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Abstract. This work introduces the concept of ‘non-Toblerian geographical 

spaces’, where anisotropic and action-at-a-distance relations are relevant. Non-

Toblerian spaces arise often in cases of rapid change caused by human actions, 

and we argue that these cases are becoming more frequent due to globalization 

and to the growing integration of markets. The current generation of GIS does 

not handle such spaces properly. This paper provides practical and theoretical 

evidence on the commonness of non-Toblerian spaces. We argue that some 

relevant critiques on the limits of GIS made by postmodern thinkers can be 

addressed by adopting a generalized measure of proximity. The paper also 

discusses the Generalized Proximity Matrix (GPM), a tool for representing non-

Toblerian spaces, focusing on its use for dynamical spatial modelling. The 

GPM allows GIS to provide a flexible support for proximity measures, and thus 

support modelling in non-Toblerian spaces. 

Keywords: Spatial relations, dynamical spatial modelling, spaces of places, 

spaces of fluxes.  

1   Introduction 

Spatial relations are a fundamental part of applications that use geographical 

information systems, as we use these relations to make queries and perform 

operations on geospatial objects. Finding out a formal way to specify topological 

spatial relations [1] was an important step in developing a common set of GIS-related 

standards [2]. Within the domain of spatial relations, the notion of proximity is 

especially important. Many spatial operations and spatial models depend on 

representations of proximity that provide a practical application of Tobler’s [3] 

principle (“the first law of geography: everything is related to everything else, but 

near things are more related than distant things”). In our common-sense use of GIS 

[4], the notion of proximity is associated to point-set topological predicates [1] and to 

isotropic distances in Euclidean space. Spatial analysis properties such as 
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autocorrelation, used in geostatistics [5] and area analysis [6], rely on Euclidean 

distances or topological relations. These methods have brought about notable progress 

in spatial analysis, with applications in disciplines such as public health, public 

security, spatial econometrics, and social inequality analysis [7-9].  

Despite these successes, there is increasing evidence about many problems that 

cannot be solved effectively using the conventional definitions of proximity. As we 

argue in the present paper, many human-built spaces have a strong tendency toward 

anisotropy, where some directions prevail over others. The rapid land changes 

common in the world´s developing nations are influenced by relations that act at a 

distance, such as connections to markets [10].  We need to represent such spaces if we 

are to capture relations that consider how today’s global economic forces influence 

local actions. In this perspective, this paper proposes that GIS should adopt a flexible 

notion of proximity for spaces where anisotropic and action-at-a-distance relations are 

relevant. We call such spaces “non-Toblerian”, by analogy to Waldo Tobler’s “first 

law of geography”. In non-Toblerian geographical spaces, proximity is not measured 

by topological relations or by Euclidean distances, but it is a singular property of each 

spatial object from that space. For each spatial object, we need to find out its 

proximity relation to all other objects in the same space. This relation will depend on 

the underlying social relations that have created the objects in this space. By making 

proximity into a flexible and individual relation between objects, we will be able to 

represent much richer problems using GIS.  

Strictly speaking, Tobler´s “first law of geography” continues to be valid in spaces 

that use a flexible definition of proximity. We chose to call such spaces ‘non-

Toblerian’ to honour Waldo Tobler´s insights, which have led to much significant 

work on GIScience and to highlight that such spaces need a flexible definition of 

proximity. In this paper, we provide practical and theoretical evidence on the 

commonness of non-Toblerian spaces. We also argue that some relevant critiques on 

the limits of GIS made by postmodern geographers [11] can be addressed by 

developing models on such spaces. The paper also discusses the Generalized 

Proximity Matrix (GPM), a tool for representing non-Toblerian spaces, focusing on its 

use for dynamical spatial modelling. This paper follows from earlier works by the 

authors, including a first definition of the GPM [12] and its use for multiscale 

modelling [13] [14]. The authors have tested the ideas described here using the 

TerraLib open source GIS library [15] and the TerraME spatial dynamical modelling 

environment [16]. 

2   Why Many Human-built Spaces are �on-Toblerian 

There are many cases where action-at-a-distance relations define how humans occupy 

space. When people move into a region, they create and use access routes. A new 

road will attract new occupants to its surroundings, be it in urban expansion areas or 

in rural domain. The resulting patterns are not isotropic, since they follow preferential 

paths set by the transport network. Consider land changes in the state of Rondonia, 

part of the Amazon rainforest in Brazil, a case well-documented by remote sensing 

data [17], and shown in Figure 1. Systematic cutting of the forest vegetation starts 
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along roads and then fans out to create the "fishbone" pattern shown in the eastern 

half of the 1986 image. In the Brazilian Amazonia, there are many fishbone patterns 

associated with planned settlements, created by the Brazilian government in a 

centrally planned design. From the main road, shown in Figure 1 (top left), the 

planners created a network of side roads and settled poor people from other regions of 

Brazil. Deforestation along the expanding network of highways and local roads 

created a ‘fishbone’ pattern. Such colonization projects had no consideration for 

environmental constraints and landscape characteristics of each region [18]. 

 

 
Fig.1. Human occupation in Rondonia, Brazil, as shown in LANDSAT images. Top 

left: image from 1975; top right: image from 1986; bottom: image from 1992 

(source: USGS). 

A second example concerns urban chance in Riyadh, Saudi Arabia´s capital, shown 

in Figure 2. From the 1970s to the 1990s, Riyadh´s population grew from about a half 

million to almost two million. The city grew through migration from rural areas. In 

the mid-1970s Riyadh's population was increasing by 10 per cent a year, a growth 

supported by the increase of oil revenues. The government built new roads leading to 

the city, which led to a pattern of occupation induced by the transport network.  
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Fig.2. Urban expansion in Riyadh, South Africa, as shown in LANDSAT images. Left: image 

from 1972; right: image from 1990 (source: USGS). 

The Rondonia and Riyadh cases are examples of a more general scientific question 

of how human relations evolve in space and how this evolution depends on the 

pathways and routes for humans to occupy space. Usually, when changes in 

geographical space depend on networks and routes, a non-Toblerian space emerges as 

a result. Thus we need a theory to explain how non-Toblerian geographical spaces 

emerge. We consider that social network theory is a good candidate for providing 

such explanations. 

Social network theory deals with analysing the interplays between individuals or 

groups, and actors at different levels of analysis. The regularities and patterns of such 

interactions shape these networks [19, 20]. An important part of social network theory 

concerns the analysis of properties of empirical data for issues such as collaboration 

networks, disease spreading, and innovation diffusion. Most of this data has a spatial 

part. Indeed, one of the important pioneering works on both social networks and time 

geography was Hägerstrand´s work in the diffusion of innovations [21]. There are 

now many techniques for analysing social network data [19, 22, 23], which allow 

calculation and comparison of structural and spatial properties. Increasingly, the GIS 

community is interested in the connections between networks and other spatial forms 

of representations [24]. In a recent survey of the relations between social science and 

GIScience, Goodchild et al. [7] stressed the need to build direct spatial expression of 

networks and expressed interest in creating synergies between the two fields. 

As well as analysing empirical data, an important branch of social network theory 

considers the questions of how do networked patterns arise. In connection to their 

work on scale-free networks, Barabasi and Albert [25] propose a theory on how social 

networks emerge. They consider that most real networks have preferential 

attachment. That is, given an existing route inside the Amazon forest as shown in 

Figure 1, it is much more likely that new settlements will emerge close to that route 

than in other places of the same regions. In turn, these settlements induce building 

new roads, which in turn create conditions for newcomers to occupy the regions 

following the road pattern. Thus, networks have a constraining effect on how 

geographical space is occupied and have a cascading effect on shaping the spatial 

patterns. Such effects are more noticeable in cases of fast land change, such as the 
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Rondonia and Riyadh examples, but to a lesser extent influence all human-built 

spaces. 

The result of the preferential attachment effect is a strong dependence between the 

individual or groups present on the space. As shown by Barabasi and Albert [25], the 

extreme form of preferential attachment leads to a scale-free network described by an 

exponential distribution, as with the World Wide Web [26]. Even in less extreme 

cases, preferential attachment leads to spaces where the spatial relations are strongly 

anisotropic, thus needing new methods for calculating proximity. In the most general 

case, all individual spatial relations need to be calculated separately. In this paper, we 

discuss a method for general expression of proximity relations in non-Toblerian 

spaces, called the Generalized Proximity Matrix (GPM). Before that, we propose to 

examine some GIS critiques by postmodern geographers, since we consider the theory 

of non-Toblerian space can answer some of those criticisms. 

3. �on-Toblerian Spaces as a Response to Postmodern Views of 

Space 

One of the most contentious issues for setting up GIScience as an academic discipline 

has been the criticism raised at geographic information systems by the so-called 

‘postmodern’ geographers [27]. Much of this criticism was ideological, including 

accusations of ‘links between GIS and imperialism’ [11]. In this section, we shall not 

consider such extreme criticisms, but will examine some issues raised by postmodern 

thinkers which we consider relevant to our discussion. To this end, we consider how 

writings of two leading scholars (David Harvey and Manuel Castells) have influenced 

us to propose the notion of non-Toblerian spaces as a response to their views on the 

new spaces created by globalization. 

In his book “The Condition of Postmodernity” [28], David Harvey makes an 

analysis of the new relations of production in today's society. For Harvey, the most 

important cultural change in recent years has been caused by the ‘compression of 

space-time’. He notes that from the 16th century to the 19th century the average speed 

of the sailing ships was 20 km/h. From the mid-19th century onwards, the steam 

locomotive reached 100 km/h. In the 20th century, jet aircrafts reached 800 km/h. 

Today, with telecommunications and the Web, we can exchange documents and hold 

meetings with people in other places in the world at the same time. According to 

Harvey, the compression of space-time is an essential part of new forms of capitalist 

production, where the financial capital gains autonomy from the industrial capital and 

from governments. International flows of resources are reshaping geographical space 

in a way unprecedented in history. Harvey´s idea of the ‘compression of space-time’ 

points out the traditional way of expressing spatial relations between geospatial 

objects (properties such as Euclidean distance) captures only local effects. Strictly 

Euclidean geographical spaces do not represent the social and economic phenomena 

of our time. 
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A second relevant author is Manuel Castells, who in his book “The Rise of the 

Network Society” [29] coined the notion of ‘space of flows’ in contrast to the 

traditional geographical space, which he calls ‘space of places’. In a space of flows, 

connections happen in real-time across large distances. This space is shaped by the 

flows of information, people and goods. Castells [29] writes: 

“Our societies are constructed around flows: flows of capital, flows of 

information, flows of technology, flows of organizational interactions, flows of 

images, sounds and symbols. (…) Thus, I propose the idea that there is a new spatial 

form characteristic of social practices that dominate and shape the network society: 

the space of flows. The space of flows is the material organization of time-sharing 

social practices that work through flows. By flows I understand purposeful, repetitive, 

programmable sequences of exchange and interaction between physically disjointed 

positions held by social actors. (p.412)” 

For Castells, the ‘space of places’ is the spatial arrangement formed by adjoining 

locations, whose spatial relations are defined by the everyday logic of 

neighbourhoods. The traditional city in Europe and the US has been built as a ‘space 

of places’.  However, the ‘space of flows’ is increasingly determinant on the power 

relations and on the trade of goods and services. As Castells put is, the conflicts 

between the ‘space of places’ and the ‘space of flows’ creates "a structural 

schizophrenia between two spatial logics that threatens to breaks down  

communication channels in society" [29].  

The idea of ‘non-Toblerian spaces’ and its associated tools (as discussed below) is 

a way to represent the ‘compression of space-time’ and the ‘space of flows’ in the 

traditional ‘space of places’ handled by a GIS. The idea is to represent how the flows 

influence the relations between the geographical objects. This is especially relevant 

for uses such as dynamical modelling and multiscale modelling, as shown in the next 

sections.   

4. Tools for Representing �on-Toblerian Spaces 

Considering the key role of proximity in spatial modelling, a GIS should provide a 

consistent way to express spatial non-isotropy for different types of spatial functions. 

In [12], we introduced the idea of a Generalized Proximity Matrix (GPM), a matrix 

whose elements express both absolute space relations such as Euclidean distance or 

and relative space relations such as network connection. Using the GPM, two 

geographic objects (e.g., municipalities) could be "near" each other if they are 

connected through a transport or telecommunication network, even their absolute 

locations are thousands of kilometres apart. The GPM allows extending techniques 

such as spatial analysis, map algebra, and cellular automata to incorporate relations on 

relative space. Thus, it provides a new way for exploring complex spatial patterns and 

non-local relations in spatial statistics. In what follows, we extend the GPM as 

defined in [12] to provide a general way of expressing proximity relations. 
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4.1 Definition of the GPM 

Consider a set OOOO of geographical objects with geometrical representations defined 

over ℜ2. Examples of representation of such objects include: (a) regions defined  

closed polygons; (b) cellular automata organized as sets of cells, whose boundaries 

are the edges of each cell; (c) point locations in two-dimensional space. Given two 

objects oi and oj belonging to OOOO, we refer to the proximity relation between oi and 

oj by wij. The GPM is a set of triples [(oi, oj, wij)], where each pair of objects 

is associated to a proximity measure. The GPM records if (and how much) two 

objects in O are near to each other, according to different types of absolute and 

relative space criteria. It is an extension to the traditional definition of the spatial 

weights matrix W [30] to include a generic definition of proximity. In this section, we 

describe the basic notions of GPM considering objects of the same type (e.g., two 

farmers, two grid cells) represented at the same spatial scale. In Section 5 we discuss 

multiscale relations. Figure 3 shows some alternative criteria for building the 

proximity between pairs of objects in O. 

 

 

Fig. 3– Alternative criteria for calculation of proximity combining absolute and relative space 

relations. 

Conventionally, GIS applications use topological adjacency and Euclidian 

distances (Figures 3.a and 3.b) to define proximity relations.  In these cases, 

computing the spatial weights matrix W depends only on absolute space relations, as 

in the definitions below: 

• wij = 1, if oi is next to oj;   wij = 0, otherwise.            (1) 

• wij = 1, if distance (oi, oj) <  δ;  wij = 0, otherwise.      (2)           

• wij = 1/distance
2
(oi, oj); wij = 0, if i == j.                      (3)           
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Spatial weights may just mark the existence of a certain relation (as in equation 1 

or 2), or quantify the strength of the relation (as in equation 3). A simple example of 

the GPM is shown in Figure 4, where the weights use the topological adjacency 

condition for the objects shown in Figure 3.a (equation 1).   

 A B C D E 

A 0 1 0 1 0 

B 1 0 1 1 1 

C 0 1 0 0 1 

D 1 1 0 0 1 

E 0 1 1 1 0 

Fig. 4 – Spatial weights matrix for objects of Figure 3 under adjacency condition 

 

Alternatively, we could define the GPM using the relations shown in Figures 3.c 

and 3.d, using the road network or the airline routes. The resulting matrix would 

express proximity relations induced by these networks. Thus, the GPM expresses 

proximity relations by combining different neighbourhood conceptions which 

include: (a) topological relations on point sets (Egenhofer operators); (b) network 

connectivity, both physical (e.g., roads) and logical (e.g., trade fluxes); (c) vicinity in 

cell spaces and grids. The underlying idea behind the GPM arose in the GIScience 

literature in previous papers, such as the geoalgebra of Takeyama and Couclelis [31] 

and the graph cellular automata of O'Sullivan [32]. We now show the GPM is a 

generalization of these previous works, providing a general way for expressing 

proximity.  

Couclelis [33]  proposes the notion of proximal space, which aims to combine the 

ideas of absolute space and relative space. To capture relations in proximal space, 

Couclelis [33] uses a relational map. Given a set of spatial objects O, a relational 

map Ri for object oi is the set of all objects that influence it. The set of all relational 

maps for all spatial objects is the metarelational map. The geoalgebra proposed by 

Takeyama and Couclelis [31] uses the metarelational map to extend traditional map 

algebra functions over the proximal space, and thus capture spatial relations that act at 

a distance. Takeyama and Couclelis’ [31] metarelational map is a GPM whose all 

weights are either 0 or 1.  Thus, the geoalgebra of Takeyama and Couclelis [31] can 

be expressed by functions that use the GPM to compute its results, as shown in [12]. 

Since the weights of the GPM are general and not limited to 0 or 1, it follows the 

GPM is a generalization of Couclelis’ work. 

Other recent proposal is the idea of graph-CA[34]. A graph-CA is a relaxation of 

conventional cellular automata (CA) that uses a directed graph to define  cell 

neighbourhoods. Each cell ci of the CA is associated to a vertex vi and each edge of 

the graph represents a connection between two cells ci and cj. The graph-CA model 

[34] is as a special case of a GPM-based CA, where the weights are 1 (one) for cells 

connected by a graph and 0 (zero) otherwise. Therefore, any CA whose 

neighbourhood relations use a GPM will support the graph-CA model. 
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4.2 Calculation of the GPM combining absolute and relative space relations: an 

example 

To calculate the GPM considering relative space relations, we need an extra data set: 

a network N that provides the connectivity information. The network N provides 

information about physical links (roads and rivers) and logical links (airline routes, 

market chains), which connect objects in O, as Figures 3.c and 3.d show. We want the 

proximity matrix to express information such as: Are these cities connected though 

the airlines network? Are two frontier areas in the Amazon inserted in the same 

productive chain? More broadly, we can apply the same idea to objects of different 

types represented at different scales (see Section 5.2). For instance: Is this Indian 

reservation connected to mining areas trough the roads network? Are these cities 

connected to export facilities through the transport network?  

There are many possibilities for computing a GPM combining absolute and relative 

space criteria. In what follows, we consider the case where its weights wij  combine 

two measures in a linear fashion:   

wij = α*prox_abs (oi, oj)+ β*prox_rel (oi, oj)  (4) 

The first term, prox_abs, is an absolute space relation, which we calculate using 

topological or Euclidean distance measures, as in equations (1) and (2). The second 

term, prox_rel, expresses the relations on the relative space. The weights α and β 

mark the relative importance attached to absolute and relative space relations. To 

calculate prox_rel, we distinguish between two types of networks. The first type 

includes closed networks, whose entrances and exits are restricted to its nodes. 

Examples are railroads, highways, telecommunication networks, banking networks, 

and productive chains. The second type comprises open networks, in which any 

location can be used as an entrance or an exit. Examples are transport networks such 

as small roads and rivers. Besides its edges and nodes, the network N must provide 

information on the cost of traversing each edge. For example, in road networks this 

cost may represent distances (in metres, for example) or travel time (in hours). Figure 

5 shows graphically how to calculate prox_rel for closed and open networks. 

For open and closed networks, a simple way to calculate prox_rel(oi, oj) is 

as follows: 

1. For each object in oi, calculate the nearest entry point ei in network N. In an open 

network, ei can be any point inside an edge. In a closed network, ei is necessarily 

one of the nodes.  

2. For each object in oj, calculate the nearest entry point ej in network N (the same 

rule above applies for both open and closed networks). 

3. Calculate the cost of the traversal from ei to ej (ncostij) using network 

analysis operators. 

4. Calculate the cost of reaching ei from oi (costi), and  to ej from oj to 

(costj). 

5. Calculate prox_rel (oi, oj) using  costi,  costj   and  ncostij,. 
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Fig. 5. Schematic representation of an algorithm for proximity measurement in open networks. 

 

The values of costi,  costj   and  ncostij depend on the network type. Defining 

prox_rel(oi,oj) depends on the network cost unit (meters, hours, amount of 

service, etc.) and on the application needs. A specific formula has to be chosen in 

each case. An example of such formulas is 

prox_rel(oi,oj)= a/(costi)
2
 + b/(costj )

2
+ c/(ncostij )

2
          (5) 

The methods discussed in this section are one possible way to calculate the GPM, 

given a set of objects 0 and a network N. We could apply other case-specific rules. 

For example, given a road network, one can define that objects are not linked to the 

network if they are more than a 100 km away from the closest entry point. In general, 

for each application, there will be a suitable way of computing the GPM, dictated by 

the particular properties of the non-toblerian space. Our experience [13] [14] points 

out the method discussed here provides a reasonable first guess. In the next section, 

we show these ideas in practice on dynamical modelling applications. 

5 Dynamical Modelling in �on-Toblerian Spaces 

5.1 Using the GPM with Cellular Automata 

The GPM is applicable in many different types of spatial analysis and spatial 

modelling functions, providing a means to explore complex spatial patterns and non-

local relations. We now consider some of its uses. One case where the issue of spatial 

anisotropy is important is when using cellular automata (CA) for spatial dynamical 

modelling. CAs have been used in the last two decades for simulation of urban and 

environmental models. They are popular largely because they are tractable, but 

contain enough complexity to simulate surprising and novel change as reflected in 

emergent phenomena [35]. Early proposals for use of CA in spatial modelling stressed 

their pedagogic use in showing how global patterns emerge from local actions. For 

realistic geographical models, the basic CA principles are too constrained to be 

useful, a fact which led to proposals for extending the basic CA model [36].   
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Carneiro et al. [14] propose an extension of the CA model called Irregular Cellular 

Space (ICS). In the ICS model, there is no fixed geometry for the space representation 

and the cellular space is an arbitrary arrangement of cells. An ICS geometrical 

representation may vary from a regular grid of same size squared cells to an irregular 

set of points, lines, polygons, nodes and arcs, pixels, or even voxels. ICS spatial 

relations use GPMs allowing representing non-homogenous spaces where the spatial 

proximity relations are non-stationary and anisotropic. Carneiro et al. [14] 

implemented the ICS model in TerraME, an environmental modelling software 

platform [16]. To show the possible uses of an ICS, we built a simple cellular 

automata model that aims to reproduce fishbone deforestation patterns in Rondonia, 

Brazil, a case discussed in Section 2. The model takes as a starting point an area with 

forest where a road has been built. We then consider three cases: 

1. Deforestation growing from the main road, based on a Moore neighbourhood, in 

which each cell has nine neighbours, all equally related. The GPM is constant for 

all objects and considers only its 3 x 3 neighbours.  

2. Deforestation growing from the main road and from a network of secondary roads, 

where the GPM uses only the relative distance from the road network. 

3. Deforestation growing from the main road and from a network of secondary roads, 

where the GPM uses both the absolute and relative distances from the road 

network. 

The transition rule is simple, since this is an illustrative example. For each year of 

simulation, a cell that contains forest and has two or more deforested neighbours has a 

20% chance of also being deforested. Figure 6 shows the results. Sequence A shows 

the simulation using isotropic neighbourhoods. Sequence B uses anisotropic 

neighbourhood relations using a GPM that considers only relations in relative space. 

Sequence C uses a GPM that considers anisotropic neighbourhood relations using 

both relative and absolute distances. The starting point is data from 1975, where the 

road was first opened and the first settlements were created. We then show simulated 

results for six year intervals (1980 and 1986). Comparing Figure 1 (actual fishbone 

patterns) with Figure 6 (simulated fishbone patterns), it is clear the GPM that 

combines absolute and relative space relations (sequence C below) provides a much 

better simulation.  
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Figure 6. Alternative results of GPM-based CA for simulating fishbone patterns in Rondonia, 

Brazil (compare with Figure 1 above).  

5.2 Using the GPM in Multiscale land change models 

A land change model projects the expected changes in land use and land cover in a 

region. Models can also project the impact of policy changes on the current land use 

trajectory [37]. This needs the clear differentiation between spatial determinants of 

change. We need to distinguish local proximate causes linked to land use changes 

(soil type and distance to roads, for instance) from underlying driving forces that 

work at higher hierarchical levels, including macroeconomic changes and policy 

changes [38]. Local land changes are thus linked to trade flows. Globalization 

connects places of consumption to remote places of production, and thus land systems 

cannot be adequately understood without knowing their linkages to decisions and 

structures made elsewhere. In this sense, understanding the role of networks is 

essential to understanding land change[39]. Such networks can be physical, such as 

roads, or logical, such as market chains, linking a certain location to distant 

consumption or influential sites. 

Flows of resources, information, and people are essential parts of non-Toblerian 

spaces, and land change models should capture them. These flows are represented by 

networks which link processes that act on different scales [12, 39, 40]. Efficient 

representation of such flows with geometries of the absolute space is essential to 

achieve a realistic perspective of spatial relations, and to support efficient land-change 

models [28]. As an example, consider how market connections influence 

deforestation in the Amazonia rainforest. Take figure 7, which shows the main road 

network and the most important national markets in Brazil (left) and the current 

deforestation in the Amazon rainforest (right).  
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Fig. 7.  Example of multiscale network based relation: (a) Roads network and main markets in 

Brazil (Amazonia shown in dark grey area); (b) 25 x 25 km2 cells showing deforestation in 

Amazonia. 

 

Different flows connect the region to distant places of consumption, influencing 

the land use system in diverse ways. Timber, grain and beef products from Amazonia 

are mostly sold to the South-east and North-east of Brazil, as Figure 7 points out. 

Incorporating such diverse connections in land change models is essential to improve 

our understanding on how the land use system works, and to envisage future scenarios 

for the region. To capture such complex relations, we extended the GPM to allow 

spatial relations between different types of objects possibly across different 

geographical scales. We consider set O1 of geographical objects with geometrical 

representations defined over a subset S1 ⊂ ℜ2, and another set O2 of geographical 

objects with geometrical representations defined over another subset S2 ⊂ ℜ2. The 

GPM uses the relative space relation prox_rel(oi, oj) described in Section 4.3, 

except that now oi ∈ O1 and oj ∈ O2. Figure 8 shows this multiscale relation.  
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Fig. 8.  Example of how a GPM is built in a multiscale based relation. Objects in a network 

(scale 1) are connected to objects in a cell space (scale 2). 

 

In [13] and [41], we discuss the use of multiscale relations. We developed a land 

change model which relates 25 x 25 km2 cells to the two main places of consumption 

at the national scale (São Paulo and North-east) through the roads network, as shown 

in Figure 7. We used an open network strategy to build the GPM. The network cost is 

the arc’s length (in meters) for paved roads, and the double of the length to non-paved 

roads (under the assumption they double travelling time).  The GPM we built includes 

a 2:n relation from the two markets to every cell, and an n:2 relation from every cell 

to the two markets. Both directions are useful in land change models. For example, 

we used the market-to-cells relation to establish links between São Paulo and 

Amazonia. We included a rule in the model to cause cells in Amazonia to change as a 

result of a policy changes in São Paulo. This change in the market conditions can be 

an incentive (demand increase) or a restriction (need of certification). The land-

change model developed in [41] uses an n:2 relation (from cells-to-markets) and 

employs the GPM to calculate the connectivity of each cell to any of the markets. 

Each cell receives a new attribute (connection to markets) whose value is the 

minimum weight associated to it in the GPM according to the road network. If road 

conditions change, the variable is recomputed. Figure 10 shows the connection to 

markets in 2000 and the projected 2010 connectivity, assuming some roads are to be 

paved in the period.  
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Fig. 10. Cells (25 x 25 km2) representing the connection to markets in Amazonia, built using a 

network-based multiscale spatial relation: (a) in 1997; (b) in 2010 (paving some roads). The 

darker cells are more connected to markets. Source: Aguiar [41]. 

6. Conclusions 

This paper discusses geographical spaces whose spatial relations are strongly 

anisotropic or influenced by actions at a distance, and calls them “non-Toblerian 

spaces”. We consider that non-Toblerian spaces arise often in cases of rapid change 

caused by human actions, and we argue that these cases are becoming more frequent 

due to globalization and to the growing integration of markets. Traditional GIS does 

not capture such relations, since it relies on spatial relations based on topological 

operators and Euclidean distances. The authors consider that to be general, a GIS has 

to provide a flexible notion of proximity, expressed in a different way for all pairs of 

spatial objects. To support this flexibility, the authors propose the idea of a GPM 

(Generalized Proximity Matrix). The paper shows how to calculate the GPM and 

provides examples of its use for dynamical spatial modelling and multiscale 

modelling. 

 One of the interesting properties of non-Toblerian spaces and associated tools such 

as the GPM is that they provide a way for GIS applications to respond to the 

challenges of modelling complex problems in a globalized world. Such problems 

have been outlined by postmodern thinkers such as Manuel Castells, which contrasts 

the ‘space of places’ of a typical GIS to the ‘space of fluxes’ induced by today´s 

networked society. Using the GPM provides GIS applications with a powerful tool to 

represent both the ‘space of places’ and the ‘space of fluxes’ and their relations.  

In theory, all spatial analysis methods could be rewritten to use the GPM. Since it 

is also an extension of the spatial weights matrix used in spatial analysis, the GPM is 

also a useful tool in spatial statistics. Given the benefits of using a flexible definition 
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of proximity, GIS designers should consider the design of GIS where all spatial 

analytical functions can use flexible neighbourhood definitions such as the GPM. 

However, the GPM adds a layer of complexity to the application, since it has to be 

computed carefully for all objects. This added complexity is significant, since the 

expert often has to make subjective choices for calculating proximity relations in non-

Toblerian spaces. Ideally, the GPM would be available as an optional tool, to be used 

when the problem defies solution using conventional measures of proximity. Devising 

semi-automatic tools for computing and using the GPM in different cases is one of 

challenges they authors have been working on. We are working to provide a flexible 

open source software where the ideas of GPM and non-Toblerian spaces can be 

experimented by the GIScience community.  
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