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ABSTRACT 
 

This scientific paper, part of a PhD Thesis currently under execution at the Division for 
Image Processing of the Brazilian National Institute for Space Research (DPI – INPE), is 
committed with building up a methodological guideline for modelling urban land use change 
through GIS, Remote Sensing imagery and Bayesian probabilistic methods. A medium-size town 
in the west of São Paulo State, Bauru, was adopted as case study. Its urban structure was converted 
into a 100 x 100 (m) resolution grid, and transition probabilities were calculated for each grid cell 
by means of the “weights of evidence” statistical method and upon basis of the information related 
to the technical and social infrastructure of the town. The probabilities therefrom obtained fed a 
cellular automaton (CA) simulation model – DINAMICA- conceived by the Centre for Remote 
Sensing of the Federal University of Minas Gerais (CSR-UFMG), based on a multiscale vicinity 
approach and stochastic transition algorithms. Different simulation outputs for the case study town 
in the period 1979-1988 were generated, and statistical validation tests were then conducted for the 
best results, employing a multiple resolution fitting procedure. 

 
This modelling experiment revealed the plausibility of adopting Bayesian empirical 

methods based on the available infrastructure knowledge to simulate urban land use change, what 
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implies their possible further applicability for generating forecasts of growth trends both for 
Brazilian and worldwide cities. 
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1. INTRODUCTION 
 

Recent generation models of urban dynamics have been dealing with diverse themes. 
According to Batty (2000), there are currently some twenty or more applications of CA to cities, 
such as the diffusion or migration of resident populations (Portugali et al., 1997), the competitive 
location of economic activities (Benati, 1997), the joint expansion of urban surface and traffic 
network (Batty and Xie, 1997), the generic urban growth (Clarke et al., 1997), the urban land use 
dynamics (Deadman et al., 1993; Batty and Xie, 1994; Phipps and Langlois, 1997; White and 
Engelen, 1997; White et al., 1998) , and so forth. 
 

Specifically regarding urban land use dynamics, it is possible to identify basically three 
main trends of CA models in respect to their balance between stochasticity and determinism. A 
first one concerns the predominantly deterministic models, whose most evident representative is 
the urban growth study for the San Francisco Bay area, conducted by Clarke et al. (1997). 
Although this model incorporates a certain randomness in selecting the cells for urban growth and 
in promoting the spread of growth seeds, its transition rules, which can be spontaneous, diffusive, 
organic or road-influenced, are fundamentally deterministic in the sense that the cell suitability for 
being urbanised is not dependent upon probabilistic methods. 
 

A second trend relates to the stochastic models with both deterministic estimations of area 
for land use transition and deterministic transition algorithms. A good example of this category of 
models is the SIMLUCIA, conceived by White et al. (1998), which is an integrated model of 
natural and human systems operating at several spatial scales, and was aimed at providing the 
officials of the Caribbean Island of Santa Lucia with a tool to explore possible environmental, 
social, and economic consequences of hypothesised climate changes. 
 

In this model, a sophisticated set of equations taking into account aspects of the natural 
environment is formulated in order to estimate the impact of economic and demographic changes 
on land use. The stochasticity of this model is present in the calculation of the probabilities of land 
use transition for each cell, which is basically a function of the cell suitability for the new activity 
in question and its relative accessibility for such an activity. In the SIMLUCIA transition 
algorithm, cells are ranked by their highest potential, and cell transitions begin with the highest 
ranked cell and proceed deterministically downwards, until the number of cells demanded by the 
above-mentioned equations is reached. 
 

A third trend concerns the stochastic CA models with both stochastic estimations of area 
for land use transition and stochastic transition algorithms. The modelling experiment presented in 
this paper integrates this third category, in which the transition rules are randomised, the cell 
transition probabilities are calculated through Bayesian probabilistic methods (“weights of 
evidence”), and the Markov chain is in principle utilised for the definition of the transition rates for 
each possible type of land use change. An overview of the “weights of evidence” statistical 
method as well as an explanation of how it can be applied to the modelling of urban land use 
dynamics are presented throughout the next section. 
 



2. METHODS: A BAYESIAN METHOD-BASED CELLULAR AUTOMATON 
MODEL 
 

2.1 GENERALISATION PROCEDURES APPLIED TO THE LAND USE MAPS 
 

Initially, the following procedures were applied to the initial (1979) and final (1988) land 
use maps (Figure 1) used in the simulation experiment so as to render them workable by the 
computational model and coherent to the reality they are related to: 

(i) reclassification of the zones initially assigned by the Bauru local authorities 
according to their dominant and effectively existent use with the help of satellite 
imagery; 

(ii) reclassification of similar zones shown on official maps to only one category, 
e.g.: residential zones of different densities are all reclassified to residential 
zones only; special use zones and social infrastructure equipments zones are 
reclassified to institutional zones only, and so on; 

(iii) adoption of eight land use zone categories: residential, commercial, industrial, 
services, institutional, mixed use zone, leisure/recreation, and non-urban zone; 

(iv) exclusion of districts segregated from the main urban agglomeration, i.e. those 
which are located above 10 km from the official urban boundary; 

(v) disregard of the traffic network and minor non-occupied areas in the simulations. 

 
Fig. 1 – Official Bauru land use maps for the years 1979 (left) and 1988 (right). 

 
 
 

The land use maps on Figure 1 are the results of the application of the generalisation 
procedures listed above on the official city maps. The yellow colour represents the residential use; 
the orange, the commercial use; the purple relates to the industrial use; the blue refers to the 
institutional use; the red corresponds to the services use zones and corridors; the brown is related 
to the mixed use zones; the green represents the leisure and recreation use; and the white refers to 
the non-urban use. 
       

2.2 EXPLORATORY ANALYSIS AND SELECTION OF VARIABLES 
 

Some of the maps of explaining variables related to the technical and social infrastructure 
of Bauru and employed in the modelling analysis are presented below. Initially, these maps were 
scanned in the hollandaise OCE scanner (model G6035S) and digitised in AutoCad release 14. 
These maps were then exported as files with extension DXF to the Geographic Information 
System (GIS) termed SPRING, conceived by the Division for Image Processing of the Brazilian 
National Institute for Space Research (DPI-INPE). It is worth mentioning that these procedures 
were also adopted for the production of the Bauru land use maps presented in Figure 1. In 
SPRING, the maps of variables were then subjected to a preliminary processing, including vector 
edition, polygons identification, elaboration of distance maps and spatial statistical analysis maps 
like the Kernel points density estimator, etc. (Figure 2). 
 



 

 
 

 
Figure 2 – Examples of maps of variables: (left) area served by water supply in Bauru, 1979; 

(right) Kernel estimator for the density of commercial establishments in Bauru, 1979. 
 

Since the “weights of evidence” statistical method (to be employed in the calculation of 
the cells transition probabilities) is based on the “Bayes theorem of conditional probability”, the 
selection of variables for the modelling analysis should take into account the checking of 
independence amongst pairs of variables chosen to explain the same category of land use change. 
For this end, two methods were used: the Cramers Coefficient (V) and the Joint Information 
Uncertainty (U). For further details of these two indexes, see Bonham-Carter (1994). In both cases, 
it is necessary to obtain values from an area cross-tabulation between pairs of maps of variables 
under analysis. For the Cramers Coefficient, the empirically established threshold was 0.45, and 
for the Joint Information Uncertainty, 0.35. As none of the association measure values surpassed 
the thresholds, no variables preliminarily selected for modelling have been discarded from the 
analysis.  

 
2.3 ESTIMATION OF TRANSITION RATES 

 
For the specific case study town in question – Bauru – in the period 1979-1988, five types 

of land use change were detected (Table 1). In order to calculate land use transition rates for the 
period 1979-1988, the initial and final land use maps were converted to raster files with extension 
TIFF and resolution 100 x 100 (m), and then exported to the IDRISI Geographic Information 
System. In IDRISI, a cross-tabulation operation was made between both land use maps (See 
Figure 1) so as to generate transition percentages for the five existent types of land use change. 
 
TABLE 1 - IDENTIFIED TYPES OF LAND USE CHANGE FOR THE CITY OF BAURU, 

IN THE 
                         PERIOD 1979-1988, AND RESPECTIVE CODES 
 

Code Type of Land Use Change 

NU_RES Non-Urban to Residential 

NU_IND Non-Urban to Industrial 

NU_SERV Non-Urban to Services 

RES_SERV Residential to Services 

RES_MIX Residential to Mixed Use 

 
Due to the stochastic structure of the DINAMICA transition algorithms, envisaged 

transition rates established through cross-tabulation are not always reached. 
 

For the estimation of land use percentages in the case of modelling land use change 
forecasts through DINAMICA, the Markov chain is to be employed. This chain is a mathematical 



model designed to describe a certain type of process that moves in a sequence of steps through a 
set of states, whose formula is defined as: 
 
                             ∏(t +1) = P. ∏(t ),                                                                         (1) 

 
where ∏(t ) is a column vector, with n elements, that represents the system condition in a certain 
time t (e.g. area percentages for each ni land use category or state); ∏(t +1) is the vector 
representing the occupation of n states in a given future time t +1; and P is the transition 
probabilities matrix or the table for land use transition rates. 
 

An important constraint of the Markov model lies on the fact that, in principle, it supposes 
that transition probabilities do not change over time (stationary process). Moreover, given its 
stochastic nature, the Markov chain masks the causative variables. It is not an explanatory model, 
and is thus of no use in understanding the causes and driving factors of land use transition 
processes. On the other hand, the Markov chain analysis has the great advantage of presenting a 
mathematical and operational simplicity. Simple trend projection involves no more than matrix 
multiplication, and the only data requirement is for current land use information (JRC and ESA, 
1994).  
 

2.4 RECKONING OF THE CELLS LAND USE TRANSITION PROBABILITIES  
 

As previously said, the “weights of evidence” statistical method, employed in the 
calculation of the cells transition probabilities, is based on the “Bayes theorem of conditional 
probability”. Basically, this theorem concerns the favourability to detect a certain event, which can 
be in the current case a given category of land use change (e.g. non-urban use to residential use), 
provided that an evidence (e.g. water supply area), also called explaining variable, has already 
happened. The evidences or explaining variables in the experiment presented in this paper mainly 
refer to the technical and social infrastructure of the case study town, Bauru. 
 

The favourability to find the event (change from non-urban to residential use) R given the 
presence of the evidence (water supply) S can be expressed by: 
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where P {RS} is the conditional probability of occurring the event R given the presence of the 
explaining variable S. The equations of the Bayes theorem can be expressed in an odds form. Odds 
are defined as a ratio of the probability that an event will occur to the probability that it will not 
occur. The weights of evidence method uses the natural logarithm of odds, known as log odds or 
logits. In this way, through some algebraic manipulations, the following expression is obtained: 
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where O {R S}  is the conditional (posterior) odds of R given S, O {R} is the prior odds of R 
andP{S R}/P{S ~R} is known as the sufficiency ratio (LS). In weights of evidence, the natural 
logarithm of both sides of Equation 3 are taken, and loge LS is the positive weight of evidence W+, 
which is calculated from the data. Then: 
 

                               logit {R S}  =  logit {R}  +  W+                      (4) 
              

Similarly, the logits expression for the conditional probability of R given the absence of 
the evidence S, will provide the negative weight of evidence  W –: 
 

                               logit {R S}  =  logit {R}  +  W -                      (5) 
 



If the evidence is uncorrelated with the events, then LS=LN=1, and the posterior 
probability equals the prior probability, and the probability of an event would be unaffected by the 
presence or absence of a certain evidence. In this sense, W+ is positive, and  W- is negative, due to 
the positive correlation between the evidences and the events. Conversely W+ would be negative 
and W- positive for the case where a very limited part of the event occur on the evidence area than 
would be expected due to chance. If the events are independent of whether the evidence is present 
or not, then W+ = W- = 0 (Bonham-Carter, 1994). In the particular case of the DINAMICA 
simulation model, adopted for the modelling experiment being considered, the cells transition 
probabilities are calculated through a formula which converts logit into conventional probability, 
as follows: 
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 This formula shows a clear similarity with the one employed for the calculation of 
probability in the logistic regression method (also known as logistic function), which obviously 
does not include odds. In the above case, the sum of the positive weights of evidence (W+) 
corresponds to the product of the linear regression coefficients by the independent variables 
adopted in the regression analysis.  
 

The first step in the very process of calculating the cells transition probabilities using 
DINAMICA is to obtain a cross-tabulation map (Figure 3) between the initial and final land use 
maps elaborated for the city of Bauru, respectively for the years 1979 and 1988, both previously 
presented in Figure1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
Fig. 3 – Cross-tabulation map between the initial (1979) and final (1988) land use maps elaborated 
for the city of Bauru. Types of land use permanence as well as transition are listed on the legend.  

 
In IDRISI, the land use cross-tabulation map of Bauru (1979-1988) was used to generate 

land use transition maps (Figure 4) for each of the five possible types of land use change presented 
in Table 1. This was done through reclassification tables (“edit” command), on which three basic 
rules were observed. First, all raster values corresponding to classes of land use permanence or 
transition whose initial land use was different from the initial land use category in the considered 
type of land use change were assigned value 0 (black colour). This reclassification to value 0 is 
automatic for raster values not included in the “edit” table. Second, all raster values corresponding 
to classes of land use transition whose initial and final land use categories were equal to the initial 
and final categories of the land use change at issue were assigned value 2 (blue colour). Third, all 
other remaining classes of land use permanence or transition were assigned value 1 (green colour).  



 
Fig. 4 – Example of the non-urban_residential land use transition map for Bauru in the period 

1979-1988. 
Once all the possible types of land use transition maps were elaborated (nu_res; nu_ind; 

nu_serv; res_serv; res_mix), they were then subjected to partial cross-tabulations with selected 
explaining variables (evidences) maps according to an apparent interdependence between a certain 
type of land use transition and a given explaining variable. The evidences maps, pre-processed in 
the SPRING Geographic Information System, were in the same manner as the initial and final land 
use maps converted to raster files with extension TIFF and resolution 100 x 100 (m), and then 
exported to IDRISI. The partial cross-tabulations disregard the raster values 0 (black colour) in the 
land use transition maps and are accomplished through the “ermatt” command of IDRISI.  
 

The numerical values of cells proportions existing in the absence/presence of a binary 
evidence (e.g. water supply) or in the different ranges of distances maps and found to be overlying 
on either class 1 (green colour) or 2 (blue colour) of the land use transition maps are (for each 
cross-tabulation table) selectively transferred to EXCELL files specially created for the calculation 
of the weights of evidence (See Equations 3 and 4). 
 

Using the values for the positive weights of evidence W+ concerning the several evidences 
maps employed in the analysis of each category of land use change, the DINAMICA simulation 
model will then calculate the cells transition probabilities (See Equation 7) for the five types of 
land use transition. By means of the cells transition probabilities, DINAMICA will then generate 
the respective transition probabilities maps (Figures 5 to 7) for each of the five types of land use 
change existing in Bauru from 1979 to 1988. These maps are seen in ERMAPPER, a GIS 
employed by DINAMICA for visualisation purposes.  
 
 It is worth remarking the good ability of these probabilities maps to detect the transition 
areas (blue colour) in the corresponding land use transition maps, for all the reddish regions in the 
probabilities maps relate to the very areas owning the highest transition probabilities rates. Some 
examples of probabilities maps are shown in the sequence. 
 



  
 
 
 

Fig. 5 - Map of cells transition probabilities, on the left, and map of land use transition “non-urban  
                       industrial” (nu_ind), on the right. 
                

 

Fig. 6 - Map of cells transition probabilities, on the left, and map of land use transition “non-urban  
                       residential” (nu_res), on the right. 

 

Fig. 7 - Map of cells transition probabilities, on the left, and map of land use transition “residential  
                        services” (res_serv), on the right.                 
 

 

 



2.5 MODEL CALIBRATION 
 

For the calibration of the model designed to emulate urban land use transition for the 
town of Bauru in the period 1979 – 1988, empirical procedures were adopted. They basically 
concern the visual comparative analysis, for each type of land use change, amongst the general 
trends of preliminary simulation results, the hints provided by both the transition probabilities map 
and the land use transition map, and the guideline information contained in the simultaneous 
overlay of different explaining variables maps upon the final land use map in vector format  

The model calibration, on the other hand, is as well accomplished by the analysis of 
scatter plots relating subcategories of evidences (distances ranges), whenever they are available, 
with their respective positive weights of evidence. In a general manner, when the plots present a 
good fit of trendlines (which can assume different orders and types), i.e. when the lines do not 
demand very complex models for adjustment, the evidences to which they are associated are 
highly prone to be included in the model (Figure 8).  
        

 
 
 
 
 
 
 
 
 
 
Fig. 8 – Examples of scatter plots and respective trendlines for the relations between subcategories 
of evidences (X axis) and their corresponding positive weights of evidence (Y axis), considering 
different types of land use change. The plot on the left show a typical case of poor fit, and hence, 
of evidence exclusion. On the contrary, the right plot presents a good adjustment of trendline, what 
implies the high pobability of inclusion of such an evidence in the urban land use model.  
 

The final decision towards the inclusion or exclusion of a given evidence will always rely 
upon a broad judgement, in which the environmental importance of the evidence and its coherence 
concerning the phenomenon (land use transition) being modelled are analysed. As stated by 
Couclelis (1997), to take full advantage of CA models as simulating (and forecasting) tools, 
planners and others need to rely as much on their right-brain powers of pattern recognition and 
relationship perception as on left-brain analyses of the inevitably innacurate quantitative outputs. 
 
3. RESULTS AND DISCUSSION 
 

Upon basis of the carried out calibration process, it becomes evident that the probability 
of certain non-urban areas in the city of Bauru to shelter residential settlements (“nu_res” land use 
transition) largely depends on the previous existence of this type of settlements in their 
surroundings, on the greater proximity of these areas to commercial activities clusters as well as on 
the available accessibility to such areas. 
 

As to the transition of non-urban areas to industrial use (nu_ind), there are two great 
driving forces: the nearness of such areas to the previously existent industrial use and the 
availability of road access. This can be explained by the fact that in the industrial production 
process, the output of certain industries represent the input of other ones, what raises the need of 
rationalisation and optimisation of costs by the clustering of plants interrelated in the same 
productive chain. Furthermore, plots in the vicinities of industrial areas are often prone to be 
devaluated for other uses, what makes them rather competitive for the industrial use. 
 

Relation Between Evidence and Land Use Change (res_serv)
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Regarding the transition of non-urban areas to services use (nu_serv), three major factors 
are crucial: the proximity of these areas to clusters of commercial activities, their closeness to 
areas of residential use, and last but not least, their strategic location in relation to the N-S / E-W 
services axes of Bauru. The first factor accounts for the suppliers market (and in some cases also 
consumers market) of services; the second factor represents the consumers market itself; and the 
third and last factor corresponds to the accessibility for both markets related to the services use. 
 

The transition “residential to services use” (res_serv) supposes the insertion of services 
into previously consolidated urban areas. In this way, since this transition type already takes place 
amid the suppliers and consumers markets, it will solely prioritise the strategic location in relation 
to the N-S / E-W services axes of Bauru, besides of course, the existence of water supply, which in 
the specific case of Bauru does not correspond to the whole urbanised area. 
 

Finally, the last type of land use transition concerns the shift from residential use to mixed 
use (res_mix). The mixed use zones, which actually play the role of urban subcentres, constitute a 
sort of commercial centres consolidation, which at a later stage also start to attract services and 
social infrastructure equipments besides commercial activities themselves. Therefore, new mixed 
use zones arise in more peripheral areas, where a greater occupational gathering is at the same time 
assured. Thus, the decisive factors for this last type of land use change are:  

 

• existence of medium-high density of occupation (higher density values only occur in 
the central commercial zone of the town or in the immediacies of already existent 
mixed use zones);  

• presence or proximity of social housing settlements (for they shelter the greatest 
occupational densities in more peripheral areas, and hence, greater consumers 
markets);  

• nearness to planned or peripheral roads, since new mixed use zones arise in farther 
areas of the town. 

 
After the calibration of evidences maps sets is accomplished, a new calibration process 

concerning the script parameters of the DINAMICA simulation model takes place. Such 
parameters refer to the number of iterations (runs), proportion of cells transition by contiguity 
(“expander” operator) and by nucleation (“patcher” operator), average size and variance of 
patches to be generated either by the expander or patcher operators, etc. 
 

The expander is an algorithm of the DINAMICA model which realises transitions from a 
state i to a state j only in the adjacent vicinities of cells with state j. The patcher operator, on its 
turn, is also an algorithm of the DINAMICA model, but which realises transitions from a state i to 
a state j only in the adjacent vicinities of cells with state other than j.  
 

Due to the randomness of the DINAMICA transition algorithms, even though the same 
sets of evidences maps for each type of land use transition and the same script parameters are kept 
in different runs, distinct simulations results will be produced after each run of the model. In this 
way, the best urban land use simulation results for the city of Bauru in the period 1979–1988 are 
presented in Figure 9. The patcher algorithm proved to be of great suitability for the modelling of 
residential settlements disconnected from the main urban agglomeration. Nevertheless, the shapes 
of these settlements in the modelling results do not strictly coincide to those observed in reality. 
This happens because these contours are associated with the real state properties limits. Since legal 
actions for the merging or split of plots may occur at any time and drastically alter their form, such 
boundaries can be regarded as highly unstable factors, and thus, inappropriate for modelling. 

 
The services corridors, in light brown, were well modelled in all simulations. The 

industrial use zone, in  light  green, was considerably  well  detected  in  all  of  the three 
simulations results, specially in S2 and S3. The leisure and recreation zones (yellowish green), the 
institutional zones (red) and the central commercial zone (light blue) did not suffer any transitions. 
The new mixed zone that arose in the north-western part of the town during the simulation period 
was rather well modelled, particularly in S1 and S3.  



                                         Simulation 1 – S1 
 
 
 
 
 
 
 
                                         Final Land Use Map     Simulation 2 – S2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                 Simulation 3 – S3 
 

Fig. 9 – Bauru final land use map and simulations results for the period 1979-1988. 
 

Lastly, the shifts from non-urban areas to residential use represented the most challenging 
category of land use transition in the modelling experiment at issue. The reasons for the difficulties 
in detecting their shapes have been previously commented in this paper. It is worth remarking that 
65 % of this type of transitions occur through the expander algorithm. An evident shortcoming of 
this algorithm lies on the fact that, after the random selection of a seed cell for transition, 
neighbouring cells to it also undergo transitions though regardless of their transition probability 
values. The R & D team of CSR-UFMG, entrusted with the continuous upgrading programme of 
DINAMICA, is currently working to tackle this problem. Other enhancements such as the 
incorporation of fractal parameters in the transition algorithms as well as the possibility to define 
patches average sizes and variances for the expander and patcher algorithms separately are also 
envisaged. 
 

To conclude, it is worth stressing here the wide feasibility (and the cells transition 
probability maps are a concrete prove) to optimise the simulations results by means of a model 
which embraces more refined algorithmic logics, suitable for the urban phenomena modelling 
under consideration. 
 
4. STATISTICAL VALIDATION OF THE MODEL 
 

With the purpose to conduct statistical tests for the spatial validation of models of land 
use dynamics, Constanza (1989) presents a procedure entitled “Multiple Resolution Method”, in 
which a sampling window, that can assume different sizes, moves over the entire images 
considered, and the average fit between two given scenes (the real and the simulated one) for a 
particular window size is calculated. In this estimation, a comparative analysis is conducted 
between the absolute number of pixels belonging to the same classes existent on both scenes and 
found within a given window. This multiple resolution method was implemented in a UNIX 
environment programme named FIT, developed by CSR-UFMG. FIT was applied for the best 



simulation results presented in Figure 9, with sampling window sizes of 3x3, 5x5 and 10x10 
(Table 2). 
 
TABLE 2 –  TESTS OF THE MULTIPLE RESOLUTION GOODNESS OF FIT APPLIED 

TO THE 
                           BEST LAND USE SIMULATION RESULTS FOR THE CITY OF BAURU 
(1979-1988)   
  

SIMULATIONS MULTIPLE RESOLUTION GOODNESS OF FIT (F) 

S1 F = 0.902937 

S2 F = 0.896092 

S3 F = 0.901134 

 
5. CONCLUSION 
 

The urban land use dynamics models have proved to be useful for the identification of 
main urban growth vectors and their general land use tendencies, what enables local planning 
authorities to manage and reorganise (if it comes into question) city growth according to the 
environmental carrying capacity of concerned sites and to their present and envisaged (future 
investments) infrastructure availability.    
 

The urban expansion forecasts provided by such models also help local authorities in 
general to establish investments goals in terms of technical and social infrastructure equipments. 
Decision makers from the private sphere can as well benefit from the modelling output data, since 
companies of transportation, conventional and mobile phones, cable TV and internet, and others 
will have subsidies for defining priorities as to where and how intense to invest. Also the 
organised civil society, either through NGOs or local associations, can profit from the modelling 
forecasts in order to enhance, by legal means, demanding social movements for the 
implementation of social and technical infrastructure, since their requests and respective 
arguments shall be based on realistic short- and medium-term urban growth trends. 
 

Finally, it is worth reminding that the “weights of evidence” statistical method is not 
constrained by the straitjacket of rigid theories devices and does not either impose theoretical 
restraints to the modelling objects. Since this a wholly empirical approach, its applicability can be 
extended to further Brazilian and worldwide cities, provided that the minimum necessary sets of 
evidences maps are available. 
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