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Region-growing segmentation algorithms are useful for remote sensing image

segmentation. These algorithms need the user to supply control parameters,

which control the quality of the resulting segmentation. An objective function is

proposed for selecting suitable parameters for region-growing algorithms to

ensure best quality results. It considers that a segmentation has two desirable

properties: each of the resulting segments should be internally homogeneous and

should be distinguishable from its neighbourhood. The measure combines a

spatial autocorrelation indicator that detects separability between regions and a

variance indicator that expresses the overall homogeneity of the regions.

1. Introduction

Methods of image segmentation are important for remote sensing image analysis.

Image segmentation aims to divide an image into spatially continuous, disjunctive

and homogeneous regions (Pekkarinen 2002). Segmentation algorithms have many

advantages over pixel-based image classifiers. The resulting maps are usually more

visually consistent and more easily converted into a geographical information

system. Among the image segmentation techniques described in the literature,

region-growing techniques are being widely used for remote sensing applications, as

they guarantee creating closed regions (Tilton and Lawrence 2000). As most region-

growing segmentation algorithms for remote sensing imagery need user-supplied

parameters, one of the challenges for using these algorithms is selecting suitable

parameters to ensure best quality results. We address this problem here by

proposing an objective function for measuring the quality of a segmentation. By

applying the proposed function to the segmentation results, the user has guidance

for parameter value selection.

The issue of measuring segmentation quality has been addressed in the literature

(Zhang 1996). For closed regions, Liu and Yang (1994) proposed a function that

considers the number of regions in the segmented image, the number of the pixels in

each region and the colour error of each region. Similarly, Levine and Nazif (1985)

used a function that combines measures of region uniformity and region contrast.

None of these proposals makes direct use of spatial autocorrelation. Spatial

autocorrelation is an inherent feature of remote sensing data (Wulder and Boots

1998) and a reliable indicator of statistical separability between spatial objects
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(Fotheringham et al. 2000). Using spatial autocorrelation for measurement of image

segmentation quality is particularly well suited for region-growing algorithms,

which produce closed regions.

The proposed objective function considers that a segmentation has two desirable

properties: each of the resulting segments should be internally homogeneous and

should be distinguishable from its neighbourhood. The function combines a spatial

autocorrelation index that detects separability between regions, with a variance

indicator that expresses the overall homogeneity of the regions. The main advantage

of the proposed method is its robustness, as it uses established statistical methods

(spatial autocorrelation and variance).

2. A typical region-growing image segmentation algorithm

The assessment of the proposed objective function used the region-growing

segmentation used in the SPRING software (Bins et al. 1996). As a recent survey

shows (Meinel and Neubert 2004), this algorithm is representative of the current

generation of segmentation techniques and it ranked second in quality out of the

seven algorithms surveyed by the authors. This algorithm uses two parameters: a

similarity threshold and an area threshold. It starts by comparing neighbouring

pixels and merging them into regions if they are similar. The algorithm then tries

iteratively to merge the resulting regions. Two neighbouring regions, Ri and Rj, are

merged if they satisfy the following conditions:

(1) Threshold Condition: dist(Ri,Rj)(T

(2) Neighbourhood Condition 1: RjgN(Ri) and dist(Rj,Ri)(dist(Rk,Ri),

RkgN(Ri)

(3) Neighbourhood Condition 2: RigN(Rj) and dist(Rj,Rj)(dist(Rk,Rj),

RkgN(Rj)

In the above, T is the chosen similarity threshold, dist(Ri,Rj) is the Euclidian

distance between the mean grey levels of the regions and N(R) is the set of

neighbouring regions of region R. In addition, regions smaller than the chosen area

threshold are removed by merging them with their most similar neighbour (Bins et al.

1996). The results of the segmentation algorithm are sensitive to the choice of

similarity and area thresholds. Low values of area threshold result in excessive

partitioning, producing a confusing visual picture of the regions. High values of

similarity threshold force the union of spectrally distinct regions, resulting in

undersegmentation. In addition, the right thresholds vary depending on the spectral

range of the image.

The need for user-supplied control parameters, as required by SPRING, is typical of

region-growing algorithms (Meinel and Neubert 2004). For example, the segmentation

algorithm used in the e-CognitionH software (Baatz and Schape 2000) needs similar

parameters: scale and shape factors, compactness and smoothness criteria. Therefore,

the objective function is useful for region-growing algorithms in general.

3. An indicator of segmentation quality

Given the sensitivity of region-growing segmentation algorithms to user-supplied

parameters, we propose an objective function for the measurement of the quality of

the resulting segmentation. The function aims at maximizing intrasegment

homogeneity and intersegment heterogeneity. It has two components: a measure
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of intrasegment homogeneity and one of intersegment heterogeneity. The first

component is the intrasegment variance of the regions produced by a segmentation

algorithm, and is calculated by the formula:

v~

Pn
i~1 ai

:viPn
i~1 ai

ð1Þ

where vi is the variance and ai is the area of region i. The intrasegment variance v is a
weighted average, where the weights are the areas of each region. This approach

puts more weight on the larger regions, avoiding possible instabilities caused by

smaller regions.

To assess the intersegment heterogeneity, the function uses Moran’s I
autocorrelation index (Fotheringham et al. 2000), which measures the degree of

spatial association as reflected in the data set as a whole. Spatial autocorrelation is a

well-known property of spatial data. Similar values for a variable will occur in

nearby locations, leading to spatial clusters. The algorithm for computing Moran’s I

index (the spatial autocorrelation of a segmentation) uses the fact that region-

growing algorithms generate closed regions. For each region, the algorithm

calculates its mean grey value and determines all adjacent regions. In this case,

Moran’s I is expressed as:

I~

n
Pn

i~1

Pn

j~1

wij yi{ȳð Þ yj{ȳ
� �

Pn

i~1

yi{ȳð Þ2
� �

P
i=j

P
wij

� � ð2Þ

where n is the total number of regions, wij is a measure of the spatial proximity, yi is the

mean grey value of region Ri, and ȳ is the mean grey value of the image. Each weight

wij is a measure of the spatial adjacency of regions Ri and Rj. If regions Ri and Rj are

adjacent, wij51. Otherwise, wij50. Thus, Moran’s I applied to segmented images will

capture how, on average, the mean values of each region differ from the mean values

of its neighbours. Small values of Moran’s I indicate low spatial autocorrelation. In

this case, the neighbouring regions are statistically different. Local minima of this
index signal locations of large intersegment heterogeneity. Such minima are associated

with segmentation results that show clear boundaries between regions.

The proper choice of parameters is the one that combines a low intersegment

Moran’s I index (adjacent regions are dissimilar) with a low intrasegment variance
(each region is homogeneous). The proposed objective function combines the

variance measure and the autocorrelation measure in an objective function given by:

F v,Ið Þ~F vð ÞzF Ið Þ ð3Þ

Functions F(v) and F(I) are normalization functions, given by:

F xð Þ~ Xmax{X

Xmax{Xmin

ð4Þ

4. Results and discussion

To assess the validity of the proposed measure, we conducted two experiments. The

first experiment used a 1006100 pixel image of band 3 (0.63–0.69 mm) of the
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Landsat-7/ETM + sensor (WRS 220/74, 14 August 2001). We created 2500

segmentations, with similarity and area thresholds ranging from 1 to 50. The

values of the objective function are shown in figure 1(a) and the image is shown in

figure 1(b). The maximum value occurs for an area threshold of 22 and a similarity

threshold of 25. This maximum value matches the visual interpretation of the result,

which achieves a balance between under- and oversegmentation.

The weighted variance for the 2500 segmentations is shown in figure 2(a). Small

values of similarity and area thresholds produce few regions and the weighted

variance will have small values. The weighted variance increases with the similarity

and area thresholds. The values of Moran’s I are shown in figure 2(b), which

indicates the local minima. These local minima are cases where each region is

internally homogeneous and is dissimilar from its neighbours.

Figure 3 shows how Moran’s I index varies, given a fixed area threshold of 22 and

a similarity threshold ranging from 1 to 50. Visual comparison of three results (with

Figure 1. Left: the objective function for the test image, whose maximum value occurs when
the similarity threshold is 25 and the area threshold is 22. Right: the resulting segmented
image.

Figure 2. Left: weighted variance for 2500 segmentations of the test image. Right: Moran’s I
index for 2500 segmentations of the test image.
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similarities of 19, 29 and 36) shows that the segmentation with the smallest value of

Moran’s I matches a more visually acceptable segmentation result.

The second experiment used a synthesized image of 4266426 pixels, as suggested

by Liu and Yang (1994). Figure 4 shows the variation of its objective function. The

Figure 3. Top: values of Moran’s I index for a fixed area threshold (22) and a similarity
value ranging from 1 to 50. Bottom (left to right): segmentations with different similarity
thresholds (19, 29 and 36).

Figure 4. Left: objective function for the synthesized image. Right: best segmentation
(similarity parameter is 20 and area parameter is 22).
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maximum value of the objective function matches the visual interpretation of the
results. The best segmentation has a high homogeneity of the segments, and a clear

distinction between neighbouring segments.

5. Conclusion

The emerging use of region-growing segmentation algorithms for remote sensing

imagery requires methods for guiding users as to the proper application of these

techniques. We propose here an objective function that uses inherent properties of

remote sensing data (spatial autocorrelation and variance) to support the selection

of parameters for these algorithms. The proposed method allows users to benefit

from the potential of region-growing methods for extracting information from

remote sensing data.
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