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Cássio Lopes Pennachind

aNational Institute for Space Research (INPE), Avenida dos Astronautas, 1758—12227-010,
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Abstract

An increasing number of models for predicting land use change in rapidly urbanizing

regions are being proposed and built using ideas from cellular automata (CA). Calibrating
such models to real situations is highly problematic and to date, serious attention has not been
focused on the estimation problem. In this paper, we propose a structure for simulating urban

change based on estimating land use transitions using elementary probabilistic methods which
draw their inspiration from Bayes’ theory and the related ‘weights of evidence’ approach.
These land use change probabilities drive a CA model based on eight cell Moore neighbor-

hoods implemented through empirical land use allocation algorithms. The model framework
has been applied to a medium-sized town, Bauru, in the west of São Paulo State, Brazil. We
show how various socio-economic and infrastructural factors can be combined using the
weights of evidence approach which enables us to predict the probability of changes between
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land use types in different cells of the system. Different predictions for the town during the

period 1979–1988 were generated, and statistical validation was then conducted using a mul-
tiple resolution fitting procedure. These modeling experiments support the essential logic of
adopting Bayesian empirical methods which synthesize various information about spatial

infrastructure as the driver of urban land use change. This indicates the relevance of the
approach for generating forecasts of growth for Brazilian cities in particular and for world-
wide cities in general.
# 2003 Elsevier Ltd. All rights reserved.

Keywords: Land use change; Transition probabilities; Bayesian methods; ‘Weights of evidence’; Cellular

automata; Urban growth; Urban planning
1. Introduction: cell-space models of land use change

There is now widespread recognition that most operational urban models, fash-
ioned as far back as the 1960s for policy prescription, are strictly limited in their
abilities to generate meaningful predictions in situations of rapid urban growth.
These models are largely cross-sectional in structure and at best, can only be used
for comparative analysis of long term change where it is assumed that a future sys-
tem has adjusted to some temporal equilibrium. One of the reasons why such models
have fallen out of ‘theoretical fashion’ although they are still used in practice
(Wegener, 1994), is that they fail spectacularly to deal with the kinds of dynamics
which characterize many urban situations—in developing countries, for example,
where urbanization is still composed of substantial migration from the rural hinter-
land to the central city, and in the developed world where many cities are facing an
explosion of growth through urban sprawl. In short, such models cannot handle
rapid urban growth whether it be created by an increasing population and/or the
demand for more living space.
To date, however, few models have been built which truly represent the dynamics

of urban growth which are consistent with what we know about such change and the
data that is available to measure it. As the dynamics are intrinsically complex and all
but impossible to unravel in terms of the data we have, the models that have been
built so far usually begin with the simplest of ideas. Cellular automata (CA) models
have become popular largely because they are tractable, generate a dynamics which
can replicate traditional processes of change through diffusion, but contain enough
complexity to simulate surprising and novel change as reflected in emergent phe-
nomena. CA models are flexible in that they provide a framework which is not
overburdened with theoretical assumptions, and which is applicable to space repre-
sented as a raster or grid. These models can thus be directly connected to raster data
surfaces used in proprietary GIS (geographic information systems). They are being
used as much to implement map algebras on raster grids as in IDRISI, for example,
as to simulate the intrinsic dynamics of systems that can be represented in this form.
Although early proposals for the use of CA in urban modeling tended to stress

their pedagogic use in demonstrating how global patterns emerge from local actions,
increasingly models have been proposed which depart from the basic elements
482 C. Maria de Almeida et al. / Comput., Environ. and Urban Systems 27 (2003) 481–509



(Couclelis, 1985; Tobler, 1979). Strict CA articulate the growth (or change) process
in terms of highly localized neighborhoods where change takes place purely as a func-
tion of what happens in the immediate vicinity of any particular cell. Action-at-distance
is forbidden for it is argued that the intrinsic dynamics which generates emergent phe-
nomena at the global level, is entirely a product of local decisions which have no regard
to what is happening outside their immediate neighborhood (Batty, 2000). Early mod-
els such as Tobler’s (1970) model of Detroit and Couclelis’s (1989) model of developer
behavior in Los Angeles were pedagogic in this spirit, yet the attractiveness of the
approach which grew alongside the enormous interest in GIS, has eventually led to a
flurry of more practical applications to urban problems. In this, the strict adherence of
CA to the most local of neighborhood is inevitably relaxed, and the models that have
emerged are best called cell-space—CS models rather than CA (Albin, 1975).
There are cell-space models dating back to the 1960s such as that developed for

Greensboro, NC by Chapin and Weiss (1968) but these models are econometric in
their structure, and do not appeal to CA in any form. However since the early-
1990s, there have been more than 20 significant practical applications although in all
cases, local neighborhoods have been generalized to regions or fields, and the
emphasis on fitting the actual land development process implied by these models to
data has been weak (Schock, 2000). Nevertheless, there are now many varieties of cell-
space model which involve matching their predictions to data, and at least three
approaches to their estimation have emerged. Themore traditional models such as those
developed by White and Engelen (1993, 1997) and White, Engelen, and Uljee (1998) for
Cincinnati and other US cities, and for the island of St. Lucia, simply dimension the
model’s parameters with data taken from these applications. In contrast, various
brute force approaches to searching the parameter space of such models has been
tried by Clarke and Gaydos (1998) and Clarke, Hoppen, and Gaoydos (1997) in
their various models of US metropolitan growth. The most promising methods of
estimation, however, are largely data driven, and use contemporary pattern-fitting
methods such as neural nets (Wu, 1998; Xia & Yeh, 2000) and evolutionary learning
(Papini, Rabino, Colonna, Di Stefano, & Lambardo, 1998). But in all these appli-
cations, it is assumed that the discrete dynamics of the growth process is unknown,
hence untestable, and thus these models usually fall back on assuming a dynamics
and testing predictions in a cross-sectional fashion at a single point in time.
In this paper, we will develop a model of land use change which is operationalized

using a CA-like framework but whose locational structure is data-driven, in the
same manner as that used by Chapin and Weiss (1968) over 40 years ago. In short,
we will determine transition probabilities governing changes in land use as functions
of a variety of socio-economic and infrastructural factors whose relationships with
changes in different land use types are measured through spatial correspondences
akin to the methods of map overlay. The formal framework used to determine the
probabilities will be Bayesian, involving an updating of prior probabilities through
the ‘weighted evidence’ provided by these factors. These probabilities are then used
in various heuristic procedures which select particular cells to be developed accord-
ing to ranking rules determined by the cellular operations. The results of fitting the
model to a medium sized town in Brazil are then discussed where fit statistics
C. Maria de Almeida et al. / Comput., Environ. and Urban Systems 27 (2003) 481–509 483



appropriate to map counting procedures are employed. The model is based on a
more general CA framework called DINAMICA developed at the Center for
Remote Sensing of the Federal University of Minas Gerais (CSR-UFMG) originally
applied to landscape dynamics but adapted here to problems of urban growth
(Soares-Filho, Cerqueira, & Pennachin, in press).
We will first state the model in terms of its aggregate, non-spatial structure,

introducing the idea that the process of urban change is one of transition which can
be easily envisaged as a first-order Markov process. We then unpack this model
structure to deal with change at the level of the cell. The total amount of change is
an external input to the model for the focus here is on its spatial allocation. The
‘weights of evidence’ process is then outlined and the way these are embedded into
the algorithmic structure of the cell-based operations introduced. The data avail-
able, the selection of factors determining location transition probabilities, and the
method of choosing evidence from this data are then discussed. The model is used to
make various predictions which are examined in terms of their fit to land use change
in the town of Bauru between 1979 and 1988. The fit is deemed acceptable although
several problems relevant to the structure of the model are identified and taken for-
ward as a basis for further research.
2. The model framework

2.1. Transition dynamics

The system that we define has N cells which can take on M different and mutually
exclusive states. Each cell is identified by a location i; j ¼ 1; :::;N while each state is a
land use (or related activity type) which falls in the range k; l ¼ 1; :::;M. It is thus
assumed that a typical cell i has only one land use k at time t which is thus defined as

Nk
i tð Þ ¼ 1;Nl

i tð Þ ¼ 0; k 6¼ l; l ¼ 1; :::;M;
X
k

Nk
i tð Þ ¼ 1 ð1Þ

From Eq. (1), it is easy to define aggregates in terms of cells or land uses. Then

Nk tð Þ ¼
X
i

Nk
i tð Þ ð2Þ

N tð Þ ¼
X
k

Nk tð Þ ¼
X
k

X
i

Nk
i tð Þ ð3Þ

We also note that the total number of cells in the system is fixed through time, that
is N tð Þ ¼ N; 8t; t ¼ 1; :::; � where � is the total number of time periods considered,
and that although changes between the total number of distinct land uses in cells is
what this representation allows, the total size of the system is conserved. In this way,
growth or decline is conceived of as a transition from one state or land use k to
484 C. Maria de Almeida et al. / Comput., Environ. and Urban Systems 27 (2003) 481–509



another l. This formulation means that densities in each cell are the same, and it
implies that cells must be the same size. Thus the total density of any land use in the
system is the proportion of land use �k tð Þ defined as

�k tð Þ ¼ Nk tð Þ=N ð4Þ

All of this is consistent with a grid system which is at sufficiently fine level of
spatial resolution to enable each cell to be associated with one and only one land use
at any one time. Whether or not this is the case is an empirical matter defined with
respect to the specific application.
The dynamics in the model are represented in a straightforward manner as tran-

sitions from one land use k to another l. At the cellular level, a transition in i where
there is a land use k at time t to a land use l at time t+1 is defined as

�Nkl
i ¼ 1 where Nk

i tð Þ ¼ 1 and Nl
i tþ 1ð Þ ¼ 1 ð5Þ

The aggregate transition between land uses k and l for the entire system is

�Nkl ¼
X
i

N l
i tþ 1ð Þ �

X
i

Nk
i tð Þ ¼ Nl tþ 1ð Þ �Nk tð Þ ¼

X
i

�Nkl
i ð6Þ

Actual aggregate change—growth or decline—for each land use is thus

�Nk ¼ Nk tþ 1ð Þ �Nk tð Þ;where
X
k

�Nk ¼ 0 ð7Þ

which indicates the conservation imposed by having N cells with only one land use
per cell.
Although the model works at the cellular level, it is useful to consider these tran-

sitions at the aggregate level for this enables the long term dynamics of the model to
be articulated in a simple and direct manner. Total land use l at tþ 1 is calculated as

Nl tþ 1ð Þ ¼
X
k

�Nkl ð8Þ

which can be written in transition probability form as

Nl tþ 1ð Þ ¼
X
k

PklNk tð Þ ð9Þ

where the probability is defined as

Pkl ¼
�Nkl

Nk tð Þ
¼

�NklP
l

�Nkl
; and

X
l

Pkl ¼ 1 ð10Þ
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We can write the process implied in Eq. (8) in matrix-vector form as a first-order
Markov process if we define the probability of any land use k or l at time t; tþ 1 as

�k tð Þ ¼
Nk tð Þ

N
; and �l tþ 1ð Þ ¼

Nl tþ 1ð Þ

N
ð11Þ

Using these definitions, we write Eq. (8) as

� tþ 1ð Þ ¼ � tð ÞP; ð12Þ

where the limit of Eq. (12) for constant transition probabilities and relatively weak
conditions of connectivity in the matrix P, leads to
� tþ �ð Þ ¼ � tð ÞP� ð13Þ

As � goes to the limit, then P� ! Z, and Eq. (13) gives the steady state prob-
abilities � as � ¼ �Z (JRC, 1994). This is a very convenient form. It not only illus-
trates that the total flows are conserved to the N cells of the system which in a sense
is trivial, but it also demonstrates that for constant transition probabilities, which
might be assumed for sufficiently large time periods, then there is an implied long
term equilibrium. This equilibrium is of course hypothetical in that it assumes a
finite system and an infinite time horizon in which transition probabilities
remain stable; it is however a useful benchmark for evaluating the growth which
is implicit within the system for the time period for which these transition
probabilities apply.
In the case of the applications assumed here, then we can illustrate this for the

simple 2	2 state case where the two land uses in question are undeveloped and
developed land. Imagine a set of transition probabilities where there is substantial
conversion of undeveloped to developed land but there is no land that changes in the
other direction. The P matrix for this case can be assumed and then it is easy to
show that the Z matrix is characteristic of an absorbing Markov chain where all the
land moves to development in the limit of �. In fact in such a simple system, you can
guess the limit as the following example shows:

P ¼
0:75 0:25
0:00 1:00

� �
; guessing Z ¼

0:00 1:00
0:00 1:00

� �
with P10 


0:06 0:94
0:00 1:00

� �

The transition to one state in this case is rather quick. In real applications, tran-
sitions are likely to be defined as being much slower—the time periods being much
shorter—and of course transitions are not stable from time period to time period.
However in the example we develop in this paper for the city of Bauru, this kind of
analysis is useful because it points out the intrinsic trends in the system as well as the
focusing on the speed at which transitions take place.
486 C. Maria de Almeida et al. / Comput., Environ. and Urban Systems 27 (2003) 481–509



2.2. Locational dynamics

In most cell-space models of this type, there is a strict separation of locational
distribution from absolute growth mechanisms in that invariably growth or decline
is assumed at the aggregate level, and the focus of such models is on allocating land
use of various kinds to cells at a disaggregate zonal level. In short, it is not possible
to write the aggregate dynamics in terms of the disaggregate locational processes in
the simple form we have just shown. It is therefore not possible to produce a sim-
ple algebra for the model from the bottom up and this is due to the fact that the
model’s locational mechanisms are expressed as decision rules, often of a ‘yes/no’
binary variety. This means that the locational processes adopted by the model
distribute quantities of the form �Nk. These totals are not calibrated in any way;
they are exogenous to the system as the previous exposition assumes. In this sec-
tion however it will be clear that the model’s locational processes are subject to a
calibration in that we will assume like many before us (for example, Chapin &
Weiss, 1968, to Clarke & Gaydos, 1998) that we can define social and infra-
structural factors that determine the best transition probabilities at the cellular
level.
As we have stated, we define cellular change as �Nkl

i ¼ 1 or 0. However, although
this is in binary form, this change is associated with a transition probability pkli tð Þ
relevant to predicting the transition from k to l but which is not observable.
Although we are only able to observe the discrete change, we assume that there is a
set of such probabilities at the cellular level which is used in making decisions about
what land use change is most likely. We choose these probabilities to optimize the
predicted transitions �Nkl

i

� �0
to the observed �Nkl

i over all cells i. The generic form
for these probabilities can be stated as

pkli tð Þ ¼ � f X1
i ;X

2
i ; :::X

E
i

� �
; g Nk

i tð Þ;Nl
j 2 �i; l 2 M

� �h i
ð14Þ

This equation is in two parts. The first which is governed by the function f 
ð Þ

combines a series of intervening factors for each cell fXe
i ; e ¼ 1; 2; :::;Eg which we

specify using a Bayesian updating procedure based on the ‘weights of evidence’ logit
approach applied to map overlays (Bonham-Carter, 1994). The second function g 
ð Þ

relates the existing land use type in cell i to all those land uses l in their Moore (8
cell) neighborhood �i. Two operations—the expander and patcher—are used to
effect this by choosing cells which are at the ‘frontier’ of development (expander) or
in distinct but separable development nuclei (patcher). The cell probabilities deter-
mined from the first function f 
ð Þ are modified by these operations when the second
function g 
ð Þ is applied. We will illustrate this in the next section.
Once the final set of probabilities pkli tð Þ

� �
normalized to ensure that

P
iklp

kl
i tð Þ ¼ 1,

is determined, these are ranked across all cells and land uses as pkli > pmn
j > :::::and

so on. Various methods can then be used to determine the land use conversion. In
fact in the application here, a Monte Carlo algorithm is used to choose the actual
transitions. This is based on sampling random numbers which are drawn until
C. Maria de Almeida et al. / Comput., Environ. and Urban Systems 27 (2003) 481–509 487



the total cells required for each land use transition in the entire system is met.
Another way would simply be to define the minimum number of cells for each
land use transition which would be composed of the maximum ranked prob-
abilities, but in this case the algorithm would no longer be stochastic. The
actual procedure is a little trickier than this in practice because the expander
and patcher procedures are iterated in a certain order for reasons that will be
explained later.
It is possible however to give some indication of the long term dynamics of the

model from the cellular level using the same kind of first-order Markov process
defined for the aggregate transitions in Eqs. (8)–(13) above (Hobbs, 1993). We first
define a land use transition for each cell i as

Qkl
i ¼

pkliP
l

pkli
;
X
l

Qkl
i ¼ 1 ð15Þ

from which we define the relevant Markov transitions as

�l
i tþ 1ð Þ ¼

X
k

�k
i tð ÞQkl

i ð16Þ

with the appropriate matrix-vector format as

�i tþ 1ð Þ ¼ �i tð ÞQ ð17Þ

The long term dynamics implicit at the cellular level is the same as at the aggre-
gate, that is Q�

i ! Zi, and the steady state equation for each cell i is �i ¼ �iZ. As
the overall dynamics of the model is built from the bottom up, we would not expect
the implied distributions from Eq. (17) to meet the actual distribution predicted by
the full model. In short, if we choose the overall transition for each cell from Eq.
(17) as

Nk
i tþ Tð Þ ¼ 1 ¼ max

l
�l
i tþ Tð Þ


 �
ð18Þ

we can check to see how close
P

iN
k
i tþ Tð Þ is to Nk tþ Tð Þ which is the aggregate

prediction from Eq. (13). These would differ because of the way f 
ð Þ and g 
ð Þ are
applied but we would not expect them to be very different. We have not done this,
nor have we extended the mathematical formulation into multi-level form. This
would be possible using the kinds of accounting methods developed by Rees and
Wilson (1977) for population modeling but in this context, it does not add anything
to the model we have built. It is however a direction for further research.
488 C. Maria de Almeida et al. / Comput., Environ. and Urban Systems 27 (2003) 481–509



3. The model mechanisms

3.1. Locational probabilities through Bayesian updating

To introduce the analysis, we will drop the specific land use, location, and tem-
poral notation for the time being, simply referring to a generic probability of land
use change �N which is influenced by a factor X. We first assume that we have a
prior probability of land use change from k to l for any cell i which we call
P �Nð Þbut that what we want to estimate is the posterior probability of such change
which is influenced by the factor X in question. We call this posterior P �NjXð Þ. We
begin with the standard form for updating a prior probability to a posterior based
on Bayes’ rule (Whittle, 1970) and this is

P �NjXð Þ ¼ P �Nð Þ
P Xj�Nð Þ

P Xð Þ
ð19Þ

Eq. (19) gives the probability when a change in land use takes place—that is when
change is present or �Nkl

i ¼ 1. But in the case where there is no land use change—
when change is absent or �Nkl

i ¼ 0, the probability must be written as

P �NjX
� �

¼ P
�
�N�

�P Xj�N
� �
P Xð Þ

¼ 1� P �NjXð Þ ð20Þ

We have already introduced an important element to the analysis in that we
assume the presence or absence of a factor in a cell rather than some continuous
value to the factor which varies over all cells. This will enable us to deal with factors
which are in binary form—presence or absence—and this is particularly suited to
physical infrastructure with socio-economic implications such as the presence or
absence of transport routes, utilities, social housing and so on in different cells.
If we compare Eqs. (19) and (20), we can write their product in terms of ‘odds’: the

probability of something happening divided by the probability of it not happening,
where we call this odds O 
ð Þ. Dividing Eq. (20) into Eq. (19) gives

P
�
�N� jX

�
P �NjXð Þ

¼
P �Nð Þ

P
�
�N�

� P Xj�Nð Þ

P Xj�N
� � ; ð21Þ

which can be written in short form as

O �NjXð Þ ¼ O �Nð Þ
P Xj�Nð Þ

P Xj�N
� � ð22Þ

The ratio P Xj�Nð Þ=P
�
Xj�N�

�
is a likelihood which is called the sufficiency ratio

which updates the odds of event �N taking place in the presence of the factor X, with
the ratio being related to support for the event taking place. This equation is best
C. Maria de Almeida et al. / Comput., Environ. and Urban Systems 27 (2003) 481–509 489



represented in logit form as the ‘positive weight of evidence’ by taking the loga-
rithms of Eq. (22) to give

logit �NjXð Þ ¼ logit �Nð Þ þ log
P Xj�Nð Þ

P Xj�N
� �

¼ logit �Nð Þ þWþ ð23Þ

where Wþ is the positive weight of evidence associated with X.
An exactly symmetric analysis can be derived for the log odds associated with the

absence of a factor X. In analogy to Eq. (22), the odds for the absence is

O �NjX
� �

¼ O �Nð Þ
P Xj�N
� �

P Xj�N
� � ð24Þ

which in logit form becomes

logit �NjX
� �

¼ logit �Nð Þ þ log
P Xj�N
� �

P Xj�N
� �

¼ logit �Nð Þ þW� ð25Þ

where the ratio or likelihood in Eq. (24) is now called the necessity ratio and in its
log form in Eq. (25) is the ‘negative weight of evidence’, W�.
We are now in a position to generalize this to many different factors Xe. The

probability equations that we use will depend strongly on the extent to which the
multiple factors Xe; e ¼ 1; 2; :::;Ef g are independent of one another. This must be
tested prior to using these equations, and if there is strong spatial dependence or
association between the factors, then more complicated forms must be used with this
kind of analysis being less suitable. In fact, independence from irrelevant alter-
natives is necessary in logit analysis for if the factors are associated with one
another, then the probability estimates are biased. Assuming independence, we can
write the conditional or posterior probability as P �NjX1;X 2; . . . ;XE

� �
: The gen-

eralized forms of Eqs. (23) and (25) for positive and negative weights of evidence
respectively can now be stated as

logit �NjX1;X2; . . . ;XE
� �

¼ logit �Nð Þ þ
P
e
Wþ

e

logit �NjX1;X2; . . . ;XE
� �

¼ logit �Nð Þ þ
P
e
W�

e

)
ð26Þ

We will apply Eq. (26) to each cell probability for the relevant land use change.
Imagine that of the E factors affecting each cell, then some of these are present and
some are absent and we now call these eXXe

i . We can now state a combined general
form for Eq. (26), notating it with respect to a specific transition kl and a particular cell i,
and assuming the weightsWþ

ie and W�
ie associated with presence or absence of the rele-

vant factor are written as eWWie. We write this as
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logit �Nkl
i j
eXX1
i ;
eXX2
1; . . . ;

eXXE
i

� �
¼ logit �Nkl

i

� �
þ
X
e

eWWie ð27Þ

Now we convert the log odds in Eq. (27) back to probability form, first as

P �Nkl
i j
eXX1
i ;
eXX2
i ; . . . ;

eXXE
i

� �
1� P �Nkl

i j
eXX1
i ;
eXX2
i ; . . . ;

eXXE
i

� � ¼
P �Nkl

i

� �
1� P �Nkl

i

� �" #
exp

X
e

eWWie ð28Þ

which simplifies to

P �Nkl
i j
eXX1
i ;
eXX2
i ; . . . ;

eXXE
i

� �
¼

P �Nkl
i

� �
1� P �Nkl

i

� �" #
exp

P
e

eWWie

1þ
P �Nkl

i

� �
1� P �Nkl

i

� �" #
exp

P
e

eWWie

( ) ð29Þ

We finally generalize Eq. (29) to each cell transition probability specified in the
previous section as pkli tþ 1ð Þ. This is

pkli tþ 1ð Þ ¼ !
Pkl tþ 1ð Þ

1� Pkl tþ 1ð Þ

� �
exp

X
e

eWWie ð30Þ

where Pkl tð Þ is the prior probability of a transition taking place from land use cate-
gory k to category l as observed in the entire system between the time period t and
tþ 1, computed as �Nkl=N. C is a normalizing constant which is required to ensure
that the probabilities sum to 1. This will clearly be close to the denominator on the
RHS of Eq. (29). We will assess the suitability of the method when we develop and
calibrate the model in a later section but to anticipate the outcome there, the factors
chosen are relatively independent of one another and Eq. (30) thus appropriate.

3.2. Cellular operations and heuristics

It would be possible to simply run the model with the probabilities as specified
and to determine land use transitions either using the deterministic or the Monte
Carlo technique noted earlier. In fact, early versions of the model developed by
Chapin and Weiss (1968) were based on estimating probabilities from a linear
regression of land use change against independent variables similar to those used
here. These probabilities were then used to drive a simulation based on random
sampling as in the Monte Carlo method (Chapin, Weiss, & Donnelly, 1965). Here
however, there are two features of urban growth which need to be reinforced and
which we cannot ensure are directly picked up through this estimation. First, we
observe that in the situations for which this model has been applied, particularly in
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urban growth, land use transitions to given uses take place on the periphery or ‘fron-
tier’ of large agglomerations of such land uses. Second we observe that free-standing
small agglomerations act as the ‘seeds of growth’ around much larger growing
agglomerations and the possibility for such innovation needs to be recognized.
We thus modify the probabilities computed from Eq. (30) for each land use tran-

sition and cell using two procedures which incorporate these two agglomeration
features (Soares-Filho, 1998). First the model uses an ‘expander’ heuristic which
identifies frontier cells, alters the posterior probabilities accordingly, and then
chooses appropriate transitions from this reduced set. Each land use type l has
associated with it a set of frontier cells which do not contain land use l, that is cells
which have land use type k 6¼ l. These cells are those which are candidates for conver-
sion to use l. This means that a cell with land use l that is entirely surrounded by cells of
the same use, does not have a frontier set of cells and this implies that cells on the edge
of growing land use types are those which form the frontier. When this reduced set of
cells has been identified, the probabilities of transition from land use k to l are weighted
according to the amount of land use of type l in the eight cell Moore neighborhood
surrounding the cell in question. Then the cell probability transition becomes

p̂kli tþ 1ð Þ ¼ �

P
j2�i

N l
j tð Þ

8

264
375pkli tþ 1ð Þ ð31Þ

where � is a normalization factor to ensure the reduced set of probabilities remains
within range. The algorithm that implements this expander procedure essentially
first examines the entire set of probabilities with the number of frontier cells identi-
fied, which is normally much larger than the number required for transition. If this is
so, then this set is then reduced by making transitions through random sampling
which identifies those probabilities which are the largest in the set.
However the total number of cells chosen by this procedure depends on a second

operation which is referred to as the ‘patcher’. In this case, we identify those cells
which are not of land use type l and we define all cells in their neighborhood also not
of land use type l but all of which are potentially subject to conversion to land use
type l. If a cell were of type l, and there were land uses other than type l around it,
then this would have generated frontier type cells in the expander operation. Thus,
this second procedure examines the complement of the frontier set but does not
subject these to the same weighting procedure as that implied by Eq. (31). When
these two operations are combined, it is clear that the set of original posterior
probabilities will have been weighted according to the presence and/or absence of
related land uses in their neighborhoods. When the land use transitions are finally
chosen, these algorithms are operated in such a way as to ensure that the total
number of cells associated with each overall transition given by �Nkl are met.
Contained therein is competition between the expander and patcher operations in
terms of what particular cells get chosen, and this is a way of introducing the effects
of land use configuration into the probabilities of land use transition.
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4. Applications: calibrations and simulations

4.1. The urban database

We have developed this model for the city of Bauru which is located in West Sao
Paulo State, and in 2000 had a rapidly growing population of 309,640. The period
for which the model is fitted and for which we have detailed data is from 1979 to
1988 when the population grew from 179,823 to 232,005 implying an annual growth
rate of just under 3%. Although the simulation experiment in question only refers to
a partial span of a longer time series modeling to be developed at a future stage, we
are able to examine the long term dynamics of the system using the aggregate
Markov model introduced earlier. The database that we have constructed identifies
M ¼ 8 distinct land uses from which we detected five observable land use changes
from 1979 to 1988. We explain these changes using E ¼ 12 independent physical and
socio-economic factors which we consider logically determine observed locational
change.
The initial data collection using various maps provided by the Bauru local autho-

rities contained severe inconsistencies; illegal settlements are not usually shown while
not all of the legally approved settlements are indicated. Some urban zones define
areas which are not yet occupied, and there are inaccuracies as to the prevailing land
use in some areas. As far as possible these difficulties can be resolved using appro-
priate satellite imagery which is able to deal with most of the omissions and mis-
classifications, despite the usual difficulties of land use interpretation using RS
(remotely sensed) data. The initial (1979) and final (1988) land use maps were sub-
jected to a reclassification of zones according to their dominant effective use; resi-
dential zones of different densities were all reclassified to simply residential, and special
use and social infrastructure were reclassified to institutional. Eight land use zone cate-
gories were thence defined, namely: residential, commercial, industrial, services, institu-
tional, mixed use, leisure/recreation, and the all-embracing non-urban land use. Districts
segregated from themain urban agglomeration bymore than 10 kmwere judged outside
the simulation area, and the traffic network was not considered to be at a fine enough
scale to be represented as a land use. The land use maps for the two time slices are shown
in Fig. 1(a) and (b). All data used in this application was represented at 100 m 	 100 m
grid square, pre-processed using the SPRING GIS (from the Division for Image Pro-
cessing of the Brazilian National Institute for Space Research—DPI-INPE), and was
subjected to advanced cross-tabulation operations in IDRISI. The cells form a 487 	

649 grid, there being a total of 316,063 cells defining the region for simulation.
The changes between 1979 and 1988 are shown in Fig. 2(a) with the most sig-

nificant land use change—from non-urban to residential—shown in Fig. 2(b). With
M land uses, there are a possible M M� 1ð Þ different transitions and in the case of 8
land uses, of the 56 possible transitions, there are only five which are observable.
These comprise the critical variables �Nkl

i

� �
in the model which are to be explained

by the 12 independent social and infrastructural factors, and we define them hence-
forth using the notation presented in Table 1. As we will show below, at the level of
spatial resolution used, all transitions were asymmetric in that conversion from one
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land use to another implies that conversion the other way does not take place. If the
level of resolution were made finer, then this would not hold.
The selection of the variables used to explain the five land use transitions was

determined by data availability as well as an appeal to the logic of the development
process (Batty & Xie, 1994; Deadman, Brown, & Gimblett, 1993). In other words,
land use transitions are more likely to be determined by some factors than others in
terms of the way developers and consumers of land consider the process of devel-
opment and acquisition. For example, the location of service centers depends on
very different kinds of accessibility to other land uses than say, residential. There is
indeed a set of decisive factors for urban land use transitions, in the sense that they
substantially account for the main driving forces governing such change. These fac-
tors are suitable for the kinds of analysis we will use here and have effectively guided
the modeling experiment at issue. These variables were subjected to a preliminary
processing in SPRING which enabled vector editing, polygon identification, defini-
tion of distance links, and spatial statistical analysis such as smoothing using kernel
density estimators. The 12 variables used in the statistical analysis of land use
change to be reported below are listed in Table 2. Most of these variables deal with
different distance levels from different infrastructures which are of clear relevance to
land development and although we do not have data on land ownership, the relative
fragmentation of land use acts as a proxy for this determinant.

4.2. Temporal dynamics

As previously mentioned, eight categories of land use were defined from the struc-
tures observed at 1979 and 1988 which we state again as residential, commercial,
industrial, institutional, services, mixed use, leisure/recreation, and non-urban use.
The mixed use land use basically comprises commercial, institutional, and service
uses. The leisure/recreation use includes parks, the city zoo, and other public open
spaces and green areas. To calculate the land use transition rates, the initial and final
land use maps were converted to raster files at a resolution of 100 m 	 100 m, and
then exported to the IDRISI where a cross-tabulation operation was made between
Fig. 1. Land use in Bauru in 1979 (left) and 1988 (right). Residential use is light grey, institutional use is

black, service corridors and zones, and industrial uses are dark grey, and commercial use is mid grey.
494 C. Maria de Almeida et al. / Comput., Environ. and Urban Systems 27 (2003) 481–509



both land use maps shown in Fig. 1(a) and (b). This is typical of the way the mod-
eling process has been operated in that we use a variety of different packages and
specialist code but with the main focus on GIS style map operations. It would be
possible to accomplish this in purely numerical terms but as much of the data is in
GIS format, then it has proved convenient to generate transition probabilities for
the five types of land use change in the manner specified.
Table 1

Significant land use transitions
Notation
 Land use transition
NU_RES
 Non-Urban to Residential
NU_IND
 Non-Urban to Industrial
NU_SERV
 Non-Urban to Services
RES_SERV
 Residential to Services
RES_MIX
 Residential to Mixed Use
Fig. 2. (a) Land use change 1979–1988 (b) Non-urban to residential land use change (NU_RES in grey)

1979–1988.
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These land use transitions are shown in Table 3 where the asymmetry of the P

matrix is immediately apparent. What is interesting about this matrix is that resi-
dential land use is not the state that captures all activity. In fact there is slow but
persistent transition from residential into services and into the mixed land use cate-
gory. In short we do not have the simplest absorbing state model that we illustrated
earlier, although were we to define all urban land use as everything other than non-
urban, then Table 3 would simplify to the following absorbing state form

P ¼
0:9171 0:0829

0 1

� �
;with P10 


0:3859 0:6141
0 1

� �
This speed of transition is quite fast although it would take nearly 500 years for 99%

of the entire system to be converted from non-urban to urban. The disaggregate steady
state matrix for Bauru 90 years on is shown in Table 4 and this reveals that there is
still considerable non-urban land to be converted but services and residential
strongly dominate. If we take this prediction forward to the steady state, then it is
Table 2

Definition of the 12 independent land use determinants
Notation
 Physical or socio-economic land use change determinant/factor
water
 Area served by water supply.
mh_dens
 Medium-high density of occupation (25% to 40%).
soc_hous
 Existence of social housing.
com_kern
 Distances to different ranges of commercial activities concentration,
defined by the Kernel estimator.
dist_ind
 Distances to industrial zones.
dist_res
 Distances to residential zones.
per_res
 Distances to peripheral residential settlements,
isolated from the urban concentration.
dist_inst
 Distances to social infrastructure (institutional use),
isolated from the urban concentration.
exist_rds
 Distances to main existent roads.
serv_axes
 Distances to the service and industrial axes.
plan_rds
 Distances to planned roads.
per_rds
 Distances to peripheral roads, which pass through non-occupied areas.
Table 3

The P matrix—land use transition rates for Bauru, 1979–1988
Land use
 NonU
 Res
 Comm
 Indust
 Inst
 Serv
 Mixed
 Leis/Rec
NonU
 0.9171
 0.0698
 0
 0.0095
 0
 0.0036
 0
 0
Res
 0
 0.9380
 0
 0
 0
 0.0597
 0.0023
 0
Comm
 0
 0
 1
 0
 0
 0
 0
 0
Indust
 0
 0
 0
 1
 0
 0
 0
 0
Inst
 0
 0
 0
 0
 1
 0
 0
 0
Serv
 0
 0
 0
 0
 0
 1
 0
 0
Mixed
 0
 0
 0
 0
 0
 0
 1
 0
Leis/Rec
 0
 0
 0
 0
 0
 0
 0
 1
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clear that services capture most of the activity although industrial use is still sig-
nificant. It is worth noting that the residential use in 500 years time would not dis-
appear from the town, but would simply lie beyond our 487 	 649 cell grid system.
In fact the steady state is so distant in time (beyond 2000 years hence) that it is of no
significant interest apart from the structural trend that this reveals. The system
graph which is implicit in Tables 3 and 4 is also of interest in showing direct and
indirect connectivities in transition.

4.3. Factors determining land use transitions: testing for independence

The first requirement for selecting factors which can be used in computing the
locational probabilities is some measure of determining whether or not they are
independent of one another for the particular land use changes in question. To do
this with data which indicates presence p and absence a of any variable Xe

i in any cell
or zone i, we need to define some measures of association or dependence. Two are
used here: first a statistic due to Cramer (see Bonham-Carter, 1994) which is based
on the chi-square 	2

� �
and second, a statistic based on the joint uncertainty between

any two distributions which is computed from entropies as used in information
theory (Batty, 1976). Cramer’s statistic is derived as follows. First we note that our
variables Xe

i can be considered as showing presence p or absence a of some char-
acteristic in a cell i and the two sets that these cells fall into are called Op and Oa

respectively, noting that each map is the union of these two sets Op

T
Oa ¼ O. The

numbers of cells in each of these sets can be defined as

Xe
p ¼

X
i2Op

Xe
i ;X

e
a ¼

X
i2Oa

Xe
i ;where Xe

p þ Xe
a ¼ N ð32Þ

Now the associations to be tested must be between two different distributions or
maps Xr

i and Xs
i and we thus need to define the joint presence and absence of the

map characteristics by the indices u; v ¼ 1 (presence) and u; v ¼ 2 (absence). We
Table 4

The predicted P10 matrix for Bauru, 2069–2078
Land use
 NonU
 Res
 Comm
 Indust
 Inst
 Serv
 Mixed
 Leis/Rec
NonU
 0.3859
 0.3626
 0
 0.0703
 0
 0.1752
 0.0057
 0
Res
 0
 0.4945
 0
 0
 0
 0.4866
 0.0187
 0
Comm
 0
 0
 1
 0
 0
 0
 0
 0
Indust
 0
 0
 0
 1
 0
 0
 0
 0
Inst
 0
 0
 0
 0
 1
 0
 0
 0
Serv
 0
 0
 0
 0
 0
 1
 0
 0
Mixed
 0
 0
 0
 0
 0
 0
 1
 0
Leis/Rec
 0
 0
 0
 0
 0
 0
 0
 1
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thus define any of the four combinations of presence and absence in these two
distributions by the joint count

Xrs
uv ¼ Xr

u

\
Xs

v ;
X
u

X
v

Xrs
uv ¼ N ð33Þ

We first form the chi-square and this requires us to compare Xrs
uv with an expected

value Xrs
uv

� �0
formed when the two map distributions are entirely independent. This

expected distribution is defined as

Xrs
uv

� �0
¼

P
v
Xrs

uv

P
u
Xrs

uv

N
ð34Þ

where the chi-square 	2
rs is computed as

	2
rs ¼

X
u

X
v

Xrs
uv � Xrs

uv

� �0
 �2
Xrs

uv

� �0 ð35Þ

Cramer’s statistic or coefficient is simply a normalized version of the chi-square
and is defined as

Vrs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2
rs= N N� 1ð Þ½ �

q
ð36Þ

This statistic has a minimum value of 0 when the two distributions are completely
independent of one another and a maximum value which is less than 1 depending
upon the two map distributions.
The second statistic is based on joint entropies where a comparison is made

between the actual entropy of the probability distribution formed from Xrs
uv and the

marginal distributions based on variation across either the first or second variable.
These are defined as

prsuv ¼ Xrs
uv=N; prsu ¼

X
v

prsuv; and prsv ¼
X
u

prsuv ð37Þ

Relevant entropies are stated in the conventional manner as

Hrs ¼ �
X
u

X
v

prsuvlogp
rs
uv;H

rs
u ¼ �

X
u

prsu logp
rs
u ;

Hrs
v ¼ �

X
v

prsv logp
rs
v : ð38Þ

The uncertainty is now defined as
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Urs ¼ 2
Hrs

u þHrs
v �Hrs

uv

Hrs
u þHrs

v

� �
ð39Þ

and this statistic likewise has a minimum value of zero when the distributions are
independent and a maximum value of 1 when the distributions are identical. The
joint information uncertainty tends to be more robust than Cramer’s statistic, for
the former works with percentage values for the overlapping areas between pairs of
factors under analysis, whereas the latter uses absolute area values.
We now need to introduce the twelve variables which are to be compared against

the five land use transitions and first consider which of these variables is relevant to
particular transitions. From our general understanding of the development process,
we consider that there are limits on what factors should logically influence different
types of land use change, and without going into specific details at this stage, we
state these decisions in Table 5. From this table, we are able to see that there are 16
pairwise comparisons of variables to be made. This table can be read as follows. For
changes from non-urban to residential use for example, five of the factors defined
earlier in Table 2 as com_kern, per_res, dist_inst, exist_rds, and per_rds are relevant
and thus there are 10 comparisons to be made—[5(5�1)/2]—to test for their inde-
pendence from one another. The same kind of comparisons must be made with
respect to factors affecting the four other land use changes, and in total, given that
several variables are used to explain more than one transition, 21 such comparisons
must be made. For each of these, we have computed Cramer’s statistic from Eq. (36)
and the joint information uncertainty from Eq. (39). We show these results in
Table 6.
The criterion which is used to determine whether one factor is independent of

another is to a large extent arbitrary as there is no large body of case results asso-
ciated with the application of these methods. Where this particular variant of logit
modeling has been used in the geosciences, Bonham-Carter (1994) reports that
values less than 0.5 for Cramer’s Coefficient and the Joint Information Uncertainty
Table 5

Selection of factors determining land use change
DNkl
� �

Xe
i

� �

NU_RES
 NU_IND
 NU_SERV
 RES_SERV
 RES_MIX
water
 

mh_dens
 

soc_hous
 

com_kern
 

 

dist_ind
 

dist_res
 

per_res
 

dist_inst
 

exist_rds
 

serv_axes
 

 

 

plan_rds
 

per_rds
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suggest less association rather than more. In all comparisons made here, these
associations are less than this threshold. Indeed all values are less than 0.45 for Vrs

and less than 0.35 for Urs. As none of the association values surpassed these
thresholds, no variables initially selected for the modeling experiment have been
discarded from the analysis. In practice, the preliminary selection of these variables
was also based on their visual correspondence when superimposed on the final land
use map so that the meaning of these associations might be established. In other
words, the fact that we associate variables which seem logically related and the fact
that these have to be below the externally imposed thresholds for significant associ-
ation also has to be tempered against the visual logic of their association. We can
visualise these interactions for all cross-tabulations of the independent variable
against land use change but we do so for only one of these – RES_MIX – which
we show in Fig. 3. If these factors still appear to have little connection to real land
use change, then they must be discarded. This is a process that we used in the ori-
ginal selection of the variables and the land use transitions which we consider they
determine.

4.4. Estimating locational probabilities from weights of evidence

As previously presented, the ‘weights of evidence’ method, employed in the cal-
culation of the cell transition probabilities, is based on ‘Bayes rule of conditional
probability’. The weights may act positively if a factor is present in the cell or
Table 6

Associations between the independent variables
Factor {Xr
i }
 Factor {Xs

i }
 Cramer’s statistic Vrs
 Uncertainty Urs
water
 serv_axes
 0.3257
 0.0767
mh_dens
 soc_hous
 0.0460
 0.0017
plan_rds
 0.2617
 0.0701
per_rds
 0.0201
 0.0003
soc_hous
 plan_rds
 0.1174
 0.0188
per_rds
 0.0480
 0.0047
com_kern
 dist_res
 0.4129
 0.3447
per_res
 0.1142
 0.0310
dist_inst
 0.1218
 0.0520
exist_rds
 0.2685
 0.1499
serv_axes
 0.2029
 0.1099
per_rds
 0.0434
 0.0064
dist_ind
 serv_axes
 0.1466
 0.0477
dist_res
 serv_axes
 0.2142
 0.1002
per_res
 dist_inst
 0.1487
 0.0559
exist_rds
 0.0592
 0.0078
per_rds
 0.1733
 0.0553
dist_inst
 exist_rds
 0.0601
 0.0108
per_rds
 0.0765
 0.0238
exist_rds
 per_rds
 0.0239
 0.0019
plan_rds
 per_rds
 0.0247
 0.0029
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negatively if the factor is not present. However of the 12 factors defined in Table 2,
only three of these are in strict binary form. The other nine are related to distances
from various land uses and as such, there is always a value of distance for any cell.
To code these factors then, we have divided them into distance bands which cover
their spatial extent and as every cell is in a distance band, then it is not necessary to
explicitly compute the evidence that a factor is not in any other band. In a general
way, in cases where there is missing data, then the likelihood is set equal to 1 or the
weight equal to 0. The evidences as estimated from the data are presented in Table 7.
Note that positive evidence does not imply a positive coefficient or vice versa in these
computations.
The weights to compute transition probabilities for each cell with respect to the

five land use transitions are based on the values in Table 7. These are used in Eq.
(30) with the prior probabilities set in proportion to the observed transition aggre-
gated across all zones. The computed probabilities are shown in Fig. 4 where these
are compared with the actual land use transitions. These images are taken from ER
Mapper, thus illustrating once again the range of software that is used to compute
the various elements of this model. The range is from high probability of transition
to low on a gray scale from light to dark. There are many points to be made about
Table 7

The weights of evidence
Land use

transition
Factor {Xi:
e}
 Positive weights of evidence W+

ie
1
 2
 3
 4
 5
 6
 7
NU_RES
 com_kerna
 3.749
 2.106
 1.864
 0.491
 �0.323
 0
 na
per_resb
 1.968
 1.615
 1.392
 0.892
 �0.626
 �0.469
 na
dist_instc
 0.003
 0.600
 1.254
 0.727
 �0.359
 �0.089
 na
exist_rdsd
 0.231
 0.320
 0.353
 0.510
 0.443
 0.196
 �0.085
per_rdse
 2.377
 2.269
 2.068
 1.984
 1.444
 0.857
 �0.127
NU_IND
 dist_indf
 3.862
 4.016
 3.792
 3.452
 1.763
 0
 0
serv_axesd
 2.722
 2.799
 2.676
 2.625
 2.525
 1.727
 �3.832
NU_SERV
 com_kerna
 3.412
 4.469
 2.912
 0.878
 0
 0
 na
dist_resb
 2.144
 1.523
 0.621
 �0.065
 0
 0
 na
serv_axesd
 3.508
 3.321
 2.917
 1.869
 0.450
 0
 0
RES_SERV
 water
 Presence�0.6611
 Absence 0.2883
serv_axesd
 2.780
 1.948
 1.461
 0.888
 �0.297
 �1.412
 �3.284
RES_MIX
 mh_dens
 Presence 0.6452
 Absence�0.0635
soc_hous
 Presence 2.4678
 Absence�0.3214
plan_rdsd
 3.506
 1.863
 0
 0
 0
 0
 0
per_rdse
 1.775
 1.652
 1.848
 0.903
 0
 0
 0
a Distance Bands in meters 1, 0–500; 2, 500–1000; 3, 1000–1500; 4, 1500–10000; 5, 10000–30000; 6, >

30000
b 1, 0–500; 2, 500–1000; 3, 1000–2000; 4, 2000–5000; 5, 5000–10000; 6, > 10000
c 1, 0–500; 2, 500–1000; 3, 1000–3000; 4, 3000–8000; 5, 8000–15000; 6, > 15000
d 1, 0–250; 2, 250–500; 3, 500–750; 4, 750–1000; 5, 1000–1250; 6, 1250–2000; 7, > 2000
e 1, 0–250; 2, 250–500; 3, 500–750; 4, 750–1000; 5, 1000–1500; 6, 1500–2500; 7, > 2500
f 1, 0–500; 2, 500–1000; 3, 1000–1500; 4, 1500–2000; 5, 2000–5000; 6, 5000–10000; 7, >10000
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the definition of the variables used as evidence determining land use change. The
majority of factors involve distance or accessibility and it is possible to examine the
way the weight of evidence varies across the different distance bands. The trend lines
produced in scatter plots relating factors and subcategories of factors (distances
ranges in distances maps) with their respective positive weights of evidence vary in
their regularity and produce mild support for including in the modeling analysis
those factors whose plots present a good fit (Almeida et al., 2002). Although we have
included all the prior factors due to their comparative independence from one
another, the final choice towards the inclusion or exclusion of a given evidence must
always rely upon a broader judgement as to the environmental importance of the
evidence and its coherence concerning the phenomenon (land use transition) being
modeled (Soares-Filho, 1998).
In terms of the five types of transition, the transition from non-urban to residen-

tial (NU_RES) appears to largely depend on the greater proximity of these areas to
commercial activity clusters, on their general accessibility conditions, and on the
previous existence of residential settlements in their surroundings, for this ensures
the possibility of extending existing nearby infrastructure, if any. For non-urban
areas to industrial use (NU_IND), there are two driving forces: the nearness of such
areas to the existing industrial use—linkages between industries—and the avail-
ability of road access. For non-urban to service use (NU_SERV), three major fac-
tors are crucial: the proximity of these areas to clusters of commercial activities,
their closeness to areas of residential use, and last but not least, their strategic loca-
Fig. 3. Overlay and spatial independence of factors determining the transition from residential to mixed

use (RES_MIX). The buffer bands are distance to planned roads (plan_rds), the darker diffused spots are

areas of medium-high density of occupation (mh_dens), and the darker polygons correspond to social

housing (soc_hous).
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tion in relation to the N–S/E–W service axes of Bauru. The first factor accounts for
the suppliers’ market (and in some cases also the consumers’ market) for services;
the second factor represents the consumers’ market itself; and the third and last
factor corresponds to the accessibility for both markets related to the service use.
The transition from ‘residential to service use’ (RES_SERV) involves the location of
services into previously consolidated urban areas. This is determined in relation to
the N–S/E–W service axes of Bauru, as well as the water supply. Finally, the last
land use transition is the shift from residential to mixed use (RES_MIX). The mixed
use zones cover the consolidation of secondary commercial centers, which also
attract services and social infrastructure. New mixed use zones emerge in the more
peripheral areas and are determined by the nearness to planned or peripheral roads,
Fig. 4. Estimated transition probability surfaces and land use change 1979–1988 The range of prob-

abilities runs from high (light grey) to low (dark grey) and the changes in land use are in light grey,

existing land use in dark grey.
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the existence of medium-high density of occupation, and the presence or proximity
of social housing settlements, since these two latter factors imply the existence of a
greater occupational gathering, and hence, economic sustainability for such zones.

4.5. The goodness of fit: alternative simulations

We are now in a position to report the results of calibrating the full model. From
the probabilities pkli

� �
which are computed for each cell from the weights of evidence

method in Eq. (30), the cellular heuristics which determine agglomeration and
polynucleation are applied following the techniques associated with Eq. (31). These
transform the probabilities into a new set p̂kli

� �
which in turn are subjected to con-

tinued iteration using the expander and patcher algorithms. At each stage of this
iteration the probabilities are selected so that the total observed change for each
land use �Nkl is approached although because this is a matter of trial and error, it
takes five iterations of these algorithms to achieve the necessary balance. At each
stage, the computed probabilities p̂kli

� �
are used to determine whether a transition

takes place; that is, random numbers are drawn over a fixed range associated with
the probabilities and if the number is less than the appropriately scaled probability,
a transition from k to l takes place. Formally

if randðnumÞ < �pkli then �Nkl
i ¼ 1; otherwise �Nkl

i ¼ 0; ð40Þ
Fig. 4. (continued)
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where � is a scaling constant. The process implied by Eq. (40) does not ensure that the
total number of transitions observed between time t and tþ 1 takes place and this
necessitates the iteration. In this way, the proportion of cell probabilities modified by
the expander and patcher operations is not known in advance. In the simulation
reported here, for example, the relative balance of these for the five transitions is
quite different; for NU_RES, the proportion of cells modified by the expander was
0.65 and by the patcher 0.35; for NU_IND, all the cells were modified by the
expander; for NU_SERV, the ratio was 0.5: 0.5; for RES_SERV, 0.1: 0.9; and finally
for RES_MIX, all the cells were modified by the patcher.

Due to the randomness of allocation in the transition algorithms, even though the

same parameter set drives the operation of the cell heuristics each time the model is
run, distinctly different simulations results will be produced. Three such simulations
which differ but are the best of many that we have run, are shown in Fig. 5. The
patcher algorithm proved to be greatly suited to simulating residential settlements
disconnected from the main urban agglomeration. Nevertheless, the shapes of these
settlements do not strictly coincide with those observed in 1988. This is partly
because the mechanics of property subdivision and the kind of geometric constraints
that govern development are not accounted for in the model. As Fig. 5 implies, the
service corridors were modeled very accurately in all simulations, while the zones of
Fig. 5. The three best simulations compared to the actual land use in 1988. Leisure and recreation (very

light grey), institutional (very dark grey), and the central commercial zone (mid grey) did not incur any

transitions during the observed time period. The new mixed land use zone that emerged in the north-

western part of the city was accurately modeled particularly in the first and third simulations.
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industrial use were also well detected in all of the three simulation results. Shifts
from non-urban areas to residential use represented the most challenging category of
land use transition in these modeling experiments. The reasons for the difficulties in
detecting their shapes have just been noted but it is worth remarking that 65% of
these types of transition occur through the expander algorithm. An evident short-
coming of this algorithm which is being tackled at present lies in the fact that after
the random selection of a seed cell for transition, all neighboring cells are subject to
transition and this is too blunt an instrument to accurately mirror the prioritization
of development in real situations.
We can formally measure the fit of the model using a variety of correlation and

chi-squared-like statistics but a particularly convenient form we adopt here is due to
Constanza (1989) which involves examining the distribution of land uses at different
levels of resolution. This also incorporates a moving-window filter and in this way
ensures that spatial variation at all scales influences the ultimate evaluation of the
goodness of fit. We define the fit Fw for a window of size w	 w as

Fw ¼
XW
i¼1

1�
XN
k¼1

jN̂k
i tþ 1ð Þ �Nk

i tþ 1ð Þj2�1w�2

 !" #( )
=W ð41Þ

where W is the total number of windows of size w sampled in a scene, N̂k
i is the total

number of cells belonging to class k in the simulated image at time tþ 1, and Nk
i , the

total number of cells belonging to class k in the real image at time tþ 1. To produce
the total goodness of fit over all windows, then we simply sum the appropriate
equation and take an average to get F. This can be weighted in the following way:

Ft ¼

P
w
Fwexp �# w� 1ð Þ½ �P
w
exp �# w� 1ð Þ½ �

ð42Þ

where the summation of w is taken as an index over the different window sizes used
and where # is a constant.
The multiple resolution method was implemented for sampling window sizes of

3	3, 5	5 and 10	10 cells. The range of these fit statistics is in fact from 0 (no fit) to
1 (perfect fit) and for the three simulations shown in Fig. 5, the fits were computed
as 0.903, 0.986, and 0.901 respectively. These are particularly encouraging results
and suggest that a very high proportion of the spatial variance in land use transition
can be simulated by this model. More detailed fit statistics dealing with specific land
uses and change variables are given in Almeida et al. (2002).
5. Conclusions: potential developments and next steps

Models of land use transition based on the GIS-map overlay paradigm which
represents data in raster form inevitably appeal to ideas from cellular automata.
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However as we have argued, strict CA models are only appropriate as a pedagogic
perspective on land use transition and as soon as an effort is made to calibrate such
models to data, the CA paradigm becomes less significant. In this paper, we have
presented a model which operates in a CA environment more akin to a cell-space
(CS) than strict CA approach and although the model has been represented formally
in the manner of CA, the main emphasis is on the way the transition probabilities
are estimated. What we have done is to introduce an approach more widely used in
ecology and the geosciences rather than urban modeling which builds a robust and
parsimonious structure from the ground up. In fact the ‘weights of evidence’
approach provides a particularly simple and useful way of illustrating how less
conventional map data in raster and in binary form can be used in a multivariate
framework, thus linking CA and raster GIS to more conventional and well estab-
lished methods of statistical estimation. We consider this approach to be one of the
most promising ways of calibrating such raster models to data. What is particularly
appealing about the model is the way in which factors which are directly considered
by local municipalities and developers who have the greatest control over develop-
ment are used as drivers of the growth process.
As we have implied above, we are extending the model in several directions which

will improve its applicability and performance. Our group at DPI-INPE is currently
committed to the development of a 2D and 3D land use CA simulation module
which is to be integrated with the SPRING Geographical Information System
developed at the Institute. This module is conceived as a flexible integrated multi-
scale and multi-purpose device, which encompasses both deterministic and stochas-
tic transition algorithms. In a more practical context, we intend to explore the
solution space of the model in the manner indicated in the presentation of the three
alternative simulations in Fig. 5 as we consider that running the model under dif-
ferent conditions and different scenarios is the best way of beginning to understand
its potential and its limits.
From the perspective of GIS, there have been many pleas for extending the func-

tionality of standard systems to embrace the kinds of model introduced here. This
has been partly achieved in some packages such as IDRISI but in general, spatial
models remain largely disconnected from such systems. In fact, dynamic modeling
within GIS constitutes an even greater and more immediate challenge. According to
Burrough (1998), methods of open systems modeling of which CA is one of the best
examples and which meet many of the general requirements for simulating dynamic
processes quickly and efficiently, are rarely implemented in GIS. As a result, GIS
remains surprisingly narrowly focused (Openshaw, 2000). All these opinions find
support in our work and that of our colleagues (Câmara, Monteiro, & Medeiros,
2001), for whom the current computational paradigms of knowledge representation
are essentially static and unable to appropriately model the temporal dimension and
the dynamic context-based relationships amongst entities and their attributes.
Finally we prefer the integration between models and GIS being through a loose

coupling rather than through embedding models directly within the GIS (Bivand
and Lucas, 2000; Parks, 1993). This is largely because so much effort has been
put into proprietary GIS to date that the connections now exist for making such
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couplings in an effective and efficient manner. Our application here is an example
par excellence of the use of many kinds of software where the actual model is pro-
grammed in conventional terms once the inputs and estimation have been organized
through separate statistical and GIS software. In fact, even the visualization of the
inputs and outputs from our models is accomplished using different GIS packages
ranging from our own SPRING to packages such as IDRISI and ER Mapper. We
believe that considerable progress in modeling urban dynamics can now be made by
combining various software in innovative ways, particularly with respect to analysis
of change through visualization and powerful estimation of model structures
through stochastic methods in the manner we have presented here.
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Almeida, C. M., Monteiro, A. M. V., Câmara, G., Soares-Filho, B. S., Cerqueira, G. C., & Pennachin,

C. L. (2002) Modeling urban land use dynamics through Bayesian probabilistic methods in a cellular

automaton environment. Proceedings of the 29thInternational Symposium on Remote Sensing of the

Environment, Buenos Aires, Argentina, 8–12 April.

Batty, M. (1976). Entropy in spatial aggregation. Geographical Analysis, 8, 1–21.

Batty, M. (2000). Geocomputation using cellular automata. In S. Openshaw, & R. J. Abrahart (Eds.),

Geocomputation (pp. 95–126). London: Taylor & Francis.

Batty, M., & Xie, Y. (1994). From cells to cities. Environment and Planning B, 21, 31–48.

Bivand, R., & Lucas, A. (2000). Integrating models and geographical information systems. In

S. Openshaw, & R. J. Abrahart (Eds.), Geocomputation (pp. 331–364). London: Taylor & Francis.

Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: modelling with GIS. New

York: Pergamon.

Burrough, P. A. (1998). Dynamic modelling and geocomputation. In P. A. Longley, S. M. Brooks,

R. McDonnell, & B. MacMillan (Eds.), Geocomputation: a primer (pp. 165–192). Chichester, England:

John Wiley & Sons.
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