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Abstract This paper describes features of a language approach for map algebra based on
the use of algebraic expressions that satisfy a concise formalism. To be consistent with
formal approaches such as geoalgebra and image algebra, the proposed algebraic
expressions are suitable not only for the usual modeling of layers but also to describe
variable neighborhoods and zones. As a compromise between language and implementation
issues we present an implementation strategy based on the theory of automata. The result is
an efficient way of implementing map algebra that simplifies its use on environmental and
dynamic models without going too far from its well-known paradigm.

Keywords map algebra . cartographic modeling . spatial analysis . formal languages .

automata . dynamic modeling

1 Introduction

The main contribution towards an algebraic foundation for modeling operations over maps
came from the works of Tomlin and Berry at Yale University in the 1980’s (see Tomlin and
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Berry 1979; Tomlin 1983, [1]), compiled in the book “Geographic Information Systems and
Cartographic Modeling” [17]. They stated the foundations for map algebra, a formal
algebraic approach to accommodate a wide range of modeling situations concerning data
associated to locations of a spatial domain. Map algebra data model accommodates map
layers of quantitative types such as “ratio”, “ordinal”, “interval”, “scalar” and also a
“nominal” qualitative type. Running a cartographic model within Tomlin’s map algebra is a
matter of interpreting a sequence of textual sentences of a language named MAP, for “Map
Analysis Package”. Each sentence in this language describes the assignment to a named
variable representing a map layer, of the result of evaluating operations invoked through
expressions conformed to well defined syntax and grammar rules. A sequence of
intermediate map layers is usually generated during runtime, some of which are
incorporated to the model while some others may be discarded.

Lots of map algebra implementations came up since Tomlin’s work, such as the GRID
module of ArcInfo, now integrated into the rich language of ArcView Spatial Analyst
framework, from Environment Systems Research Institute (ESRI); IDRISI, developed at
Clark University; ILWIS developed by the International Institute for Aerospace survey and
marketed by PCI Geomatic; the R-Mapcalc, from GRASS-Community, and also many
other well known GIS software packages. Earlier map algebra implementations were
identified to the concept of “raster” GIS, although today’s products also include extensive
vector capabilities and strong integration with other software environments such as database
management, mobile GIS and simulation.

As new techniques, computational resources and data, become available, the complexity
of models also experiences a growing tendency. Coupling GIS systems and dynamic
modeling has been the object of intensive research in which map algebra plays a special
role because of its spatial representation and descriptive characteristics, particularly
considering modeling based on cellular automata applications, frequently based on raster
structures (see [4], [5], [20]). However, problems arise regarding the interpretative approach
commonly adopted in the implementation of map algebra functionality, and the excess of
intermediate data representation generated at model runtime (see Dragosits 1996).
Optimization strategies to deal with these problems, such as those suggested in [7], and
the use of efficient algorithms are important issues in accommodating the problem of
coupling GIS and dynamic models. PCRaster [19] is a good example of a modeling tool
that integrates map algebra with a wide class of physical environment modeling, in which
optimization techniques play an important role. Also a classical map algebra extension to
deal with cubic 3D data in which one dimension is time was proposed in [10].

There are lots of commonalities between GIS and image processing issues. A lot of
mathematics has been explored in developing algorithms, such as filtering, segmentation
and classification. Even an algebraic formalism has already been proposed, the “image
algebra” [13], joining image functionality into a common algebraic framework. Besides
images, two new data types are incorporated to image algebra: the “template” and the
“generalized template” to model the interaction between image cells and specific sets of
other related cells that exert influence on them. The concept of image is then generalized by
allowing image cells to range over templates instead of just whole numbers representing the
“gray” level associated to it. Image algebra has made its contribution in a number of
advances in image processing and computer vision, many resulting from the research
agenda of the Image Algebra Project of the Center for Computer Vision and Visualization at
Florida University.

In Couclelis [5], a model is conceptualized as an abstract and partial representation of
some aspects of the world that can help deriving analysis, definitions and possibilities based
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on acquirable data. Environmental models refer to any characteristic of the Earth‘s
environment in a broad sense such as: atmospheric, hydrological, biological and ecological
systems, natural hazards, and many others typical modeling themes. The lack of a
consistent framework for data modeling, process modeling and data manipulation, forces
dynamic modelers to switch between GIS and other tools like simulation systems and
general purpose language environments, thus leading to higher costs and loss of
consistence. In order to fulfill this lack, in ([14], [15]) an algebraic structure called
geoalgebra was introduced to extend map algebra into a framework analogous to image
algebra, consisting of “maps”, “relational maps” and “meta-relational maps”, that can also
model the dynamics of processes. Geoalgebra formalizes a view of the geographic space
that incorporates to the classical absolute view adopted by the majority of GIS tools, a
proximal view in which each georeferenced location also represents the relative space of
which it is a part [4]. This view of space is intended to support the static and dynamic
aspects of modeling in a common framework.

Some ideas from image algebra and geoalgebra have been used in [11], [12] to specify
map algebra functionality to model spatial simulations and neighborhood analysis when
dealing with heterogeneous physical processes. The resulting framework named MapScript
is based on grids and template as data types. The way the author defines the grid type also
include graph networking of cells in a rectangular array of cells so that besides algebraic,
also interesting topological properties can be easily described. However the need to actually
represent templates as a data structure in the model may impose some limitations regarding
the variability of the shape and weights in a spatial-temporal modeling context. In this paper
we concentrate on the spatial context to demonstrate a simple way to add variability at the
basis of the template, or relational map concepts, in a way that avoids the need for
physically represent it, thus resulting in a map algebra in which essentially local operations
are the basis to describe and implement the so called zonal and neighborhoods operations.
Explicit time considerations are left for future works.

Though focused in the formal aspects of these algebraic structuring tendencies, our
research’s main contribution concerns the formal aspects of an expression language to
describe map algebra. The usual way to write arithmetic, relational and Boolean
expressions in mathematics corresponds to specific expressions involving symbols, names
and operations that satisfy conventional (and consensual) grammar rules to govern their
understanding and evaluation. In a formal language theory, these algebraic expression’s
classes correspond to sentences of a “context free” language (CFL) [9], so that interpreting
and parsing strategies to model their understanding and evaluation may follow automata
theory principles. A revision of map algebra principles, based on this formal compromise
between language and implementation thus suggests that it can be more naturally extended
to deal with complex spatial and dynamic modeling issues while also avoiding traditional
overheads associated with interpretative solutions and the excessive intermediate data
generation steps ([7]; Dragosits 1996).

Results from this research are being implemented as part of the Spring GIS project of the
Image Processing Division at the National Institute for Spatial Research in Brazil, as an
enhancement for the language LEGAL available as a module in the Spring GIS
environment (http://www.dpi.inpe.br/spring). LEGAL implements map algebra functional-
ity in a framework that accommodates the map concept into categories such as Thematic,
Surface, Image and Objects. An overview of Spring’s data model and the language LEGAL
can be found in [2] and [3]. For most examples in this text only partial expressions or sub-
expressions are relevant; only those expressions closed by a semicolon may be considered
complete sentences in the proposed language syntax.
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This paper is structured as follows: the correspondence between language expressions
and operations is discussed in Section 2 at the specification and implementation levels, just
to roughly introduce the reader to some very basic and specific aspects of the theories of
formal languages and automata. In Section 3 we discuss the extension of basic algebraic
structure to geo-spatial domains; the concept of region and region coverage is introduced in
Section 4 and developed in Section 5 and Section 6 as the basic concept behind non-local
map algebra operations. In Section 7 the concept of region is enhanced so that differences
among locations regarding their influence in operations can be modeled. Section 8 presents
a discussion on the expressiveness of the proposed language in describing cellular automata
applications such as the Life game. Also some basic language requirements are discussed
for describing environment models in a proximal and absolute spatial perspective, such as
those involved in landscape ecology issues. As concluding remarks, some performance
issues that may benefit from this approach are pointed out regarding its use within
distributed and parallel architectures.

2 Language and automata

A language consists of a set of expressions that convey some meaningful information. It
can be so extensive as the natural languages such as Portuguese and English, or as
restrictive as the language accepted by a coffee machine. The language to express
arithmetic and Boolean operations is interesting because of its simplicity and consensus.
Grammar rules governing the building of algebraic expressions can be specified by means
of a recursive approach in which each language element definition depends on a series of
other elements’ definitions. For instance the following specification rules may define what,
in general, an arithmetic expression can be.

<expression> :: <variable> | (1)
<constant> | (2)

( <expression> ) | (3)
<expression><op><expression>| (4)

The concept of expression can thus be equated to the concepts of variable, constant and
function. A variable will refer to an element of the application domain; a constant will
explicitly refer to a specific number, and operators oph ið Þ are used to combine expressions
into new ones. Grammatical rules are applied in a stepwise way toward building (or
understanding) of acceptable sentences of the language they are supposed to specify. To
roughly illustrate consider two variables named “a” and “b”, by rule-1 (rules are separated
by the symbol ‘|’) these are expressions per se. Next, by using rule-4 with the operators ‘−’
and ‘+’, one can combine them to build new expressions:

a - b
a + b

Now using rule-3 twice, followed by rule-4 with the operator ‘/’, lead to the final
expression:

(a – b)/(a + b)

The formalism behind compiler implementation for computer languages such as ‘C’,
‘Pascal’ etc. was based on automata and formal languages’ theories. Formal languages can be
categorized into classes associated to corresponding classes of conceptual machines that can
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model their sentences understanding. For instance the class of context-free languages (CFL),
in which the language of algebraic expressions is included, can be modeled by means of a
formal machine approach commonly referred as “pushdown automata” (see [9], Chapter 4). In
this approach, a stack structure is used to communicate arguments and operators.

To illustrate the pushdown approach, consider again the example expression given
before. After firing any grammar rule in the parsing (syntactical analysis) process, an
adequate instruction call is recorded, so that in the end a sequence of such calls is
generated. The resulting sequence of instructions constitutes the code that implements the
control of the operation evaluation flow. Essentially this code can be described as
follows:

push(a) push(b) sub push(a) push(b) add divide

Each primitive instruction above consists of a function call whose execution will
cause some values to be popped up from a stack structure and some action to be done
that result in a new value to be pushed back into the stack for further instruction usage.
An expression evaluation is concluded whenever the stack gets empty. The columns of
the table showed in Fig. 1 illustrate the stack content along the sequence of states achieved
at the code runtime.

The stack is initially empty, then the contents of variables “a” and “b” are pushed into
the stack and the instruction “sub” is called which pops up its arguments from the stack,
performs the subtraction and pushes the result back into the stack. Next the variable “a” and
“b” are pushed in the stack again so that the instruction “add” pops them up as arguments
from the stack, performs addition then pushes the result back into the stack. Finally both
arguments feed the “divide” instruction that pops them out of the stack and a final result is
obtained.

Tomlin’s original specification for map algebra suggests a functional implementation
approach in which function composition is used to model operations and communicate
partial results until the final result is returned, in this context one should rather rewrite our
example expression as follows:

divide(subtract(a, b),add(a, b))

If “a” and “b” stands for maps one can represent them by two-dimensional raster
structures so that all intermediate data generated will probably be also represented this
way. Then, for more complex expressions more sophisticated allocation strategies at
the model runtime would be demanded thus imposing limitations to the size of
expressions. For instance, two intermediate representations are needed to accommodate
the results of the addition and subtraction operations in the expression above before
division can take place. On the other hand, in the automata approach lots of allocation
problems can be avoided because only “one-dimensional” operator versions will be
active throughout the whole evaluation process. One may even forget the usual
notions of map, image and grid as the basic representations of data over a study area,
and focus on the study area as a set of locations each characterized by an adequate
expression, regardless of the local, zonal or neighborhood nature of the operation it
describes.

     b   
  b  a a a+b 
 a a a-b a-b a-b a-b (a-b)/(a+b)  

Fig. 1 Stack states of a
pushdown automaton for simple
arithmetic
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3 Extending algebra to maps

Exploring algebraic formalism over maps allows the modeling of phenomena as operational
descriptions that translate the model semantics in a consistent and consensual way.
Concepts manipulated in a model must be translated into algebraic expressions that may
involve operators, variables, constants and other symbols. For instance, the concept of
“vegetation index” defined as the normalized local difference of radiometric values from
image data representing red and near-infrared spectral frequency measures from a specific
sensor device, can be described as follows:

(nir – red)/(nir + red)

Also expressions describing comparison operations based on relations such as order and
equality can be used to induce local operations. For example, a set of locations with ‘forest’
coverage, a set of locations with less than 30% slope and a set of locations with vegetation
indexes higher than 0.5 can be described by the following three expressions:

use == ‘forest’
slope < 30
(nir – red)/(nir + red) > 0.5

Results from evaluating comparisons can be visualized as maps having binary sets such
as {‘true’, ‘false’} or {‘0’, ‘1’} as attribute domains. Hence Boolean algebra can be
naturally extended to map domains as well, by allowing operations combining comparisons
through operators such as ‘and’, ‘or’ and ‘not’, as illustrated below:

use == ‘forest’ AND (ndvi > 0.5 OR slope >= 30)

Finally, arithmetic and Boolean expressions can be assigned to variables through
assignment statements indicated by the equal (=) sign, as illustrated below:

ndvi = (nir – red)/(nir + red);
bestplace = (use == ‘forest’) AND (ndvi > 0.5 or slope >= 30);

Differently from classical map algebra languages, an assignment statement to a named
variable will behave as a synonym for its defining expression, to be evaluated whenever
needed in the modeling process. An assigned variable will be made into a new map only if
a physical representation is already associated to it. In the case of Boolean typed
evaluations we don’t ever need to physically represent the results, this class of operations is
intended just to select the sets of locations involved in further operations, either in a local,
zonal or focal context. The term “Boolean” will be used hereafter in this text to refer to both
comparison and Boolean, expressions or operations.

The discussion up-to this point concerned essentially the class of local operations of
Tomlin’s map algebra taxonomy, other classes such as zonal and neighborhood operations
can model the influence of sets of locations over single locations. Evaluating operations
within these non-local contexts would involve three basic steps:

1. sets of influencing locations are selected;
2. sets of values at selected locations are recorded from maps;
3. a value is summarized for each recorded set.

Figures 2, 3 and 4 illustrate these steps for a simplified study area represented by a 4 × 4
array of cells in Fig. 2a. Initially there are no maps or any other sort of spatial data
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representation involved, only spatial locations to which basic cartographic premises were
assumed. Figure 3 illustrates the selection of values associated to locations by means of
maps, or expressions involving maps. In Fig. 4, new information is produced for each
location by summarizing the values previously selected by zones or neighborhoods using
simple majority criterion.

The next three sections will discuss these steps with more details. Actually the second
step concerning the recording of values to be summarized will be underestimated at the first
glance, in Section 7 this concept will be enhanced to accommodate situations in which the
influence exerted by specific locations of a common region may vary.

4 Selecting regions

In the cartographic modeling paradigm, a map often represents the partitioning of the study
area into a set of disjoint regions whose union covers the whole study area. Each element in
such coverage is named a “zone”, and it is intended to aggregate locations with common
properties. Concepts such as, “states in a country”, “parcels”, “thematic classes”, and “cell
spaces” among others can be modeled as zones. Other maps such as images and numerical
grids usually represent continuous distributions of quantitative or qualitative values over the
study area. In this case map analysis is usually based on a coverage type consisting of sets
of regions that may overlap such as “neighborhoods”, “masks” and “structuring elements”,
to model the spatial variability of the represented data.

(a)- the study area 

(b)- a set of zones (c)- a family of neighborhoods 

Fig. 2 Zonal and a
neighborhoods’ coverage of a
given study area

(a)- a map 
 

 
 
 
 
(a)- selection by zone (c)- selection by neighborhoods 

Fig. 3 Selection of values at
zones and neighborhoods from
map data
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Early works such as Berry [1] and Chan and White [6] were based on the “map layer” as a
primary data structure to represent maps, along with a “topographic layer” conceived to
model continuous surfaces. Operations were then classified around these basic two-
dimensional arrays of data as: “local operations”, “neighborhood operations” and “region
operations”. The term “region” was replaced latter on by the term “zone” to reinforce the non-
overlapping condition usually imposed on regions represented by map layers as a basic
cartographic premise. The concept of a region was then focused on problems concerning the
extraction of quantitative properties such as area and topological properties such as Euler
numbers and clumps. We choose to recycle the term “region” just as a synonym to “set of
locations”. If a set of regions constitutes a partitioning for a given study area, then each of its
component may be called a “zone”, while “neighborhood” is just another instance of the
region concept in which sets of locations are defined relatively to specific reference locations.

As pointed out in the previous section, evaluating a local Boolean operation concerns the
selection of a set of locations, so that we can identify regions to the pertinence conditions
imposed to its locations. We actually treat the terms—“region” and “Boolean”—as
synonym in this text.

Named variables can be assigned to such “region expressions”, so that regions and lists
of regions can be easily incorporated to the model as illustrated by variables ‘bestplace” and
“goodplaces” shown below:

bestplace = use == ‘forest’ AND ndvi > 0.5 AND slope <= 30;
goodplaces = bestplace,

use == ‘crop’ AND district == ‘d1’,
use == ‘urban’ AND ndvi > 0.5 ;

Assignment statements such as above constitutes complete sentences of the language so
that they must end with the symbol ‘;’ (semicolon). Some syntax shortcuts may be also
available in the language to avoid long lists of repetitive terms when writing region
descriptions, as for example:

district == “d1”, “d2”, “d3”
district.All
use.*

Besides attribute domain relations such as order and equality, also proximity relations
defined on the spatial domain can be used as criteria to specify regions. For instance,
measures of distance and direction relative to a given focus location can be used to
characterize its neighborhood region provided that adequately defined functions for
distance and direction evaluation are available in the language as illustrated by the
following two variable definitions:

near = distance()<3 ;
upright = distance()<3 AND direction()<90;

Variable “near” describes a family of circular vicinities of radius 3 units around each
location in the study area, while for variable “upright” each region is further restricted to a

(a)-summarizing by zone (b)- summarizing by neighborhoods

Fig. 4 Summarizing values for
each location based on simple
statistics criteria, such as majori-
ty, to both zones and neighbor-
hoods previously selected values
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sector of 90° from a focus location. The null parameter in the function calls above indicates
the focus location as the only reference location to be considered, more parameters may
indicate other situations possibly involving fixed locations. Other proximity relations such
as adjacency and connectedness are commonly used to describe neighborhood regions in
raster domains, as for example the classical von Neumann and Moore neighborhood
templates illustrated in Fig. 5.

Despite any proximity relation, neighbor locations can be explicitly involved in
expressions by indicating their displacement in terms of shifted lines (above or below)
and columns (to left or to right) from a specified focus location. To illustrate consider the
expression bellow:

( img[-1,-1] + img[-1, 0] + img[-1, 1]
+img[ 0,-1] + img[ 0, 0] + img[ 0, 1]
+img[ 1,-1] + img[ 1, 0] + img[ 1, 1] ) / 9

This expression describes an image filtering operation used to characterize each
location in the study area by averaging data associated to neighboring locations
identified by pairs of integer coordinates. The focus location is associated to pair [0, 0].
It is thus suggestive to adopt this shifting mechanism in the specification of
neighborhood regions. For instance, the whole family of regions involved in the
filtering operation above can be specified by the following set of relative coordinate
pairs:

[-1,-1],[-1,0],[-1,1],
[ 0,-1],[ 0,0],[ 0,1],
[ 1,-1],[ 1,0],[ 1,1] ;

Each neighborhood of the family so defined corresponds to a function from the study
area, that associates ‘false’ to every location out of those belonging to its specified vicinity,
and ‘true’ otherwise. In order to put this functional aspect more explicit, each pair should be
replaced by a triple in which the third coordinate indicates the selection state for each
location, as in the following improved version:

[-1,-1,true],[-1,0,true],[-1,1,true],
[ 0,-1,true],[ 0,0,true],[ 0,1,true],
[ 1,-1,true],[ 1,0,true],[ 1,1,true]

By switching some values to ‘false’ other configurations can be obtained such as the
following new version for von Neumann’ neighborhood:

[-1,-1,false],[-1,0,true],[-1,1,false],
[ 0,-1,true ],[ 0,0,true],[ 0,1,true ],
[ 1,-1,false],[ 1,0,true],[ 1,1,false]

Only ‘true’-valued relative locations must be present in specifications, all remaining
locations are implicitly valued ‘false’. As the constant values ‘true’ and ‘false’ are just
primitive Boolean conditions, then it is also suggestive to allow any Boolean expression to

Fig. 5 Standard von Neumann and Moore neighborhoods
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replace them in specifications, so that arbitrary conditions can be imposed at specific relative
location as in the expression below:

[-1,-1, use==‘forest’],[-1, 0, slope<30],[-1, 1, use==‘forest’],
[ 0,-1, slope<30],[ 0, 0, use==‘forest’],[ 0, 1, slope<30],
[ 0,-1, use==‘forest’],[ 0, 0, slope<30],[ 0, 1, use==‘forest’]

Variables can also be assigned to expressions describing neighborhoods, as illustrated
below:

N = [-1,-1],[-1,0],[-1,1],
[ 0,-1],[ 0,0],[ 0,1],
[ 1,-1],[ 1,0],[ 1,1] ;

Boolean algebra is also extensible to this class of neighborhood specifications so that
one can easily build new specifications from existing ones, as illustrated below:

N AND bestplace

The above expression could be also specified as a list of pertinence conditions to be
satisfied at each relative location, as follows:

[0,-1, bestplace],[0, 0, bestplace],[0, 1, bestplace],
[0,-1, bestplace],[0, 0, bestplace],[0, 1, bestplace],
[0,-1, bestplace],[0, 0, bestplace],[0, 1, bestplace]

The locations’ selecting strategy discussed in this section centered in the region concept
thus offers a flexible way to express zones and neighborhoods when modeling spatial
situations either in a relative or absolute sense. Also the ability to specify different
conditions at neighboring locations adds spatial variability to neighborhoods’ shape
modeling in that each location’s vicinity may shape a particular union of ‘true’-valued cells.

5 Interacting regions and maps

The interactions involving regions and maps can be modeled by means of a local binary
operation in which at least one argument is of Boolean type, while the other, and so the
result, may assume any valid data type of quantitative or qualitative nature, as defined by
the following table:

* value null
true value null

false null null

For spatial data types such as images this operator can be extended from number
multiplication, assuming the integers ‘1’ and ‘0’ play the role of Booleans ‘true’ and ‘false’.
The result of locally applying this operator to image data can be visualized as a new image
for which some selected locations keep their original values, while the others become ‘0’-
valued. To illustrate consider the expression:

(ndvi > 0.5) * img

Its evaluation would select image values at locations with vegetation index greater
than ‘0.5’, while remaining locations become ‘0’-valued. The defined “interacting”
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operator has properties very similar to those for ordinary number multiplication, so
that we can adopt the same symbol ‘*’ to represent both operators with no syntactic
or semantic ambiguity. The notion of a “null” value for image data can be
represented by the integer value ‘0’, but this is not always the case for other data
types. For instance, the null value in a slopes’ map can’t be represented by the
integer ‘0’ because this is a meaningful slope value, besides, it would be also
desirable to have the operator working for qualitative data as illustrated by the
following expressions:

(ndvi > 0.5) * slope
(ndvi > 0.5) * soils

For neighborhood regions specifications the interaction with maps is expressed in
the same way used for regions defined by Boolean conditions, however in this case
the interaction of each element of a family of neighborhoods with a map is implied.
To illustrate consider the following interacting expressions:

(distance() < 3) * use
N * img

Evaluating the first expression above would result in recording of values from a
map represented by variable “use”, at locations belonging to the family of circular
vicinities of radius 3 units from each location in the study area. In a similar way, the
second expression above would record values from data represented by variable
“img”, at locations specified based on the specification given by the variable “N”.
Assuming a ‘mxn’ array representation for the maps involved in expressions, their
evaluations would imply in ‘m times n’ groups of recorded values. In practice, at least
for non-parallel computer architectures, these groups will never be represented
simultaneously.

An “interacting” expression” can also be assigned to a variable to represent it in other
expressions, as illustrated below:

good_slope = (ndvi > 0.5) * slope ;
use_around = distance() < 3 * use ;

As for any Boolean operation, there are no physical spatial data structures intended to
represent the results from evaluating interactions, only pieces of code, resulting from parsing the
corresponding textual expression are associated to the variable to be used at runtime (see
Section 2).

6 Summarizing values by regions

The last step of a non-local operation consists of summarizing values to characterize each
location of the study area in terms of the values recorded from locations inside their
influence regions. For instance, consider the interacting expression below:

(use == ‘forest’ AND slope >10) * heights;

Its evaluation can model the interaction of local data represented in maps
associated to variables “use”, “slope” and “heights”. This interaction can then be
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used as argument to summarizing functions such as “average”, as illustrated by the
typical zonal operation described below.

Average ((use == ‘forest’ AND slope >10) * heights);

As neighborhood regions specifications can be combined with any other regions
specifications through Boolean operations, the expression above can move into the
following neighborhoods operation:

Average (N AND landscape == ‘forest’ AND slope >10) * heights)

Typical summarizing functions are simple statistics such as “average”, “summation”,
“maximum” and “majority”. These functions just take the samples consisting of values
resulting from the interaction of regions and data as arguments so that no prefixing such as
“zonal” or “focal” is needed in the language repertoire. Of course one may explore the
ability of the language to assign variables to expressions as discussed in previous sections,
so that one can write customized expressions such as:

Maximum (good_slope)
Average (good_slope * N)
Majority(use_around)

As usual, these “summarizing” expressions can also be assigned to variables that may, or
may not, be physically represented in the model, as illustrated below.

main_use = Majority(use_around);

At the implementation level when non-local operations are involved the parsing of
summarizing expression will trigger the execution of a particular piece of code intended to
derive the interaction between variables and regions. The following version of our example
expression of Section 2 may illustrate the situation:

(a – Average(b * N))/(a + Average(b * N))

In Section 2 the code instruction “push(b)” was intended to feed the second
arguments for subtraction and addition, in this new version a summarizing function
must do the job. But prior, a local interaction operation must be executed restricted to
the set of relative locations specified by variable “N”. The resulting code new version
would then look like:

push(a) push(b) push(N) sel average sub push(a) push(b) push(N)
sel average add divide

The “sel” instruction above indicates the interaction operation starting point. Lets
assume the following neighborhood specification:

N = [-1,-1, use==‘forest’],[-1, 0, slope<30],[-1,1, use==‘forest’],
[ 0,-1, slope<30],[ 0, 0, use==‘forest’],[ 0,1, slope<30],
[ 0,-1, use==‘forest’],[ 0, 0, slope<30],[ 0,1, use==‘forest’];

Then, depending on the relative location to be characterized the following pieces of code
that implement the “equality” and “less than” local comparison operations taking variables
“use” and “slope”, and constants ‘forest’ and ‘30’ as arguments, must be executed:

push(use) push(‘forest’) eq
push(slope) push(30) lt
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If distance or direction conditions are to be considered, then evaluations would involve
special scanning techniques besides the straightforward line oriented ordering typically
used to implement local operations. Other approaches such as spiral and Morton sequences
(Sammet 19xx) illustrated in Fig. 6 may be useful.

The approach to map algebra focused in the location and the region concept just states
that each location of the study area is always associated to a set that may include one or
more locations exerting influence on it. This leads to a modeling paradigm with a minimal
set of concepts and a concise set of properties.

7 Enhancing the region concept

In our previous discussion on regions, each location in the study area was affected with
equal weights by its influencing locations. However there are situations for which different
importance degrees are assigned to locations, in particular regarding neighborhood regions.
To illustrate consider the gradient (or Sobel) filtering operation used in image processing
for edge detection, expressed as:

Sqrt ( ((im[ 1,-1]+2*im[ 1, 0]+im[ 1, 1])
-(im[-1,-1]+2*im[-1, 0]+im[-1, 1]))^2 +
((im[-1, 1]+2*im[ 0, 1]+im[ 1, 1])
-(im[-1,-1]+2*im[ 0,-1]+im[ 1,-1]))^2 );

Factors of 2 above indicate double weighing for the values selected by pairs [1, 0],
[−1, 0], [0, 1] and [0, −1]. This “weighing” concept is intended to model the extent to
which each recorded value must be accounted for in computations. For instance, if the
value ‘0’ is interpreted as a “weighting” factor to which specific local values must be
considered then it can naturally replace the value ‘false’ in our interacting operator
definition of Section 4. Moreover the equivalence among expressions such as “true *
number”, “number * true”, or simply “number”, resulting from applying the
interacting operator defined in Section 5 to real numbers, also suggests extending our
neighborhood’s specifications by allowing any real number to appear as a local weight in
the specifications. By mapping the value ‘false’ into the real number ‘0’ and the value
‘true’ into any other real number, we not only maintain the Boolean structuring
previously discussed, but also add some arithmetic to this mixed Boolean-quantitative
domain. Within this new “weighted” region perspective, the family of neighborhoods
involved on the Sobel filtering operation could be stated in terms of the following
specifications:

up = [ 1,-1, 1],[ 1, 0, 2],[ 1, 1, 1] ;
down = [-1,-1, 1],[-1, 0, 2],[-1, 1, 1] ;
left = [-1,-1, 1],[ 0,-1, 2],[ 1,-1, 1] ;

right = [-1, 1, 1],[ 0, 1, 2],[ 1, 1, 1] ;

        9   10  11 12
        8     1     2 13 
        7     0     3   14
        6     5     4   15

16

  0 1 4  5   16
  2     3     6     7
  8     9   12     13  
10 11 14 15

Fig. 6 Spiral and Morton
scanning order for neighborhoods
selection
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It follows that all selection and weighing involved in the Sobel filtering operation can
be described by the following expressions:

im * down – im * up
im * right – im * left

Using algebraic properties such as the distributiveness regarding subtractions, one can
rewrite the expressions above as follows:

im * (down – up)
im * (right – left)

Next a summarizing step follows as shown below:

Sum (im * (down – up))
Sum (im * (right – left))

To conclude, the complete Sobel filtering expression can then be stated and assigned to
a named variable as follows:

Sobel = sqrt((Sum(img*(down–up)))^2+(Sum(img*(right–left)))^2);

The example discussed in this section also illustrated meaningful applications of
arithmetic additive operations extended to this new enhanced region concept. However
multiplicative operations must be considered more carefully to avoid confusion with the
interacting operation itself. Actually there are more concerns regarding operations in such
a “Boolean-quantitative” domain still left for further investigations.

8 Regions and cellular automata

In [4] it is clearly suggested that the rules of cellular automata might be considered as a map
algebra, and that some aspects from the theories of formal languages and automata should be
explored into the cellular automata context. This is based on a spatial modeling premise in
which the geo-referenced location is the central concept so that it is the link between absolute
and relative (proximal) spaces. The approach adopted in this research considers CA in a formal
language context in which map algebra is actually used to express local conditions to be applied
on neighbor locations, in the same way they are used to characterize locations in an absolute
spatial context. In both cases the same automata approach is used at the implementation level so
that it suggests an easy transition between static and dynamic modeling.

The Life game, invented by mathematician John Conway at Princeton University in
1970 is possibly the simplest instance of a cellular automata model based on rules carefully
chosen, some of which may cause cells in a cellular space to “die”, while others cause them
to “live”. Life balances lots of tendencies, making it hard to tell whether a pattern in the
cellular space will die out completely, form a stable population, or grow forever [8]. The
rules are simple:

• A live cell (1-valued) with two or three live neighbors will
survive (keep its value).

• An empty (0-valued) cell with three live neighbors will come
alive.

• Otherwise the cell will not survive.
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The evaluation of the above rules involves interacting a map “m” representing the initial
configuration of the CA’s cell space, with a family of regions “R”. This results in a family
of sets “m × R” intended to record the values associated to each location inside any region
specified by “R”. Figure 7 illustrates the situation assuming the following specification for
“R”:

R = [-1,-1],[-1, 0],[-1, 1],
 [ 0,-1],        [ 0, 1],
 [ 1,-1],[ 1, 0],[ 1, 1];

Then we apply a summarizing or, using geoalgebra jargon (see [16]), an “influence”
function “I”, to “m × R” that simply counts the elements in the previously recorded
samples. This can be visualized as a new map “I(m × R)” associating each location to the
number of elements in its associated sample. Finally a new version for map “m” is
generated in which each location is switched from ‘1’ to ‘0’ or vice-versa depending on
conditions involving the number of live neighbors around it. Three maps involved are
illustrated by Fig. 8.

Describing Life in our proposed language can be done, with the help of some iterating
and control statements, as follows:

{
m = Retrieve(name=“InitialState”);
R = [-1,-1],[-1, 0],[-1, 1],

[ 0,-1], [ 0, 1],
[ 1,-1],[ 1, 0],[ 1, 1];

t = 0;
end = 12;
While (t<end)
{
m =((m==1) AND (2<= I(m * R)<=3)) OR

((m==0) AND (I(m * R)==3)) ? 1 otherwise 0;
t = t+1;
}
}

m 

  R     m R 

=

1   1   1   1 
1   0   1   0 
1   1   0   0 
1   0   0   0 

  1   1   1      1   1   1     1   1   1     1   1   1  
  1         1      1        1     1        1     1        1 
  1   1   1      1   1   1     1   1   1     1   1   1  
 

  1   1   1      1   1   1     1   1   1     1   1   1 
  1         1      1        1     1        1     1        1  
  1   1   1      1   1   1     1   1   1     1   1   1  
 
  1   1   1      1   1   1     1   1   1     1   1   1 
  1         1      1        1     1        1     1        1 
  1   1   1      1   1   1     1   1   1     1   1   1   
   
  1   1   1      1   1   1     1   1   1      1   1   1 
  1         1      1        1     1        1     1        1 
  1   1   1      1   1   1     1   1   1     1   1   1 

                   
            1     1        1     1        1     1       
      1    0     1   0   1     0   1   0     1   0   
 

      1    1     1   1   1     1   1   1     1   1   
            0     1        1     0        0     1        
      1    1     1   1   0     1   0   0     0   0    
 
      1    0     1   0   1     0   1   0     1   0      
            1     1        0     1        0     0        
      1    0     1   0   0     0   0   0     0   0      
 
      1    1     1   1   0     1   0   0     0   0    
            0     1        0     0        0     0       
` 

Fig. 7 Interaction between a map and a family of regions as the base for modeling state change rules for the
game Life
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The expression assigned to variable “m” in the above program describes the conditional
assignment of the values ‘0’ or ‘1’, depending on a Boolean condition given by the first part
of the expression, before the ‘?’ sign. The other parts consist of the two constant
expressions separated by the “otherwise” term.

Cellular automata are among the best ways to design and model the full complexity of
natural events and processes [18]. In fact we are living now a change of ecological
paradigm, from a stable and closed system, without human interference perspective to a
unstable, complex and open system where man plays an important role. This new
ecological paradigm includes the landscape ecology perspective, in which species answer in
different ways to the common landscape properties and across time and scale variations.

The mobility of a species also responds to complex interacting factors such as
population’s density, resource availability, edge effects, life phase, corridors’ existence,
matrix dispersal capability, around habitat amount (at several scales), phonological phases
of vegetation, predator presence and many others. As the number of variables grows, so
does the need for comprehensive means to express the interaction among these variables at
the language level. Mobility may change as a function of individual positioning regarding
forest patches so that different dispersal abilities for interior and edge positioning must be
considered. This can be evaluated in terms of measures and statistics summarized for the
individual’s dispersal area. For instance, a simple set of rules to characterize an individual
position adequacy could be stated as follows:

position =
‘interior’ :

Majority (LC * (distance() <= dispersal))
==(‘MF’||‘YF’)AND
Minority(LC * (distance() <= dispersal))
== (‘MF’||‘YF’) ,

‘edge’ :
Majority (LC * (distance()<= dispersal)) ,

‘exterior’ :
otherwise ;

At any time two viewpoints must be of concern, one based on cellular regions at
different resolutions and the other based on (proximal) regions focused at each individual
location. The proximal space (Couclelis et al. 1997) for each individual (represented as a
cell at the lowest resolution), may consist of the circular region with radius equal to its
dispersal factor, as illustrated in Fig. 9.

Both geoalgebra and the image algebra frameworks lack in providing a way to actually
describe their templates and influence sets in a systematic manner, thus strongly relying on
classical assumptions on the shape and extent of neighborhoods and zones. Our map
algebra language focused on the regions’ concept adds more structuring to these contexts
by allowing some spatial variability for neighborhood regions given in terms of Boolean
expressions that can be evaluated whenever each single neighbor influence needs to be
quantified (or qualified).

 
 

old m  I(m*R) new m

2   4   3   2 
4   7   3   3 
3   4   2   1 
2   3   1   0 

1   0   1   1 
0   0   1   1 
1   0   0   0 

1   1   0   0 

1   1   1   1 
1   0   1   0 
1   1   0   0 
1   0   0   0( 

Fig. 8 Sequence of operations
to evaluating state changes based
on rules of the game Life
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9 Concluding remarks

In this work map algebra has been generalized to deal not only with the description of
layers, but also with the description of regions and thus to the description of neighborhoods
and zones. Furthermore the interaction among these concepts were developed in a natural
and consensual way that is consistent with principles of geoalgebra [14] and image algebra
[13] theories. We also showed an implementation strategy for basic concepts in these formal
approaches based essentially on local operations of classical map algebra to produce layers
and other local (Boolean) operations intended to produce regions.

There are multiple intermediate situations between the concepts of zones and
neighborhoods that can be modeled following the approach discussed in this work. For
instance, one could define neighborhoods in terms of sums of distances to specific
locations, or use visibility criteria to specify objects in the landscape, and so on. Behind any
regions’ specification there should be always a mix of relations to be considered based on
the spatial and the attribute domains represented, so that other relational issues, such as
“equivalence relations”, as well as topology issues, particularly regarding “compact”
topological spaces must be addressed in the future.

Expressions that describe interacting operations follow the rules of a context-free
grammar similar to those for arithmetic and Boolean expressions, so that their
interpretation and parsing may be integrated in the same pushdown automata strategy
[9] already adopted for the other classes of algebraic expressions in this map algebra
approach. By adopting a compromise between languages and automata theories; syntax,
semantic, understanding and implementation issues can be formally tied together so that all
mathematical flexibility for writing expressions regardless of their complexity may be
explored in modeling, thus avoiding some drawbacks of the classical map algebra
paradigm. Between the parsing and running phases of a program, optimization issues must
be addressed in future works so that performance can meet dynamic model requirements.
Evaluating language requirements for environment modeling disciplines such as landscape
ecology, and how the ideas in this paper may fit then is another research front to be
explored.

As the concept of region adopted here is based on language expressions implemented as
pushdown automata, it also suggests exploring modeling approaches such as cellular
automata by its descriptive language counterpart. Another point to be explored in future
works comes from the simplicity and low memory demand of pushdown automata
implementations, that may possibly ease the task of extending map algebra to parallel
architectures and distributed environments.

   Female    mature forest
  male     young forest

 

Fig. 9 Proximal spaces to extract population and landscape information
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