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7 Predictive Risk Mapping 
of Water Table Depths in 
a Brazilian Cerrado Area
R. L. Manzione, M. Knotters, G. B. M. Heuvelink,  
J. R. Von Asmuth, and G. Câmara

7.1  IntroductIon

The Brazilian Cerrados extend from the northern margins of the Amazon rain for-
ests to outliers on the southern borders of the country with extensions into Para-
guay and Bolivia. Before recent human disturbances, Cerrados probably covered 
well over 2 million km2, equivalent to 23% of the Brazilian territory (Jepson, 2005). 
The Cerrados are woody savannas, which vary from nearly treeless grasslands to 
what is almost a woodland of semideciduous trees (Furley, 1999). The structure and 
physiognomy of the Cerrados reflect climatic and other environmental variables. The 
total annual rainfall over the central area of Brazilian savannas ranges from 1300 to 
1600 mm, concentrated in six to seven months between October and April. The rest 
of the year is characterized by a pronounced dry season. So, natural vegetation has 
developed adaptations to the seasonal wet rainfall, acid soils, and aluminium toxic-
ity, and features protective devices against fire. Plants metabolize throughout the 
year, drawing on soil water reserves, and can withstand short-lived fires.
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The expansion of modern agriculture over the past three decades and the estab-
lishment of large-scale ranches have affected the characteristic landscape and eco-
system of the Cerrados. These areas became Brazil’s most important grain belt, 
facing deforestation rates much higher than in the Amazon rain forest (Oliveira 
et al., 2005). A complex wood/grass ecosystem was substituted by shallow-rooted 
monocultures, which are less well adapted to drought. Their need of water supply by 
irrigation techniques is likely to change the hydrological system (Klink and Moreira, 
2002). With irrigation increasing, lowering of the water table occurs, and so risks of 
water shortage appear. The preservation of these resources is important because the 
Cerrado presents itself as an important receiver, keeper, and disperser of water to 
the three main hydrographic basins of the country (Amazon Basin, Prata Basin, and 
São Francisco Basin). The negative impact to its environment might be reflected in 
other Brazilian biomes.

Knowledge about the spatio-temporal dynamics of the water table is important 
to optimize and balance the interest of economical and ecological land use pur-
poses (Von Asmuth and Knotters, 2004). In hydrology, water table dynamics are 
modeled in several ways. Many authors refer to transfer function–noise (TFN) mod-
els to describe the dynamic relationship between precipitation and water table depths 
(Box and Jenkins, 1976; Hipel and McLeod, 1994; Tankersley and Graham, 1994; 
Van Geer and Zuur, 1997). Basically, these models can be seen as multiple regres-
sion methods, where the system is seen as a black box that transforms series of 
observations on the input (the explanatory variables) into a series of output variables 
(the response variables). The parameters of time series models address the temporal 
variation of the water table depths, while the spatial component can be accessed by 
regionalizing the outputs using ancillary information related to the physical basis 
of these models (Knotters and Bierkens, 2000, 2001). This approach can be used to 
describe the spatio-temporal variation of the water table depths. It is assumed that 
the spatial differences in water table dynamics are determined by the spatial varia-
tion of the system properties, while its temporal variation is driven by the dynamics 
of the input into the system.

To link the response characteristics of the water table system to the dynamic 
behavior of the input, Von Asmuth et al. (2002) presented a method based on the 
use of a transfer function–noise model in continuous time, the so-called PIRFICT 
model. An important advantage of the PIRFICT model as compared to discrete-time 
TFN models is that it can deal with input and output series that have different obser-
vation frequencies and irregular time intervals. Using a time series model it is pos-
sible to simulate over periods without observations, as long as data on explanatory 
series are available. For instance, long series (say 30 years’ length) on precipitation 
and evapotranspiration can be assumed to represent the prevailing climatic condi-
tions (Knotters and Van Walsum, 1997). Alternatively, series generated by climatic 
models might be applied as inputs to the PIRFICT model. From the simulated real-
izations, statistical characteristics of future water table dynamics can be calculated, 
such as mean, standard deviation, and limits of prediction.

The aim of this study is to estimate and map the expected water table depths 
in a watershed located at the Brazilian Cerrados. These estimations are made for a 
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specific date in any future year, given the prevailing hydrological and climatic con-
ditions, in order to support decision making in long-term water policy and indicate 
areas with potential risks of future water shortage and shallow water table depths. In 
addition, the uncertainty associated with the estimated water table depth is quanti-
fied simulating realizations of the stochastic processes.

7.2  MaterIals and Methods

7.2.1  Study AreA—the JArdim river WAterShed

The Jardim River watershed is a representative Cerrado area in the eastern part of 
the Brazilian Federal District., latitudes 15°40′S and 16°02′S and longitudes 47°20′W 
and 47°40′W. The dry and wet seasons are well defined, with the rainfall concen-
trated between October and April. During the past years, almost all natural vegeta-
tion of the area was replaced by agricultural crops, and the use of irrigation systems 
has substantially increased in this region during the past years. The main cultivations 
in the area are soybeans, cotton, and corn crops, as well as pasture and horticultural 
crops. To monitor the water table depths, 37 wells were drilled ( Figure 7.1). The loca-
tions were selected purposively, to cover the range of soil types in the area (Lousada, 
2005). The water table was observed semimonthly from October 11, 2003 until Octo-
ber 06, 2006, resulting in series of 50 more or less regularly spaced semimonthly 
observations, during a period of 1092 days. Series of 33 years’ length of precipitation 
and potential evapotranspiration were available from a climate station close to the 
basin. The period covered is from 1974 until 1996 with a monthly frequency, and 
from 1996 until March 2007 with a daily frequency. Ancillary information related 
to local geomorphology was derived from a digital elevation model (Figure 7.1) with 
15 m resolution (Lousada, 2005).
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FIgure 7.1 Jardim River watershed and location of the observation wells (+) (left) and the 
Digital Elevation Model (right).
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7.2.2  modeling WAter tAble depthS—the pirFiCt model

The behavior of linear input-output systems can be completely characterized by their 
impulse response (IR) function (Ziemer et al., 1998; Von Asmuth et al., 2002). The 
response of water table depth to impulses of precipitation series can be modeled by 
a transfer function–noise (TFN) model (Box and Jenkins, 1976; Hipel and McLeod, 
1994; Von Asmuth and Knotters, 2004). For water table depths, the dynamic rela-
tionship between precipitation and water table depth can also be described using 
physical mechanistic groundwater flow models. However, by using much less com-
plex TFN models, predictions of the water table depth can be obtained that are often 
as accurate as those obtained by physical mechanistic modeling (Von Asmuth and 
Knotters, 2004).

The basic idea behind TFN modeling is to split the observed series (output) into 
a sum of transfer components related to known causes (inputs) that influence the 
temporal variation of the output and an unknown noise component. TFN models 
are often applied to distinguish between natural and man-induced components of 
groundwater series (Van Geer and Zuur, 1997). In TFN models one or more deter-
ministic transfer components and a noise component are distinguished. These com-
ponents are additive. Each transfer component describes the part of the water table 
depth that can be explained from an input by a linear transformation of a time series 
of this input. The noise component describes the autoregressive structure of the dif-
ferences between the observed water table depths and the sum of the transfer com-
ponents. The input of the noise model is a series of independently and identically 
distributed disturbances with zero mean, and finite and constant variance, i.e., white 
noise. The PIRFICT model, introduced by Von Asmuth et al. (2002), is a specific 
type of TFN model and an alternative to discrete-time TFN models. In the PIRFICT 
model a block pulse of the input is transformed into an output series by a continuous-
time transfer function. The coefficients of this function do not depend on the obser-
vation frequency. The following single-input continuous TFN model can be used 
to model the relationship between water table dynamics and precipitation surplus/
deficit. For the simple case of a linear, undisturbed phreatic system that is influenced 
by precipitation surplus/deficit only (Von Asmuth et al., 2002),

 h t h t d r t( ) ( ) ( )*= + +  (7.1)

 h t p t
t

*( ) ( ) ( )= − ∂
−∞
∫ τ τ τθ  (7.2)

 r t t W
t

( ) ( ) ( )= − ∂
−∞
∫ φ τ τ  |(7.3)

where:
 h(t) = observed water table depth at time t [T];
 h*(t) = predicted water table depth at time t attributed to the precipitation sur-

plus/deficit, relative to d [L];
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 d = level of h*(t) without precipitation, or in other words the local drainage 
level, relative to ground surface [L];

 r(t) = residuals series [L];
 p(t) = precipitation surplus/deficit intensity at time t [L/T];
 θ(t) = transfer Impulse Response (IR) function [-];
 ϕ(t) = noise IR function [-];
 W(t) = continuous Wiener white noise process [L], with properties E{dW(t)} = 

0, E[{dW(t)}2] = dt, E[dW(t1)dW(t2)] = 0, t1 ≠ t2.

The local drainage level d is obtained from the observations as follows:
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with N the number of water table depth observations.
TFN models are identified by choosing mathematical functions that describe 

the IR and the autoregressive structure of the noise. This identification can be done 
in two ways: first, iteratively, using correlation structures in the available data and 
model diagnostics, and, second, physically, based on insight into the behavior of the 
analyzed system. Here, the second approach is followed. θ(t) is a Pearson type III 
distribution function (PIII df; Abramowitz and Stegun, 1964). Because of its flexible 
nature, this function adequately models the responses of a broad range of ground-
water systems. Under the assumption of linearity, the deterministic part of the water 
table dynamics is completely determined by the IR function moments. In this case, 
based on Von Asmuth et al. (2002), the parameters can be defined as
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where A, a, n, are the parameters of the adjusted curve; Γ(n) is the Gamma function; 
α determines the decay rate of Ø(t); and σ2

r is the variance of the residuals.
Equation 7.5 and its parameters have a physical meaning that is described in 

Von Asmuth and Knotters (2004). The physical basis of the PIII df lies in the fact 
that it describes the transfer function of a series of linear reservoirs (Nash, 1958). 
The parameter n denotes their number and a equals the inverse of the reservoir 
coefficient normally used. As Knotters and Bierkens (2000) explain, a single linear 
reservoir (a PIII df with n = 1) equals a simple physical model of a one-dimensional 
soil column, discarding lateral flow and the functioning of the unsaturated zone. The 
extra parameter A is necessary because in the case of Equation 7.5, where a precipi-
tation and evapotranspiration series are transformed into a water table depths series, 
the law of conservation of mass does not apply.
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The PIII df has been shown to be able to model fluctuations of water table 
closely and comparably to the Box-Jenkins TFN models with many more parameters 
(Von Asmuth et al., 2002). The parameter A is related to the local drainage resistance 
(the area of the IR function equals the ratio of the mean height of the water table 
to the mean water table recharge), while Aa is determined by the storage coefficient 
of the soil and n as the convection and dispersion time of the precipitation through 
the unsaturated zone. However, care should be taken when interpreting the param-
eters of the PIII df, or any other time series model for that matter, in the physical 
sense, because of their lumped and empirical nature (Von Asmuth and Knotters, 
2004).

After the selection of an IR function that represents the underlying physical pro-
cess, the available time series have to be transformed to continuous series. First, 
in order to characterize the variability of precipitation and evaporation, we rely on 
a simple but effective method to estimate the average precipitation surplus inten-
sity and its annual amplitude. When precipitation surplus data are only available at 
discrete intervals, the continuous series p(τ) cannot be reconstructed exactly, but it 
can be approximated by assuming that the distribution of p(τ) is uniform during the 
period tpb to tpe (Ziemer et al., 1998). The average level of the precipitation surplus 
is obtained as

 p
p

t t
pb

pe

pe pb
=

∂

−

∫ ( )τ τ
 (7.6)

with tpb and tpe denoting the start and end of the period over which the meteorological 
characteristics are calculated. Next, time is split into year Y and the Julian day D, 
and the precipitation surplus is averaged over Y, which effectively filters out its yearly 
course:

 p D

p Y D

Y Y
D

Y

Y

pe pb

pb

pe

( )

( , )

,=
−

≤ ≤
∑

1 365  (7.7)

Because the temperature largely determines the annual evaporation cycle and is 
more or less harmonic, so is the precipitation surplus, and the annual amplitude can be 
obtained by matching a sine to the yearly course (Von Asmuth and Knotters, 2004).

Using Equation 7.6, the transfer model (Equation 7.2) can be evaluated using a 
block response (BR) function Θ(t). The BR function can be obtained by convoluting 
the IR function with a block pulse of precipitation surplus with unit intensity over a 
period Δt, as follow:

 Θ
∆

( ) ( )t
t t

t

= ∂
−
∫ θ τ τ  (7.8)
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Because Θ(t) is a continuous function, h*(t) itself is also continuous, and for 
every observation of h(t) a sample of the residual series r(t) can be obtained. Next, 
the noise model (Equation 7.3) is evaluated in order to obtain a series of innovations 
ν(t). Following Von Asmuth et al. (2002), to evaluate the noise model without having 
to use a Kalman filter (which is computationally expensive) we will derive a direct 
relation between the residuals r(t) and the innovations ν(t). Consider the series ν(t) 
as the nonequidistantly sampled changes in the solution to the stochastic integral 
describing the residual series

 v t t W
t t

t

( ) ( ) ( )= − ∂
−
∫ φ τ τ
∆

 (7.9)

With Ø(t) from Equation 7.5 as the noise IR function, we can rewrite Equation 7.3 
as

 r t e r t t e Wt
r

t( ) ( ) ( )( )= − + ∂−

−∞

− −∫α α τασ τ∆ ∆ 2 2  (7.10)

which is known as an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930; 
Gardiner, 1994). Combining Equation 7.9 and Equation 7.10, we obtain the innova-
tion series calculated from the available data:

 v t r t e r t tt( ) ( ) ( )= − −−α∆ ∆  (7.11)

Subsequently, an estimative of the model parameters set β = (A, a, n, α) is made 
with the aid of a Levenberg-Marquardt algorithm, which numerically minimizes a 
weighted least-squares criterion based on the likelihood function of the noise model. 
Finally, the accuracy and validity of the model are checked using the auto- and 
cross-correlation functions of the innovations, the covariance matrix of the model 
parameters, and the variance of the IR functions. For a complete overview of the 
PIRFICT model formulation, applications, and study cases, refer to Von Asmuth 
and Maas (2001), Von Asmuth et al. (2002), Von Asmuth and Knotters (2004), and 
Von Asmuth and Bierkens (2005).

The PIRFICT model was applied in this study because the model can describe 
a wide range of response times with differences in sampling frequency between 
input series and output series. For the Cerrado situation it is particularly interesting 
because different behaviors of water tables can be found even in small catchments. 
Being the most important driving forces of water table fluctuation, precipitation and 
evapotranspiration are incorporated as exogenous variables into the model.

7.2.3  unCertAinty meASureS—SimulAting WAter tAble depthS

Time series models using precipitation surplus/deficit as the input variables, cali-
brated on time series of water table depths with limited years, enable us to simulate 
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series of extensive length (Knotters and Van Walsum, 1997). From extensive series, 
statistics of WTD can be estimated. These will represent the prevailing hydrological 
and climatic conditions rather than specific meteorological circumstances during the 
monitoring period of water table depths.

The simulation of water table depths presented here is based on a time fre-
quency filtering of the PIRFICT model performed as a convolution in the time 
frequency domain. This operation considers the shape of the PIII df adjusted from 
the parameters of each model. Since water table depths indicate the output of a time 
varying system, the interaction of the precipitation input signal and the system can 
be regarded as an operation in the time frequency domain between the time fre-
quency expansion of the signal and the time frequency response of the system.

These models contain a dynamic component, describing the dynamic relation-
ship between the input and the output, either physically or empirically. But variation 
of the water table cannot be completely explained from the precipitation and evapo-
transpiration series. So, the models must contain a noise component, which describes 
the part of water table fluctuation that cannot be explained with the used physical 
concepts or empirically from the input series. The unexplained part (noise compo-
nent) has to be taken into account in the simulation procedure, since we are interested 
in the statistics of extremes, like the probabilities that critical levels are exceeded. 
Details about simulation can be found in Hipel and McLeod (1994). Here, we evalu-
ate the uncertainty of the estimations of water table depths simulating 1000 realiza-
tions of the PIRFICT model in order to calculate probability distribution functions 
(PDFs) of the target variable. The uncertainty is taken into account by the probability 
thresholds established to risk management, generated from the PDFs. The following 
steps are followed:

After modeling the relationship between precipitation surplus/deficit and •	
water table depths using the PIRFICT model, series of water table depths are 
extrapolated to a length of 30 years. It is assumed that the average weather 
conditions during the last 30 years represent the prevailing climate. As a 
result, deterministic series of predicted water table depths are generated.
Realizations of the noise process are generated by stochastic simulation and •	
next added to the deterministic series, resulting in realizations of series of 
WTD. Realizations of the noise process can be generated either by random 
sampling from a normal distribution with zero mean and residual variance, 
or by resampling from the fitted residuals.
From the previous step, •	 N realizations of the stochastic simulation are gen-
erated. With a probability density function of the distribution of water table 
depths for each t instant, the statistics representing the prevailing hydro-
logic conditions can be calculated.

In this study, we applied random sampling from a normal distribution. We 
decided to calculate statistics about WTD for a t that equals October 1. This is a 
reasonable date at which cultivations in the Cerrado region start. The rainy season 
usually starts around this period. Farmers start cultivations just after the first rains 
of the season.

AU: OK as 
edited?

To enable risk management of water table depths for October 1 we calculated two 
levels of probability. First, a 5% probability level was considered as a measure for 
risk of water shortage. With this results, we can say that the area has just 5% prob-
ability to have water levels deeper than the values of the resulting map, and 95% 
higher water levels. The limits established for risks of water shortage at October 1 
were the depths of the wells, with dry wells characterizing a scenario of water short-
age in the area. It can be a problem during the beginning of the plants’ development, 
affecting water availability and resulting in production losses.

Second, a 95% probability level was considered as a measure for risk of shallow 
water tables. Shallow water tables can be a problem in the beginning of the rainy 
season because it can make machinery impossible, affecting plowing and planting 
operations. It can also influence soil conditions, decreasing soil redox potential, 
increasing pH in acid soils, and decreasing in alkaline soils and increasing conduc-
tivity and ion exchange reactions. These modifications in the system might influence 
plant growth, by affecting the availability on toxicity of nutrients, regulating uptake 
in the rhizosfere. With these results, we can say that the area has just 5% prob-
ability of having water levels higher than the values of the resulting map, and 95% 
deeper water levels. The limits established for risks of shallow water table depths at 
October 1 were 0.5 m below the ground surface.

7.2.4  riSk mApping—regionAlizing SimulAted WAter tAble depthS

The results of WTD simulations are interpolated spatially using universal kriging 
(Matheron, 1969; Pebesma, 2004). The use of exhaustive information on elevation 
is interesting, because it can decrease the variance and the uncertainty in the spatial 
prediction model. Also, when the ancillary information is physically related to the 
target variable, it can incorporate physical meaning to the predictions. In our case, 
areas with relatively low elevation and close to drainage devices present relatively 
shallow water tables, whereas in areas with relatively high elevation and far from 
drainage devices, the water table is relatively deep (Furley, 1999).

Incorporating DEM as drift (Odeh et al., 1994; Knotters et al., 1995) in the spa-
tial prediction model works as follows. Let the simulated water table depths be given 
as z(x1), z(x2), …, z(xn), where xi is a (two-dimensional) well location and n is the 
number of observations (i.e., n = 37). At a new, unvisited location x0 in the area, 
z(x0) is predicted by summing the predicted drift and the interpolated residual (Odeh 
et al., 1994; Hengl et al., 2004):

  (7.12)

where the drift m is fitted by linear regression analysis, and the residuals e are inter-
polated using kriging:

  (7.13)
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series of extensive length (Knotters and Van Walsum, 1997). From extensive series, 
statistics of WTD can be estimated. These will represent the prevailing hydrological 
and climatic conditions rather than specific meteorological circumstances during the 
monitoring period of water table depths.

The simulation of water table depths presented here is based on a time fre-
quency filtering of the PIRFICT model performed as a convolution in the time 
frequency domain. This operation considers the shape of the PIII df adjusted from 
the parameters of each model. Since water table depths indicate the output of a time 
varying system, the interaction of the precipitation input signal and the system can 
be regarded as an operation in the time frequency domain between the time fre-
quency expansion of the signal and the time frequency response of the system.

These models contain a dynamic component, describing the dynamic relation-
ship between the input and the output, either physically or empirically. But variation 
of the water table cannot be completely explained from the precipitation and evapo-
transpiration series. So, the models must contain a noise component, which describes 
the part of water table fluctuation that cannot be explained with the used physical 
concepts or empirically from the input series. The unexplained part (noise compo-
nent) has to be taken into account in the simulation procedure, since we are interested 
in the statistics of extremes, like the probabilities that critical levels are exceeded. 
Details about simulation can be found in Hipel and McLeod (1994). Here, we evalu-
ate the uncertainty of the estimations of water table depths simulating 1000 realiza-
tions of the PIRFICT model in order to calculate probability distribution functions 
(PDFs) of the target variable. The uncertainty is taken into account by the probability 
thresholds established to risk management, generated from the PDFs. The following 
steps are followed:

After modeling the relationship between precipitation surplus/deficit and •	
water table depths using the PIRFICT model, series of water table depths are 
extrapolated to a length of 30 years. It is assumed that the average weather 
conditions during the last 30 years represent the prevailing climate. As a 
result, deterministic series of predicted water table depths are generated.
Realizations of the noise process are generated by stochastic simulation and •	
next added to the deterministic series, resulting in realizations of series of 
WTD. Realizations of the noise process can be generated either by random 
sampling from a normal distribution with zero mean and residual variance, 
or by resampling from the fitted residuals.
From the previous step, •	 N realizations of the stochastic simulation are gen-
erated. With a probability density function of the distribution of water table 
depths for each t instant, the statistics representing the prevailing hydro-
logic conditions can be calculated.

In this study, we applied random sampling from a normal distribution. We 
decided to calculate statistics about WTD for a t that equals October 1. This is a 
reasonable date at which cultivations in the Cerrado region start. The rainy season 
usually starts around this period. Farmers start cultivations just after the first rains 
of the season.

To enable risk management of water table depths for October 1 we calculated two 
levels of probability. First, a 5% probability level was considered as a measure for 
risk of water shortage. With this results, we can say that the area has just 5% prob-
ability to have water levels deeper than the values of the resulting map, and 95% 
higher water levels. The limits established for risks of water shortage at October 1 
were the depths of the wells, with dry wells characterizing a scenario of water short-
age in the area. It can be a problem during the beginning of the plants’ development, 
affecting water availability and resulting in production losses.

Second, a 95% probability level was considered as a measure for risk of shallow 
water tables. Shallow water tables can be a problem in the beginning of the rainy 
season because it can make machinery impossible, affecting plowing and planting 
operations. It can also influence soil conditions, decreasing soil redox potential, 
increasing pH in acid soils, and decreasing in alkaline soils and increasing conduc-
tivity and ion exchange reactions. These modifications in the system might influence 
plant growth, by affecting the availability on toxicity of nutrients, regulating uptake 
in the rhizosfere. With these results, we can say that the area has just 5% prob-
ability of having water levels higher than the values of the resulting map, and 95% 
deeper water levels. The limits established for risks of shallow water table depths at 
October 1 were 0.5 m below the ground surface.

7.2.4  riSk mApping—regionAlizing SimulAted WAter tAble depthS

The results of WTD simulations are interpolated spatially using universal kriging 
(Matheron, 1969; Pebesma, 2004). The use of exhaustive information on elevation 
is interesting, because it can decrease the variance and the uncertainty in the spatial 
prediction model. Also, when the ancillary information is physically related to the 
target variable, it can incorporate physical meaning to the predictions. In our case, 
areas with relatively low elevation and close to drainage devices present relatively 
shallow water tables, whereas in areas with relatively high elevation and far from 
drainage devices, the water table is relatively deep (Furley, 1999).

Incorporating DEM as drift (Odeh et al., 1994; Knotters et al., 1995) in the spa-
tial prediction model works as follows. Let the simulated water table depths be given 
as z(x1), z(x2), …, z(xn), where xi is a (two-dimensional) well location and n is the 
number of observations (i.e., n = 37). At a new, unvisited location x0 in the area, 
z(x0) is predicted by summing the predicted drift and the interpolated residual (Odeh 
et al., 1994; Hengl et al., 2004):

 ˆ( ) ˆ ( ) ˆ( )z x m x e x0 0 0= +  (7.12)

where the drift m is fitted by linear regression analysis, and the residuals e are inter-
polated using kriging:
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Here, the βk are estimated drift model coefficient qk(x0) is the kth external explan-
atory variable (predictor) at location x0, p is the number of predictors, wi (x0) are the 
kriging weights, and e(xi) are the zero-mean regression residuals. In this case, for 
WTD, the model was formulated as follows:

 WTD( ) ( ) ( )x EV x e x0 0 1 0 0= + ⋅ +β β  (7.14)

where EV is the elevation value for each location and e is a zero-mean spatially corre-
lated residual. Its spatial correlation structure is characterized by a semivariogram.

7.2.5  SummAry oF the method

The methods described in Subsection 7.2.2 to Subsection 7.2.4 are now summarized 
as follows:

 1. Calibrate the PIRFICT model.
 2. Stochastically simulate the WTD series by using the PIRFICT model (N = 

1000) and input series of 30 years’ length.
 3. Pick all selected date (October 1) values of WTD generated by stochas-

tic simulation.
 4. Create a probability distribution function (PDF) of these values.
 5. Select the percentile values (5th and 95th) for the WTD.
 6. Repeat steps 1–5 for all wells.
 7. Model the spatial structure of the percentile values with geostatistics 

techniques.
 8. Finally, use these values of the WTD to create risk maps of water levels that 

could be exceeded at the selected date with 5 and 95% probability

7.3  results

7.3.1  time SerieS modeling

Due to spatially varying hydrological conditions, a wide range of calibration results 
was found for the 37 observed wells. Table 7.1 summarizes the results of the time 
series modeling.

The percentage of variance indicated a good fit of the PIRFICT model to the 
data. Low percentages might be caused by errors in the data or lack of data, or pos-
sibly because other inputs that affect the groundwater dynamics are not incorporated 
into the model (Von Asmuth et al., 2002). The parameters of the PIRFICT model 
are summarized in Table 7.2. Some problems with the calibration were diagnosed by 
checking the impulse response function for each well. After several calibrations, the 
RMSE and RMSI values were the minimum founded for each well.

The physical plausibility of the results of a TFN model can be judged, for instance, 
by checking the IR functions. It is equivalent to the cross-correlation function. We 
check if the memory of the hydrological system, indicated by the time lag where the 
IR function approximates to zero, is covered by the monitoring period (De Gruijter 
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et al., 2006). A lack of relationship between the input series and the observed water 
table depths was found for three wells. The monitoring period apparently was not 
long enough to characterize the long memories of the hydrological system in these 
sites at the Jardim river area.

Parameter A is related to the shape of the IR function. Large values of A were 
calibrated to series at sites where a large fluctuation of the water table level was 
observed. From a mathematical point of view, these sites have large pulses from 
the signal of the input in the system. Some attention should be paid to parameter E, 
the reduction factor of evapotranspiration. This value should be between 0 and 1. 
For some wells we found estimates of E that are not realistic, like negative val-
ues. One reason could be that the climate station, located around 10 km outside the 
study area, does not represent the meteorological circumstances at all well locations. 
Another reason might be in the large temporal variation of land use, which makes 
these parameters difficult to estimate.

table 7.2
summary of calibrated Parameters of the PIrFIct Model

Min 1st Q Med 3rd Q Max Mean sd

A 54.8 770.9 1250 1955 6160 1711.3 705.5

a 0.001 0.004 0.007 0.011 0.162 0.013 0.01

n 0.49 1.05 1.30 1.72 2.86 1.43 0.24

E –5.85 –0.94 0.88 1.65 2.58 0.24 0.93

α 5.92 22.03 32.24 47.69 95.50 38.60 14.73

IR 0 218 600 900 2200 656.58 570.6

LD –50.6 –13.9 –7.37 –1.39 0.0 –10.16 11.97

Note: A = drainage resistance (days); a = decay rate (1/days); n = convection time (days); 
E = reduction factor (–); α = decay or memory of the white noise process (–); IR = 
impulse response (days); LD = local drainage base (meters); Min = minimum; 
1st Q = first quartile; Med = median; 3rd Q = third quartile; Max = maximum; SD = 
standard deviation.

table 7.1
summary of the statistics of PIrFIct Model calibration

Min 1st Q Med 3rd Q Max Mean sd

R2
adj 57.68 76.16 82.91 88.04 95.45 81.85 9.21

RMSE  0.080  0.350  0.701  0.904  1.886  0.680 0.41

RMSI  0.072  0.313  0.555  0.750  1.433  0.552 0.32

Note: R2
adj = percentage of explained variance; RMSE = root mean squared 

error (meters); RMSI = root mean squared innovation (meters); Min = 
minimum; 1st Q = first quartile; Med = median; 3rd Q = third quartile; 
Max = maximum; SD = standard deviation.
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Stochastic simulation with the PIRFICT model was performed for the 34 wells, 
which remained after inspection of the results. For seven wells the simulation results 
indicated that the stationary conditions were not met. The distribution functions of 
the simulated WTD for these wells were bimodal. These wells were excluded from 
interpolation. Possibly the relatively short length of the water table time series did 
not completely cover the response time of the hydrological system. For example, the 
dry years of 2001, 2002, and 2003 might have a long-term effect on water tables 
in systems with long memories. The precipitation in these years was 24.4, 41.02, 
and 33.2% less than the annual average over the last 30 years, respectively. This 
effect acts different over the basin, due the presence of different geological systems 
(Lousada, 2005). Continuing monitoring of theWTD would enable us to clarify these 
questions (De Gruijter et al., 2006). For the remaining 27 wells, the distribution 
function of the WTD for October 1 was created from the simulated data. The WTDs 
that are expected to be exceeded with 5 and 95% probability at October 1 were used 
for spatial interpolation.

7.3.2  SpAtiAl interpolAtion

The spatial dependence of the WTDs that are exceeded with 5 and 95% probability 
at October 1 was modeled by semivariograms (Figure 7.2). The alternative to using 
ancillary information on spatial prediction was taken, once the number of estimation 
points was sensibly reduced. Including elevation as a spatial drift into the geostatisti-
cal model caused a decrease in the semivariance.

The spatial dependence at short distances is poorly estimated because of the 
small number of observation wells that are fairly uniformly spread across the area. 
The nugget parameter of the semivariogram reflects the measurement precision of 
the WTD and the short-distance spatial variation in the WTDs.

The semivariogram fitted for WTDs that are exceeded with 95% probability, 
including a trend that depends on elevation, was used on UK estimation. The result-
ing map shows WTDs that could be exceeded with 95% probability at October 1. 
The probability of having lower (deeper) values than these in the maps is just 5%. 
Figure 7.3 gives these results for October 1 of any future year and the corresponding 
kriging variance.
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FIgure 7.2 Semivariograms fitted for WTDs that are exceeded at October 1 with 95% 
(left) and 5% (right) probability, including a trend that depends on elevation.
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Figure 7.4 gives the results of mapping WTDs with a confident level of 95%, includ-
ing a trend that depends on using elevation and the corresponding kriging variances.

The UK resulted in maps with a physical meaning related to the local drainage. 
These maps were applied to quantify the risks on water management.

We compared the map of WTDs that will be exceeded with 95% probability 
with a map of estimated depth of wells as limit for water shortage. It indicated that 
no problems with deep water levels will occur at October 1, because no well can be 
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FIgure 7.3 Map of WTDs (meters) that will be exceeded with 95% probability at Oct 1 
(right) and the corresponding kriging variance (left).
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FIgure 7.4 Map of WTDs levels (meters) that will be exceeded with 5% probability at 
Oct 1 (right) and the corresponding kriging variance (left).
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dry with these levels. The same analysis was made for the map of WTDs that will 
be exceeded with 5% probability with a 0.5 m limit map for shallow water table 
depths. The risk that these occur at October 1 is negligible.

7.3.3  CroSS-vAlidAtion

The results of spatial interpolation were evaluated by cross-validation. Table 7.3 and 
Table 7.4 give the results. The SD values of the observations are much higher than 
those of predictions, indicating that the interpolation values are smooth (e.g., 4.86 
vs. 1.79 in Table 7.3 or 4.16 vs. 1.83 in Table 7.4). The errors can be explained from 

table 7.4
cross-Validation for the spatial Interpolations of Wtds 
that are exceeded with 5% Probability at oct 1

obs. Pred. Pred.–obs. Pred. sd Z–score

Min –16.04 –10.73 –7.04 3.36 –1.84

1st Q –8.42 –6.51 –3.16 3.79 –0.86

Med –5.62 –5.82 0.78 3.98 0.21

3rd Q –2.62 –4.84 2.24 4.20 0.55

Max 0.14 –1.61 10.23 4.62 2.43

Mean –5.75 –5.71 0.04 3.99 0.005

SD 4.16 1.83 4.57 0.34 1.12

Note: Pred. = predicted; Obs. = observed (meters); Z-score = (Pred.–Obs.)/
kriging variance (-); Min = minimum; 1st Q = first quartile; 3rd Q = 
third quartile; Max = maximum; SD = standard deviation.

table 7.3
cross-Validation for the spatial Interpolations of Wtds 
that are exceeded with 95% Probability at oct 1

 obs. Pred. Pred.–obs. Pred. sd Z–score

Min –21.36 –14.80 –10.25 3.99 –2.24

1st Q –11.83 –10.22 –1.99 4.54 –0.42

Med –8.80 –9.28 1.13 4.77 0.25

3rd Q –7.79 –8.18 2.67 5.04 0.59

Max –0.72 –5.91 12.35 5.55 2.44

Mean –9.37 –9.43 –0.05 4.78 –0.006

SD 4.86 1.79 5.49 0.42 1.12

Note: Pred. = predicted; Obs. = observed (meters); Z-score = (Pred.–Obs.)/
kriging variance (-); Min = minimum; 1st Q = first quartile; 3rd Q = 
third quartile; Max = maximum; SD = standard deviation.
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uncertainty about the calibrated models, a poor relationship between elevation and 
WTD, and from a poor spatial correlation structure in both kriging models.

Predictions on Table 7.3 and Table 7.4 had the mean WTD value respected and 
indicate small mean interpolation errors (-0.05 and 0.04 m, respectively). The mean 
and standard deviation of the Z-score had values close to zero and one, respectively, 
which indicates a good performance of the kriging systems.

7.4  conclusIon

Time series modeling using the PIRFICTmodel was efficient to model a wide range 
of different responses of the hydrological system presented over the basin. Policy 
makers can and should use these results to optimize water use and to regulate the 
competing claims for water resources that often occur between small farmers, big 
farmers with irrigated crops, and water withdrawal for human use. However, the 
results reflect uncertainties from different sources: uncertainties related to the data 
(observed WTD, climatic database, DEM), and uncertainty associated with time 
series modeling and with the model of spatial variation.

The quality of the map was restricted by the effects of the relatively short time 
series that did not satisfactorily characterize the long memory systems. The quality 
of the time series models depends on both sampling frequency and the length of 
the series. The quality of the model of spatial structure depends on the number and 
the configurations the of well locations. The use of DEM as ancillary information 
slightly improved the quality of the final risk maps.

For the chosen date, October 1, there is a negligible risk of water shortage and 
shallow water table depths that could affect agriculture in some way. The analysis 
should be extended to other dates and periods that are critical to water supply. The 
method presented in this study enables this extension.

Given the long memories in the hydrological system of the study area, we rec-
ommend continued monitoring of water table depths in order to obtain more reliable 
results in the future.
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