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Abstract

Remote sensing images obtained by remote sensing are a key source of data for studying large-scale geographic areas. From 2013
onwards, a new generation of land remote sensing satellites from USA, China, Brazil, India and Europe will produce in one year as
much data as 5 years of the Landsat-7 satellite. Thus, the research community needs new ways to analyze large data sets of remote
sensing imagery. To address this need, this paper describes a toolbox for combing land remote sensing image analysis with data
mining techniques. Data mining methods are being extensively used for statistical analysis, but up to now have had limited use
in remote sensing image interpretation due to the lack of appropriate tools. The toolbox described in this paper is the Geographic
Data Mining Analyst (GeoDMA). It has algorithms for segmentation, feature extraction, feature selection, classification, landscape
metrics and multi-temporal methods for change detection and analysis. GeoDMA uses decision-tree strategies adapted for spatial
data mining. It connects remotely sensed imagery with other geographic data types using access to local or remote databases.
GeoDMA has methods to assess the accuracy of simulation models, as well as tools for spatio-temporal analysis, including a
visualization of time-series that helps users to find patterns in cyclic events. The software includes a new approach for analyzing
spatio-temporal data based on polar coordinates transformation. This method creates a set of descriptive features that improves the
classification accuracy of multi-temporal image databases. GeoDMA is tightly integrated with TerraView GIS, so its users have
access to all traditional GIS features. To demonstrate GeoDMA, we show two case studies on land use and land cover change.
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1. Introduction

Remote sensing data is the only source that provides a con-
tinuous and consistent set of information about the Earth’s land
and oceans [8]. Combined with ecosystem models, remotely
sensed data offers an unprecedented opportunity for predict-
ing and understanding the behavior of the Earth’s ecosystem
[77]. Since the 1970s, the Landsat series of satellites have pro-
vided optical images of the lands surface of the Earth every
16 days at a resolution of 30 meters. The Landsat archive at
the United States Geological Survey contains about 1 petabyte
and is fully accessible worldwide [12]. From 2013 onwards, a
new generation of optical remote sensing satellites from USA,
China, Brazil, India and Europe will produce in one year as
much data as 10 years of the current Landsat-7 satellite. Space
agencies worldwide are operating or planning around 260 Earth
observation satellites over the next 15 years. These satellites
will carry over 400 different instruments, including optical and
radar sensors for land imaging, gravity instruments, and ocean
color cameras. Our methods to analyze and understand massive
datasets lag far behind our ability to produce and store this data
[16, 20, 81].

Working with large data sets of remote sensing data, re-
searchers can produce results of large scientific and social im-
pact [9]. Making effective use of these large data sets needs
advances in GIScience [30]. Remote sensing imagery provides
information on land cover, which does not translate directly into

land use and land change information [51]. Therefore, to extract
information about land change, we need to better represent the
semantic content of remote sensing imagery [11]. In our view,
the key to extracting land change information from remote sens-
ing data is to develop methods that aim to capture landscape
dynamics. Thus, the segmentation methods that are used to ex-
tract objects from the images have to be tuned not to find fixed
objects, but to find regions that are subject to change in relation
to the rest of the image [71]. These regions are then mined by
statistical methods that can capture landscape dynamics.

During the 1980s and 1990s, most remote sensing image
analysis techniques were based on per-pixel statistical algo-
rithms [6]. These techniques aimed at representing the knowl-
edge about land cover patterns in terms of a limited set of
parameters, such as average and standard deviation values of
groups of individual pixels. Recently, Object-Based Image
Analysis (OBIA) has shown to be a good alternative to tra-
ditional per-pixel and region based approaches. Differently,
OBIA approaches first identify regions in the image, extract
neighborhood, spectral and spatial descriptive features and af-
terwards combine regions and features for object classification.
Although segmentation has a large tradition in image process-
ing [33] and remote sensing [12], OBIA took a long time to
reach mainstream users. This approach became popular when it
combined image segmentation with good labeling methods that
match the features to those of user-defined classes. Most suc-
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cessful software packages, either proprietary like eCognition
[49] or ENVI Feature Extraction [42], or the open sources In-
terIMAGE [15] and geoAIDA [10], make use of semantic net-
works in the analysis process. Semantic networks contain prior
knowledge about the specific characteristics of object classes
and their interrelations. However, remote sensing image anal-
ysis using OBIA can be lengthy and complex because of the
processing difficulties related to image segmentation, the large
number of features to be resolved [62] and the many different
methods needed to model the semantic networks [35].

Despite the success of using semantic networks in the image
analysis, one important challenge is the feature selection phase.
We have to find metrics that best describe the region proper-
ties as well as select features that best distinguish between re-
gions. Current software can extract a huge amount of statis-
tics (mean value, standard deviation), spatial (area, perimeter,
shape), color, texture, and topology features (distance to neigh-
bors, relative border). To obtain an accurate classification, the
feature selection often relies on ad hoc decisions about what
should describe an object. Another problem is that land cover
classes in most environments are not pure, or spectrally homo-
geneous. To approach this problem, scene models for classi-
fication usually present a nested structure, analyzing scenes in
multiple scales [83]. One way is to use an approach that makes
some hypothesis about the object properties defined within an
application context. Such theory would provide metrics to ex-
tract object properties. Within this context, landscape ecology
can help to define metrics by elaborating landscape types as
ecologically meaningful units. Such land units can be used as
the basis for analysis and assessment [31].

Another concern is how to build a semantic network for the
interpretation task. User experience shows that there are no
simple rules for building such networks, and this task may re-
quire considerable time and expertise [48]. On the other hand,
the number of available features makes a detailed feature ex-
ploratory analysis a time-consuming task and dependent on ex-
pertise. In this case, data mining techniques can be useful to
extract information from large databases where objects being
classified are described through many features. Examples of
works that used data mining with remote sensing data include
[76], [68], [73] and [61].

In spite of the considerable advances made over the last few
years in high resolution satellite data, image analysis tools, and
services, end users still lack effective and operational tools to
help them manage and transform remote sensing data into use-
ful information that can be used for decision making and policy
planning purposes. For instance, Table 1 provides a summary
of the software used in image analysis studies. It is observed
that most works used more than one computational program
to perform the analysis. This introduces more challenges for
the researchers such as data integration, conversion of data for-
mat, knowledge of the software to be used, files replication,
and other problems that make the data analysis process diffi-
cult. Consequently, the need of a framework capable of merging
all image analysis tasks (such as segmentation, feature extrac-
tion and selection, data mining, pattern recognition and multi-
temporal analysis) into a single platform is seen as a great de-

mand. Although there are some good proprietary image anal-
ysis software available, the licensing costs can be a barrier for
their use. Besides, these systems cannot be studied and adapted
for ones own needs. [74] discussed all these problems in a re-
view about the use of geographic information tools in landscape
ecology, which are critical for any application. They also advo-
cated that sharing knowledge through the development of Free
and Open Source Software (FOSS) is a requirement for techno-
logical and scientific advancement.

Table 1: Software used in the remote sensing applications.
Article ArcGIS eCognition ENVI Fragstats R Weka Others Total
[1] × × CAN-EYE 3
[19] × 1
[22] × × SWAT2000 3
[27] × × × 3
[29] GeoDMA 1
[38] × × TIMESAT 3
[39] × ERDAS 2
[47] × 1
[50] × PCI 2
[56] × × 2
[57] × × InterIMAGE 3
[61] × × × 3
[64] × × ERDAS 3
[66] GeoDMA 1
[68] × × Spring 3
[72] × × 2

Considering the aforementioned challenges, the contribu-
tion of this work is two-fold. Firstly we proposed and im-
plemented a new toolbox, developed under the FOSS foun-
dation, for integrating remote sensing imagery analysis meth-
ods with a repertoire of data mining techniques producing a
user-centered, extensible, rich computational environment for
information extraction and knowledge discovery over large ge-
ographic databases. The new toolbox is called GeoDMA –
Geographic Data Mining Analyst. It integrates techniques of
segmentation, feature extraction, feature selection, landscape
and multi-temporal features and data mining, allowing pat-
tern recognition tasks and multi-temporal analysis in large ge-
ographic databases. Secondly we developed an approach for
multi-temporal analysis that allowed creating a new set of fea-
tures based on polar coordinates transformation to describe
temporal cyclic events such as those common in agriculture ap-
plications.

In particular, GeoDMA was thought to provide some techni-
cal capabilities, which fulfill critical requirements [74] for ge-
ographic information tools in remote sensing applications. Be-
low, we list the principal functionalities of GeoDMA:

1. support for different geographic data types in a local or
remote database;

2. spatio-temporal analysis tools, including a visualization
scheme for temporal profiles;

3. a set of features based on polar coordinates that allows de-
scribing temporal cyclic events as well as improving the
classification accuracy of multi-temporal data;

4. simulations to assess the accuracy of process models (e.g.
using Monte Carlo methods);
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5. rapid creation of thematic maps and other results due to its
integration on top of TerraView GIS [41];

6. detection of multi-temporal changes as well as creation of
change maps, allowing to explore the causes, processes
and consequences of land use and land cover change [67].

In Section 2 we present the underlying methods used in
GeoDMA, describing input data, segmentation of multispectral
imagery, cycles detection in multi-temporal imagery, feature
extraction and classification methods. Following, in Section 3
we provide 2 case studies with different target applications, ex-
ploiting the wide range of available features. In Section 4 we
conclude and discuss future works.

2. GeoDMA description

GeoDMA is a system for image analysis which integrates im-
age analysis tools, metrics based on landscape ecology theory,
multi-temporal features handling, and data mining techniques
[46]. The system is based on the methodology proposed by
[69], to identify deforestation patterns in the Amazon. It is a
free software solution for remote sensing applications, running
on different platforms, e.g. Windows and Linux. All process-
ing modules are integrated in a Graphic User Interface (GUI),
shown in Figure 1.

Figure 1: User interface for GeoDMA.

The system works as a plugin to the software TerraView [41],
which provides the interface to the user (hereby called the in-
terpreter), with visualization of geographic information data
stored in databases. GeoDMA is coded in C++, using the QT
cross-platform application development framework [5], and the
free GIS and image processing library TerraLib [13].

Figure 2 shows a general diagram of the system. The pro-
cessing modules start by defining the input data, going through
feature extraction and the application of data mining algorithms
to extract and deliver information about Earth observation. Fol-
lowing, we describe each module of the GeoDMA system.

2.1. Module “Input data definition”
GeoDMA deals with a variety of geospatial data, stored in

databases as raster1 or vector formats. Object-based approaches

1Throughout the text, image and raster terms will be used interchangeably.

Defining the
input data

Feature
extraction

Data mining to
detect land cover

and change
patterns

Evaluation of
classification

Figure 2: GeoDMA: diagram of the main processing steps for image analysis.

use homogeneous regions from image segmentation. The re-
gions extracted by the segmentation operation, points (pixels),
and cells (treated as regular grids) define regions in vector for-
mat. Multi-temporal images can be represented as a sequence
of raster snapshots, which are used to extract a sequence of
values for each region in different intervals that define a curve
called cycle.

2.1.1. Module “Segmentation”
Image segmentation is one of the most challenging tasks in

digital image processing. One simple definition states that a
good segmentation should partition the image into regions with
homogeneous behavior [33]. The system provides 4 segmenta-
tion algorithms:

• Region growing approach based on [4]. This algorithm
defines random seeds over the image and merges them
with neighboring pixels, according to a similarity thresh-
old. According to [54], this algorithm produced results
with good overall impression with proper delineation of
homogeneous areas.

• Segmentation based on [3], a region growing and multi-
resolution procedure. The interpreter defines the param-
eters for scale, band’s and color’s weights, and region’s
weights for smoothness and compactness.

• A chessboard segmentation, which creates a set of square
regions.

• An algorithm based on [45], which classifies spectrally
similar pixels according to their location in the feature
space, using a geographic extension of the Self-Organizing
Maps (SOM).

• A technique of resegmentation applied to urban images
based on [44]. Resegmentation performs adjustments in
a previous segmentation in which the elements are small
regions with a high degree of spectral similarity (overseg-
mentation).

2.1.2. Cycles detection
Analysts interpret the imagery and map changes by analyzing

differences found in images taken at different times. However, it
is a tedious and time-consuming task to interpret long series us-
ing manual methods [7]. Studies to identify cyclic events have
used images and products from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS), which is an important source
of Earth data with high temporal resolution and low spatial res-
olution [79]. This imagery records photosynthetic activity, al-
lowing the surface analysis in time and space [43], and also
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provides vegetation index values (EVI2) in a spatial resolution
of 250m [37].

By following the EVI2 values in a certain position along the
time, we can define a temporal profile that has a cyclic behavior,
as seen in Figure 3. This profile represents EVI2 values from
2000 to 2011, in a spatial resolution of 250m pixel and tem-
poral resolution of 16 days. The cyclic behavior should not be
considered change, even though they contain different states as
the variation from 0.15 to 0.85 between 2007 and 2008. How-
ever, techniques must be able to distinguish cycles to classify
land cover and land change patterns. For this task, we can use
temporal profiles to describe transitions between objects, and
this way monitoring the land cover change dynamics [26].

0

0.2

0.4

0.6

0.8

1

2000 2002 2004 2006 2008 2010 2012

Figure 3: EVI2 profile example from 2000 to 2011, the range of values is [0,1].
Adapted from [25].

The land pattern detection in GeoDMA using multi-temporal
images is based on cycles. Therefore it is important to distin-
guish the terms profile and cycle, although they represent the
same temporal entity in some cases. Suppose we have a profile
with observational data over a 5-year period while the analysis
is performed yearly. In this case, the profile contains the full
time series, divided into 5 cycles of 1 year. In vegetation analy-
sis the cycles are often annual. For example, a time series with
temporal resolution of 8 days defines a cycle with around 45
values per year ( 365

8 ≃ 45). For 16 days there are 23 values for
one cycle, and so on.

The central question is how to describe each cycle. Before
using data to quantify or infer spatio-temporal processes, it is
crucial to understand how the processes are represented in the
data. Characterization of multi-temporal imagery provides in-
sights into how different processes are represented by the spa-
tial, spectral and temporal sampling of the imagery [70]. In
agriculture applications the duration of certain events is well
defined, e.g. 1 year. From multi-temporal images, the user de-
fines the initial point of a cycle and the number of points for
each cycle. With this information, GeoDMA is able to extract
multi-temporal features from time series.

2.2. Module “Feature extraction”
Figure 4 describes the feature extraction module, which

stores all extracted features in a local or remote database. Ac-
cording to the raster size and the quantity of regions this task
can take long time to be performed. Therefore, the creation of a
feature database ensures that all features will be extracted only
once.

Features are divided into 3 groups. The segmentation-based
features are properties obtained from the segmented regions,
integrating raster and vector data types. The landscape-based
features obtained from the landscape ecology metrics are stored

Raster

Vector

Extraction of
Features Database

Feature Extraction

Class
Information

Figure 4: Feature extraction – Spectral and Spatial features use raster and vector
information. Landscape ecology features use class information. Multi-temporal
features use cycles’ information.

as vector data. Cycles from raster time series are used to extract
multi-temporal features.

2.2.1. Segmentation-based features
The segmentation-based features include spectral (Table 2)

and spatial (Table 3) metrics to describe each region stored in
the database. The spectral features relate all pixel values inside
a region, therefore include metrics for maximum and minimum
pixel values, mean values, or texture properties; some of the
spectral features are based on [59]. The spatial features measure
the shapes of the regions, including height, width, or rotation;
some of them are based on [53]. Figure 5 shows the visual
representation of both features.

Figure 5: Visual representation of the segmentation-based spectral and spatial
features. Several features can be extracted from the highlighted region. Spec-
tral features include metrics for maximum and minimum pixel values, or mean
values. Spatial features measure the height, width, or rotation.

2.2.2. Landscape-based features
Because of time and space discontinuities, the real world en-

vironments are patchy [82], defining a landscape as a spatially
heterogeneous area [78]. The landscape ecology concepts em-
ployed in GeoDMA are the base to analyze the structure of the
landscape, defining geometric and spatial metrics for the re-
gions present in the landscape, viewed as a mosaic of elements
aggregated to form the pattern of patches, corridors and matri-
ces on land [24].

Landscape ecology mainly considers patches as areas, or cat-
egories, containing habitat, and the main focus is on conser-
vation. However, to adapt these concepts to remote sensing,
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patches are also related to different types, such as a deforesta-
tion area in a forest region, or a region containing a roof in a
urban imagery [18]. Based on these considerations, 3 groups of
metrics are defined [52]:

• Patch metrics qualify individual patches and characterizes
their spatial and contextual information. Examples include
the area of a polygon, perimeter, and compacity. As an
example, one patch can be defined as a forest fragment.

• Class metrics integrate all patches of a given type inside
a specific area, by simple or weighted averaging. The
weighted averaging scheme can reflect a greater contribu-
tion of large patches to the overall index. Instances include
average shape index, and patch size standard deviation.
These metrics are used to define, for instance, the amount
of houses in a block, or the average size of croplands in a
state.

• Landscape metrics concern all patch types or classes in-
side a specific area. These metrics are integrated by a sim-
ple or weighted averaging, and they reflect combined patch
mosaic. Landscape metrics include average perimeter-area
ratio and patch size coefficient of variation.

Table 4 describes some types of landscape ecology features.

2.2.3. Multi-temporal features
Multi-temporal features include several descriptors for cy-

cles. This group encompasses phenological indicators, a well
known set of metrics for time series, as described in [60] and
[38], including the dates of the beginning or end of a growing
season, the length of the green season, and so on. Besides phe-
nological, we suggested to use the linearity metrics [75] and
shape measures based on polar representation of cycles.

According to [36], the standard computational models of
time do not consider that certain events or phenomena may be
recurring. The term cycle can also be used to capture the no-
tion of recurring events. To support cycle’s visualization, [17]
proposed a time-wheel legend, resembling a clock face, divided
into several wedges according to the data instances.

In our case, we adapted the time wheel legend by plotting
each cycle of the profile, and by projecting values to angles in
the interval [0, 2π]. Let a cycle be a function f (x, y,T ), where
(x, y) is the spatial position of a point, and T is a time interval
t1, . . . tN , and N is the number of observations in such a cycle.
The cycle can be visualized by a set of values vi ∈ V , where vi is
a possible value of f (x, y) in time ti. Let its polar representation
be defined by a function g(V) → {A,O} (A corresponds to the
abscissa axis in the Cartesian coordinates, and O to the ordinate
axis) where

ai = vi cos(
2πi
N

) ∈ A, i = 1, . . .N (1)

and

oi = vi sin(
2πi
N

) ∈ O, i = 1, . . .N. (2)

Considering aN+1 = a1 and oN+1 = o1, we can obtain the co-
ordinates of a closed shape. Figure 6 illustrates a cycle and its
transformation to the polar coordinates. Given the shapes, we
can extract various geometric features, such as area, perimeter,
direction, or bounding ellipse. In this scheme, a cycle with con-
stant values outcomes a circle, and different cycles draw differ-
ent shapes according to their properties. Henceforth, this type
of feature is named as Polar.

Moreover, a polar representation provides a new visualiza-
tion scheme that can help us to describe the pattern represented
in the cycle. A first idea when using annual cycles suggests
splitting the polar representation into 4 quadrants related to the
4 seasons. Hence, other features such as average values per
season can also be computed. Another feature, called Polar
Balance, calculates the standard deviation of the area per sea-
son, which indicates the stability of the profile throughout the
cycles.

Phenological indicators plus linearity metrics are the com-
monly used metrics in the literature, therefore we refer to them
as basic features. The remaining features are of the polar
type. Table 5 describes the available multi-temporal features
in GeoDMA.

2.3. Module “Data mining for detecting land cover and change
patterns”

In the data mining module (Figure 7) the interpreter selects
representative (training) samples of the expected patterns. All
patterns compose the land cover typology, and some algorithm
will create automatically a classification model based on train-
ing samples. The classification model can be stored for further
and manual analysis. This model shall be used to classify the
entire database, or different databases with the same expected
typology.

Classification
Model

Classification
Algorithm

Database

Data Mining

Class
Information

Interpreter
Sample

Selection

Figure 7: The interpreter defines a typology and the set of representative sam-
ples, which are used to create the classification by applying the data mining
algorithm.

Usually, the search for patterns includes the automatic execu-
tion of a classification algorithm and a phase of feature evalua-
tion by the interpreter. As [61] points out, the inclusion of data
mining techniques in the classification process can increase the
speed and also reduces the empirical nature of the feature se-
lection process and the creation of classification models. One
mechanism to evaluate the features is provided in the visualiza-
tion module, which displays features in a scatterplot to visualize
the data distribution in the feature space, as shown in Figure 8.

According to [21], data mining is one step of a process called
knowledge discovery in databases – KDD. In this sense, KDD
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Figure 6: When the values of the cycle are associated to a certain angle (left), the closed shape is created from its polar transformation (right).

involves data preparation, search for patterns, knowledge eval-
uation, and refinement, possible in multiple iterations. The
search for patterns includes the automatic execution of a clas-
sification algorithm and the evaluation of features by the inter-
preter.

Since the interpreter knows the typology behind the data he
must create a description of the expected patterns by selecting
training samples for each pattern, which must be representa-
tive over the images. These samples are represented by a set
of features. Afterwards, in the supervised classification step,
the algorithm uses these training samples to build a classifica-
tion model. Although GeoDMA provides 3 classification algo-
rithms (decision trees, SOM, and neural networks) the focus of
the experiments in this paper is on decision trees [63]. In a clas-
sifier based on decision trees, thresholds are applied to object’s
features. Observations satisfying the thresholds are assigned to
the left branch, otherwise to the right branch [34]. In the final
step, classes are assigned to the terminal nodes (or leaves) of
the tree.

2.4. Module “Classification evaluation”
The output of GeoDMA is a thematic map, created by apply-

ing the classification model to the database. According to [21],
this step is part of a repetitive process, in which the interpreter
evaluates the results visually and statistically. Depending on the
obtained accuracy, the interpreter repeats some previous steps
aiming to create a better classification model.

According to [28], a strong and experienced evaluator of seg-
mentation techniques is the human eye/brain combination. In
addition, when dealing with multi-temporal analysis, the vali-
dation is often not straightforward, since independent reference
sources must be available during the change interval [79]. How-
ever, it is always important to establish measures of correctness
of the results with ground truth data. According to [14], valida-
tion has become a standard component of any land cover map
derived from remotely sensed data.

GeoDMA computes error matrices and the Kappa statistics
[23] for a classification result. In the sample selection module
the system automatically divides the samples into training and
validation sets, randomly. Results are compared with validation
samples to create the error matrix. In cases where the sample set
is small, GeoDMA provides error evaluation based on Monte
Carlo simulation [65] using only training samples.

3. Experimental results

In this Section we present 2 case studies to illustrate the ef-
fective use of the GeoDMA system. The first experiment uses
segmentation-based features to map urban land cover classes.
The second one uses multi-temporal features to map land cover

Figure 8: The input image (top), visualization tools using a map of features
(middle), and a scatterplot (bottom). The map shows the feature ratio of band
1, showing it is a proper feature to distinguish the target Trees. The scatterplot
shows the feature space of features mean of bands 0 and 2, distinguishing the
target Roofs from the rest of the image.
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classes.

3.1. Land cover classification of an intra-urban scene using
high-resolution images

Identifying changes in land cover and land use provides im-
portant information for urban planning and management [55].
For example, this type of information can be used to plan
changes to the public transportation system in areas in which
the number of high-rise buildings is rapidly increasing. Such
changes can be assessed using multi-temporal analyses of intra-
urban land use and land cover maps, which require continu-
ously updated, detailed and precise data [61].

To evaluate the effectiveness of GeoDMA system for land
cover classification we conduct the study for the city of São
Paulo, southeast of Brazil, with a great variety of intra-urban
land cover classes, using QuickBird imagery. The images used
in this experiment were acquired on March 30, 2002 and consist
in a crop (523 × 445) of a hybrid multi-spectral image (0.6m)
with 4 bands blue, green, red, and infrared (Figure 9, left).

The class typology includes roofs (blue, bright, ceramic, dark
and gray asbestos), grass, swimming pools, shadows, and trees.
The segmentation algorithm employed in this experiment is the
multi-resolution procedure based on [3]. The segmentation pro-
cess created 2437 regions, and their corresponding geometrical
and spectral features were extracted. In the training step, the
interpreter labeled samples according to the previously defined
typology, with 15 training samples per class, and 10 validation
samples per class.

All objects in the image were classified according to the
model, and Figure 9 shows the resultant thematic map. The
classification model based on a decision tree was built using the
previously selected samples. This model is illustrated in Figure
10. The features used in this model included spectral mean val-
ues of the 4 bands, the mode values of blue, red, and infrared
bands, besides the angle, shape index, and elliptic fit from the
regions.

The land cover map was evaluated by Kappa coefficient,
whose value was 0.84, with and overall accuracy of about 85%.
Besides, the overall computational time to run GeoDMA was
around 2 hours, including the phases of feature extraction and
sample selection by the interpreter.

3.2. Classification of multi-temporal imagery

In this experiment we employ GeoDMA to discriminate 5
land cover types in a Brazilian Amazon region. We used as ref-
erence the thematic maps produced by the project TerraClass
[2]. It provides detailed land cover maps in deforested areas of
the Brazilian Amazon for 2008. The deforested areas are esti-
mated by the deforestation monitoring project named PRODES
[40]. The typology includes Croplands, Pasture, Urban Area,
Deforestation, and Forest.

The study area included 14.088 samples randomly selected
by the system (4000 samples for Croplands, 4000 for Pas-
ture, 828 for Urban Area, 1260 for Deforestation 2008, and
4000 for Forest), located in the North of Mato Grosso (Lat.
11od34’23”S, Lon. 54o43’14” W). Each sample represents a

Figure 9: Top: QuickBird image of São Paulo, southeast of Brazil, acquired on
March 30, 2002, color composition R4G3B2. Bottom: Intra-urban land cover
map using GeoDMA.

multi-temporal pixel corresponding to a cycle of one year. We
selected cycles of vegetation indices from 2008 and the cor-
responding land cover from the reference data. The data sets
used in these experiments consist of 16-day EVI2 profiles from
MODIS with a 250m pixel size, which is a Level 3 product
(MOD13Q1), calculated from the Level 2 daily surface re-
flectance product (MOD09 series) [80].

According to [79], validating multi-temporal land cover and
land change methods is often not straightforward, since in-
dependent reference sources for a broad range of potential
changes must be available during the change interval. In Figure
11 we show the resultant classification using our model and the
reference data for visual comparison.

The classification model resulted in a decision tree with 13
leaves, as shown in Figure 12, and the accuracy resulted in a
Kappa value of 0.82. By analyzing the model, one can observe
the use of the basic features Area and Maximum values of the
cycles. Besides the Sum and the Mean for the 1st slope of the
cycles were used. Furthermore, the polar features were Areas
of the 1st and 2nd seasons, and the Polar Balance, which mea-
sures the variation of areas between seasons. The node of the
tree which divides classes Forest and Deforestation 2008 uses
the feature Polar Balance with threshold of 0.14. A short vari-

7



Red Pixels Mean

Blue Pixels Mode

< =  6 7 . 2 3

Green Pixels Mean

>  6 7 . 2 3

I-Red Pixels Mean

< =  8 9 . 0 0

Blue Pixels Mode

>  8 9 . 0 0

Trees

< =  5 7 . 8 6

Red Pixels Mean

>  5 7 . 8 6

I-Red Pixels Mode

< =  1 9 . 9 3

Red Pixels Mean

>  1 9 . 9 3

S h a d o w

< =  2 8 . 0 0

Trees

>  2 8 . 0 0

Dark Asbestos Roofs

>  4 3 . 6 9

I-Red Pixels Mode

< =  4 3 . 6 9

Dark Asbestos Roofs

< =  3 4 . 0 0

Trees

>  3 4 . 0 0

Blue Roofs

< =  1 7 5 . 0 0

Swimming Pools

>  1 7 5 . 0 0

Red Pixels Mean

< =  1 9 6 . 4 4

Red Pixels Mode

>  1 9 6 . 4 4

I-Red Pixels Mean

< =  1 1 8 . 9 4

Red Pixels Mean

>  1 1 8 . 9 4

Grass

< =  1 1 6 . 2 5

Shape Index

>  1 1 6 . 2 5

Gray Asbestos Roofs

>  2 . 6 1

Angle

< =  2 . 6 1

Blue Roofs

< =  0 . 1 4

Green Pixels Mean

>  0 . 1 4

Dark Asbestos Roofs

< =  8 7 . 6 4

Elliptic Fit

>  8 7 . 6 4

Gray Asbestos Roofs

< =  0 . 8 5

Dark Asbestos Roofs

>  0 . 8 5

Green Pixels Mean

< =  1 7 8 . 1 0

Blue Pixels Mean

>  1 7 8 . 1 0

Gray Asbestos Roofs

>  1 1 9 . 6 5

I-Red Pixels Mean

< =  1 1 9 . 6 5

Dark Asbestos Roofs

< =  1 0 6 . 8 9

Ceramic Roofs

>  1 0 6 . 8 9

Ceramic Roofs

< =  1 3 7 . 3 2

Gray Asbestos Roofs

>  1 3 7 . 3 2

Gray Asbestos Roofs

< =  2 0 9 . 0 0

Bright Roofs

>  2 0 9 . 0 0

Figure 10: The decision tree model for intra-urban land cover classification in a region of São Paulo city, Brazil.

ation between seasons describes a constant EVI cycle, which is
expected in the class Forest. Instability in the EVI cycle pro-
duces higher values for this feature, and this fact is expected in
cycle changes that occur in the class Deforestation 2008.

4. Concluding Remarks

Remote sensing imagery provides information on land cover,
which does not translate exactly into land use information [51].
To produce valuable information about land, there exist several
steps that if supported by computational tools deliver results
in short time. In this sense, geographic data mining offers a
cost-effective and fast alternative to deliver ancillary informa-
tion that helps to understand the Earth and to predict further
behaviors [58], [32].

Therefore, we have developed the GeoDMA system, a free
software that integrates image analysis tools for supporting dif-
ferent geographic data types in local or remote database, spatio-
temporal analysis, and also a new set of feature descriptors
based on polar coordinates that allows improving the classifica-
tion accuracy. It provides an extensible set of features extracted
from the scene objects, which can be represented as points, re-
gions or cells. These features feed an automatic classification
algorithm to model the discovered classes in one or more im-
ages. The system is used via a GUI including tools for visu-
alization, typology definition, feature selection, classification,
and evaluation. The multi-temporal module of GeoDMA cur-
rently deals only with pixel-based applications. Further work in
this area includes the development of segmentation techniques
for multi-temporal images and the integration of regions to ob-
tain multi-temporal features.

Two case studies were presented to show the potential of
GeoDMA in analyzing land patterns. The first study suggested

Figure 11: Resultant land cover map for the second experiment (top), and the
reference data for visual comparison (bottom).
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Figure 12: Classification model for the second experiment, with 13 leaves and Kappa = 0.82.

that coupling spectral and geometric features with sample se-
lection is a powerful strategy to quickly classify urban remote
sensing images. The second demonstrated the classification of
multi-temporal imagery with coarse spatial resolution images.

Further research is needed to explore the automatic detec-
tion of trajectories in time series, as well as the evaluation of
trends for land cover change based on past events. According
to [68], patterns found in one map can be linked to those in
earlier and later maps, enabling a description of the objects’
trajectory of change. The polar features provide a novel way to
describe multi-temporal profiles, and therefore can be investi-
gated to map trajectories of changes in such data. Considering
the land cover classification using imagery acquired for a sin-
gle date, the development of GeoDMA needs improvements in
some aspects. One of them is to extend the architecture of the
system to implement multiple scales analysis. When relating
objects using multiple scales, new features can become avail-
able, such as the hierarchical relations.

Supplemental information

• GeoDMA Website: http://geodma.sf.net/

• Contact: tkorting@dpi.inpe.br

• Operation System: Linux/Windows

• Coding libraries: C++, TerraLib and QT

• Data formats accepted: TIFF rasters, and ShapeFiles
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the previous Sections.

9



Table 2: Segmentation-based spectral features.
Name Description Formula Range Unit
Amplitude Defines the maximum pixel value minus the min-

imum pixel value.
pxmax − pxmin ≥ 0 px

Dissimilarity Measures how different are the GLCM elements.
Higher values mean regions with high contrast.

∑D−1
i=1
∑D−1

j=1 pi j.|i − j| ≥ 0 –

Entropy Measures the disorder in an image. When the im-
age is not uniform, many GLCM elements have
small values, resulting in large entropy.

−∑D−1
i=1
∑D−1

j=1 pi j. log pi j ≥ 0 –

Homogeneity Assumes higher values for smaller differences in
the GLCM.

∑D−1
i=1
∑D−1

j=1
pi j

1+(i− j)2 ≥ 0 –

Mean Returns the average value for all N pixels inside
the region.

∑N
i=1 pxi

N ≥ 0 px

Mode Returns the most occurring value (mode) for all N
pixels inside the region. The first mode is assumed
for multimodal cases.

≥ 0 px

Std Returns the standard deviation of all N pixels (µ is
the mean value).

√
1

N−1
∑N

i=1 (pxi − µ)2 ≥ 0 px

Table 3: Segmentation-based spatial features. The unit #px means the amount of pixels.
Name Description Formula Range Unit
Angle Represents the main direction of a region. It is

retrieved by the angle of the biggest radius of the
minimum circumscribing ellipse.

[0, π] rad

Area Returns the area of the region. When measured in
pixels is equal to N.

≥ 0 #px2

Box area Returns the bounding box area of a region, mea-
sured in pixels.

≥ 0 #px2

Circle Relates the areas of the region and the smallest
circumscribing circle. R stands for maximum dis-
tance between the centroid and all vertices.

1 − N
πR2 [0, 1) #px

Elliptic fit Finds the minimum circumscribing ellipse to the
region and returns the ratio between the area and
the ellipse area.

[0, 1] –

Fractal dimension Returns the fractal dimension of a region. 2 log
perimeter

4
log N [1, 2] –

Gyration radius Equals the average distance between each pixel
position in one region and its centroid. Smaller
values stand for regions similar to a circle.

∑N
i=1 |posi−posC |

N ≥ 0 #px

Length It is the height of the region’s bounding box. ≥ 0 #px
Perimeter It is the amount of pixels in the region’s border. ≥ 0 #px

Perimeter area ratio Calculates the ratio between the perimeter and the
area of a region.

perimeter
N ≥ 0 #px−1

Rectangular fit Is the ration between the region’s are and the min-
imum rectangle outside the region. Higher values
stand for regions similar to a rectangle.

[0, 1] –

Width It is the width of the region’s bounding box. ≥ 0 #px
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Table 4: Landscape-based features. When the unit is hectares, the value is divided by 104.
Name Description Formula Range Unit
Class area The metric CA means the sum of areas of a cell.

∑n
j=1 a j ≥ 0 ha

Percent land %Land equals the sum of the areas (m2) of all
patches of the corresponding patch type, divided
by total landscape area (m2). %Land equals the
percentage the landscape comprised of the corre-
sponding patch type.

∑n
j=1 a j

A × 100 [0, 1] %

Patch density PD equals the number of patches of the corre-
sponding patch type divided by total landscape
area.

n
A ≥ 0 Patches

Mean patch size MPS equals the sum of the areas (m2) of all
patches of the corresponding patch type, divided
by the number of patches of the same type.

∑n
j=1 a j

n 10−4 ≥ 0 ha

Patch size std PS S D is the root mean squared error (deviation
from the mean) in patch size. This is the popu-
lation standard deviation, not the sample standard
deviation.

√∑n
j=1(a j−MPS )2

n 10−4 ≥ 0 ha

Landscape shape in-
dex

LS I equals the sum of the landscape boundary
and all edge segments (m) within the boundary.
This sum involves the corresponding patch type
(including borders), divided by the square root of
the total landscape area (m2).

∑n
j=1 e j

2
√
π×A

≥ 1 –

Table 5: Multi-temporal features for describing cyclic events.
Name Description Type Range
Amplitude The difference between the cycle’s maximum and minimum values. A small

amplitude means a stable cycle.
Basic [0, 1]

Area Area of the closed shape. A higher value indicates a cycle with high EVI
values.

Polar ≥ 0

Area per Season Partial area of the closed shape, proportional to a specific quadrant of the polar
representation. High value in the summer season can be related to the pheno-
logical development of a cropland.

Polar ≥ 0

Circle Returns values close to 1 when the shape is more similar to a circle. In the
polar visualization, a circle means a constant feature.

Polar [0, 1]

Cycle’s maximum Relates the overall productivity and biomass, but it is sensitive to false highs
and noise.

Basic [0, 1]

Cycle’s mean Average value of the curve along one cycle. Basic [0, 1]
Cycle’s minimum Minimum value of the curve along one cycle. Basic [0, 1]
Cycle’s std Standard deviation of the cycle’s values. Basic ≥ 0
Cycle’s sum When using vegetation indices, the sum of values over a cycle means the an-

nual production of vegetation.
Basic ≥ 0

Eccentricity Return values close to 0 if the shape is a circle and 1 if the shape is similar to
a line.

Basic [0,1]

First slope maximum It indicates when the cycle presents some abrupt change in the curve. The slope
between two values relates the fastness of the greening up or the senescence
phases.

Basic [-1, 1]

Gyration radius Equals the average distance between each point inside the shape and the
shape’s centroid. Smaller values stand for shapes similar to a circle.

Polar ≥ 0

Polar balance The standard deviation of the areas per season, considering the 4 seasons.
Small value point to constant cycles, e.g. the EVI of water (with a small Area),
or forest (with a medium Area).

Polar ≥ 0
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[38] Hüttich, C., Gessner, U., Herold, M., Strohbach, B., Schmidt, M., Keil,
M., Dech, S., Sep. 2009. On the suitability of MODIS time series metrics
to map vegetation types in dry savanna ecosystems: A case study in the
Kalahari of NE Namibia. Remote Sensing 1 (4), 620–643.
URL http://www.mdpi.com/2072-4292/1/4/620/

[39] Imbernon, J., Branthomme, A., Jun. 2001. Characterization of landscape
patterns of deforestation in tropical rain forests. International Journal of
Remote Sensing 22 (9), 1753–1765.

[40] INPE, 2012. Deforestation estimates in the Brazilian Amazon.
URL http://www.obt.inpe.br/prodes/

[41] INPE, 2012. TerraView.
URL http://www.dpi.inpe.br/terraview

[42] ITT, 2008. ENVI feature extraction module user’s guide. Exelis Visual
Information Solutions, Gilching, Germany.

12



[43] Jiang, Z., Huete, A., Didan, K., Miura, T., Oct. 2008. Development of a
two-band enhanced vegetation index without a blue band. Remote Sens-
ing of Environment 112 (10), 3833–3845.

[44] Korting, T., Dutra, L., Fonseca, L., Jul. 2011. A resegmentation approach
for detecting rectangular objects in high-Resolution imagery. IEEE Geo-
science and Remote Sensing Letters 8 (4), 621–625.
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