Field
type are as follows:

Time Series A time series represents the variation of a property over time in
a fixed location. For example, a time series of rainfall has measured values
of precipitation counts at some controlled times (e.g., hourly) at the sensors’
locations. A TimeSeries type is mapped onto a Field[E:Extent, Instant,

V:Value, G:Estimator] where positions are time instants.

Trajectory A trajectory represents how locations or boundaries of an object
evolve over time. For example, a trajectory of an animal, which has a
fixed identification, is composed of measured spatial locations at controlled
times (e.g., hourly). The Trajectory type of STAlgebra is mapped to a
Field[(3DPolygon,Interval), Instant, 2DPoint, G:Estimator] or to
a Field[(3DPolygon,Interval), Instant, 3DPoint, G:Estimator], if
the trajectory is taken in 2D or 3D space, respectively.

Coverage A coverage represents the variation of a property within a spatial
extent at a certain time. A remote sensing satellite image is an exam-
ple of a coverage. It has a fixed time, the moment of the image acquisi-
tion, and measured values of surface reflectance at spatial locations. The
Coverage type is mapped onto a Field[E:Extent, 2DPoint, V:Value,

G:Estimator] whose positions are 2D spatial locations.

CoverageSeries A coverageseries represents a time-ordered set of coverages
that have the same boundary, as in the case of a sequence of remote sensing
images over the same region. The CoverageSeries type has a fixed spatial
extent and measured coverages at controlled times. It is mapped onto a
Field[E:Extent, (2DPoint, Instant), V:Value, G:Estimator] whose
positions have variable 2D spatial locations and times. The field’s extent is
composed of the coverage series’ spatial extent and an interval that encloses
all position instances.

10

5 Array Databases for Big Spatial Data

Big spatial data comes from many di↵erent sources and with di↵erent formats.
Among those sources are Earth Observation satellites, GPS-enabled mobile de-
vices and social media. For example, the LANDSAT data archive at the United
States Geological Survey has more than 5 million images of data of the Earth’s
land surface, collected over 40 years, comprising about 1 PB of data. These data
sets allow researchers to explore big data sets for innovative applications. One
example is the world’s first forest cover change map from 2000 to 2012 at a
spatial resolution of 30 meters [18].

The challenge for handling big spatial data is to design a programming model
that can be scaled up to petabyte data sets. Currently, most scientific data anal-
ysis methods for Earth observation data are file-based. Earth observation data
providers o↵er data to their users as individual files. Scientific and application
users download scenes one by one. For large-scale analyses, users need to obtain
hundreds or even thousands of files. To analyze such large data sets, a program
has to open each file, extract the relevant data and then move to the next file.
The program can only begin its analysis when all the relevant data has been
gathered in memory or in intermediate files. Data analysis on large datasets
organized as individual files will run slower and slower as data volumes increase.
This practice has put severe limits on the scientific uses of Earth Observation
data.

To overcome these limitations, there is a need for a new type of information
system that manages large Earth Observation data sets in an e�cient way and
allows remote access for data analysis and exploration. It should also allows
existing spatial (image processing) and temporal (time series analysis) methods
to be applied to large data sets, as well as enabling development and testing of new
methods for space-time analyses of big data. After analyzing alternatives, such as
MapReduce [7], we consider that array databases o↵er the best current solution
for big spatial data handling. Array databases o↵er a model of programming
that suits many of tasks for analysis of spatiotemporal data.

Array databases organize data as a collection of arrays, instead of tables
used in object-relational DBMSs. Arrays are multidimensional and uniform, as
each array cell holds the same user-defined number of attributes. Attributes
can be of any primitive data type such as integers, floats, strings or date and
time types. To achieve scalability, array databases strive for e�ciency of data
retrieval of individual cells. Examples of array databases include RasDaMan [1]
and SciDB [29].

Array databases have no semantics, making no distinction between spatial
and temporal indexes. Thus, to be used in spatial applications, one needs to
extend them with types and operations that are specific for spatiotemporal data.
That is where the Fields data type is particularly useful.

11

6 Fields Operations in Array Databases

This section shows how to map the fields data type onto the array database
SciDB [29]. SciDB splits big arrays into chunks that are distributed among
di↵erent servers; each server controls a local data storage. One of the instances in
the cluster is the coordinator, responsible for mediating client communications
and for orchestrating query executions. The other instances, called workers,
participate in query processing. SciDB takes advantage of the underlying array
data model to provide an e�cient storage mechanism based on chunks and vertical
partitions. Compared to object-relational databases, the SciDB solution provides
significant performance gains. Benchmarks comparing object-relational databases
and array databases for big scientific data have shown gains in performance of
up to three orders of magnitude in favor of SciDB [6,27].

SciDB provides two query languages: an Array Query Language (AQL) that
resembles SQL and an Array Functional Language (AFL) closely related to
functional programming. There are two categories of functions:

scalar functions Algebraic, comparison and temporal functions, that operate
over scalar values.

aggregates Functions that operate on array level, like average, standard devia-
tion, maximum and minimum values.

Natively, SciDB already supports some of the operations of the Fields data
type. The operations of the Fields data type currently available in SciDB are
described in Table 1. We tested these operations using arrays of di↵erent sizes,
as discussed below.

Field op signature SciDB op
map Field x (v:Value ! v:Value) apply

subfield Field x e:Extent ! Field subarray

filter Field x (v:Value ! Bool) filter

reduce Field x (v:Value x v:Value ! v:Value) aggregate

Table 1. Fields model mapped onto SciDB

Our evaluation used a set of images from the MODIS sensor, which flies
onboard NASA’s Terra and Aqua remote sensing satellites. The MODIS instru-
ments capture data in 36 spectral bands. Together the instruments image the
entire Earth every 1 to 2 days. They are designed to provide measurements in
large-scale global dynamics, including changes in the Earth’s cloud cover, radi-
ation budget, and processes occurring in the oceans, on land, and in the lower
atmosphere [20].

We used the MODIS09 land product with three spectral bands (visible, near
infrared, and quality). Each MODIS09 image is available for download at the
NASA website as a tile covering 4,800 x 4,800 pixels in the Earth’s surface at 250

12

meters x 250 meters ground resolution. We then combined more than ten years
of data (544 time steps) of the 22 MODIS images that cover Brazil, giving a
total of 11,968 images that were merged into an array of 2.75⇥1011 (275 billion)
cells. Each cell contains three values, one for each band. This array was then
loaded into SciDB for our experiment.

We first used the SciDB subarray function to select subsets of the large array
for evaluation purposes. For each subarray, we used the SciDB apply function to
calculate the enhanced vegetation index [19] associated to each cell and stored
the results in a new subarray. Next, we used the filter operation to select
from each resulting subarray those cells whose red value was greater than 100
and stored the results. Finally, we used the aggregate function to calculate
the average of the one attribute of each subarray and store the results. Fig. 5
shows the test results as the average of 5 runs for the following number of cells:
46 ⇤ 10242, 46 ⇤ 20482, 46 ⇤ 30722, 46 ⇤ 40962, 46 ⇤ 51202, 46 ⇤ 61442, 46 ⇤ 71682, 46 ⇤
81922, 46 ⇤ 92162, 46 ⇤ 102402, 46 ⇤ 112642, 46 ⇤ 122882, 46 ⇤ 133122, 46 ⇤ 143362.

Fig. 5: Performance measures for Field operations in SciDB operations

These results were obtained in a single Ubuntu server, having 1 Intel Xeon
2.00 GHz CPU, with 24 cores and 132 GB memory. The performance results are
satisfactory, since the processing time grew roughly linearly with array size. With
a bigger server configuration, we can expect better results. These results have
given us confidence that combining the Fields data type with array database
is viable and likely to produce good results. As part of later work, we will
implement the whole Fields data type in SciDB, making it a suitable environment
for processing large spatial data.

13

Although array databases currently o↵er the most promising approach for
handling big spatial data sets, they do not yet o↵er all of the support required by
spatial applications. Most spatial applications need to combine field data sets with
information about spatial objects, such as cities and farms. Also, array databases
treat all dimensions equally. Therefore, developers of spatial applications need to
provide additional support to use array databases e↵ectively. This is a promising
new research area that can lead to spatial information infrastructures that will
make good use of large data sets.

7 Conclusions

This paper defined the Field abstract data type for representing continuous
spatiotemporal data. The motivation was to provide a sound basis for applications
that deal with big spatial data sets. These data sets can come for many di↵erent
sources and have many purposes, yet they share common features: in all of them,
one measures values at positions in space-time. The underlying conceptual view
is that these data sets are measures of continuous phenomena, thus leading to
fields. We showed that the Fields data type can represent data sets, such as maps,
remote sensing images, trajectories of moving objects, and time series.

We also considered the problem of how to implement the Field data type
operations in an environment suitable for handling large spatial data and argued
that array databases are currently the best approach available. Some of the
operations of the Field data type are already available in the open source array
database SciDB, and our experiments showed that the performance of SciDB is
encouraging. Given the results so far, we will implement the full set of the Field
data type operations directly in SciDB to provide a full features of Field data
type in array databases.

We anticipate that the combination of the Field data type and array databases
can bring about a disruptive change in spatial information infrastructures. Con-
sider the case of Earth Observation data. Currently, remote sensing data is
retrieved from the data archives on a scene-by-scene basis and most applica-
tions use only one temporal instance per geographical reference. In an advanced
infrastructure, researchers and institutions will break the image-as-a-snapshot
paradigm, as entire collections of image data will be archived as single spatiotem-
poral arrays. Users will be able to develop algorithms that can span seamless
partitions in space, time, and spectral dimensions, and arbitrary combinations of
those. These algorithms will provide new insights into changes in the landscape.

We believe that the combination of simple, yet powerful data types with new
technologies for spatial data management will bring about large changes in the
use of spatial information, especially for data that promotes the public good.
Data management of large data sets will be done in petascale centers. Users will
have the means to perform analysis and queries on these data sets. Petascale
centers that promote open data policies and open data analysis will get large
benefits from increased awareness of the value of spatial information for society.

14

Acknowledgments

Gilberto Camara thanks for the support of the Brazilian research agencies
FAPESP (grant 2008/58112-0) and CNPq (grant 04752/2010-0). This work was
written while Gilberto Camara was the holder of the Brazil Chair at the Univer-
sity of Mnster, supported by the Brazilian agency CAPES (grant 23038.007569/
2012-16). Gilberto also received substantial financial and logistical support pro-
vided by the Institute of Geoinformatics at the University of Mnster, Germany.
Max Egenhofer’s work was partially supported by NSF Grant IIS-1016740.

References

1. Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., Widmann, N.: Spatio-temporal
retrieval with RasDaMan. In: Proceedings of the 25th International Conference on
Very Large Data Bases. pp. 746–749. VLDB ’99 (1999)

2. Campbell, P.: Editorial on special issue on big data: Community cleverness required.
Nature 455(7209), 1 (2008)

3. Cardelli, L., Wegner, P.: On understanding type, data abstraction, and polymor-
phism. ACM Computing Surveys 17(4), 471–552 (1985)

4. Cordeiro, J., Camara, G., Freitas, U., Almeida, F.: Yet another map algebra. Geoin-
formatica 13(2), 183–202 (2009)

5. Couclelis, H.: People manipulate objects (but cultivate fields): Beyond the raster-
vector debate in GIS. In: Frank, A., Campari, I., Formentini, U. (eds.) Theories
and Methods of Spatio-Temporal Reasoning in Geographic Space. LNCS, vol. 639,
pp. 65–77. Springer (1992)

6. Cudre-Mauroux, P., Kimura, H., Lim, K.T., Rogers, J., Madden, S., Stonebraker,
M., Zdonik, S., Brown, P.: SS-DB: A standard science DBMS benchmark. In: XLDB
2010 - Extremely Large Databases Conference (2012)

7. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Communications ACM 51(1), 107–113 (2008)

8. Ferreira, K., Camara, G., Monteiro, A.: An algebra for spatiotemporal data: From
observations to events. Transactions in GIS 18(2), 253269 (2014)

9. Frank, A.: One step up the abstraction ladder: Combining algebras - from functional
pieces to a whole. In: Freksa, C., Mark, D. (eds.) COSIT - Conference on Spatial
Information Theory. Lecture Notes in Computer Science, vol. 1661, pp. 95–108.
Springer-Verlag (1999)

10. Frank, A.: Tiers of ontology and consistency constraints in geographic information
systems. International Journal of Geographical Information Science 15(7), 667–678
(2001)

11. Frank, A.: Map algebra extended with functors for temporal data. In: Akoka, J.
(ed.) Perspectives in Conceptual Modeling: ER 2005 Workshop. LNCS, vol. 3770,
pp. 194–207. Springer (2005)

12. Frank, A.: GIS theory - the fundamental principles in GIScience: A mathematical
approach. In: Harvey, F.J. (ed.) Are there Fundamental Principles in Geographic
Information Science? pp. 12–41 (2012)

13. Frank, A., Kuhn, W.: Specifying Open GIS with functional languages. In: Egen-
hofer, M., Herring, J. (eds.) Advances in Spatial Databases4th International SSD
Symposium. LNCS, vol. 951, pp. 184–195. Springer-Verlag, Berlin (1995)

15

14. Galton, A.: Fields and objects in space, time and space-time. Spatial cognition and
computation 4 (2004)

15. Goodchild, M.: Geographical data modeling. Computers and Geosciences 18(4),
401–408 (1992)

16. Goodchild, M., Yuan, M., Cova, T.: Towards a general theory of geographic repre-
sentation in GIS. International Journal of Geographical Information Science 21(3),
239 – 260 (2007)

17. Guttag, J., Horowitz, E., Musser, D.: Abstract data types and software validation.
Communications of the ACM 21(12), 1048–1064 (1978)

18. Hansen, M., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tyukavina,
A., Thau, D., Stehman, S., Goetz, S., Loveland, T., Kommareddy, A., Egorov, A.,
Chini, L., Justice, C., Townshend, J.: High-resolution global maps of 21st-century
forest cover change. Science 342(6160), 850–853 (2013)

19. Jiang, Z., Huete, A., Didan, K., Miura, T.: Development of a two-band enhanced
vegetation index without a blue band. Remote Sensing of Environment 112(10),
3833–3845 (2008)

20. Justice, C., Townshend, J., Vermote, E., Masuoka, E., Wolfe, R., Saleous, N., Roy,
D., Morisette, J.: An overview of MODIS land data processing and product status.
Remote Sensing of Environment 83(1), 3–15 (2002)

21. Kemp, K.: Fields as a framework for integrating GIS and environmental process
models. part one: Representing spatial continuity. Transactions in GIS 1(3), 219–234
(1997)

22. Kuhn, W.: Geospatial semantics: Why, of what, and how? Journal of Data Seman-
tics 3, 1–24 (2005)

23. Mennis, J.: Multidimensional map algebra: Design and implementation of a spa-
tiotemporal GIS processing language. Transactions in GIS 14(1), 1–21 (2010)

24. OGC: The OpenGIS abstract specification - Topic 6: Schema for coverage geometry
and functions (Tech. Rep. OGC 07-011). Tech. rep., Open Geospatial Consortium,
Inc. (2007)

25. OGC: OGC web coverage service (WCS) interface standard - Core (OGC 09-110r3).
Tech. rep., Open Geospatial Consortium, Inc. (2010)

26. Peuquet, D.: Representations of geographic space: Toward a conceptual synthesis.
Annals of the Association of American Geographers 78(3), 375–394 (1988)

27. Planthaber, G., Stonebraker, M., Frew, J.: EarthDB: scalable analysis of MODIS
data using SciDB. In: Proceedings of the 1st ACM SIGSPATIAL International
Workshop on Analytics for Big Geospatial Data. pp. 11–19. ACM (2012)

28. Sinton, D.: The inherent structure of information as a constraint to analysis:
Mapped thematic data as a case study. In: Dutton, G. (ed.) Harvard Papers on
Geographic Information Systems. vol. 7, pp. 1–17. Addison-Wesley, Reading, MA
(1978)

29. Stonebraker, M., Brown, P., Zhang, D., Becla, J.: SciDB: A database manage-
ment system for applications with complex analytics. Computing in Science &
Engineering 15(3), 54–62 (2013)

30. Tomlin, C.: Geographic Information Systems and Cartographic Modeling. Prentice-
Hall, Englewood Cli↵s, NJ (1990)

31. Winter, S., Nittel, S.: Formal information modelling for standardisation in the
spatial domain. International Journal of Geographical Information Science 17(8),
721–741 (2003)

