Transfer function-noise modeling and spatial interpolation
to evaluate the risk of extreme (shallow) water-table

levels in the Brazilian Cerrados
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Abstract Water regimes in the Brazilian Cerrados are
sensitive to climatological disturbances and human inter-
vention. The risk that critical water-table levels are
exceeded over long periods of time can be estimated by
applying stochastic methods in modeling the dynamic
relationship between water levels and driving forces such
as precipitation and evapotranspiration. In this study, a
transfer function-noise model, the so called PIRFICT-
model, is applied to estimate the dynamic relationship
between water-table depth and precipitation surplus/deficit
in a watershed with a groundwater monitoring scheme in
the Brazilian Cerrados. Critical limits were defined for a
period in the Cerrados agricultural calendar, the end of the
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rainy season, when extremely shallow levels (<0.5-m
depth) can pose a risk to plant health and machinery
before harvesting. By simulating time-series models, the
risk of exceeding critical thresholds during a continuous
period of time (e.g. 10 days) is described by probability
levels. These simulated probabilities were interpolated
spatially using universal kriging, incorporating informa-
tion related to the drainage basin from a digital elevation
model. The resulting map reduced model uncertainty.
Three areas were defined as presenting potential risk at the
end of the rainy season. These areas deserve attention with
respect to water-management and land-use planning.

Keywords Agriculture - Statistical modeling -
Geostatistics - Groundwater management - Brazil

Introduction

To support effective water management, it is necessary
to monitor water resources, to model hydrological
processes, and to simulate the effects of policy
measures. Researchers are challenged to develop meth-
ods and tools to monitor and describe the spatio-
temporal dynamics of the hydrological system. Risk
management of water resources requires the use of
stochastic modeling techniques that account for uncer-
tainty. It is possible to predict the future state in terms
of probability. According to Hipel and McLeod (1994),
the starting point is that future values have a probability
distribution which is conditioned by knowledge of past
values. The future state of a stochastic process is
characterized by a set of realizations, which can be
regarded as the outcomes of a probability experiment.
The parameters of hydrological systems can vary
greatly in time and space, but they are usually sparsely
sampled. Knowledge of system dynamics is therefore
partial at best, and the most one can usually do is
quantify the uncertainty through stochastic modeling
(Winter 2004), expressed in terms of risk. The output of
these models that take uncertainty into account can next
be used in statistical decision making.
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The Brazilian Cerrados are currently Brazil’s biggest
grain belt. Human activities have changed the region
during the past 40 years, and exploited its natural
resources (Klink and Moreira 2002). The region is
characterized by a well-pronounced dry season, from
May until September. During this period, the growth of
natural vegetation and agricultural crops depends on
groundwater. The Cerrados natural vegetation is adapted
to the local climate, but the cash crops cultivated in the
region are not. Irrigation techniques are used to keep
productivities high during the whole year. Groundwater
and surface-water availability make this possible. Mon-
itoring schemes of wells in a watershed provide informa-
tion on the spatio-temporal dynamics of the water table.
Nowadays, with almost all Cerrados natural vegetation
replaced by agricultural crops, knowledge about the
spatio-temporal dynamics of the water table is important
to optimize and balance economic and ecological interests
(Von Asmuth and Knotters 2004). Intensive use of
groundwater may cause a lowering of water tables, with
many negative effects. These changes can affect not only
the water balance and the original ecosystem, but also
endanger the economic activities and the population
settled in the basin that depends on groundwater supply.
Manzione et al. (2008) investigated the effects of this
water abstraction at the end of the dry season (beginning
of October) in the Brazilian Cerrados to see if the
agricultural crops starting to be cultivated at this time are
affected by extremely low groundwater levels or even dry
wells. Monitoring strategies should be part of the land-use
and water-use planning to avoid water losses that would
affect agricultural activities.

Water-table dynamics can be modeled in several ways,
varying from complex physical-mechanistic models to
simple empirical time-series models. Stochastic
approaches using relatively simple transfer function-noise
models (Box and Jenkins 1976; Hipel and McLeod 1994)
have been successfully applied to describe the dynamic
relationship between precipitation surplus and water-table
depth in several studies (e.g. Tankersley and Graham
1994; Van Geer and Zuur 1997; Knotters and Van Walsum
1997; Yi and Lee 2003; Von Asmuth and Knotters 2004).
The main advantage of stochastic techniques, from a
practical point of view, is their ability to quantify the
uncertainty inherent in any underground study (Winter
2004). This allows evaluation of risks resulting from
heterogeneity and lack of information on design and
management (Renard 2007).

Transfer function-noise models can be calibrated to a
set of time series observed in various wells in an area.
Next, the time-series model parameters or the model
predictions can be interpolated spatially, using ancillary
information related to the physical basis of these models
(Knotters and Bierkens 2000, 2001). In this approach, the
spatial differences in water-table dynamics are determined
by the spatial variation in the system properties, while its
temporal variation is driven by the dynamics of the input into
the system. The PIRFICT-model (predefined impulse
response function in continuous time) is an alternative to
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discrete-time transfer function-noise (TFN) models (Von
Asmuth et al. 2002). An important advantage in the use of
the PIRFICT-model, compared with discrete-time TFN
models, is that it can deal with input and output series which
have different observation frequencies and irregular time
intervals (Von Asmuth and Bierkens 2005). Time series of
the groundwater level, often collected manually, tend to be
non-equidistant and contain missing data (Von Asmuth et al.
2002). The PIRFICT-model can be calibrated on data at any
frequency available because it operates in a continuous time
domain and the time steps of the output variable are not
coupled to the time steps of the input variables.

This work presents a combination of time-series
modeling and spatial analysis applied to a monitoring
database of water heads and climate information, to map
risks of extremely shallow water-table levels for a specific
critical period in time and space. The study focuses on a
watershed with a groundwater monitoring scheme
installed in the Brazilian Cerrados, aiming to provide
information about water-table-depth dynamics and shal-
low levels, which influence agricultural activities at the
end of the rainy season. Simulating model results, the
study could account for model uncertainty—valuable
information for sustainable water management and land
use planning, visualized as risk maps.

Materials and methods

Study area

The Brazilian Cerrados extend from the northern margins
of the Amazonian evergreen forests to isolated spots on
the southern borders of the country with extensions into
Paraguay and Bolivia. Placed in the central plateau, it
covers 22% of the Brazilian territory or around 2 million
km? (Jepson 2005). The region is the most extensive
woodland-savannah in South America.

The Jardim River micro basin is situated in the
eastern part of the Brazilian Federal District (DF),
between latitudes 15°40°S and 16°20°S and longitudes
47°20°W and 47°40°W (Fig. 1). This basin is a
representative Cerrado area and is part of one of the
most important basins of Brazil: the Sdo Francisco
Basin. The total drainage area of this basin is
101.21 km?. Agricultural crops have replaced almost
all natural vegetation of the Jardim River basin. The
natural vegetation varies from gallery forests forming
corridors close to the river course, to some spots of
woody savannah (Cerrado), open woody savannah
(campo Cerrado), scrubby savannah (campo sujo), and
open grassland (campo limpo; Furley 1999). The main
cultivation crops in the area are grain (soybeans, corn,
wheat and beans), coffee, cotton, fruits, and horticulture
products, as well as cattle, dairy farming and poultry.
The dry and wet seasons are well defined, with the
rainfall concentrated between October and April. The
annual mean precipitation was 1,386 mm from 1974 to
2007. The daily average temperatures vary from 18 to
30°C during the year. The main rivers in the basin are
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Fig. 1 Map of the Brazilian territory (delineating Brazilian states) and the Jardim River watershed and well locations

the Jardim River, Estanislau Creek and Barreiro do
Mato Creek. The water flows from natural springs. The
landforms are mostly flat (slopes varying from 0 to 3%)
or gently sloping (slopes between 3 and 8%), represent-
ing 53.33 and 43.05% of the basin area, respectively
(Embrapa 1999). The maximum elevation is 1,176 m and the
minimum 890 m, above sea level. A digital elevation model
with 15-m horizontal resolution provides ancillary informa-
tion related to local geomorphology.

Hydrogeological features

The hydrogeology of the study area is characterized by
two main aquifer reservoir systems: fractured and
porous domains (Campos 2004). The porous domain is
characterized by a geological upper layer in which the
water is stored in the empty spaces of the rocky bodies
(saprolite). The pore spaces in the upper layer are
secondary formation, created by weathering of the
bedrock. This layer overlies the metasedimentary rocks
of the Canastra, Bambui and Paranod groups, which
correspond to the fractured aquifers in the area. In the
fractured domain, the water flow and storage take place
in the physical discontinuities in the rocks, forming a
system of secondary porosity.

The fractured domain comprises four systems: Paranoa
(subsystems R3/Q3 and R4), Canastra (subsystem F) and
Bambui (Fig. 2a). Fractures, cracks and faults in the rocks
are reservoirs for water, varying from a few meters to
hundreds of meters. The aquifers can be unconfined or
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confined, highly anisotropic and heterogeneous. These
rocks form the deep groundwater system in the area. The
recharge of these aquifers is from vertical and lateral flow
of precipitation-water infiltration. The geomorphology of
the region highly influences the main areas of regional
recharge. The differences in the rock types of these
systems lead to different hydrodynamic parameters. Sub-
system R3/Q3 consists of a sandy/quartzite layer that
favors open cracks, resulting in water flows around
12,200 L/h. This flow is higher than the other fractured
systems and subsystems, being the major source of natural
discharge in the northern part of the basin. R4, F and
Bambui consist of clay layers, resulting in a water flow
around 6,100, 7,500 and 5,200 L/h, respectively (Souza
and Campos 2001). The porous domain is a non-
consolidated geological environment with predominant
thickness varying between 15 and 25 m (>60%), large
extension and is, in general, homogeneous. These aquifers
form the shallow groundwater system. The porous domain
comprises three systems: P1, P2 and P4 (Fig. 2b). The
water flux at these aquifers is small compared with the
deep groundwater system of the fractured domain (Souza
and Campos 2001). They differ in thickness and gran-
ulometry. P1 has moderate thickness (around 10 m) and
sandy texture. P2 has large thickness (more than 10 m)
and sandy to loamy texture. P4 has small thickness (less
than 10 m) and rocky texture. Reatto et al. (2000)
presented a large-scale soil survey of Jardim River
watershed at scale 1:50,000 (Fig. 2c). The soil classes
identified in the basin are red latosol (LV), red yellow
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latosol (LVA), haplic cambisol (Cx), haplic plinthosol
(Px), haplic gleysol (Gx) and quartzarenic neosol (RQ).

Monitoring water-table depths and climatological
parameters

Water-table depths were observed with a semi-monthly
frequency from 11 October 2003 until 06 March 2007, at
40 wells (Fig. 1). These wells were selected to cover the
range of soil types and hydrogeological domains in the
area, in an attempt to characterize the different responses
of water-table depths in the basin. The length of the time-
series data of water-table depths was 1,240 days. The
screen depth in the wells varied with soil depth. A data
series of 33 years for precipitation and potential evapo-
transpiration was available from a climate station close to
the basin (Taquara Station). These data were available
monthly from 1974 to 1996, and then daily from 1996 to
the present.

Time-series modeling with the PIRFICT-model

The PIRFICT-model was implemented using the computer
package Menyanthes (Von Asmuth et al. 2010). Here,
there is just a brief description of the model formulation.
In the next section, an innovation in the method is
presented, regarding simulation of the random component
of the model to predict extreme water-table levels in time
and to map them in space. For a detailed description of the
PIRFICT-model, Von Asmuth et al. (2002) present a
single input/output time-series approach, and Von Asmuth
et al. (2008) introduced a more complex approach using a
multiple-input stress series.

In the PIRFICT-model, a block pulse of the input is
transformed to an output series by a continuous-time
transfer function. The outputs are a predicted series of
water-table depth, 4;*(f), at time ¢, credited to stress i, with
coefficients that do not depend on the observation
frequency. There are many types of stresses that can affect
the water-table depth. Von Asmuth et al. (2008) distin-
guished several stresses, including precipitation, evapo-
transpiration, groundwater withdraw (or injection),
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surface-water levels, barometric pressure and hydrological
interventions. Here in this study, 4;*(f) is credited to the
precipitation and evapotranspiration stresses, modeled as
transfer function-noise by the PIRFICT-model (Fig. 3). In
general, groundwater systems react differently to the
different stresses to which they are submitted. However,
there are also cases where different stresses, like precip-
itation and evapotranspiration, cause similar responses.
The effect of evapotranspiration on the water-table depth
is the same as precipitation, but negative, discounting its
influence from precipitation, similar to a water balance.
The impulse response (IR) function describes the way
the water table responds to an impulse of precipitation.
The form and area of the impulse response function
depends strongly on the local hydrological circumstances.
The IR function is typically taken as a Pearson type III
distribution function (PIII df; Abramowitz and Stegun
1964), which can model the response of a broad range of
groundwater systems. It is adjusted from the response of
the water table given from exogenous inputs. The physical
basis of the PIII df lies in the fact that it describes the
transfer function of a series of linear reservoirs (Nash
1958). Compared to the combined autoregressive (AR)
model and Kalman filter, the PIRFICT-model offers a
further extension of the possibilities of calibrating
transfer function-noise models on irregularly spaced

transfer

Observed )
WaterLevels — =——p function
model —
1
Precipitation —> —
2

Evapotranspiration =¥

noise
White Noise model

Process
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Fig. 3 Schematic representation of the transfer functions imple-
mented in the PIRFICT-model
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time series, because the shape of the transfer function is
not restricted to an exponential function (Von Asmuth
and Bierkens 2005).

In the continuous case, the model order is defined by
choosing continuous mathematical functions to represent
the IR functions. Von Asmuth et al. (2002) presented
several important differences from the discrete-model
identification procedure. First of all, a continuous IR
function can have a flexible shape and be equivalent to a
series of autoregressive/moving average (ARMA) transfer
functions. Secondly, the model identification procedure is
simplified, because the model frequency does not interfere
with the model order and parameter values, and the
flexibility of a single continuous IR function can be such
that it comprises a range of ARMA transfer functions.
Thirdly, the model can be readily identified using physical
insight. A continuous IR function can be objectively
chosen as the function that best represents the physics
of the analyzed system. A physically based IR function
on the one hand reduces the sensitivity of the model to
coincidental correlations in the data, but on the other
hand it can reduce the fit if for some reason the
physical assumptions prove to be incorrect (Von
Asmuth et al. 2002).

Mapping risks of extreme water-table levels

Models describing the relationship between precipitation
surplus/deficit and water-table depth using time series that
have a limited number of years of water-table data, can be
used to simulate new series of extensive length using input
series on precipitation surplus/deficit of extensive length
(for example 30 years). The assessment of risk demands
an understanding of extreme events, which are far from
average by definition (Winter 2004). Statistics of the
temporal variation of water-table depths can be calculated
from simulated series. These statistics will represent the
prevailing hydrological and climatic conditions rather than
specific meteorological circumstances during the monitor-
ing period of water-table depths (Knotters and Van
Walsum 1997). In this study, the focus is on statistics of
extremes, more specifically probabilities that critical levels
are exceeded.

The series of precipitation and potential evapotranspi-
ration with 30 years length were transformed into series of
water-table depths, by using the PIRFICT-model cali-
brated on the observed series of 1,240 days (from 11
October 2003 until 6 March 2007). In this way, one
obtains a series of deterministic predictions of water-table
depths, with a length of 30 years. Then, N realizations of
the noise process are generated by stochastic simulation.
Let / be the number of semi-monthly time steps in the
period, and let m be the number of semi-monthly time
steps in the monitoring period. Realizations of the random
process 7(?), t=1, 2, ..., [, are generated, reconstructing the
residual series #(¢), =1, 2, ..., m, based on a time
frequency filtering of the PIRFICT-model. It is performed
as a convolution in the time frequency domain, consider-
ing the shape of the PIII df adjusted from the parameters
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of each model. The operation in the time-frequency
domain is the time frequency expansion of the precip-
itation input signal and the time-frequency response of the
aquifer system. These simulated residual series are added
to deterministic series resulting in N realizations of the
series of water-table depths. In this study, a random
sampling is applied in the normal distribution of the noise
process, with zero mean and residual variance.

From a large number of realizations (N=1,000),
probability density functions (PDFs) of water-table
depths were calculated for the end of the wet season.
This is an important period in the Cerrados agricultural
calendar because it is when the water table reaches the
highest level and there are risks associated with shallow
groundwater levels. The 30th of April is considered as a
hypothetical date for this scenario. Around this period
the cultivation ends and harvest operations start. The
95th percentile from the PDFs was selected as the
shallow-risk threshold. The limit defined for risks of
shallow water-table levels was 0.5 m below the ground
surface. The risk is estimated as the probability of
exceeding a critical level, plus the exposure to this
critical level during a continuous period of time, for
instance 10 continuous days.

Many hybrid interpolation techniques, which combine
kriging and use of auxiliary information, have been
developed, tested and are available to improve the
accuracy of spatial predictions. A geostatistical spatial
prediction technique, which jointly employs correlation
with auxiliary variables and spatial correlation, is univer-
sal kriging (UK), originally described by Matheron
(1969). Other variants of UK are kriging with external
drift (KED) and regression kriging (RK). In fact, UK,
KED and RK are equivalent methods and should, under
the same assumptions, yield the same predictions (Hengl
et al. 2004). Some authors (Deutsch and Journel 1992;
Wackernagel 2003) consider that the term UK should be
reserved for the case where the drift (or trend) is modeled
as a function of the coordinates only. Here, however, a
more general interpretation is taken, in which UK refers to
kriging in the presence of a trend that is a linear
combination of known auxiliary variables (Christensen
1991; Cressie 1993).

The 95th percentile values of the PDFs for all wells for
30 April were interpolated spatially using universal
kriging. The resulting maps present the water-table depths
that will be exceeded with 5% chance. This interval was
considered to be reasonable for the accuracy of the
database. The digital elevation model was used as
ancillary information in the universal kriging system.
The use of elevation as a covariate can improve the spatial
prediction, enhance the physical meaning of the predic-
tions and yield more plausible spatial patterns. Elevation
is physically related to water-table depth, since it is related
to the local geomorphology. Areas with relatively low
elevation and that are close to drainage systems present
shallow water tables, whereas in areas with relatively high
elevation, far from drainage devices, the water table is
deep (Furley 1999).
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The UK model splits the random function into a linear
combination of deterministic functions, known at any
point of the region, and a random component, the residual
random function. For the whole domain there are
functions of the two-dimensional coordinates x, which
are considered deterministic, because these are known at
any location of the domain (Wackernagel 2003). The
digital elevation model was incorporated as a drift in the
spatial prediction model. Let the probability of exceedence
of a critical level be given as z(x)), z(x,), ..., z(x,), where
x; 1s a well location and n is the number of observations.
At a new, unvisited location x, in the area, z(xy) was
predicted by summing the predicted drift and the
interpolated residual (Odeh et al. 1994; Hengl et al. 2004):

(1)

where the drift m is fitted by linear regression analysis,
and the residuals e are interpolated using kriging:

Z(xo) = A(xo) + S(xo)

20) = S Bearlio) + 3 wixo) - eo); o) = 1
k=0 i=1
@)

Here, the (3, are estimated drift model coefficients,
qi(xp) 1s the kth external explanatory variable (predictor) at
location xg, p is the number of predictors, w;i(xy) are the
kriging weights and e(x;) are the zero-mean regression
residuals.

The kriging system is solved for each grid node as a
function based on the relationship of ground surface
elevation and estimated water levels depths as follows:

h(xo) = By -+ By - E(x0) + e(xo) (3)

where E is the elevation value for each location and e is a
zero-mean spatially correlated residual. Its spatial correla-
tion structure is characterized by a semivariogram. The
semivariogram is the spatial estimator of dependence
between observation points and provides information to
the kriging system perform spatial interpolation. The
results of spatial interpolation were evaluated using
cross-validation (Wackernagel 2003; Pebesma 2004).

Results and discussion

Calibration of the time-series models

Figure 4 shows observed and modeled water-table depth
for four wells representing different soil types, hydro-
geological systems and land uses. Well 30 (W30) is
located in the western part of the basin, under the
fractured hydrogeological subsystem F, porous hydro-
geological system P2, red latosol and pasture. Well 40
(W40) is located in the central part of the basin, under
fractured hydrogeological subsystem Bambui, porous
hydrogeological system P2, cambisol and pasture. Well
56 (W56) is located in the extreme northern part of the
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basin, under fractured hydrogeological subsystem R3/Q3,
porous hydrogeological system P1, red yellow latosol and
agriculture. Finally, well 57 (W57) is located in the
northern part of the basin, under fractured hydrogeological
subsystem R3/Q3, porous hydrogeological system P4, red
yellow latosol and Cerrado vegetation. Figure 2 gives the
location of these wells under each geological layer and
soil type. All well screens are located in the porous layers
of each domain. Figure 4 indicates that the water levels
respond differently to the same inputs, depending on the
hydrogeologic conditions.

The different hydrological conditions in the basin also
give a wide range of calibration results for all 40 wells
analyzed (summarized in Table 1). The goodness of fitness
is indicated by three parameters: the percentage of
variance accounted for (Rzadj), the root mean squared
error (RMSE) and the root mean squared innovation
(RMSI). The given values of Rzadj indicate a good fit of
the PIRFICT-model to the data. The RMSE is a measure
of the overall error of the transfer model. The RMSI is the
average innovation or error of the combined transfer and
noise model (Wiener process).

Errors in data or even lack of data might affect model
accuracy. The Rzadj gives information from the residual
variance weighted according to the variance of the original
series signal (Von Asmuth et al. 2008). In this case, all
calibrations present good results, with errors varying from
centimeters (13 c¢cm) to a few meters (1.37 m), which is
perfectly acceptable, considering the depth of the wells
and the thickness of the vadose zone.

The diagnostic check of the IR functions also
showed the different responses of water-table depths in
the Jardim River watershed. Figure 5 gives the impulse
response functions for precipitation input for the wells
W30, W40, W56 and W57. The functions have higher
response factors for wells with large water-table-depth
amplitudes (W30 and W40). It can be seen that the
response time is amply covered by the monitoring
period of 1,240 days.

Interpretation of model results

The differences seen in the variation of water-table
depths for the selected wells can be explained from the
hydrogeological patterns in the Jardim River watershed.
For example, W30 and W40 have larger amplitude
between maximum and minimum water-table depths
than W56 and W57 (Fig. 4). This can be explained by
the hydrogeological subsystem P2 which consists of
deep layers associated with pelitic rocks. This material
is highly susceptible to chemical weathering and it
favors decomposition of the underlying rock, causing a
thick pedologic covering. The resulting soils are red
latosols, sandy to loamy, with moderate porosity. The
saturated thickness of this system is more than 10 m
and the residence time of groundwater in the aquifer
system is long since they are big water reservoirs.
System P2 comprises the major part of the basin. Water
level in well W30 is deeper because it is located under
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more developed red latosols (Reatto et al. 2000). Wells
W56 and W57 present faster responses. The water flux
is intense in the northern part of the basin due the local
hydrogeology, contributing also to natural discharge
(Campos and Troger 2000). W56 is located in system
P1, which is developed from sandy metarhythmites and
medium quartzites from the Paranod group, resulting in
red yellow latosols. The thickness of the saturated zone
in this system is around 10 m (Souza and Campos
2001). At W57, the levels are more superficial due to
the rocky nature of the local geology of system P4, and
the responses are even faster to precipitation surplus
inputs (Fig. 5). System P4 is associated with pelitic
rocks (schists and phylites) which produced shallow and
rocky soils close to drainage systems and the river
springs. The saturated thickness of this system is less
than 10 m. These wells present just a few examples of
how differently the water-table depths can react in a
small catchment like the Jardim River watershed. The
flexibility of Pearson III df makes it possible to adjust
the PIRFICT-model closely to these different responses.

Simulation with the PIRFICT-model and mapping

of water-table depth

The spatial structure of the expected values of water-
table depth that will be exceeded with 5% probability

was modeled by semivariograms and interpolated using
ancillary information. The spatial dependence at short
distances is poorly estimated because of the small
number of observation wells, which are fairly uniformly
distributed in the area (Goovaerts 1997; Chilés and
Delfiner 1999). For 30 April, there is risk of shallow
water tables exceeding the level of 0.5 m below ground
surface and this is fixed as critical. Figure 6 gives the
map of water-table depths that will be exceed with 5%
chance on 30 April, interpolated used universal kriging
using the digital elevation model of the basin as
ancillary information.

Including elevation as a spatial drift into the geo-
statistical model caused a decrease in the semivariance
(Table 2). The results of spatial interpolation were
evaluated by cross-validation. The mean interpolation
errors are small (-0.01 m). The mean and standard
deviation of the Z-score had values close to zero and
one, respectively. These results suggest a good perform-
ance of the kriging system and the estimations. The use of
the digital elevation model as ancillary information
improved the quality of the maps of water-table depth
and provided a physical interpretation of the maps, related
to the drainage patterns.

The water-table variation in the basin is dependent on the
geological/pedological layer occurrence. The simulated
levels for 30 April (Fig. 6) were deeper in the northern and

Table 1 Summary of the statistics of PIRFICT-model calibrations for all 40 wells.

Min 1st Q Med 3rdQ Max Mean SD
Rzadj 69.3 75.5 79.9 85.1 94.0 80.0 6.56
RMSE 0.13 0.32 0.66 0.90 1.37 0.65 0.35
RMSI 0.13 0.26 0.50 0.73 1.27 0.52 0.29

R’ aqj percentage of explained variance; RMSE root mean squared error (m); RMSI root mean squared innovation (m); Min minimum; /st Q
first quartile; Med median; 3rd Q third quartile; Max maximum; SD mean standard deviation
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Fig. 5 Temporal adjustment of the impulse response functions for the input series of precipitation for wells W30, W40, W56 and W57
(Solid lines: impulse response functions, dashed lines: upper and lower confidence intervals)

central parts of the basin, reaching a minimum (low) of
—8.56 m below the surface. Close to the drainages (excluding
the northern part of the basin) and in the southeastern part of
the basin, the levels were shallow, presenting levels above
the surface (26 cm maximum).

a)o
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GROUND

SURFACE

ELEVATION
(m asl)

1176.85
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0 2 4 6 8 Km 2

2

Risk assessment

From the map of water-table depths that will be exceeded
with 5% probability on 30 April (Fig. 6), three areas were
detected that have a potential risk of shallow water tables
(Fig. 7). Fortunately, these areas are close to the drainage
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Fig. 6 a Digital elevation model and b estimated water-table depths that will be exceed with 5% probability on 30 April, varying from
—8.56 m below the surface to 26 cm above the surface
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Table 2 Parameters of the adjusted semivariograms for the 5th percentile from the simulated water-table depths on 30 April, with and
without using elevation as a spatial drift.

Simulated water-table depth values Model Nugget Sill Contribution Range (m)
P 0.05 Spherical 6.00 13.00 7.00 2,900
P 0.05E Spherical 6.00 11.00 5.00 2,900

P 0.05 semivariogram without elevation as a spatial drift (m); P 0.05E semivariogram with elevation as a linear trend (m)

devices and under legal protection. Brazilian legislation these maps, the risks of shallow and deep water tables are
covers the maintenance of gallery forest along rivers evaluated and can be extended for any date of interest in the
courses. Removing this vegetation is a crime in environ- future. Manzione et al. (2008) presented results for extreme
mental law, so farmers avoid cultivation in such areas. deep water levels at the beginning of the rainy season in the

The risk spot in the western part of the basin deserves Cerrados (around 1 October). With these kinds of results it is
some attention. The LANDSAT image shown in Fig. 7 is possible to optimize water use, to assess choices for long-
from the dry season. The green areas close to the drainage term water management policy and finally to regulate the
are river valleys and the green polygons are irrigated crops. competing claims for water resources that often occur
Most of the lilac areas are ploughed areas waiting for between agricultural, industrial and human uses. In this case
planting after the first rains in September/October. In study, a scenario of shallow water levels on 30 April
general, April is a wet period and the polygons inside risk  describes a problem for machinery and plant development.
areas are under cultivation by this period. Since this periodis At the end of the wet season shallow water tables can prevent
close to the end of the cultivation period, before harvesting or delay harvest, or delay conditions for plant maturation, for
begins, crops found inside and close to this area are exposed example. Shallow water tables can indicate the need for
to the potential risk of shallow water tables. If at these places installation of surface and/or subsurface drainage systems to
the critical levels are exceeded for more than 10 consecutive  keep these areas in good agricultural condition. The effects
days, the plants will start to show severe damage and of these events will vary with the magnitude of the event, i.e.
production losses become a possibility. the number of consecutive days the area is exposed to this

The stochastic component of the PIRFICT-model (noise risk situation. From a practical point of view, the risk areas
term) simulated over long periods provides information are located where the residence time of the groundwater is
about the behavior of water tables. Many of the most long; once groundwater presents itself in such a shallow
important modern applications of hydrogeology require an situation, it can stay for long periods and start to cause
assessment of risk as it changes in time and space, and risk is  damage. A moving window filter with 10 days length
an essentially probabilistic concept (Winter 2004). Informa-  inspected all simulated time series searching for more than
tion on water levels expressed in terms of probability, for 10 consecutive days under the risk situation and none of
selected dates, provides critical scenarios for the water table them presented water-table levels higher than 0.5 m (below
when extreme values are regionalized and mapped. From ground surface) for this time period. In other words, even in

2 0 2 4 6 8 Km 2 0 2 4 6 8 Km

Fig. 7 a LANDSAT 7 R(5)G(4)B(3) image—composition of the basin’s land cover in July 2006 (see text for description of colors) and b
areas with risk of extreme (shallow) water-table depths on 30 April
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potential risk areas, there is a negligible risk of shallow water
tables affecting the economic activities in the Jardim River
watershed during this period.

Monitoring of water resources and climatological
variables and the performance of risk analysis is relevant
in regions where the water levels can turn critical or are
affected by seasonality during certain periods of the year,
affecting the social, economic and ecological interests of
the population. Monitoring strategies carried out in water
catchments can avoid undesirable situations. Several
authors suggest that results from a stochastic experiment
expressed in terms of probability and risk should not be
standard practice for several reasons (Dagan 2002; Winter
2004; Pappenberger and Beven 2006; Renard 2007). To
expand the discussion and to provide understandable
information for decision makers, stakeholders and police
makers, the results could be made clearer to them, with
visualization in maps, for example, instead of simple
tables containing numbers and statistical intervals.

Conclusions

Time-series modeling using the PIRFICT-model combined
with universal kriging facilitated an understanding and
mapping of the dynamic behavior of the water table in the
Jardim River watershed, as an input to risk assessment.
Due to the flexibility of the Pearson III df, the PIRFICT-
model could describe different hydrological behaviors
inside a watershed, from the same collection of data.

Simulating extensive time series of water-table depths
using a stochastic model enabled water-table depths to be
predicted in terms of probability and without the influence
of isolated short-term climatic disturbances. The results
expressed as risk maps can support decision making in
long-term water policy and suggest areas with potential
risk of shallow or deep water tables.

For 30 April, three risk spots of shallow water tables
were found. The analysis should be extended to other
dates/periods that are sensitive to critical water levels. The
method presented in this study enables its extension to
predict risks at any date in the future for any period of
time, providing information on water-table depths for
critical dates in the agricultural calendar.
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