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Abstract. This paper presents a new computational model for representing the  
Geographic Space concept, called Irregular Cellular Space, which main goal  
is supporting the development of multiscale spatially explicit dynamic models  
integrated to geographical databases. This model has been implemented in a  
modeling  software  platform named TerraME which has  been used  for  the  
development  of  some  interesting  environmental  dynamic  models  and  form 
simulation of dynamic spatial patterns of change.
Resumo. Este artigo apresenta um novo modelo computação para representar  
o  conceito  de  Espaço Geográfico,  chamado Espaço Celulares  Irregulares,  
que tem como principal objetivo servir como suporte para o desenvolvimento  
de modelos dinâmicos espacialmente explícitos integrados a bancos de dados 
geográficos  em  múltiplas  escalas.  Este  modelo  foi  implementado  em  um 
ambiente  de modelagem chamado TerraME que tem sido utilizado para o 
desenvolvimento  de  modelos  ambientais  dinâmicos  e  para  a  simulação  de  
padrões espaciais de mudança.

1 Introduction

The modern Geographic Information Systems (GIS)  lack on representing dynamical 

aspects  from  geographic  space.  The  most  provides  only  a  static  computational 

representation  for  geo-objects,  geo-fields  and  fluxes.  This  fact  had  led  to  several 

proposals of integration between dynamical modeling and GIS platforms [Box 2002] 

[Villa  and  Costanza  2000]  [North  et  al.  2006].  In  general,  the  space  have  been 

represented as a regular cellular space (RCS), i. e., a regular two-dimensional grid of 

multi-valued cells grouped into neighborhoods, where the dynamic model rules operate 

and possibly change cells attribute values. Due to the regular structure of this spatial 

model,  the  resulting  modeling  platforms  inherit  all  disadvantages  from  raster 

representations  for  the  space  concept:  border  effects  and cell  attributes  aggregation 



problems dependent on the chosen grid resolution [Costanza and Maxwell 1994] [Kok 

and Veldkamp 2001], and the lacking of abstractions for representing moving objects, 

as  flights  and  trucks  following  their  routes,  or  geographical  networks,  as  roads  or 

communication lines. Figure 1 illustrates some of these disadvantages, border effects 

and aggregation of cell attribute values.

There  are  several  reasons  for  highlighting  cellular  spaces  as  a  promising  space 

representation for computer based dynamic modeling and simulation. The existence of a 

simple  and  formal  cellular  space  based  model  of  computation,  which  concept  and 

structure may be efficiently specialized for dynamic space representation on discrete 

environments, the Cellular Automata (CA) [von Neumann 1966] model. In a Euclidian 

two-dimensional  grid,  one  may  use  basic  analytic  geometry  knowledge  to  describe 

change circular  or  elliptical  paths.  It  is  easy to  develop algorithms for  representing 

process trajectories: to go to East just increment the X coordinate, to go to the South 

decrement the Y coordinate. However, besides its simplicity, the CA model has enough 

complexity  to  simulate  spatial  diffusive  processes  and  emergent  phenomena  [Batty 

1999] [Wolfram 1984].

Figure 1. Problems due to the choice of a raster structure for space representation: aggregation of cell 

attribute values and border effects. Maps color: light green means “deforested” and dark green means 

“forest”.

This work presents a formal model for the geographical space concept, called Irregular 

Cellular Space (ICS), which extends the spatial structure from the RCS to support the 

development  of  GIS  integrated  spatial  dynamic  models  which  uses  many  space 

representations for supporting multiple scale modeling. For model evaluation, the ICS 

conceptual model has been implemented in environmental modeling software platform 

called TerraME. Its properties have been fully stressed in some interesting use cases 



[Aguiar et al. 2005] [Almeida et al. 2008]. This paper exercises these properties in a 

simple and pedagogic deforestation model for the Brazilian Amazon region.  Figure 2 

shows the three ICS used in the deforestation model described at the end of this paper. 

Figure 2. Three Irregular Cellular Spaces: (1) 25x25km2 sparse squared cells which main attribute is 

landCover  (white  =  “100%  forest”  and  green  =  “0%  forest”);  (2)  each  polygon  representing  one 

Brazilian State  is  a  cell  which main attribute  are  name = {“MG” |  “SP” |  “ RJ” |  …| “AM”} the 

demanded area to be deforested; and (3) each roads is a cell which main attributes are status  (red = 

“paved” and orange = “non-paved”) and brazilianSate = {“MG” | “SP” | “ RJ” | …| “AM”}.

2 Basic Definitions

Following  Castells  (1999),  this work views geographical  space as  a combination  of 

“spaces of fixed locations and spaces of fluxes”, where the concept of ‘spaces of fixed 

locations’ represents the geographical space as arrangements of objects on the absolute 

space  (location), and the concept of ‘spaces of fluxes’ indicates spatial arrangements 

based  on  relative  space  (situation).  Couclelis  (1997)  has  proposed  the  notion  of 

proximal space which aims to formalize this point of view.

In the regular cellular space model, a proximal space model, cells are indexed by their 

two-dimensional coordinates (x, y) meaning their relative position in the lattice of cells, 

and the cells neighborhood relationships are stationary following the Moore or Von 



Newman pattern [Couclelis 1997]. In the ICS model there is no rigid structure for the 

space  representation.  The  cellular  space  is  any  irregular  arrange  of  cells  which 

geometrical representation may vary from a regular grid of same size squared cells to a 

irregular set of points, lines, polygons, nodes and arcs, pixels, or even voxels. The n-

dimensional  space  elements  are  indexed  by  a  family  of  modeler  defined  functions, 

named spatial iterators, which map cell index values onto cells references. Topological 

relationships  are  expressed  in  terms  of  Generalized  Proximity  Matrixes (GPMs) 

allowing  the  representation  of  non-homogenous  spaces  where  the  spatial  proximity 

relations are non-stationary and non-isotropic. A GPM is a weighted matrix where the 

spatial relations are computed taking into account both absolute space relations such as 

Euclidean  distance  or  adjacency  and  relative  space  relations  such  as  topological 

connection on a network [Aguiar and Câmara 2003]. 

3 The Irregular Cellular Space Model 

(definition 1) The ICS is a set of cells defined by the structure (S, A, G, I, T), where:

• S  ⊆  Rn is  an  n-dimensional  Euclidian  space  which  serves  as  support  to  the 
cellular space. The set S is partitioned into subsets, named cells, S = {S1, S2,...,  

Sm | Si∩Sj=∅, ∀i≠ j, ∪Si =S}.

• A= {(A1,  ≤),(A2,  ≤),...,(An,  ≤)}  is  the  set  of  partially  ordered  domains  of  cell 

attributes, and where ai is a possible value of the attribute (Ai, ≤), i.e., ai ∈ (Ai, ≤).
• G = {G1, G2,...,Gn}  is a set of GPMs – Generalized Proximity Matrix (Aguiar, 

Câmara et  al.  2003) used to model different non-stationary and non-isotropic 
neighborhood  relationships,  allowing  their  use  of  conventional  relationships, 
such as topological  adjacency and Euclidian distance,  but  also relative space 
proximity relations, based, for instance, on network connection relations.

• I = {(I1, ≤), (I2, ≤),..., (In, ≤)} is a set of domains of indexes where each (Ii, ≤) is a 
partially ordered set of values used to index cellular space cells.

• T  =  {T1,  T2,...,  Tn}  is  a  set  of  spatial  iterators  defined as  functions of form  

Tj:(Ii,  ≤)S which assigns a cell from the geometrical support S to each index 

from  (Ii,  ≤).  Spatial  iterators  are  useful  to  reproduce  the  spatial  patterns  of 
change since they permit easy definition of trajectories that can be used by the 
model  entities  to  traverse  the  space  applying  their  rules.  For  instance,  the 
distance to urban center cell attribute can be sorted in an ascendant order to form 



an  index  set  (Ii,  ≤)  that,  when  traversed,  allows  an  urban  growth  model  to 
expand the urban area from the city frontier.

3.1 Spatial Iterators:  modeling spatial trajectories of change

(definition 2) A spatial iterator Ti  ∈ T is an function defined as Ti:(Ii, ≤)S that maps 

modeler built partially ordered sets of index (Ii, ≤) ∈ I into cells si ∈ S. 

The following functions should be defined by the modeler in order to construct the set 

of indexes (Ii, ≤) and later uses it to build a spatial iterator.

• (definition 2.1)  filter:Sx(Ai,≤)Boolean is  a function used to filter  the ICS, 
selecting the cells that will form the spatial iterator domain. It receives a cell si ∈ 

S and the cell attributes ai ∈ (Ai, ≤) as parameters and returns “true” if the cell si 

will be inserted in (Ii, ≤) and “false” if not. 

• (definition  2.2)  ≤:(Sx(Ai,≤))x(Sx(Ai,≤))Boolean  is  the  function  used  to 
partially order the subset  (Ii, ≤) of cells. It receives two cell values as parameters 
and returns “true” if the first one is greater than the second, and otherwise it 
returns “false”.

• (definition  2.3)  SpatialIterator:SxAxRxOT  is  a  constructor  function  that 
creates a spatial iterator value Ti ∈ T from instances of functions of the families 

R and O, where R are the filter functions as in definition 2.1 and O are the  ≤ 
function  as  in  definition  2.2.   The  SpatialIterator  function  is  defined  as: 
SpatialIterator(filter, ≤) = {(ai, si) | filter(si, ai) = true ∀ ai ∈ (Ai, ≤) and ∀ si ∈ S; ai ≤ aj 

∀ i ≤ j; si = spatialIterator(filter, ≤) ∀si ∈ S and aj  ∈ (Ai, ≤) where i = j}.

Figure 3 shows a source code piece, written in the TerraME modeling language, where 

a spatial iterator is created in order to simulate the deforestation process in Land Use 

and Cover Change (LUCC) models. The first parameter is the ICS for which the spatial 

iterator “it” is being created. The filter function, second parameter, selects only cells 

form “cs” whose land cover is “forest”. The function ≤, third parameter, orders the cells 

according  to  their  distance  to  the  nearest  road,  making  cells  closer  to  roads  more 

suitable to change. To construct a spatial iterator that traverses a two-dimensional ICS 

according to its Euclidian coordinates, from North to the South and from West to the 

East, one may define the function ≤ as:  ≤(c1, c2) =  { “true” if  c1.x < c2.x ;  or  “false” 

if  c1.x > c2.x;  or (c1.y < c2.y) otherwise}.



Figure 3. A TerraME representation of a spatial iterator used for modeling a deforestation process which 

spreads along the roads 

3.2 Dynamic Operations on ICS

Different  operations  have  been  defined  for  traversing  the  ICS  space  or  the  cells 

neighborhoods  applying  rules  which  may  cause  changes:  ForEachCell, 

ForEachNeighbourhood, and ForEachNeighbor. 

• (definition 3)  ForEachCell:TxFA denotes the function that uses the spatial 

iterator Ti ∈ T to traverse an ICS applying a modeler defined function fm ∈ F, 

where F is the family of functions from the form fm:SxNxAA that calculates 

the  new  values  for  the  attributes  aj
t ∈ Aj from the  cell  sj ∈ S  received  as 

parameter. These functions also receives two others parameters: n ∈ N a natural 

number corresponding to the relative cell position in the partially ordered set (Ii, 

≤) ∈ I  used to define the spatial iterator Ti, and aj
t-1 ∈ A the old values of the 

attributes aj
t .

• (definition 4) ForEachNeighbourhood:SxGxFA is a function which traverses 

the set of neighborhoods, G, from the cell received as parameter and applies a 

modeler defined function fv ∈ F to each cell neighborhood gi  ∈ G, where F is the 

family  of  functions  from  the  form  fv:GBool.  The  function  fv receives  a 

neighborhood  gi as  parameter  and  returns  a  Boolean  value:  true  if  the 

ForEachNeighbourhood function should keep traversing the cell neighborhoods, 

or false if it should stop.

• (definition 5)  ForEachNeighbor:SxGxFA is a function which receives three 

parameters: a cell si ∈ S, a reference to one of neighborhood gi ∈ G defined for 

this cell, and a function fn ∈ F, where F is the family of functions from the form 

fm:(SxA)x(SxA)xRBool.  The  ForEachNeighbor  function  traverses  the 



neighborhood gj and for each defined neighborhood relationship it applies the 

function fm  with the parameters fm( sj, sj, wij), where sj ∈ S is the si neighbor cell 

and wij is a real number representing the relationship weight.

3.3 Application on Land Use and Cover Change Modeling

LUCC models distinguish between the projections for the quantity of change and for the 

location where these changes will take place [Veldkamp and Lambin 2001]. First, a sub-

model which has rules that govern the amount of change (the “how much?” question) 

runs. It is called “demand model”. Then, another called “allocation model” determines 

where the projected change will take place (the “where?” question). This structure is 

shown in Figure 4. At the next step, the LUCC models are back to the first stage until 

the simulation finishes.

Figure 4. The general structure of LUCC model, with two sub-models: the “demand model” and the 

“allocation model”.

A  pedagogic  LUCC  model  which  simulates  the  deforestation  process  in  Brazilian 

Amazon region has been developed. It stresses ICS properties for supporting multiple 

scales modeling through the use of multiple computational representations for the space 

concept. Three ICS models have been used to represent the deforestation process at two 

different  scales,  Figure  1.  The demand model  uses  the  cellular  space  composed by 

Brazilian States (polygons) and the other formed by Brazilian roads (lines). Each State 

has two attributes {deforestDemand, forestArea}. Let SBR be a Brazilian State. At each 

simulation step (year), the amount of area demanded for deforestation in the State SBR 

is calculated as “SBR.deforestDemand = realRate * SBR.foresArea”, where “realRate” 

is the annual deforestation rate, which is calculated as “realRate = absRate * paved”, 



where “paved” is the percentage of paved roads in the State SBR and “absRate” is the 

absolute deforestation rate, which is directly proportional to the density of roads in the 

State  SBR.  The  equation  used  to  calculate  this  rate  is  shown  at  Figure  5,  where 

“SBR.kmRoads”  is  the  sum  of  the  perimeter  of  all  the  roads  of  the  state  SBR, 

“SBR.area” is the area of the state SBR, “totalKmRoads” is the sum of the perimeter of 

all  the  roads  of  all  states,  “totalArea”  is  the  sum  of  the  areas  of  all  states  and 

“deforestRate”  is  a  model  parameter  provided by the  modeler  which  represents  the 

average deforestation rate for the whole Legal Amazon area. As the roads change their 

status dynamically (Figure 7), that is, at each four years ten percent of the perimeter of 

the  roads  from each State  changes  its  “status”  attribute  value  from “non-paved”  to 

“paved”, then the States deforestation rates are also dynamic. Initially,  all cells were 

100% forest, in other words, the value of each “landCover” cell attribute was equal to 

the  cell  area  (25x25km2).  The  total  forest  area  of  a  State  can  be  calculated  as 

“SBR.forestArea = SBR.forestArea - SBR.deforestDemand”.

Figure 5. Equation used to calculate the absolute deforestation rate.

The  location  model  uses  only  the  sparse  cellular  space  of  small  squared  cells  to 

determine where the changes will take place. It is based on a common approach: to 

compute a change potential surface. At this approach, each small squared cell will have 

a numeric value indicating how prone it is to change (deforestation). Then the model 

traverses the cellular “surface” in an ascending order of potential, applying the changes 

[White  et  al.  1998].  Some  LUCC  models  use  multi-linear  regression  for  change 

potential computation, such as the CLUE model [Veldkamp and Fresco 1996]. Other 

approaches include a stochastic combination of diffusive and spontaneous change, such 

as the DINAMICA model [Soares et al. 2002]. In other to reproduce the “fishbone” 

spatial pattern of land occupation, where the deforestation spreads along the roads, the 

change potential of each cell has been computed through the spatial iterator defined in 

Figure 3, which resulting change potential surface has been shown in Figure 6(a). To 

simulate the land occupation process which is based only on the spatial expansion of the 



old human settlements, the change potential should be computed as in Figure 6(b). The 

surface on Figure 6(b) has been defined by the function ≤ (c1, c2) = {c1.distUrban < 

c2.distUrban}, where “distUrban” is the cell distance to the nearest urban center. Figure 

8 shows the model results for the first, fifth and tenth years of simulation.

Figure 6. Change potential surfaces defined through spatial iterators based on (a) distance to road or (b) 

distance to urban centers.  The gray scale surface reflects the potential for change of each cell: dark gray 

means low potential for change and light gray means high change potential. 

Figure  7.  In central Amazon area: non-paved roads (red) in the past (b) become paved (orange) in the 

future (b).

Figure 8. Deforestation model results: dark green are the 100% forest cells and light blue are the 100% 

deforested cells.



4 Related Works

To understand the needs related to the space representation in GIS integrated modeling 

platforms,  we  examine  the  proposed  extensions  of  the  CA  model  on  the  LUCC 

modeling literature. Several theoretical papers have proposed CA extensions for a better 

representation of geographical phenomena (Couclelis 1997; Takeyama and Couclelis 

1997; Batty 1999; O'Sullivan 2001). In the specific case of LUCC modeling, recent 

works extend the original CA model and make it  more suitable for representing the 

complexity  of  human-environment  interaction  (White,  Engelen  et  al.  1998;  Soares, 

Cerqueira et  al.  2002;  Almeida  2003).  However,  most  extensions are not  useful  for 

multiple scale spatial dynamic modeling. 

As an alternative  for single-scale modeling of environmental  changes,  some authors 

have proposed the layered CA model (Straatman, Hagen et al. 2001), where every cell 

in one layer has one parent cell in the upper layer and an arbitrary number of child cells 

in the lower layer. This arrangement allows the combination of models that operate in 

different spatial resolutions. However, the layered CA model requires a decision about 

the spatial stratification, where each cell is dependent on a parent cell and controls a 

number of child cells. The layered CA falls short of providing adequate support for 

multiscale  modeling,  since  it  handles  only  layers  of  fixed  spatial  resolutions.  This 

approach  constrains  the  generality  of  the  system,  since  the  different  processes  are 

constrained to fit the hierarchical spatial structure. 

5 Results and Future Works

The contributions from this work can be divided in three parts: 

(a) The formal model for representing the Geographic Space concept: the ICS allows 

realistic  multiple  scale  dynamic  modeling  through the  simultaneous  use  of  different 

computational representations for the space concept; 

(b)  The  TerraME  spatial  dynamic  modeling  platform:  the  ICS  model  has  been 

implemented in a software platform, named TerraME, which supports GIS integrated 

environmental model development; 



(c)  ICS applications: the ICS model has been used in some important modeling studies 

in  order  to  simulated  the  human-environment  interaction  in  the  Brazilian  Amazon 

region [Aguiar et al. 2005] and in some Brazilian National Parks [Almeida et al. 2008].

Many problems in the multiple scales spatial dynamic modeling has been not addressed 

on this work. However,  the ICS model may be a first step towards a computational 

model for representing dynamic spaces on GIS environments. Among the future works, 

many other operations can be defined for the ICS model,  for instance,  operation to 

create neighborhood relationships or operations to couple cellular spaces form different 

resolutions, i. e, to couple two different scales.
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