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Abstract—The main goal of a data collection protocol for sensor networks is to keep the network’s 

database updated while saving the nodes’ energy as much as possible. To achieve this goal without 

continuous reporting, data suppression is a key strategy. The basic idea behind data suppression schemes is 

to send data to the base station only when the nodes’ readings are different from what both nodes and base 

station expect. Data suppression schemes can be sensitive to aberrant readings, since these outlying 

observations mean a change in the expected behavior for the readings sequence. Transmitting these 

erroneous readings is a waste of energy. In this paper, we present a temporal suppression scheme that is 

robust to aberrant readings. We propose to use a technique to detect outliers from a time series. Since 

outliers can suggest a distribution change-point or an aberrant reading, our proposal classifies the detected 

outliers as aberrant readings or change-points using a post-monitoring window. This idea is the basis for a 

temporal suppression scheme named TS-SOUND (Temporal Suppression by Statistical OUtlier Notice 

and Detection). TS-SOUND detects outliers in the sequence of sensor readings and sends data to the base 

station only when a change-point is detected. Therefore, TS-SOUND filters aberrant readings and, even 

when this filter fails, TS-SOUND does not send the deviated reading to the base station. Experiments with 

real and simulated data have shown that TS-SOUND scheme is more robust to aberrant readings than other 

temporal suppression schemes proposed in the literature (value-based temporal suppression, PAQ and 

exponential regression). Furthermore, TS-SOUND has got suppression rates comparable or greater than 

the rates of the cited schemes, in addition to keeping the prediction errors at acceptable levels.  
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1. Introduction 

 
Sensor networks are a powerful instrument for data collection, especially for applications like 

habitat and environmental monitoring. These applications often require continuous updates of the 

database at the network’s root. However, sending continuous reports would quickly run out the limited 

energy of the nodes. A solution for continuous updating without continuous reporting is to use data 

suppression [1].  

To define a data suppression scheme, nodes and base station have to agree on an expected 

behavior for the nodes’ readings. Thus, if nodes’ readings fit to the expected behavior, nodes suppress 

these data. Otherwise, when their sensed values do not fit to the expected behavior, nodes send reports 

to the base station. These reports are used to predict the suppressed data.  

Suppression schemes are an alternative to improve the reactivity of a sensor network, which is 

defined as the ability of a network to react to its environment providing only relevant data [2]. Instead 

of  changing the sampling rates according to the sampled values and sending all collect data to the base 

station as in [2], a suppression scheme collects data using a constant rate. However, it only sends data 

if they represent a deviation from the behavior agreed by nodes and base station. 

Model-driven data suppression [3] defines the mean of a node’s observations as their expected 

behavior and models this mean using temporal or spatio-temporal correlations.  

A temporal data suppression scheme uses the correlation among the readings of a same node to 

build the expected behavior for the nodes’ readings [4]. A spatio-temporal suppression scheme also 

considers the correlation among the observations of neighboring nodes [1].  

Usually, suppression schemes define an absolute error measure to evaluate the deviation between 

sensed data and their expected behavior. This produces data collection schemes that are sensitive to 

aberrant readings. These outlying values can be the result of a temporarily malfunctioning of a 

particular sensor or due to some intervention on the environment on which the network is operating 

and it does not have any relation with the monitored variables. Sometimes, aberrant readings can be the 
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result of an expected change in the sensed values. For instance, solar radiation measurements often 

suffer the effect of temporary clouds. In this case, a reduction in the radiation values is expected and, 

perhaps, non-interesting to the network user.  

Sensors measuring environmental variables can produce such erroneous or nonsense readings [5-

10], particularly in outdoor applications [11, 12].  In monitoring networks with low energy constrains, 

such as the regular weather stations, the nodes transmit or record the aberrant readings, which are 

identified and deleted in the base station. However, for a sensor network, transmitting nonsense values 

means to waste valuable resources. 

In this paper, we propose a temporal suppression scheme that is robust to aberrant readings. Our 

proposal is based on the detection of outliers and their posterior classification into change-points or 

aberrant readings. We consider the sequence of data collected by a node as observations of a temporal 

process. The probabilistic distribution of this process at each time period is used to infer about the 

expected behavior of the observations. An outlier is an observation that presents a small probability to 

belong to the distribution at the current time period.  An outlier reading may suggest a change in the 

expected value for the time series or it may be an aberrant reading.  

To detect outliers from a time series, we have adapted the proposal in [13]. We have inserted 

our version as part of a suppression scheme for data collection in sensor networks, the TS-SOUND 

scheme (Temporal Suppression by Statistical OUtlier Notice and Detection). After detecting an 

outlier, TS-SOUND classifies it into a change-point or an aberrant reading. In the former case, the 

node sends data to the base station. Otherwise, the node suppresses its data. 

We have designed TS-SOUND for applications that are not interested in aberrant readings, since 

they represent a failure in data sensing or processing. Usually, these erroneous measurements occur at 

random, isolated or clustered. If they remain, this means malfunctioning and suggests a non reliable 

node.  

TS-SOUND scheme adopts a procedure to avoid detecting an aberrant reading as a change-

point. Furthermore, even if this misdetection occurs, TS-SOUND does not send the aberrant reading 
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to the base station. 

In this paper, we claim and demonstrate that our proposed scheme for temporal suppression data 

is robust to aberrant readings. Furthermore, considering the trade-off between energy consumption and 

data quality, TS-SOUND has outperformed the model-based suppression schemes we have considered 

in this paper (PAQ [4] and exponential regression [1]) and also the simplest data suppression scheme, 

VB scheme [1]. The prediction error measures the quality of the data sent to the base station. Since the 

data transmission is the most important energy consumer, we use the suppression rates as a proxy for 

the energy consumption. To evaluate TS-SOUND scheme, we have run evaluation experiments with 

real and simulated data.  

The remainder of this paper is organized as follows. Section 2 presents a TS-SOUND overview. 

In section 3, we describe the related work and the framework for suppression schemes proposed in 

[1]. Section 4 describes SDAR algorithm [13], which allows for the on-line estimation of time series 

parameters. In addition, it describes the procedure in [13] to detect outliers, how we have adapted it to 

be part of our proposed suppression scheme and how TS-SOUND deals with classifying the outliers 

into change-points or aberrant readings. In section 5, we present TS-SOUND protocol and frame it as 

a suppression scheme according to the proposal in [1]. Section 6 describes the evaluation experiments 

and section 7 presents their results using real and simulated data. Finally, section 8 discusses the 

experiments results and section 9 presents some future directions. 

 

2. TS-SOUND overview  

Techniques for outlier detection have been proposed in communities as Statistical Process 

Control (for example [14, 15]), Data Mining, Database and Machine Learning (for example [13, 16-

18]). 

In Statistical Process Control (SPC), for instance, the goal is to monitor a process initially “in-

control” and raise an alarm when this process is considered to be “out-of-control” as soon as possible. 
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Often, the “in-control” state of the process is a predefined condition: nominal values for the monitored 

parameters and their tolerance bounds. To raise the alarm, SPC uses procedures to detect outliers.  

For TS-SOUND, the “in-control” state is the probabilistic distribution of the monitored variable 

at the last time period.  If the process is “in-control” during a time interval, the sensor readings follow 

the same probabilistic distribution along this interval and different values are caused by random 

fluctuation around an expected value. Then, we can suppress these readings. We consider the process 

is “out-of-control” if the expected value of this distribution changes. After the change, a new “in-

control” state is defined. The change’s relevancy is a user-defined parameter. 

As in the SPC techniques, TS-SOUND uses the outlier occurrence to infer if the process is “out-

of-control”.  To detect outliers, TS-SOUND adapts the technique in [13], which has been proposed to 

detect outliers from a time series. TS-SOUND employs an algorithm that considers the temporal 

dependence of the time series to update the parameters of the probability distribution at each new 

sensor reading (on-line estimation). This algorithm is called SDAR (Sequentially Discounting Auto-

Regressive) [13]. SDAR combines the last parameters’ updates with the new sensor reading to 

produce the new parameters’ updates. SDAR uses a discounting factor to control the weight of the 

new sensor data in the updates’ values. The outliers are detected as deviations from the data 

distribution. 

In a time series, an outlier can suggest a distribution change-point or an aberrant reading. We can 

distinguish a change-point from an aberrant reading if we compare the time series values before and 

after the outlier, examining, for instance, the time series plot (Figure 1).  The aberrant points appear as 

the “peaks” or “spikes” of the time series plot. The time series has similar behaviors before and after 

the occurrence of aberrant readings. On the other hand, after a change-point, the time series changes its 

behavior. Then, a data suppression scheme must update the database at the base station only when 

change-points occur. 



 6 

 

FIGURE 1. Outliers in a wind speed time series (Source: weather station of the University 

of Washington, USA, October 2006. We have inserted the aberrant readings to produce 

this figure).   

 

To distinguish change-points from aberrant readings, TS-SOUND opens a post-monitoring 

window whenever it detects an outlier. During this time interval, the node keeps collecting data and 

updating the estimated distribution parameters. At the end of this time window, TS-SOUND compares 

the collected values with the distribution before and after the detected outlier. This outlier is classified 

as a change-point if the post-monitoring data are considered to be: 1) discrepant readings in relation to 

the distribution before the outlier; 2) non discrepant readings in relation to distribution after the outlier. 

If TS-SOUND classifies the detected outlier as a change-point, it summarizes the data collected during 

the post-monitoring and sends the result to the base station.  

We have adopted a post-monitoring window for two reasons: a) to be able to distinguish 

change-points from aberrant readings. It avoids sending the latter ones to the base station; b) to allow 

for capturing the value of the new expected behavior through the summary of the collected values. 
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The base station uses the last sent data as an estimate for the node’s readings until it receives a 

message with new data. Thus, for each node in the network, the base station stores a sequence of 

summaries and uses this time series as an estimate for the real node’s time series. Section 5 describes 

TS-SOUND suppression scheme in detail.  

 

3. Related Work 

In this section, we describe the work related to our proposal considering two distinct topics: data 

suppression schemes for sensor networks and outliers detection in sensor networks.    

Section 3.1 describes some proposals for temporal data suppression schemes and relates them to 

our proposal. In section 3.2, we describe a proposal a general framework for data suppression schemes 

[1]. This framework makes easier the comparisons among data suppression schemes. We use proposal 

in  [1] to frame TS-SOUND as a data suppression scheme in section 5.4.  

Since TS-SOUND uses outliers detection as the basis for its suppression scheme, section 3.3 

provides a brief review of previous works on detecting outliers in a sensor network. 

3.1 – Temporal Data Suppression Schemes 

 

Recently, some protocols for data suppression in sensor networks have proposed to use 

statistical models to predict the nodes’ data at the base station reducing the amount of communication 

inside the network. This approach to data suppression is called model-driven [3].  

The main idea in [3] is to keep synchronized two probabilistic models: one at base station and 

other at the nodes. The model parameters are estimated in a learning phase. Based on these identical 

models, nodes and base station make the same predictions on the data to be collected. Then, the node 

collects the actual data and compares them to its prediction. If the difference between the real and 

predicted values is greater than a user-defined error bound, the node sends its data to the base station. 
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Otherwise, the node suppresses the collected data. 

A similar idea appears in [4]. The PAQ protocol makes predictions based on a time series model, 

the third-order autoregressive model, AR(3). Given a time period t, the predicted value in t is written as 

a linear combination of the last three observations before t. PAQ uses two predefined error bounds to 

monitor the prediction error, defined as the absolute difference between the real and the predicted 

value. When the prediction error is greater than ευ, PAQ considers the observation as an outlier and 

sends it to the base station. If the prediction error is smaller than ευ but it is greater than εδ  (εδ < ευ), 

PAQ opens a monitoring window. During the next APAQ time periods, the node goes on collecting 

data, predicting their values and monitoring outliers, sending these last ones to base station. At the end 

of monitoring window, PAQ counts how many observations have had prediction errors greater than ευ 

or greater than εδ but smaller than ευ. If this sum is greater than a threshold a (a ≤ APAQ), PAQ decides 

to relearn the four model parameters. Then, PAQ calculates their new values and sends them to the 

base station. A variation of  PAQ, called in [1] as exponential regression (EXP), uses the observation in 

the time  period (t-1) in a simple linear regression to predict the observation in t. Thus, EXP has to 

estimate two model parameters.  

It is worth to mention that, differently from TS-SOUND, neither PAQ nor EXP distinguishes a 

change-point from an aberrant reading. Once they detect an outlier reading, the node sends the 

observation to the base station, even if it is an aberration.  

3.2 – A Framework for Data Suppression Schemes 

According to Silberstein et al. [1], the nodes in the network are classified into updaters and 

observers. A suppression link describes the suppression/reporting relationship between an updater and 

its observer. The set of suppression links within the sensor network defines a suppression scheme.  

In a simple suppression scheme, all the network nodes are updaters. These updaters collect data 

and decide to send them (or not) to the observer node, which is the base station. To produce a report rt 

to its observer, the updater uses an encoding function fenc. To decode the updater report, the observer 
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uses a decoding function.  

The vector Xt represents the data of the updater node at time period t and the vector tX̂  

represents the data as calculated by the observer node at same time period. The suppression link 

maintains Xt and tX̂ synchronized by evaluating a function g(Xt, tX̂ ). The function g returns the logical 

TRUE value if tX̂ is within a user-defined error tolerance (ε) of Xt.  

In Value-Based (VB) suppression scheme, for instance, the encoding and decoding functions are 

defined by (1) and (2), respectively,  

enc
' '

otherwise

,   if  > 
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where xt is a component of the vector Xt, t’ is the last time the updater sends a message to its observer 

and the symbol ⊥  represents data suppression. The value xt’ is what the observer knows about its 

updater at time period t. If the relative difference between the current updater value xt and xt’, the g 

function, is greater than error bound εVB, the updater produces a report rt=xt-xt’ and sends it to the 

observer node. Otherwise, no message is sent (rt=⊥ ). The observer computes its value ˆtx  by adding 

the received report rt to its old value t-1x̂ . If the updater does not send a message, the observer updates 

ˆtx  by repeating the old value. 

PAQ and exponential regression have also been framed as temporal suppression schemes. 

Although PAQ also has a proposal for spatio-temporal suppression [4], we just consider its temporal 

version in this paper. The expressions in (3) and (4) reproduce the encoding functions of PAQ and 

EXP, respectively, 

enc
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                otherwise
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enc
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t t

tf x
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
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⊥

modelRelearn

outlier .                       (4) 

In (3), tα , tβ , tγ and tη are the coefficients of the AR(3) model adopted by PAQ scheme and, in 

(4), tα and tβ are the coefficients of the simple linear regression model adopted by EXP scheme. The 

functions modelRelearn and outlier enclose the g function of PAQ and EXP schemes. As in VB 

scheme, it also evaluates the error between real and predicted values. 

We classify our TS-SOUND proposal as a model-driven approach for temporal suppression [1]. 

TS-SOUND models the mean of the monitored variable and uses it to decide if an observation is an 

outlier of the current data distribution. However, the model runs only at the nodes, not at the base 

station, being not necessary to keep synchronized models as in the other model-driven proposals. We 

frame TS-SOUND approach as a temporal suppression scheme in section 5.4. 

3.3 – Outliers detection in a sensor network 

Recently, the problem of detecting outliers in a sensor network has gained importance [5] and 

generated works such as [6-10]. The proposal in [6] removes outlier readings from the data 

aggregation. Differently from TS-SOUND, the proposal in [6] makes the outliers available to the 

monitoring application. In [7], the authors detect outliers within a sliding window that holds the last W 

values of the sensor data. To estimate the data distribution, they use nonparametric models. As in [6], 

they report the outlier readings to the base station. However, this is done through a hierarchical 

structure, using the union of the outliers coming from multiple sensors. The authors in [8] propose a 

generic distributed algorithm that accommodates many nonparametric methods to detect outliers such 

as “distance to the k
th
 nearest neighbor” and “average distance to the k nearest neighbors”. Nodes use 

one of these techniques to find out their local outliers and exchange information about them with their 

neighboring nodes to find out global outliers. In [9], the authors propose to use kernel density 

estimators to approximate the data distribution at each sensor node. As SDAR algorithm in [13], the 

kernel density estimation allows for adjusting itself to the input data distribution, as this distribution 
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changes overtime. The proposal in [9] assumes a heterogeneous sensor network, in which few sensor 

nodes are more powerful than the other sensors in the network. The detection of outliers is performed 

by these empowered nodes, which combine the models of two or more sensor nodes in this task. The 

authors discuss the trade-off among data accuracy, number of updates and the size of estimation 

models in some application scenarios. However, they do not provide evaluation experiments to show 

how this would work on real data. In [10], the authors propose to identify local outliers using temporal 

and spatial autocorrelations among nodes’ values. Using the “distance” between its current value and 

its past values, a node is able to identify a potential (temporal) outlier comparing the “distance” with a 

learned distance threshold. If a potential outlier is detected, the node uses the distance threshold of its 

neighbors to finally classify its current value as an outlier (or not). The “distance” measurement can be 

done using several types of functions.  The authors in [10] also propose to classify the detected outliers 

into error or events, which could be equivalent to what we call aberrant readings and change-points, 

respectively. If a node observes an outlier due to an event, the authors argue that the most of node’s 

neighborhood should also detect outliers, since the value of neighboring nodes are spatially correlated. 

Then, summarizing the idea in [10], if a node classifies its current value as an outlier and most of its 

neighboring nodes also classify their current values as outliers, the node’s value is considered to be an 

event.    

Differently from the proposals described above, our proposal to detect outliers does not require 

communication among sensor nodes, since we have treated only the temporal aspect of the data 

suppression in this paper. Moreover, except by the proposal in [10], the described proposal are not 

concerned in classifying the detected outlier into aberrant readings or change-points. However, some 

described proposals can be an interesting basis for a future spatio-temporal version of TS-SOUND 

scheme. 

An extensive survey of outliers detection techniques for sensor networks is not our aim. For a 

comprehensive overview on this subject, we refer to the work in [5]. 
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4.  Detecting outliers from a time series  

 
In this section, we present the procedure in [13] to detect outliers from a time series and our 

proposal for adapting it to the constrained environment of a sensor network. 

We consider the sequence of the data sensed by a sensor node, {Xt , t=1,2,3…} , as a time series. 

The autoregressive (AR) model is the simplest model to represent the statistical behavior of a 

time series. In AR(k), the autoregressive model of order k, the observation at time t, Xt, is written  as a 

combination of the last k past observations as following   

1 1 2 2( ) ( ) ... ( ) ,   t t t k t k tX X X Xµ ρ µ ρ µ ρ µ ε− − −= + − + − + + − + k=1,2,3,…,t-1     (5) 

where µ is the mean of Xt, ρk is the autocorrelation of order k and εt is a noise term following a 

Gaussian distribution with zero mean and variance 2
εσ . 

If k=1, for example, we have the AR(1) model and the probability density function of Xt, 

given Xt-1, is  

( )
2

1
2

1 1
| ; exp

2
t

t
tt

t
t

t t

X w
p X X

π
θ

σσ
−

  −
 = −  
   

,                  (6)  

where 1 1
    ( -  )t tt

t
tw µ X µρ −= + is the prediction for Xt using the AR(1) model, 1 1 0

t tt C Cρ =  is 

the autocorrelation between Xt and Xt-1, ( )
2

0 1 1
t t ttC Cσ ρ= − , 0

tC  is the variance of Xt, 1
tC  is the 

covariance between Xt and Xt-1 and ( )1, ,
t t t t

µθ ρ σ=  is the parameters vector.  In other words, 

[Xt|Xt-1] follows the Gaussian distribution with mean  tw  and variance ( )
2tσ . 

If k>1, the parameters’ updating in SDAR algorithm involves matrices. Then, to simplify the 

calculations in the sensor nodes, we have adopted the AR(1) model. From now on, we use this 

model to present the approach in [13]. 

4.1 – The Yamanishi and Takeuchi’s proposal to detect outliers  

 

Yamanishi and Takeuchi [13] adopted the AR model to represent the time series.   
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To estimate the parameters in tθ  and, as a result, the value for ( )1| ;t
t

t tp X X θ− , the authors 

in [13]  proposed the Sequentially Discounting AR (SDAR) algorithm. The goal of SDAR is to learn 

of the AR model and provide the on-line estimation of θ, which is updated at each new observation 

Xt.  A discounting factor r controls the weight given to the new observation Xt in the estimation 

of θ.  

SDAR has two main steps: initialization and parameters updating. In the first step, SDAR 

sets 0 0 0 0 0

0 1 1, ,  and µ C C ρ σ , which are the initial values for 0 1 1, ,  and t t t t tµ C C ρ σ , respectively.  The 

initial values for 0 1,  and t t tµ C C can be defined by the user or calculated using a learning sample.  

The second step of SDAR is parameters updating. At each time t, the node collects a new 

observation Xt and, for a given value of r, 0 ≤ r ≤ 1, the parameters are updated as following:  

1
(1 )ˆ ˆ

t t

t
r r Xµ µ

−
= − +  ,                              (7) 
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( ) ( ) ( )
222 11 ˆ( )ˆ ˆt t

t
t

wXr rσ σ −= + −−  .                      (11) 

The discounting factor r enables SDAR to deal with nonstationary time series.  

Since SDAR updates the parameters at each time t, it produces a sequence of probability 

densities {pt , t=1,2,3…}, where pt is the probability density function in (6) specified by the parameters 

updated by the SDAR algorithm at time t.  

To detect outliers, the authors in [13] have proposed to evaluate each observation Xt  using the 

sequence {pt , t=1,2,3…} and the score function 
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[ ]1 1 1

1
2

11( ) ln ( ) ln
2 2

t t t t t

t
tX w

score X p X
σ σ π

− − −

− −  
= − = −   

  
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Intuitively, this score measures how large the probability density function pt has moved from pt-1 

after learning from Xt. A high value for ( )tscore X indicates Xt is an outlier with a high probability.   

To detect change-points, the authors in [13] have proposed to use the average of the T, T > 1, 

last values of ( )tscore X  to construct a time series Yt. SDAR algorithm is applied on Yt to construct a 

sequence of probability densities qt and [ ]1( ) ln ( )t t tscore Y q Y−= −  is calculated. Then, they define a 

function ( )Score t , which the average of the T’ last values of ( )tscore Y , T’>1, and use ( )tscore Y to 

detect change-points in the time series. 

It is worth to note there are many calculations involved in Yamanishi and Takeuchi’s proposal 

[13]. Moreover, they have not made clear how to distinguish aberrant readings from change-points.  

4.2 – The outlier detection in the TS-SOUND scheme 

 

TS-SOUND scheme uses the detection of outliers to decide whether a node must suppress its 

data or it must not. If an outlier is detected, the node opens a post-monitoring window to decide if the 

outlier is a change-point or an aberrant reading. In the first case, the node sends data to the base 

station. 

The authors in [13] did not considered power limitations in the calculations. Therefore, using a 

logarithm operator in ( )tscore X was not a concern. However, in the constrained environment of a 

sensor node, using the logarithm function can be a costly operation. Then, to meet the requirements of 

a scheme for data collection in sensor networks, we have simplified the definition of ( )tscore X  by 

evaluating the distance between Xt   and w
t-1 

using the function  

1

11( )
ˆ

t

t

t

tt

X w
SD X

σ

−

−−

−
=  ,                                (13) 
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where ˆ
t

σ represents the estimate for the standard deviation of Xt.  

Note that 1( )ttSD X− is the absolute value of a normalized score. In fact, we can see 

1( )ttSD X− as part of the G statistic
1
 proposed in [19] to detect outliers in a static dataset. As the 

original ( )tscore X  in (12), 1( )ttSD X− evaluates how far Xt is from w
t-1

, which is the prediction for Xt 

using the AR(1) model in t-1. Then, a high value for 1( )ttSD X− also indicates Xt  is an outlier of the 

distribution in   t-1 with a high probability.  

As in [13], we evaluate the 1( )ttSD X− function over a time window composed by the T past 

time periods, where T ≥ 1.  However, instead of using a T-averaged score, we simplify the calculations 

and use the sum of the T past values of 1( )ttSD X− . Then, at each time period t, we calculate the score 

Zt as  

1

1 1
1 1

( )
ˆ

i

i i

t t

i t T i t T

i
t i

X w
Z SD X

σ

−

− −
= − + = − +

−
= =∑ ∑                     (14) 

The expression for Zt compares the values of {Xi, i=t-T+1, …, t} with w
i-1

, which is the 

predicted value for them if they come from the p distribution in t=i-1. Large differences indicate the 

values of {Xi, i=t-T+1, …, t} have a small probability to belong to the p distribution in t=i-1. The sum 

over the T past time periods in Zt allows for capturing smooth changes in the average of the time 

series.  

If the value of Zt is greater than a pre-defined threshold, Xt is considered to be an outlier. 

However, Xt can be an aberrant reading or a change-point. To decide this, TS-SOUND scheme opens 

a post-monitoring window. 

 
1
 The G statistics is defined as the maximum of the absolute value of the normalized scores of observations in a static dataset. 
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4.2.1 – The threshold for Zt  

Besides simplifying the calculations of Zt, the scoring function 1( )ttSD X− makes the definition of  

a threshold for Zt more intuitive than choosing a threshold to the original Score(Xt) in [13]. We have 

used the theory of statistical significance tests [20] to help us with this choice. 

At each time period t, we can see the classification of Xt as an outlier of the p distribution in  t-1 

as a significance test of the following hypothesis 

H0: the expected value for Xt is w
t-1 

(Xt is
 
not an outlier)           versus            

H1: the expected value for Xt is not w
t-1 

(Xt is an outlier). 

At a significance level of α, 0 < α < 1, the null hypothesis H0 is rejected if 
t

testZ  > zα/2, where       

1

1ˆ

t
t t
test t

X w
Z

σ

−

−

−
=  is a normalized score and zα/2 is the percentile 100(1-α/2) of the standard Gaussian 

distribution (average and standard deviation equal to 0 and 1, respectively). Here, we assume the 

estimates for w
t-1

and
1

ˆ
t

σ
−

carry enough information from the past data to approximate the distribution 

of Ztest by a standard Gaussian distribution.  

Since Zt is the sum of 
i
testZ , i=t-T+1, …, t, one can use the Gaussian model with average equals 

to zero and standard deviation equals to T to guide the choice of the values for TZ
α

, the threshold for 

Zt. For instance, if T = 2 and the significance levels α = (0.20, 0.10, 0.05, 0.025, 0.01), the values for 

TZ
α

would be 1.81, 2.32, 2.77, 3.17 and 3.64, respectively. These are the values of the percentiles 

100(1-α/2) of a Gaussian distribution with mean and standard deviation equal to 0 and 2 , 

respectively.   

The value of TZ
α

depends on two user-defined parameters: the size of the risk of making a 

mistake when the scheme classifies Xt as an outlier (α) and how much of the past observations should 

be considered in this classification (T). For a fixed value of T, the smaller the value of α, the more 
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rigorous the criterion to consider Xt as an outlier of the distribution in t-1. Then, decreasing the value 

of α increases the value of TZ
α

 and, as a result, the data suppression rate increases.  

For a fixed value of α, the greater the value of T is, the greater the delay to detect an outlier. On 

the other hand, increasing the value of T allows for capturing smooth changes in the expected value for 

the time series.   The relevance of the change is a user-defined parameter and also has to do with the 

value for α: if α is large, the scheme will be able to detect small changes, since the outlier alarm will rise 

more often. 

In our experiments, we have evaluated the values α = (0.25, 0.20, 0.15, 0.10, 0.05, 0.025, 0.01) 

and T = (2, 4, 6, 8, 10). We discuss these values using a simple case study in section 7.1.  

4.2.2 – Detecting change-points  

After detecting an outlier at time period t, TS-SOUND has to classify it as a change-point or an 

aberrant reading.  To make this decision, the node has to study the time series behavior before and after 

t. Then, if TS-SOUND detects an outlier, it opens a post-monitoring window of size T. From t+1 to 

t+T, the node collects data and updates the AR(1) parameters. At the end of post-monitoring window, 

the node compares the T observations collected during the time window with the p distribution before 

and after the detected outlier.  

As we discussed at section 2, the outlier detected at time period t is considered to be a change-

point if the observations within the monitoring window are considered to be outliers of the p 

distribution before t and non-outliers of the p distribution after t. In Figure 1, we can visualize the 

reason for this rule. 

To make the “before-comparison”, we use the function B

t TZ +  defined as following 

( 1)

( 1)
1 ˆ

i T

B

i T

t T

i t

i

t T

X w
Z

σ

− −

− −

+

= +
+

−
= ∑ .                            (15) 
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Note that B

t TZ + uses the estimates for the AR(1) parameters of time periods from t-T to t-1, that is, the 

last T estimates before the detected outlier. 

The “after-comparison” is made using the function A

t TZ +  defined as 

1 ˆ

t

A

t

t T

i t

i

t T

X w
Z

σ

+

= +
+

−
= ∑   .                             (16) 

The expression for A

t TZ +  uses the estimates for the AR(1) parameters calculated when the outlier was 

detected, at time period t. 

Then, Xt is considered to be a change-point if 
B

t TZ + ≥ T
c

Z
α⋅

and 
A

t TZ + ≤ T
c

Z
α⋅

, where   0 < c ≤ 1. If 

c < 1, the rigor to consider the observations after t as outliers is greater than the rigor used to detected 

the outlier in t.  Actually, we propose to keep the same rigor level for the “before-comparison” (c=1) 

and increase the rigor for the “after-comparison” (e.g., c=0.05 or c=0.10).  This strategy takes into 

account the values produced immediately after a change-point are possibly accommodating themselves 

around the new expected value. This can produce values for 
A

t TZ +  larger than they should be if a 

longer time period had been observed. This would lead to the wrong classification of a change-point as 

an aberrant reading. Then, increasing the rigor in the “after-comparison” decreases the probability of 

making this mistake. In other words, the smaller the value of c, the smaller the probability of mistaking 

a change-point for an aberrant reading. In our evaluation experiments, we have set c=(0.75, 0.50, 0.25, 

0.10, 0.05, 0.01) in the threshold for 
A

t TZ + . In most of the experiments, the value c=0.05 has got the 

best results. 

If the detected outlier is considered to be a change-point, the node updates the database at the 

base station sending a summary of the observations collected during the post-monitoring window. We 

have adopted the median to calculate this summary, since the median is more robust to aberrant 

readings than the average, for instance. This property of the median can be especially useful if TS-

SOUND mistakes the beginning of sequence of aberrant readings for a change-point. In this case, the 

node will send the summary to the base station unnecessarily, which will degrade the suppression rate. 
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However, the median will suffer less influence of these erroneous readings, especially if the length of 

the monitoring window is larger than the size of the aberrant sequence. Then, at least the prediction 

error at base station will be preserved.  

It is worth to mention that the length of the post-monitoring window (T) could be different from 

the number of past observations used in SDAR parameters estimation and in Zt statistics. However, in 

our additional experiments to evaluate this possibility, TS-SOUND has got the best results when both 

time windows have had the same length.  

4.3 – Other proposals to detect outliers in a time series  

 

 

There are other proposals for outliers detection in time series (for example [7, 14, 16, 17, 19] 

and those described in [18]). However, we have considered the proposal in [13] as the best one to be 

adapted to a scheme of data suppression in sensor networks. The reasons for this choice have been the 

following: a) the proposal in [13] considers the temporal autocorrelation of sensor data by adopting a 

times series model; b) it is adaptative to nonstationary data sources; c) it allows for on-line detection of 

outliers and d) the calculations can be made simpler.  

 

5. TS-SOUND scheme  

The TS-SOUND scheme has two phases: learning and operation. In the learning phase, TS-

SOUND estimates the initial values for the SDAR parameters and the first two values for Zt.  

5.1 - Learning phase  

 

Before beginning its operation, the node collects values during a short time window, say, Nini 

time periods. The values for the initial values 
0 0 0

0 1
  ,  , C Cµ  are calculated as following 
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0

1

ini

ini

t
t

N

N

X
µ ==

∑
,    

( )
2

0

0 1

0 1

ini

t
t

ini

N

N

X
C

µ
=

−

=
−

∑
,    

( )( )0 0

1
0 1

1 1

ini

t t
t

ini

N

N

X X
C

µ µ−
=

− −

=
−

∑
 .        (17) 

To calculate the first value for Zt, the node needs T additional observations. Then, the size 

of learning sample is Nlearn = Nini + T. Figure 2 presents the pseudo-code for the algorithm running 

in the learning phase.  

 

learning() 

 

Input     r, T, Nini  

Output   initial values for SDAR parameters, 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
j j jj j

C C ρ σ , and Zt. 

1)  j=1 

2)  every ts time units  while j  ≤  Nini do 

3)       read 
j

x ; 

4)       enqueue 
j

X X x= ∪  ; 

5)       j= j +1 . 

6)  calculate OUTUPPER , OUTLOWER . 

7)  from j=1 to j=Nini do 

8)       if ( OUTLOWER < j
X  < OUTUPPER ) enqueue jnoOut noOutX X X= ∪ . 

9)  calculate 
00 00 0

10 1
2, ,  , ,    andµ C C ρ σ  

using noOutX . 

10) j = Nini + 1 

11) read 
j

x ; 

12) enqueue 
j

X X x= ∪  ; 

13) send 
j

x ; 

14) calculate the SDAR parameters 1
0 1

2, ,  , ,  ˆµ̂ ˆ ˆ ˆ
j j jj j

C C ρ σ ; 

15) j = j+1; 

16) every ts time units  while j  ≤  Nini + T do 

17)      read 
j

x ; 

18)      enqueue 
j

X X x= ∪  ; 

19)      calculate and store   the SDAR parameters 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
j j jj j

C C ρ σ ; 

20)      j = j+1; 

21) calculate the first value of Zt  

22) return  1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
j j jj j

C C ρ σ  and Zt. 

FIGURE 2 - Pseudo-code for the learning phase algorithm. 
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Until completing Nini observations, the node collects and stores data every ts time units, which is 

the user set sampling rate (lines 1-5). 

Discrepant values can affect the estimative for the initial values. Then, the learning algorithm 

filters these outliers before calculating the initial values.  The outliers limits (OUTUPPER and OUTLOWER) 

are calculated according to the rules for building boxplots [21]. First, we calculate P25 and P75, which 

are the 25
th
 and the 75

th 
percentiles of the observations, respectively. To calculate the percentiles, the 

algorithm has to sort the data, which can be done during the values storage. The difference IQ=(P75-

P25) is called interquartile range. The upper and lower limits are defined as OUTUPPER = (P75 + 1.5 IQ) 

and OUTLOWER = (P25  - 1.5 IQ). Values outside these limits are considered to be outliers.  

After removing the possible outliers (lines 7-8), the algorithm calculates the initial values for 

SDAR parameters (line 9). 

To update the initial values, the node samples T additional observations and sends the first of 

them to the base station (line 10-13). The SDAR algorithm updates its parameters according to the 

expressions from (7) to (11) and stores the results (lines 14-15). The node collects the remaining (T-1) 

values and runs the SDAR algorithm (lines 16-20). Then, the node calculates the first value for Z, ZT, 

using the expression in (14). 

The learning algorithm returns SDAR parameters and the first value of Zt. 

5.2 – The operation phase 

 After the learning phase, the node has all the parameters it needs to start the operation phase: 

the user-set values (r, α and T), the SDAR parameters and the first value for Zt, t = Nini + T. Figures 

3A and 3B presents the pseudo-code for TS-SOUND operation phase and post-monitoring algorithm, 

respectively.  

The operation phase continues while the node’s battery has a noncritical level of energy, which is 

evaluated by the function 
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{ if the battery's level is noncritical

otherwise

,   

0,  

1
=energy.OK .                  (18) 

 

TS-SOUND operation.phase() 

Input     r, T, c, TZ
α

,
c
TZ

α⋅
, 1

0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ , Zt .  

Output    values sent to the base station 
 

1)  t = (Nini + T)+1 ;                                  # time counter 

2)  every ts time units  while (energy.OK = 1) do 

3)      read tx  ; 

4)      enqueue tX X x= ∪  ; 

5)      keep the last T values of X  ; 

6)      calculate and store SDAR parameters 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ  ;
 

7)      keep the last (T+1) values of 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ  ;
 

8)      calculate Zt   ; 
 

9)      if (Zt   > TZ
α
) do                  # if an outlier is detected… 

10)        run  monitoring.window() ;        # … it opens the monitoring window. 

11)        calculate 
B

t TZ +  and 
A

t TZ +  ; 

12)        if 
B

t TZ + ≥ TZ
α
 and A

t TZ + ≤ 
c
TZ

α⋅
 do   

13)           calculate x�  = median[ 1t t T
X X+ +… ] ; 

14)           send x� . 

15)        else  

16)           do  1
0 1 { , 1,..., }

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
j j jj j

j t t t T
C C ρ σ

= + +

 
   =

1 1 1
1 1

1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ
− − −

− −

. 

17)     t = t + 1.      

18) send  ( tx  , end.flag ).          # End of node’s operation  

FIGURE 3A – Pseudo-code for the TS-SOUND operation phase algorithm 

 

The node reads the sensed value, stores only the last T sensed values (lines 3-5), runs the SDAR 

algorithm and stores the T+1 last values of the distribution parameters (lines 6-7),   and calculates the 

value of Zt (line 8). 

If the suppression scheme considers that Xt has a small probability to be generated by the current 

distribution (Zt  > ZT
α

), TS-SOUND opens a monitoring window of size T (lines 9-10). During this 

time interval (Figure 3B), the node collects data, updates the SDAR parameters and keep their (2T+1) 



 23 

last values. After closing the monitoring window, the node calculates B

t TZ +  and A

t TZ +  (line 11) and 

compares their values with their respective thresholds (line 12). If the outlier detected at time period t is 

considered to be a change-point, the node summarizes the values collected inside the post-monitoring 

window using the median and sends this summary to the base station (lines 13-14).  Otherwise, since 

the detected outlier is classified as an aberrant reading, the updates for the SDAR parameters 

calculated during the monitoring window are replaced by the updates at t-1, the time period before the 

occurrence of the detected outlier (lines 15-16). This procedure avoids the bad effect of aberrant 

readings on the estimation of the distribution parameters.  

 

monitoring.window() 

Input     r, T, the last (T+1) values of 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ .  

Output    X , the last (2T+1) values of
  

1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ  

 

1)  j = 1; 

2)  every ts time units  while (j <= T) do          # monitoring window 

3)      t = t + j ; 

4)      read tx  ; 

5)      enqueue tX X x= ∪  ; 

6)       keep the last T values of X  ; 

7)      calculate and store 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ  

8)      keep the last (2T+1) values of 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ  ;
 

9)      j = j+1 . 

10) return X  and the last (2T+1) values of
  

1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ . 

FIGURE 3B – Pseudo-code for the post-monitoring window algorithm 

 

When the node is running out of energy (energy.OK=0), the algorithm transmits the last 

sensed value and an end flag. 

Opening a time window after the outlier detection introduces a delay of T time periods in the 

base station updating. However, we have three reasons to adopt this post-monitoring window. First, it 

allows for comparing the time series before and after the detected outlier. Second, it allows for 
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summarizing the values generated by the new distribution. This summary estimates better the next data 

to be suppressed than the value that was responsible by the alarm raising. Third, it avoids sending the 

observation detected as an outlier to the base station, since TS-SOUND may mistake an aberrant point 

for a change-point.  

5.3 – Costs   

 

At the end of the learning phase, the node stores Nini values. After that, at each time period 

t, the node has to store the last T updates for the SDAR parameters (5T values) and the last T 

sensed values. Besides, the node has to store five user-set parameters. Four of them are 

permanent (r, ZT
α ,

c
TZ

α⋅
and T). The size of the learning sample (Nini) can be deleted after the 

learning phase, as well as the learning sample.  During a monitoring window, the node has to 

store the last (2T +1) values of the SDAR parameters, that is, 5(2T +1) values. Then, during the 

operation phase, the node has to store (6T+4) values outside the monitoring window and (10T+9) 

values during the monitoring window.   

 

TS-SOUND operation phase involves mainly simple calculations, as additions and 

multiplications. The most costly operation is the square-root in the expression 
2ˆ ˆ

tt

σ σ= .  

The message sent to the base station contains only the median of the data collected during the 

post-monitoring window. 

5.4 - TS-SOUND as a suppression scheme 

In this section, we frame the TS-SOUND protocol as suppression scheme according to 

framework proposed in [1]. At each time period t, the node collects data xt, updates the SDAR 

parameters, calculates Zt and evaluates the function Z.fcn, defined as following 

tif

otherwise

,    Z  > 

0,  

1 TZ
α

= 


Z.fcn .                              (19) 
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As in PAQ and EXP schemes, Z.fcn evaluates the error between real and predicted values.  

However, in TS-SOUND case, the calculations of the predicted values are based on a time series 

model updated at each new sensor reading.  

If Z.fcn = 1, the nodes opens a monitoring window and, for T time periods, sense and store the 

data. At time period t+T, the node evaluate two functions, Zb.fcn and Za.fcn, defined as following  

if

otherwise

,    Z  

0,  

1 TZt T
B α
+

 ≥
= 


Zb.fcn        and       
 if

otherwise

,    Z

0,  

1 c

TZt T
A α⋅
+ ≤

= 


Za.fcn ,     (20) 

where B

t TZ +  and A

t TZ +  are defined by the expressions (15) in and (16), respectively. The functions  

Z.fcn, Zb.fcn and  Za.fcn play the role of the g function in the data suppression framework in [1]. 

To decide if a message has to be sent to the base station, the node uses the following encoder 

function  

{enc
if  

otherwise

,    ( )  

,    
T

f
x ∩

=
⊥

Zb.fcn Za.fcn�
,                    (21) 

where Tx�  is the median of the T values read inside the post-monitoring window. If T=1, 1 1tx x +=� . 

At each time period t, the base station waits for the rt  messages from the nodes and uses the 

following decoding function to update its database 

( 1) if

,     if   = 

,     
ˆ

ˆ
T t T

t
t t

x r x
x

x r−


=  =⊥

� �
.                    (22) 

In case of data suppression ( tr =⊥ ), the base station uses the last sent value, ( 1)ˆ tx − , as the  

estimative for the current time period. Then, as we see in equation (22), the base station stores a 

sequence of median values. 

 VB and TS-SOUND schemes have similar encoding and decoding functions. They send only 

one value to the base station.  
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5.5 – On TS-SOUND’s parameters  

TS-SOUND scheme is defined by three parameters: the size of the time windows (T); the 

amount of change in the expected behavior of the monitored variable we want to detect (α) and how 

much weight the current observation must have in the on-line updating of the distribution parameters 

(r).  

As the length of the post-monitoring, the value of T should be as large as the size of the clusters 

of aberrant readings. On the other hand, we should choose a small value for T to decrease the delays to 

detect an outlier and to update the base station if a change-point occurs. 

As we will discuss in section 7, we do not know how large the clusters of aberrant readings will 

be. Then, the choice of the value for T must consider TS-SOUND’s performance when it is applied on 

time series with clusters of aberrant readings of several sizes. Then, we have to choose the value of T 

that produces the most homogeneous performances considering aberrant clusters of different sizes. The 

experiments results in section 7 will help us to make this choice.  

On choosing the value of r, we should consider how large the local variation of time series is. 

For instance, a wind speed time series has a local variation larger than the local variation of an 

atmospheric pressure time series (Figure 4, section 6). Therefore, the current observation in a wind 

speed series should have a weight (r) larger than the weight of the current observation in an 

atmospheric pressure series. However, giving larger weights to the observation in the estimation of 

the distribution parameters makes harder to detect this observation as an outlier. In fact, as we 

will see in section 7, values for r larger than 0.1 have degraded the suppression rates in the 

evaluation experiments.  

  The value of α is the probability of making a mistake: detecting a non-outlier as an outlier. If we 

set a small value for α, we decrease this error probability. However, small values for α make harder the 

detection of change-points, especially if these points represent a small change in the expected behavior 

of the time series. On the other hand, if α is large, the scheme will be able to detect small changes, even 

though false outlier alarms will rise more often. Then, the user has to define what is more important to 
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her: capturing small changes or avoiding aberrant readings.  

 

6.  Evaluation Experiments 

In this section, we describe a set of extensive experiments to evaluate the performance of the TS-

SOUND suppression scheme.  

6.1 – The data  

We used real data collected by the weather station of the University of Washington (USA)
2
. Our 

goal has been to be able to evaluate the performance of TS-SOUND scheme and compare it with other 

suppression schemes considering data with diverse types of temporal behavior. Then, we have selected 

time series for wind speed (nautical miles per hour), air temperature (F), air relative humidity (%) and 

atmospheric pressure (milibars). The temporal resolution is one measurement per minute (average of 

measurements at each 5 seconds). To account for seasonal variability in the weather data, we have 

chosen four different months (October’06, January’07, April’07 and July’07). For each month, we 

have selected the data of the days from 10
th
 to 16

th
. We have run the experiments using these 28 daily 

time series (1440 readings per series) for each variable.  

Figure 4 presents the typical daily time series for each variable. These time series present 

different behaviors: from series with large local movements relative to its global variation (wind speed) 

until series with small local movements relative to its global variation (atmospheric pressure).  

 
2 http://www-k12.atmos.washington.edu/k12/grayskies/nw_weather.html 
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FIGURE 4 – Typical daily time series used in the evaluation experiments. From left to right: 

wind speed (July’07); air temperature (April’06); air relative humidity (October’06); 

atmospheric pressure (April’07). 

  

6.2 – The experiments  

We have designed the experiments to evaluate the performance of TS-SOUND scheme and 

compare it with the performance of the following suppression schemes: value-based (VB), exponential 

regression (EXP) and PAQ.  

For the parameters of TS-SOUND scheme, we have set the values r = (0.001, 0.005, 0.01, 0.05, 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6), α = (0.25, 0.20, 0.15, 0.10, 0.05, 0.025, 0.01) and T = (2, 4, 6, 8, 10). The 

value for the threshold 
c
TZ

α⋅
 corresponds to the percentile 100(1-cα/2) of the Gaussian distribution 

with mean zero and standard deviation T . As we mentioned in section 4.2.2, we have adopted c=1 in 

the threshold for B

t TZ +  and c=0.05 in threshold for A

t TZ + . The first (100 + T) values of the time series 

have composed the learning sample. 

Making the TS-SOUND scheme comparable to the other evaluated schemes (PAQ, EXP and 

VB) is not a trivial task, since they use different criteria to trigger their data sending. The latter schemes 

use absolute value of the prediction error to decide when the node must send data to the base station, 
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whereas TS-SOUND uses the detection/classification of outliers.   Then, we have had to answer the 

question: “how to choose values for ευ and εVB (PAQ/EXP and VB error thresholds, respectively) so 

that we make these schemes comparable to TS-SOUND scheme using the values chosen for α?”  

Our solution for this problem has been to use the prediction errors of TS-SOUND scheme to 

define the values for ευ and εVB . Then, after applying the TS-SOUND scheme to a real time series data 

using a given value for α, we have calculated the absolute prediction error as following 

 1, 2,...,,     ˆ TSt t t t NAE x x == −                         (23) 

where ˆtx is the prediction value for real data tx  and NTS is the size of the time series. To avoid the 

influence of discrepant values, we have decided to throw out the 10% largest values of AEt and define 

the value for ευ and εVB  as the percentile 90 of the AEt values. Therefore, the maximum error of the 

predictions using PAQ, EXP and VB schemes is the percentile 90 of the prediction error of TS-

SOUND schemes. Once the range of the absolute prediction error has been equalized, the distribution 

of the error within this range will be determined by the performance of the evaluated schemes. 

The values for the other parameters of PAQ and EXP have been chosen based on the values 

cited in [4] as good choices : εδ = (1.8/3.0)ευ, APAQ=(5, 15) and a=(8/15)APAQ.  The learning sample size 

(NLS) has been set as the first 100 observations of the time series.   

6.2.1 – Evaluating the influence of aberrant readings 

We have designed an experiment to evaluate how sensitive to aberrant points are the 

suppression schemes analyzed in this paper. This experiment has used using the real time series 

previously described. For each time series, we have inserted aberrant values, isolated or clustered, 

in randomly chosen time periods. To generate isolated aberrant readings, we have sampled 100 

time periods of a given time series to be replaced by an aberrant reading, preserving a minimum 

interval of 11 time periods between two sequential positions. Then, about 10% of a time series 

has been composed by aberrant points. To generate the aberrant reading at the selected time 

period, we have used the interquartile range IQ, defined as IQ = Pdiff(75) - Pdiff(25), where Pdiff(p) 
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is the percentile p of the sequential differences |Xt – Xt-1|. In a boxplot analysis [21], values 

smaller than Pdiff(25) – 3 x IQ or greater than Pdiff(75) + 3 x IQ are considered to be extreme 

outliers. Then, to generate an aberrant reading, we have added (sign x range x IQ) to the current 

value of the candidate time period, where range has been randomly chosen inside the interval      

[3 ; 6] and sign has been randomly chosen between -1 and +1. Adopting the boxplot’s rule and a 

random value for range, we have expected to decrease our influence on the generation of the 

aberrant values.  

In addition to isolated aberrant readings, we have generated clusters with 2, 3, 4 and 5 

aberrant readings. From now on, we will denote the clusters of aberrant readings by aberrant 

clusters. To produce such clusters, we have supposed that all the aberrant readings in a cluster are 

generated in a same direction, as those ones presented in Figure 1. Given the size of the cluster, 

we have grouped the initial 100 aberrant readings. For instance, in the experiments with clusters 

of 4 aberrant points, we have generated 25 clusters. The first reading of the cluster has been 

inserted in the time series as in the isolated case. To generate the sequential aberrant readings, we 

have used the same rule to produce the first aberrant reading. However, their signs have been 

constrained to the sign of the first reading in the cluster. We have applied TS-SOUND, PAQ, 

EXP and VB schemes on these modified time series using as parameters the values described in 

the previous section. 

6.2.2 – Assessing the performance of the suppression schemes 

We have evaluated the performance of suppression schemes using the trade-off between two 

measures: the suppression rate and the prediction error. 

We have adopted the median absolute error (MAE) to measure the prediction error. The 

median absolute error has been calculated as  

( 1,2,..., ) ˆTSt N t tMAE median x x== − ,                    (24) 

where NTS is the size of the time series. 
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We can cite some advantages of adopting MAE to assess the prediction error instead of using 

other error measures such as the mean square error (MSE). First, the absolute difference between 

predicted and real values is an intuitive measure for the prediction error. Second, the absolute error 

preserves the original measurements units, which makes easier its interpretation. Finally, the median is 

more robust to the influence of discrepant values.  

The suppression rate (SR) has been calculated as the proportion of suppressed data  

(number of sent messages)
SR = 1-

TSN
.                    (25) 

If a scheme increases its suppression rate, we expect MAE also increases, since the node updates 

the base station database less often. A suppression scheme S1 can be defined as better than other 

suppression scheme S2 if, for a given value of prediction error, S1 is able to get suppression rates 

larger than the suppression rates of S2.   

To evaluate the robustness to aberrant readings of TS-SOUND scheme, we have calculated the 

odds of sending data to the base station provided that an aberrant reading has been detected as   

number of detected aberrant readings that have caused data sending

number of detected aberrant readings that have not caused data sending
SENT

AberrantOdds = .    (26) 

A TS-SOUND scheme is considered to be robust to aberrant readings if its 
SENT

Aberrant
Odds  is smaller 

than 1. Then, a suppression scheme S1 can be defined as more robust to aberrant readings than a 

suppression scheme S2 if S1 has got an odds of sending data smaller than S2’s odds.   

   Since PAQ, EXP and VB schemes always send the detected outliers to the base station, their 

SENT

Aberrant
Odds  are infinite. Then, we have evaluated the robustness to aberrant readings of these schemes 

by comparing their suppression rates in the time series with and without aberrant readings. For a robust 

scheme, this ratio is close to 1. 

 

7.  The results 

In this section, we present the main results of the extensive experiments described in the previous 
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section.  We start our analysis with a simple case study. 

7.1 – A simple case study 

We have had access to the air temperature and relative humidity data collected by three 

Tmote Sky sensor nodes
3
. They have collected data at each 30 seconds during 32 hours. Each 

sensor node has produced about 4000 readings of each variable.  The left side of the Figure 5 

presents the time plot of the temperature data collected by the sensor node 2.  

Since these data have not enough time series to be used in an extensive evaluation, we have 

used them to perform an initial analysis. Table 1 presents the values for the performance measures 

of the evaluated schemes using T=2, α=0.15, r=0.1 (TS-SOUND’s parameters) and APAQ = 15 

(PAQ and EXP’s parameter). The values for ευ and εVB were determined as we have described in 

section 6.2.  

 

FIGURE 5 – Results of TS-SOUND scheme: time series predicted at the base station (on the 

right); real air temperature data collected at the sensor node 2 (on the left).  

 

 
3 Thanks to the Professor Rone Ilídio da Silva of Universidade Presidente Antônio Carlos (Campus Conselheiro Lafaiete), for making these data available. 
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TABLE 1 – Results of the evaluation experiments applied to the Air Temperature (oC ) and 

Relative Humidity (%) data collected by three Tmote Sky sensors: suppression rate and median 

absolute error (within the parenthesis).   

Sensor Node 1 Sensor Node 2 Sensor Node 3 

Scheme 
Temperature 

(ευ = εVB =  

0.03 
o
C) 

Relative 

Humidity 

(ευ= εVB= 

0.41 %) 

Temperature 

(ευ =  εVB=   

0.08
 o
C) 

Relative 

Humidity 

(ευ= εVB= 

0.25%) 

Temperature 

(ευ =  εVB=  

0.03
 o
C) 

Relative 

Humidity 

(ευ= εVB= 

0.17%) 

TS-SOUND 

(r=0.1;T=2; 

α=0.15) 

0.823 

(0.005 
o
C) 

0.857 

(0.057 %) 

0.858 

(0.015 
 o
C) 

0.877 

(0.040 %) 

0.865 

(0.010
 o
C) 

0.883 

(0.020 %) 

PAQ 

(APAQ=15) 

0.753 

(0.014
 o
C) 

0.807 

(0.157 %) 

0.812 

(0.031 
o
C) 

0.826 

(0.086 %) 

0.783 

(0.010
 o
C) 

0.836 

(0.053 %) 

EXP 

(APAQ = 15) 

0.893 

(0.010
 o
C) 

0.816 

(0.146 %) 

0.825 

(0.028
 o
C) 

0.829 

(0.082 %) 

0.789 

(0.009 
o
C) 

0.846 

(0.051 %) 

VB 

 

0.858 

(0.010
 o
C) 

0.872 

(0.124 %) 

0.874 

(0.020 
o
C) 

0.892 

(0.086 %) 

0.859 

(0.010
 o
C) 

0.897 

(0.041 %) 

 

For both variables, TS-SOUND has got suppression rates similar to the rates of the other 

schemes, whereas its prediction error has been smaller than the prediction error of the other 

schemes. The right side of the Figure 5 presents the time series predicted at the base station when 

the TS-SOUND scheme has been applied to the temperature data collected by the sensor node 2. 

Comparing the real and predicted series, we have noticed that TS-SOUND avoids reporting the 

erratic movement of the series as, for instance, in the beginning and final parts of the time series in 

the Figure 5. On one hand, TS-SOUND delays the notification of fast changes such as the one 

near the time period 2000. TS-SOUND classifies this behavior as an aberrant one until it notices 

there is a change. From this moment on, it updates the base station more often. On the other 

hand, likely clusters of aberrant readings are represented by few updates, as those ones near the 

time period 3000.   
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Since no messages can be sent to base station during the TS-SOUND’s monitoring window, 

increasing its size (T) has increased the suppression rates. As a result, the value of the median 

absolute error has also increased. The parameter α has had a similar effect on the suppression 

rates and prediction errors:  the larger the rigor to consider an observation as an outlier, the larger 

the chance of suppressing data.   

On the value of r, our initial experiments have pointed to r=0.1 as the value that produces 

the best trade-off between the suppression rate and the prediction error. This means that we 

obtain the best performance for TS-SOUND when the on-line estimation of the new values for the 

distribution parameters sets less weight to the current sensor reading (equations (7) to (11)).     

TS-SOUND schemes using r values smaller than 0.1 have produced results very similar to the 

results with r=0.1. However, increasing the value of r up to 0.5 has degraded the suppression 

rates. In fact, giving larger weights to the observation in the estimation of the distribution 

parameters makes harder to detect this observation as an outlier.    

7.2 – Selecting the best value for the length of the monitoring window  

 

TS-SOUND’s strategy to distinguish a change-point from an aberrant reading is to use a 

post-monitoring window whenever an outlier is detected. This time window works as a filter of 

aberrant readings and makes TS-SOUND robust to these erroneous data. The success of this 

filtering strategy is closely related to the length of the monitoring window. We expect large 

aberrant clusters require large windows to be filtered. However, we do not know how large the 

clusters of aberrant readings will be.  

In this section, we examine the results of experiments with the meteorological data of the 

University of Washington to answer the following question: “Considering several sizes for the 

clusters of aberrant readings, which is the minimum value for the length of the monitoring window 

that leads to TS-SOUND scheme with 
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a) the largest robustness to aberrant readings and  

b) the best trade-off between suppression rate and prediction error ?” 

To answer the first part of the question, we have summarized some of the experiments 

results using plots as the ones in Figure 6. They present the odds of “sending data to the base 

station provided that an aberrant reading has been detected” as a function of the length of the 

monitoring window considering aberrant clusters of several sizes. Figure 6 presents the results for the 

sets of time series that have got the most irregular behaviors: air relative humidity and wind speed 

measurements. We have looked for the smallest length for the monitoring window that leads to the 

most similar values for the odds among aberrant clusters of different sizes. For the wind speed time 

series, the monitoring windows of length 10 and 2 have presented the most similar odds. Then, the 

chosen length is T=2. For the air relative humidity, the length is also T=2. For air temperature and 

atmospheric pressure time series, the larger the monitoring window is, the less homogeneous the odds 

are. Therefore, T=2 is the chosen length.  

 

        

FIGURE 6* – Robustness to aberrant readings of TS-SOUND scheme according to the length 

of the monitoring window (T) and the size of the aberrant clusters (CS). The other TS-

SOUND’s parameters have been α=0.15 and r=0.1. *There is an enlarged version of these figures in the 

end of this document.   
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Increasing the value of α decreases the odds of “sending data to the base station provided that an 

aberrant reading has been detected”, since the rigor to classify an observation as an outlier increases.  

We have answered the second part of the question by examining plots as the ones in the Figure 

7. They present the trade-off between suppression rate and prediction error for several lengths of the 

monitoring window and considering aberrant cluster of different sizes. We have looked for the smallest 

length for the monitoring window that leads to the most similar suppression rates and prediction errors 

among aberrant clusters of different sizes. For wind speed and air relative humidity time series (Figure 

7), we have looked for the group of symbols (T values) that are more “clustered”. The monitoring 

windows of length 6 and 4 have presented the most similar suppression rates and prediction errors. 

Then, the chosen length is T=4. Examining the air temperature and atmospheric pressure time series, 

we have got the same value for T.  

Since we have got different answers for the two parts of the proposed question, we have 

chosen the best value for T by examining the effect of using the value chosen in part (a) on the 

context of part (b) and vice versa. Then, we have examined the effect of choosing T=2 on the 

trade-off between suppression rate and prediction error and the effect of using T=4 on the odds of 

“sending data to the base station provided that an aberrant reading has been detected”. In the former 

case, exchanging T=4 for T=2 produces a substantial increasing in the heterogeneity of the 

suppression rates and prediction errors for the wind speed, air temperature and atmospheric 

pressure time series. In the latter case, the effect of exchanging the values of T (T=2 for T=4) is 

smaller than in the former case. The worst effect has occurred in the air relative humidity time 

series (right side of Figure 6). For T=4, the odds of “sending data to the base station provided that 

an aberrant reading has been detected” is, in median, equal to 1 when isolated aberrant readings 

(CS=1) occur in the time series. However, the other odds are smaller than 1. Then, considering all 

evaluated time series and sizes for aberrant clusters, we have chosen the value 4 as the best one 

for the length of the monitoring window.  
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FIGURE 7* – Performance of TS-SOUND scheme applied to wind speed and air relative 

humidity time series. The parameters have been α=0.15, r=0.1 and several values for the length 

of the monitoring window (T). Each point represents the summary of the results for time series 

with aberrant clusters of different sizes: 0 (no aberrant readings), 1 (isolated aberrant readings), 

2, 3, 4 and 5. *There is an enlarged version of these figures in the end of this document.  

 

7.3 – Evaluating the schemes’ performances 

 

In this section, we compare the performance of TS-SOUND scheme using T= 4, selected in 

previous section, with the performance of PAQ, EXP and VB schemes. 

As we have mentioned in section 6, we have used the trade-off between the suppression rate 

and the prediction error of a scheme as a measure for its performance.  We represent graphically 

this trade-off for each one of the sets of meteorological time series using the scatter plots of the 

figures from 8A to 8D. Each point of a scheme represents the summary of its performance using a 

different value for α (0.15, 0.10, 0.05, 0.025, 0.01), in this order, following the increasing of the 

suppression rates. For PAQ/EXP and VB schemes, the values for the correspondent error 

thresholds εδ and εVB, respectively, have been defined as described in section 6.2. Points closer to 

the upper-left corner represent the schemes with the best performances. Since TS-SOUND with T=4 

has got its worst results when the times series had isolated aberrant readings (figures 6 and 7), we have 
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chosen to use this scenario to compare TS-SOUND’s performance with the performance of the other 

evaluated schemes. The upper and bottom subfigures illustrate which data the base station would have 

if the node applied TS-SOUND and VB schemes, respectively, on the real times series in the middle 

subfigure. The real times series in the middle subfigures are the original ones in Figure 4 with generated 

aberrant clusters of size 1 (isolated aberrant readings).  

To understand what values we should expect for the prediction errors so that we could consider 

them acceptable, we have used the size of the sequential changes in the time series as a basis for 

comparison. Then, we have calculated the sequential absolute differences, 1t t
X X −− , in the series of 

each variable and summarized the sequential changes (non-zero differences) using the percentiles 5 and 

95. Therefore, in the air relative humidity and temperature time series, 90% of the sequential changes 

are within the interval [0.10 ; 1.0] % and [0.10 ; 1.0] F, respectively. In the atmospheric pressure time 

series, 90% of the sequential changes are within the interval [0.10 ; 0.40] mb. In the wind speed time 

series, 90% of the sequential changes are within the interval [0.10 ; 2.1] nautical miles. Analyzing 

figures from 8A to 8D, we notice all evaluated schemes have got median prediction errors compatible 

with the expected sequential changes in a given type of meteorological time series. In other words, all 

evaluated schemes have got acceptable errors on predicting the real time series at base station. 

TS-SOUND scheme has got its best performance in air relative humidity and temperature time 

series (figures 8A and 8B, respectively). In the air relative humidity data, TS-SOUND has been the 

scheme with the best performance for all values of α, reaching the highest suppression rates and the 

smallest prediction errors. For the smallest two values of α in the air temperature data and for α=(0.10 , 

0.05) in the atmospheric pressure data (Figure 8C), the prediction errors of the TS-SOUND and VB 

are, in median, the same. However, TS-SOUND has got suppression rates higher than VB’s rates.  

 



 39 

S

S

S

S

S

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

Median Absolute Error (in %)

S
u

p
p

re
s
s
io

n
 R

a
te

PP
P

P

P

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

E
EE

E

E

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

V
V

V
V

V

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

S

S

S

S

S

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

Median Absolute Error (in %)

S
u

p
p

re
s
s
io

n
 R

a
te

PP
P

P

P

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

E
EE

E

E

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

V
V

V
V

V

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

S

S

S

S

S

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

Median Absolute Error (in %)

S
u

p
p

re
s
s
io

n
 R

a
te

PP
P

P

P

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

E
EE

E

E

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

V
V

V
V

V

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

4
0

6
0

8
0

1
0
0

S (α = 0.15)

VB (εVB = 2.725)

Real time series (with 
aberrant readings)

S

S

S

S

S

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

Median Absolute Error (in %)

S
u

p
p

re
s
s
io

n
 R

a
te

PP
P

P

P

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

E
EE

E

E

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

V
V

V
V

V

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

S

S

S

S

S

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

Median Absolute Error (in %)

S
u

p
p

re
s
s
io

n
 R

a
te

PP
P

P

P

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

E
EE

E

E

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

V
V

V
V

V

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

S

S

S

S

S

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

Median Absolute Error (in %)

S
u

p
p

re
s
s
io

n
 R

a
te

PP
P

P

P

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

E
EE

E

E

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

V
V

V
V

V

0.4 0.5 0.6 0.7 0.8

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

4
0

6
0

8
0

1
0
0

S (α = 0.15)

VB (εVB = 2.725)

Real time series (with 
aberrant readings)

 

FIGURE 8A. Performance of the evaluated schemes in the air relative humidity times series 

with isolated aberrant readings. Legend: S for TS-SOUND (r=0.1, T = 4), V for value-

based, P for PAQ (APAQ=15) and E for EXP (APAQ=15). Each point of a scheme represents 

the summary of its performance using a different value for α (0.15, 0.10, 0.05, 0.025, 0.01), 

in this order, following the increasing of the suppression rates. For PAQ/EXP and VB 

schemes, the values for the correspondent error thresholds εδ and εVB, respectively, have 

been defined as described in section 6.2.   

 

In the wind speed time series, which have a large local variation, TS-SOUND has increased the 

prediction errors in comparison to the other schemes’ errors (Figure 8D). Nevertheless, it has got a 

higher increase in the suppression rates in relation to maximum possible increasing. As an example, for 

α=0.15, TS-SOUND has got a median prediction error of 0.8 nautical miles per hour, which has been 

14% larger than VB’s median prediction error. However, TS-SOUND’s suppression rate has been 

0.938, whereas VB has got 0.798. Then, TS-SOUND’s rate has got an increasing of 69% in relation to 

maximum increasing in the VB rate (1 – 0.798). For α=0.10, TS-SOUND’s error has been 43% larger 

than VB’s error but TS-SOUND’s has increased the suppression rate in 77% of the maximum possible 

increasing.  If we compare TS-SOUND with the PAQ and EXP schemes, the gains are higher.  
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In time series with small local variation, as the atmospheric pressure series, VB scheme has got 

median prediction errors equal to zero, even suppressing about 77% of the readings (Figure 8C). 

However, the correspondent TS-SOUND scheme has suppressed about 95% of the readings, in 

median, at the cost of increasing 0.05 milibars in the prediction error. Since this increasing is among the 

5% smallest sequential changes in atmospheric pressure series, we conclude it is worth to adopt TS-

SOUND for this type of data, getting a higher suppression rate at the cost of a small increasing in the 

prediction error. 

On choosing the best value for α, we have to consider how large the local variations in the series 

are. Comparing figures 8C, 8A, 8B and 8D (in this order), we conclude the larger the local variation 

the larger the best value for α must be. In general, for values of α larger than 0.05, the increasing in the 

suppression rate does not compensate the increasing in the prediction error.     
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FIGURE 8B. Performance of the evaluated schemes in the air temperature times series 

with isolated aberrant readings. The legend and other details are in the caption of Figure 

8A.  
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Comparing the predicted time series to the real ones (subfigures), we notice the robustness 

to the aberrant readings of TS-SOUND scheme, whereas VB suffers a large influence of these 

erroneous data.  VB’s predicted series are similar to the series with aberrant readings (middle 

subfigures), whereas TS-SOUND’s predicted series look like the original series, without aberrant 

readings, in Figure 4.  

 

S
S
S

S S

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

Median Absolute Error (in milibars)

S
u

p
p
re

s
s
io

n
 R

a
te

P

P

P

P

P

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

E

E

E

E

E

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

V

V

V

V

V

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

S (α = 0.15)

VB (εVB = 0.3)

Real time series (with 
aberrant readings)

S
S
S

S S

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

Median Absolute Error (in milibars)

S
u

p
p
re

s
s
io

n
 R

a
te

P

P

P

P

P

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

E

E

E

E

E

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

V

V

V

V

V

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

S
S
S

S S

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

Median Absolute Error (in milibars)

S
u

p
p
re

s
s
io

n
 R

a
te

P

P

P

P

P

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

E

E

E

E

E

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

V

V

V

V

V

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

S (α = 0.15)

VB (εVB = 0.3)

Real time series (with 
aberrant readings)

 

FIGURE 8C. Performance of the evaluated schemes in the atmospheric pressure times 

series with isolated aberrant readings. The legend and other details are in the caption of 

Figure 8A.  

 

PAQ and EXP schemes using the largest monitoring window (APAQ=15) have got 

suppression rates larger than the rates of those schemes using a smaller window (APAQ=5). 

Therefore, PAQ and EXP schemes having a larger period to evaluate the re-estimation of the 

model parameters have been a better alternative, even if the prediction errors have been slightly 

larger. Despite of having updated the base station more often than the other schemes, PAQ and 
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EXP schemes have not got the smallest prediction errors. In other words, using these model-

based suppression schemes is not a good strategy if the dataset may have aberrant readings. 
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FIGURE 8D. Performance of the evaluated schemes in the wind speed times series with 

isolated aberrant readings. The legend and other details are in the caption of Figure 8A.  

 

7.4 – Evaluating the schemes’ robustness to aberrant clusters 

In this section, we compare the robustness to aberrant clusters of the suppression schemes. 

Since the 
SENT

Aberrant
Odds  of PAQ, EXP and VB are infinite, we have calculated the ratio between the 

suppression rates with and without aberrant clusters. A suppression scheme robust to aberrant readings 

should present this ratio close to 1. For a suppression scheme that suffers the influence of aberrant 

readings, this ratio is smaller than 1. 

Figure 9 presents the ratios for the suppression schemes applied on atmospheric pressure and 

wind speed time series. In these sets of series, the evaluated schemes have suffered the largest and the 

smallest influence of aberrant clusters, respectively.     
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FIGURE 9*. Influence of aberrant readings on the suppression rate of the evaluated 

schemes applied on atmospheric pressure and wind speed time series. Legend: S for TS-

SOUND (r=0.1, T = 4, α=0.15), V for value-based, P for PAQ (A=15) and E for EXP 

(A=15).   *There is an enlarged version of these figures in the end of this document. 

 

The suppression rates of TS-SOUND scheme have not presented relevant changes, whereas the 

suppression rates of the other schemes have decreased, especially for PAQ and EXP schemes. This is 

because the model-based prediction adopted by PAQ/EXP schemes is quite sensitive to aberrant 

readings. They decrease PAQ/EXP’s suppression rates for two reasons: the node has to send them as 

detected outliers to the base station and they cause the re-estimation (and sending) of the new model 

parameters.    

For VB scheme, aberrant clusters make nodes send data to the base station at least two times: in 

the beginning and in the end of the cluster. Inside the cluster, aberrant readings tend to be similar to 

each other. This reduces data sending. This could explain why the influence of aberrant readings on the 

suppression rates has been smaller for aberrant clusters than for isolated aberrant readings. Clusters of 

aberrant readings would tend to amortize the initial and final data sending.  
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7.4- A note on the order of the AR model    

The model-driven approach is an efficient solution to data collection in sensor networks if the 

monitored variable has a well-known behavior so reliable models can be defined [1]. Then, let us 

suppose that a sophisticated model is the best representation for the expected behavior of the sensor 

data. In this case, the simplicity of AR(1) model in the TS-SOUND scheme could degrade its 

performance if we compare it to the performance of a scheme adopting a more sophisticated model.  

To evaluate this hypothesis, we have simulated time series according to the AR(3) model, which 

is the model that PAQ scheme uses. To generate the model coefficients, we have fit an AR(3) model to 

the time series in Figure 4, which represents the typical time series for each variable we have 

considered in the experiments. For each set of coefficients, we have simulated 50 time series with 1440 

observations each, which corresponds to 50 days of monitoring with one reading per minute).  

The simulated time series have presented different behaviors because the AR(3) coefficients used 

in the simulations have come from series with different behaviors (Figure 4). Since it is necessary to 

analyze the schemes’ performances in groups of series with similar behaviors, we have had to quantify 

the differences between the behaviors of the simulated time series. To do this, we have defined the 

Relative Lagged Difference (RLDl) as  

( )

( ) ( )
1,.., 1,..,

1, 2,...,
,     1, 2,..., 1

t t l

l

t N t N
t t

t l l N

median

RLD l N
max X min X

X X −

= =

= + +

−

= = −
−

.                 (27) 

It compares the typical (median) difference between time periods t and t-l with the total range of the 

values. The values of RLDl  range from 0 to 1. The lag l indicates how local is the movement we want 

to capture. Smaller the value of l, the more localized the analysis. For instance, the values of RLD10 for 

the time series in Figure 4 are: 0.0942 (wind speed), 0.0252 (air temperature), 0.0201 (air relative 

humidity) and 0.0081 (atmospheric pressure). Therefore, time series with smooth changes relative to 

the total range (e.g., atmospheric pressure) have low values for RLDl, whereas abrupt changes result in 

a higher value for RLDl (e.g., wind speed).  
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After calculating the RLD10 for all 200 times series, we have separated them into three groups 

according to their RLD10 value and applied TS-SOUND and PAQ schemes on the time series of each 

group. The values for the parameters have been the same of the experiments in section 7.4.  

Figure 10 presents the summaries for the performance of both schemes in the three groups of 

time series. Similarly to the figures of section 7.1, points closer to the upper-left corner represent the 

schemes with the best performances. As in the experiments with real data, PAQ scheme using the 

largest post-monitoring window (APAQ=15) have outperformed the schemes using a smaller time 

window (APAQ=5). 

We expected that PAQ scheme could get at least prediction errors smaller than the errors of TS-

SOUND. However, even in a scenario clearly favorable to PAQ, the most of TS-SOUND schemes 

have outperformed their correspondent PAQ schemes. In the time series with smooth changes relative 

to the total range (Figure 10A), all TS-SOUND schemes have outperformed all PAQ schemes, getting 

the highest suppression rates and the smallest prediction errors. As the time series have increased their 

local variation relative to their total range (RLD10 increases), PAQ schemes have got prediction errors 

closer to the errors of TS-SOUND schemes. However, for the first two values of α, TS-SOUND has 

still outperformed PAQ.  
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(B) 0.025 � RLD10 <  0.050 
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(C)  0.05 � RLD10 <  0.075 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*There is an enlarged version of these figures in the 

end of this document. 

 

FIGURE 10*. Summaries for the performance of TS-SOUND and PAQ schemes in data 

simulated according to the AR(3) model. Legend: S for TS-SOUND (r=0.1, T = 4), P and A 

for PAQ with APAQ = 5 and 15, respectively. Each point of a scheme represents the 

summary of its performance using a different value for α (0.15, 0.10, 0.05, 0.025, 0.01), in 

this order, following the increasing of the suppression rates. For PAQ scheme, the values 

for the correspondent error thresholds, εδ, have been defined as described in section 6.2.   



 47 

8.  Discussion 

Data suppression schemes are defined by an agreement between sensor nodes and base 

station about the expected behavior for the sensor readings. To decide when the sensor nodes 

may suppress their data, the schemes evaluate the prediction error, which is the difference 

between the value the sensor actually collects and the value predicted according to the expected 

behavior for the sensor readings. If the collected value fits to the expected behavior, node 

suppresses its data. Otherwise, it sends data to the base station.  

Since the schemes for data suppression look for changes in the expected behavior of the sensor 

data, they are sensitive to aberrant readings. Transmitting these erroneous data is a waste of energy. In 

a simple suppression scheme as the Value-based [1], for instance, an aberrant point may produce 

two unnecessary messages to the base station. That is because the scheme detects two sequential 

changes of behavior: one when the aberrant readings occur and another when the readings get 

normal again.  

To avoid sending aberrant readings, one can propose to use a fixed threshold: readings 

smaller or greater a predefined value would be considered as erroneous data. However, that is a 

naive solution, since what would be aberrant at a time period of the series might not be aberrant at 

another time period. For instance, a reading of 1026 mb at time period 200 in the atmospheric 

pressure series (Figure 4) would be considered aberrant. However, this value should not be 

considered aberrant at time period 1000. 

In this paper, we have proposed TS-SOUND, a scheme for temporal data suppression in 

sensor networks that is robust to aberrant readings. TS-SOUND considers the data collected by a 

sensor node as a time series and monitors the behavior of this series. It adopts a procedure to 

detect outliers from a time series and the posterior classification of the detected outlier into 
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change-points or aberrant readings. In the former case, data are sent to the base station, since it 

means a change in the expected behavior of the data series. Otherwise, data are suppressed.  

Schemes for temporal data suppression proposed in sensor networks literature (PAQ [4], 

EXP and Value-based [1]) suppress data by comparing the absolute value of the prediction error 

with a fixed threshold.  Using the absolute value of the prediction error allows for controlling its 

maximum value. However, if the random fluctuations around the expected value (local variations) 

are larger than the threshold for the absolute error, a large amount of unnecessary data will be 

sent to the base station and the suppression rates will be small. On the other hand, if the local 

variations are smaller than the threshold for the absolute error, the suppression scheme will not be 

able to capture changes in the expected behavior of the monitored data. Then, if the time series 

has a nonstationary variance, a fixed threshold for the absolute prediction error will not be able to 

work well during all data collection.  

TS-SOUND scheme also uses an error measure to decide if an observation is an outlier. 

However, it adopts a relative error measure, comparing the absolute error with the data variance, 

which captures the random fluctuations of the data. As a result, TS-SOUND is able to be 

adaptable to the local variations of the time series. The suppression rates of TS-SOUND scheme 

are more robust to the size of the local variations than the other schemes evaluated in this paper. 

Besides adopting the relative prediction error, TS-SOUND scheme tries to minimize its 

sensitivity to aberrant readings using the past data through a moving average. Moreover, even if 

an aberrant reading raises the outlier alarm, TS-SOUND opens a post-monitoring window to 

avoid sending this erroneous data to the base station. Although this post-monitoring window 

introduces a delay in the data delivery, our experiments have shown that a small delay (four time 

periods) can deal with time series presenting aberrant clusters of several sizes.  

Using real data from several sources and presenting different temporal behaviors, we have 

run experiments to evaluate the suppression rates of TS-SOUND scheme and the prediction 

errors attached to them. We have used both of these measures to quantify the performance of a 
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data suppression scheme. We have also evaluated TS-SOUND’s robustness to aberrant readings 

and compared its performance with the performance of PAQ, EXP and VB schemes. The 

evaluation experiments have shown that TS-SOUND is more robust to aberrant readings than the 

other schemes considered in this paper. Moreover, TS-SOUND has outperformed the model-

based suppression schemes (PAQ and EXP) in all evaluated scenarios and VB scheme in the most 

of these situations. 

The Value-Based is the simplest suppression scheme and has got one of the best 

performances in our experiments. However, we can list at least three situations in which using 

TS-SOUND would be better than using Value-Based scheme: a) when the applications is not 

interested in aberrant readings; b) when the series presents different behaviors along the time, 

since VB uses a fixed error threshold and TS-SOUND is adaptable to the local variation of the 

time series; c) when having high suppression rates is more important than having small prediction 

errors. 

To define a TS-SOUND suppression scheme, the user has to choose the values for three 

parameters: the weight of the last sensed data (r) in the on-line estimation of the distribution 

parameters, the length of the post-monitoring and past time windows (T) and the rigor to classify 

an observation as an outlier (α). As we have discussed in section 7, we have found that the value 

of T has not to be as large as the cluster size. Our experiments have pointed out to 4 as the 

smallest value for T that leads to homogeneous performances in time series with different 

behaviors and several sizes of aberrant clusters.  On the value of r, our experiments have shown that 

we obtain the best performance for TS-SOUND when the on-line estimation of the new values for 

the distribution parameters sets less weight to the current sensor reading. TS-SOUND schemes 

using r=0.1 have produced the best results and values of r smaller than 0.1 have got very similar 

results. However, weights larger than 0.1 have degraded the suppression rates.  
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  Since the values for T and r can be constrained to some predefined values, the network 

user has to choose only the value for α.  To do this, it is necessary to define what is more crucial: 

capturing small changes (large values for α) or avoid aberrant readings (small values for α).  

The main contributions of this paper are twofold: a proposal for a data suppression scheme 

that is robust to aberrant readings and the evaluation of the performance of data suppression 

schemes considering not only the saved energy but also the quality of the data collected at base 

station.   

   

9.  Future Directions 
 

Sensor networks collect spatially correlated data, which produces areas in the sensors field 

that are spatially homogeneous.  Our future work includes a spatio-temporal version of the TS-

SOUND scheme having as its spatial basis the clustering algorithm in [22]. Instead of sending its 

reports to the base station, the nodes organize themselves into clusters that explore the spatial 

homogeneity of the data in the sensors field. Besides localizing the most part of the 

communication among the nodes, such clusters improve the quality of the cluster data  summaries 

to be sent to the base station [23].  

The nodes of a sensor network are prone to failures as well as the communication between 

nodes can be very noisy. Thus, a data collection protocol based on a suppression scheme has to 

address an important question: how can we distinguish suppressed reports from nodes failures and 

lack of communication between nodes and base station? Silberstein et al. [24] have proposed 

interesting alternatives to deal with this problem using Bayesian inference. We study to 

incorporate the proposed solutions in the spatio-temporal version of TS-SOUND scheme. 
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FIGURE 7 
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FIGURE 10 
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(a) 0 < RLD10 < 0.025 
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(b) 0.025 � RLD10 <  0.050 
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