
Draft Version 3, 30 April 2005

National Institute for Space Research (INPE), Brasil

School of Information Sciences and Technology (IST), Penn

State University

Joint Research Project on “Public Policies for

Open Source Software and Open Data Access”

Working Paper Series, #1

April, 2005

Draft Version 3, 30 April 2005

Structural Constraints in Open Source Software Development and

their Public Policy Implications

Gilberto Câmara

Image Processing Division - Brazilian National Institute for Space Research
São José dos Campos, SP, Brazil

gilberto@dpi.inpe.br

Frederico Fonseca

School of Information Sciences and Technology - The Pennsylvania State University
State College, PA, USA
ffonseca@ist.psu.edu

1. Introduction

The development of open source software (OSS) has received a substantial

attention recently. Following the successful examples of projects such as Linux,

Apache and Perl, there has been a substantial interest by policy-makers and

researchers on the dynamics of the production of open source software (Benkler

2003). A topic of particular interest is the adoption of open source software

systems in developing nations, as a means of reducing licensing costs and of

promoting indigenous technological development, by having access to the source

code of these systems. A recent on intellectual property rights and international

development commissioned by the government of the United Kingdom underpins

such policies with an explicit recommendation:

“Developing countries and their donor partners should review policies for

procurement of computer software, with a view to ensuring that options for

using low-cost and/or open-source software products are properly considered

and their costs and benefits carefully evaluated” (Barton et al. 2002).

 Many studies that discuss the development of open source software portray an

idealized view, taking OSS to be a product of a committed group of individuals.

These individuals would operate on a distributed network, where each

Draft Version 3, 30 April 2005

programmer works on a small but meaningful module. The programmers are

isolated, communicating by means of a central repository and mailing lists. The

incentives to participate operate on an individual level (Weber 2002). Some

authors go as far as identifying in open source software a new mode of

organizational structure, denoted by commons-based peer production (Benkler

2003). Others claim that the globally distributed skill induced by open source will

loosen the grip of the richest countries on innovation (Kogut et al. 2001). This

article takes a critical appraisal of these idealistic views. We consider them

untenable, because of the structural characteristics of software development. We

argue that there are two defining properties of any open source software: the

potential for reverse engineering and the potential for distributed development.

These properties vary widely for different types of software products. The Linux

model of a widely distributed developer community requires both conditions to be

fully satisfied. Otherwise, developing successful OSS requires completely different

strategies. By assessing the adherence of each type of software project to these two

conditions, we can build a taxonomy for open source projects, and we establish

more realistic policies to promote the use of open source.

 We consider the following questions: (a) What are the structural factors for

OSS development? (b) How do these conditions influence the sustainability of

open source projects? (c) What are the consequences of these finding for policies

that promote the use of OSS in developing countries?

2. Structural Factors in Open Source Software Development

Decades of experience indicate the hardest parts of software production are

achieving a clear conceptual design (Brooks 1982) and establishing a feasible

strategy for modular development (Parnas 1972). The open source movement has

not refuted this overall panorama of software development, and therefore these

are the two key limiting factors for construction of a successful product: the

previous existence of conceptual designs of similar products (the potential for

Draft Version 3, 30 April 2005

reverse engineering) and the problem granularity (the potential for distributed

development).

 The issue of reverse engineering arises naturally when designing a new

software product. In segments where a strong consolidation has already taken

place, a single product will have a very large of the commercial market share, as in

the case of personal productivity suites (where Microsoft’s MS-Office is

dominant). In other areas, such there are already established standards, as SQL for

relational database management systems. In these circumstances, open source

developers will be aiming directly at a ‘market substitution’ strategy and will

develop a product that maintains, as much as possible, the features of the leader

on the commercial sector. In this case, there is a strong incentive for newcomers

to license their products as open source. The potential for reverse engineering is

largely dependent on two components:

• The post-mature component: a private company develops a software product,

for with it holds full intellectual property rights. As this product becomes

popular, its functionality and conceptual model becomes well established, and

it becomes part of the “public commons”. The popularity and usability of the

software motivates other institutions to develop a public domain equivalent, as

in the case of Open Office.

• The standards-led component: The establishment of standards consolidates a

technology and allows compatible solutions from different producers to

compete in the marketplace. An example is the SQL database standard, which

has motivated products such as mySQL and PostgreSQL. Another example is

the POSIX standard for operating system interfaces, which has served as a

guidance to Linux.

 The second factor affecting software development is the potential for

distributed development, which is dependent on the software structure. In a

simplified view, a software product has a kernel and additional functions that use

it (its periphery). An operating system such as Linux has a well-defined kernel for

Draft Version 3, 30 April 2005

process control and a periphery consisting of programs such as device drivers,

applications, compilers and network tools. By contrast, database management

systems have a strong kernel of highly integrated functions (such as the parser,

scheduler, and optimizer) and a much smaller periphery. Therefore, each type of

software product has a periphery/kernel ratio that constrains the potential for

distributed development, since the kernel requires a tightly-organized and highly-

skilled programming team. This situation is consistent with empirical studies that

strongly dismiss the idealized conception of open source projects as based on a

loose network of developers operating worldwide. Out of more than 400

developers, the top 15 programmers of the Apache web server contribute 88% of

added lines (Mockus et al. 2002). Fitzgerald (2004) calls these top programmers

‘code gods’ and considers that overcoming this problem one of the challenges of

OSS. Others (Sagers 2004) have a more positive attitude towards this ratio (few

highly skilled/many average-low skilled programmers) and think that restricted

access to main parts of the code improves coordination, which affects positively

the success of a software project.

 Assessment of these two factors helps our understanding of open source

software and aids policymakers in establishing appropriate policies to promote its

use. We present our model in Figure 1, where we recognize four types of open

source software projects:

• High reverse engineering, high distribution potential (the High-High case): here

we find the most prototypical open source projects, those that fit the Linux

model. Many of the developers will have a separate job, and do their work in

their “spare” time, or in time allocated in agreement with their employer. We

call them community-led projects.

• High reverse engineering, low distribution potential (The High-Low case): here

we find a large number of projects, including databases, office automation

tools, and web servers. This segment has a large presence of private companies,

which aim at entering the marketplace with products similar to the commercial

Draft Version 3, 30 April 2005

market leaders. These companies benefit from the reduced risk involved in

reverse engineering. There can be outside collaborators, but the main design

decisions take place within the institution and in some cases should also

address the commercial objectives of these corporations. We call them

corporation-led projects. Examples include the mySQL and PostgreSQL

database management systems, and the GNOME user interface from Ximian

corporation.

• Low reverse engineering, high distribution potential (the Low-High case):

projects with a high-degree of innovation (usually there is no commercial

counterpart) and that share a relatively simple software kernel. They originate

in academic environments by researchers and graduate students. Examples

include the GRASS GIS software and the R suite of statistical tools. We call

them academic-led projects.

• Low reverse engineering, low distribution potential (the Low-Low case): usually

developed by small teams under a public R&D contract, targeting a niche

application and addressing specific requirements, or aiming to demonstrate

novel scientific work. They have a very high mortality rate, since most of them

are restricted to the lifetime of a research grant. We call them innovation-led

products.

Draft Version 3, 30 April 2005

Figure 1 – A Structural Model for Open Source Software Development

A software project, in its lifetime, may migrate between these categories. An

innovation-led product might evolve to a corporation-led one by incorporating

characteristics of market products. Such is the case of the PostgreSQL database

management system, which derives from a Berkeley research project (Stonebraker

et al. 1986) with added support for the SQL standard and market requirements. A

corporation-led software might evolve into an community-led one if their original

developers make the necessary investment and adjustment in intellectual property

rights to make it accessible to a larger community. This is case of the Mozilla

browser and associated tools, originally from Netscape. The Apache web server is

an example of an innovation-led project that evolved to a community-led one. A

team of programmers decided to take the source code of the National Center for

Supercomputing Applications Web server, update it, and release it to the public. It

is renamed the "Apache" Web server because of all the patches used to upgrade it.

Potential
Rev Eng

Potential
Distribution
Develop

innovative

High-Low High-High

Low-Low Low-High

corporate

collaborative

communitary

Challenges
?

Draft Version 3, 30 April 2005

3. Sustainability of Open Source Projects: A Structural Perspective

 One of the more interesting consequences of the structural perspective for

OSS is that it provides a way to assess the sustainability of projects. This would

allow policy makers to take a more active standpoint in supporting open souce.

 High-high

 The “high-high” situation is the archetypical open source project. It arises

when a software project has both a stable design (usually arising from a standards-

led situation) and when it is structurally possible to break it in many independent

modules that are suitable for large-scale team development (Narduzzo et al.

2005). This is the case of Linux, where developers had a stable design standard as

a basis for the project (the POSIX standard) and where the very simple and

efficient kernel allowed the concurrent development of drivers for external

components such as hardware devices. Additionally, the close relationship of

Linux to other UNIX flavors such as BSD allowed the easy conversion of a whole

suite of applications, such as BIND, sendmail, and the GNU software tools (Oram

et al. 1995). However, there are strong limits to large-scale modularity in most

software projects. In his classic book The Mythical Man-Month, Frederick Brooks

stated his famous law: “Adding people to a late software project just makes it later”

(Brooks 1972). His chief argument was the added costs of communication

between any new software developer and the group he joins. Therefore, in order

for the communication costs to be minimal, the design has to minimize

communication overhead among group members, a situation that requires a very

careful module design, which is not realistic in practice. As Brooks states in

another classic work (“No Silver Bullet”), software design is very hard because the

state space of a medium-scale software project is much larger than the human

capacity to model it (Brooks 1982). To sum up, the “high-high” situation is very

difficult to achieve. Indeed, it would be counterproductive if all open source

projects would fit into this category, since there would be very little innovation

Draft Version 3, 30 April 2005

coming out of the open source movement, that would be limited to reverse-

engineering existing designs or following accepted standards.

High-low

 The “high-low” arises in two situations mentioned above: when a commercial

software has a large market-share or when a software technology becomes stable

enough to for standards to appear. When a single commercial product has a very

large part of the market, as in the case of personal productivity suites, switching

costs will prevent a new commercial product from capturing market share, even if

sold at smaller prices. In this case, there is a strong incentive for newcomers to

license their products as open source. When a standard is established, as in the

case of the SQL language for relational database management systems, the design

effort is reduced for the developer and the switching costs are minimized for the

user. In both case, developing an open source product may be part of a private

company’s business strategy and not a community-led effort.

Low-High

 The “low-high” situation occurs when a network of developers produce

innovative software on a collaborative basis. This situation requires a combination

of factors: a technical community which has consolidated links (they may meet

regularly at scientific conferences), a knowledge domain whose basis is stable, and

a product whose design allow scalability. One prime example is the R suite of

statistical tools. The basis for this software is the commercial product S-Plus,

whose elegant and simple design (Chambers 1998) enabled the statistical

community to design the R suite tools (Ihaka et al. 1996), based on the same basic

commands as S-Plus. Given a stable, well-documented design, the statistical

community has extended the basic R functionality into a large set of tools. Other

examples on this quadrant include the GRASS GIS suite of programs.

Draft Version 3, 30 April 2005

 Low-low

 The “low-low” case occurs in many scientific areas, where products are usually

associated to research projects leading to innovative results. The open source

license is the natural way for distributing a software prototype produced by a

research institution. These products are mostly prototypes demonstrating the

feasibility of a new design and are not design for commercial use, in many cases

lacking end-user tools such as adequate documentation. In order to take them to

the marketplace, their innovative features require a large investment in issues such

as documentation and reliability. Such investment may be outside of their

developers’ resources. The research community is usually not interested in a direct

involvement in long-term open source projects, and maintaining and supporting

an open source software project requires considerable resources, beyond the reach

of most academic research groups. These projects have a very high mortality rate,

since most of them are restricted to the lifetime of a research grant. In many cases,

in order for a research prototype to evolve into an open-source product, a team of

developers must be taken over from the original research team and established as

support and maintenance infrastructure for the product. Therefore, it is very

unlikely that an open source project that stays in the “low-low” will succeed.

Therefore, although many open source projects may start on the “low-low”

quadrant, they must to migrate to more favorable situations. Migration to the

“high-low” quadrant occurs frequently when a commercial company decides to

use a market strategy based on open source licensing, and takes over the

development, as discussed above. Migration to the “low-high” quadrant depends

on the stabilization of the software’s kernel and the adoption of the product by a

community of individuals. These issues are discussed further in the next section.

Draft Version 3, 30 April 2005

4. OSS Structural Constraints and Project Sustainability

 The structural constraints discussed above have important consequences for

public policy, especially in the developing countries. In order to be able to benefit

from OSS development, the policies must be appropriate for each particular

situation. In this discussion, we define software project sustainability as “the

capacity of a software project to adapt to major changes in its current team and

financial support structure”.

Dealing with the High-High Situation

 This is the simplest case, since products in this range usually have a large

community of developers, which is capable of dealing with major changes in team

structure. It is conceivable that, in the unlikely event that Linus Thorvalds would

resign from his rôle as the chief programmer of Linux, that there would be

qualified replacements for the job. Therefore, developing countries are safe to

assume that adoption of “high-high” OSS is a safe and sustainable option.

Dealing with High-Low Situation

 This situation presents a large challenge to developing nations and policy

makers worldwide. As explained above, a large proportion of OSS products in this

category are associated with private companies. The programmers have a full-time

job as software developers for a company, which in turn will be dependent on

revenues associated to services it might provide. A prime example is the mySQL

relational DBMS, which is a product of a private company. This is a situation

where the open source credo is not fully applicable, since the open source users

may become as dependent on a private company as in the case of proprietary

software. Should that company’s business strategy fail and the project be

terminated, its users would face a difficult situation. If possible, developing

nations should avoid adopting “high-low” software products whose long-term

sustainability is doubtful, especially if these products are strongly associated to

private companies.

Draft Version 3, 30 April 2005

In some areas, there are few current alternatives to “high-low” software, as in the

case of the Open Office suite. In this case, it is important to address the question

of governance models associated to such products. It is being increasingly

recognized that the governance model of an OSS product is just as important as

the product itself (Franck and Jungwirth, 2002). There has been an increasing

emphasis on governance models that increase the power of stakeholders in the

software and reduce the main developers’ capacity for independent decision. In

this case, by actively participating as stakeholders in such governance boards,

developing nations could reduce their liabilities when adopting “high-low”

software produced by private companies.

Dealing with the Low-High Situation

 The low-high situation represents a favorable condition, since the modularity

of the software design and the existence of an established community indicate that

the software projects in this area will be sustainable. Since most of the new

developments in this area are extensions of the kernel, the product tends to grow

without major risks. The main challenge here for developing nations is the amount

of expertise required to use these software products, since they contain a fair

amount of innovation. For example, in order to benefit from the set of

applications available in the R suite of statistical tools, users in developing nations

need to be technically proficient in advanced statistics techniques. This requires

policy makers in the developing world to be aware that significant investments are

needed in human resources, if the “low-high” OSS products are to make a

significant impact in their nations.

 Dealing with the Low-Low Situation

The low-low situation affects developing nations in two different contexts. First,

users in developing nations may be tempted to adopt products in this category

that have been produced by researchers in he developed world. Since “low-low”

project tend to unlikely to be sustainable in the medium term, their adoption

Draft Version 3, 30 April 2005

entails a significant risk. Before adopting such software on a larger basis, software

developers must assess the likelihood that these projects migrate to the “low-high”

or the “high-low” quadrants. If sufficient resources are available in a developing

nation, a team of skilled local programmers could envisage to undertake the task

of establishing a stable product from a research prototype.

A second situation that arises frequently is the case of projects initiated in

developing nations. These projects might be financed by public grants, usually

associated to local research groups. Unaware of the structural characteristics of

OSS products, policy makers might naively believe that, after an initial incentive,

an OSS product will blossom by itself. In many cases, after an initial one to three

year grant, the project might die out, without attracting a large enough

community (or a commercial company) that would ensure long-term

sustainability.

5. Public Policy Implications of the Adoption of OSS

 The preceding sections have examined the nature of open source software

development and outlined the main characteristics of its production. We have

argued that most mature and successful OSS products require the establishment of

organizational structures dedicated to their production. The consequences for

developing nations are significant. Many developing nations are currently actively

considering policies to support or enforce the adoption of OSS by public

institutions (Dravis 2002). The arguments in favor of OSS adoption by public

institutions include (Ghosh et al. 2002):

• Lower cost: adoption of personal computers based on OSS for public use

can reduce initial entry cost by as much as 50%.

• Independence from proprietary technology: many governments are

increasingly concerned with over-dependence in some important markets

to a small number of vendors.

Draft Version 3, 30 April 2005

• Availability of efficient and low-cost software: the virtuous examples of

some products (such as Linux and Apache) have encouraged statements

about the widespread availability of OSS software for public use.

• Ability to develop custom applications and to redistribute the improved

products: Given the “open” nature of OSS, skilled local programmers could

adapt the software to fit local needs, and thus increase the efficiency of the

services provided by the improved products.

While the authors consider that there is enough empirical evidence to support the

first two claims, the issues regarding “software availability” and “ease of

customization” are far more problematic and require a much closer examination.

Most successful open source software tools are infra-structural products, such as

operating systems, programming languages and web servers. By contrast, the

number of mature OSS that support end-user applications is much smaller

(Schmidt et al. 2002). Operating systems, compilers and Web servers respond to

the needs of technically qualified IT professionals, who can more easily adapt to

the demands of products where support might only be available on the Internet,

and requires expertise in the English language.

 Additionally, there are inherent market failures and cultural issues in open

source software production, which limit the availability of the products needed by

developing nations. Therefore, if governments in developing nations aim to profit

from the potential benefits of open source, they must intervene and dedicate a

substantial amount of public funds to support the establishment and long-term

maintenance of open source software projects.

 Finally, the issue of social production of technology should be addressed,

especially in regards to developing nations. The naïve view of open source

products is concerned only with the software development process, with limited

regard for its usage. Many open source developers take the view that since their

product is superior to commercial ones, it will be automatically be adopted by

potential users. In real life, the development and user communities are different

Draft Version 3, 30 April 2005

and most users have limited technical knowledge. Concerns such as

documentation, local support, training material and best-case examples dictate

user choice. In developing nations, language barriers are an additional limiting

factor. As a result, the effort needed to place open source software in the hands of

users worldwide very often falls completely outside the capabilities of committed

programmers teams.

 As we discussed before, there is a dual role for OSS in developing countries.

Government policies need to address both OSS as a technology and as a final

product. The example of Linux is not reproducible in all situations. In developing

countries there will be plenty of situations with a low-low profile regarding the

potential for reverse engineering and distributed development. This is the case

with applications in education, public health, environment, and security. There

are inherent market failures and cultural issues in open source software

production, which limit the availability of the products needed by developing

nations. Therefore, if governments in developing nations aim to profit from the

potential benefits of open source, they must intervene and dedicate a substantial

amount of public funds to support the establishment and long-term maintenance

of open source software projects. Only with an assured long-term support, “low-

low” projects might migrate to a “low-high” or to a “high-low” situation, and thus

increase their long-term sustainability.

6. Conclusions: Public Policies for OSS in Developing Countries

The role of government in developing countries is an important one. First,

government has a strong buying power that can drive the market. Second, state

sponsored universities are predominant and the most important source of research

funds is the government. Third, as Wilson (2004) argues in his analysis of the

struggle of developing countries to follow the information revolution, political

institutions and policies at the national level are as important as technology.

Draft Version 3, 30 April 2005

Nevertheless the role of OSS for developing countries cannot be restricted to

government mandated use of Linux as have been reported recently (Rossi 2004).

For instance, the Brazilian government is recommending that its agencies have

Linux installed in all new computers from 2004 on. In Thailand, the government

is aiming at having 5% of its computers running Linux. OSS has a much more

important role. OSS can help developing countries master the technology of

software development and support the development of applications that leverage

local knowledge. Therefore, development policies should address the broader

aspects of OSS.

For instance, Sagasti suggests some principles to guide the design and

implementation of strategies to create and acquire endogenous science and

technology capabilities in developing countries (Sagasti 2004). He states:

“strategies and policies for establishing an endogenous science and technology

base must be fully incorporated into the design of a comprehensive development

strategy for the country” (p.85). Isolated technology projects have less chance to

succeed or at least to be sustainable in the long run. Since OSS is a technology

from which tangible benefits can be harvested early, its integration on long-range

policies is more likely to happen. OSS can be used to build products that will give

a large portion of the population access to information that it would not have

otherwise. These kinds of products are likely to have a positive impact on the

public opinion making it easier for government to include support for OSS in its

developmental policies.

Another principle suggested by Sagasti (2004) is that “the cumulative process of

building endogenous science and technology capabilities requires continuous and

sustained efforts over a long time” (p.86). This principle brings the problem of

sustainability. Is OSS sustainable as a long-range development plan for developing

countries? In order for development projects to be sustainable it is necessary to

incorporate indigenous knowledge and techniques in the process of

implementation of new technologies. Although OSS has a great potential for

Draft Version 3, 30 April 2005

doing this it also needs support in terms of having government-funded research

and training.

An analysis of the challenges facing OSS (Fitzgerald 2004) suggests other

directions for policies in developing countries. Fitzgerald mentions the key role of

project leaders. These are individuals with leadership and programming skills.

Policies need to address this important point providing for selection, training, and

support of leaders that will help bring together two kinds of knowledge, technical

and practical. Project leaders will embody emancipatory knowledge. They will

help disseminate technical knowledge and will make sure that local knowledge is

embedded in the products of software development.

The view of OSS as a product of a team of committed individuals is not realistic.

Most products are built either by a very small team of individuals or by

corporations. Large collaborative networked teams are responsible for a small

number of products. Additionally, most projects aim at reverse-engineer existing

designs or at complying with standards. Given the constraints in open source

software production, such advances will not happen spontaneously and will

require public intervention to fund innovation. Open source software in

developing nations needs strong and wise policies to be successful. It is a

combination of institutional vision, qualified personnel and strong links to user

community. OSS in developing countries needs to be government-funded to be

viable.

Draft Version 3, 30 April 2005

References

1. Barton, J., Alexander, D., Correa, C., Mashelkar, R., Samuels, G., and

Thomas, S. "Integrating Intellectual Property Rights and Development

Policy," Commission on Intellectual Property Rights, UK Department for

International Development, London.

2. Benkler, I. "Coase’s Penguin, or, Linux and The Nature of the Firm," Yale Law

Journal (112:Winter 2002-03) 2003.

3. Brooks, F. The Mythical Man-Month. Wesley Publishing Company, Reading,

MA, 1972.

4. Brooks, F. "No Silver Bullet: Essence and Accidents of Software Engineering,"

IEEE Computer) 1982.

5. Chambers, J.M. Programming with Data. Springer-Verlag, New York, NY,

1998.

6. Dravis, P. "A Survey on Open Source Software," The Dravis Group, San

Francisco, CA.

7. Fitzgerald, B. "A Critical Look at Open Source," IEEE Computer (37:7) 2004,

pp 92-94.

8. Ghosh, R.A., Krieger, B., Glott, R., and Robles, G. "Open Source Software in

the Public Sector: Policy within the European Union," International

Institute of Infonomics, University of Maastricht, The Netherlands,

Maastricht.

9. Ihaka, R., and Gentleman, R. "R: A Language for Data Analysis and Graphics,"

Journal of Computational and Graphical Statistics (5:3) 1996, pp 299-

314.

Draft Version 3, 30 April 2005

10. Kogut, B., and Metiu, A. "Distributed Knowledge and the Global Organization

of Software Development," MIT Working Paper, Massachusetts Institute

of Technology, Boston, MA.

11. Mockus, A., Fielding, R., and Herbsleb, J. "Two case studies of open source

software development: Apache and Mozilla," ACM Transactions on

Software Engineering and Methodology (11:3) 2002.

12. Narduzzo, A., and Rossi, A. "The Role of Modularity in Free/Open Source

Software Development," in: Free/Open Source Software Development, S.

Koch (ed.), Idea Group, Hershey, PA, 2005.

13. Oram, A., and Loukides, M. Programming with GNU Software O'Reilly,

Sebastopol, CA, 1995.

14. Parnas, D. "On the Criteria to be Used in Decomposing Systems into

Modules," in: Communications of the ACM, 1972, pp. 1053-1058.

15. Rossi, M.A. "Decoding the "Free/Open Source (F/Oss) Software Puzzle" a

Survey of Theoretical and Empirical Contributions," Quaderni dell'Istituto

di Economia (424) 2004, pp 1-40.

16. Sagasti, F.R. Knowledge and Innovation for Development: The Sisyphus

Challenge of the 21st Century E. Elgar, Cheltenham, UK, 2004.

17. Sagers, G.W. "The Influence of Network Governance Factors on Success in

Open Source Software Development Projects," Proceedings of the The

25th International Conference in Information Systems (ICIS 2004), 2004,

pp. 427-438.

18. Schmidt, K.M., and Schnitzer, M. "Public Subsidies for Open Source? Some

Economic Policy Issues of the Software Market," Seminar for Economic

Theory, Ludwig Maximilian University, Munich.

Draft Version 3, 30 April 2005

19. Stonebraker, M., and Rowe, L.A. "The Design of POSTGRES," in: ACM-

SIGMOD International Conference on the Management of Data,

Washington, D.C., 1986, pp. 340-355.

20. Weber, S. "The Political Economy of Open Source," BRIE Working Paper 140,

University of California, Berkeley, CA.

21. Wilson, E.J. The Information Revolution and Developing Countries MIT

Press, Cambridge, Mass, 2004.

