
Anais do VIII SIBGRAPI (1995) 249-256

Distributed Architectures for Environmental Visualisation Systems

BAUDOUIN RAOULT, BRIAN NORRIS, JENS DAABECK
1

RICARDO CARTAXO MODESTO DE SOUZA, GILBERTO CÂMARA
2

1European Centre for Medium-Range Weather Forecasts - ECMWF

Shinfield Park, Reading, Berkshire RG2 9AX, England

{baudouin, norris, daabeck}@ecmwf.int

2Instituto Nacional de Pesquisas Espaciais - INPE

Av. dos Astronautas, 1758, São José dos Campos (SP), Brazil 12227-001

{cartaxo, gilberto}@dpi.inpe.br

Abstract. This paper presents an architecture for a distributed environment, targeted at supporting the
development of systems for retrieval, manipulation and visualisation of large environmental data sets.
The proposal has been used as a basis for the development of METVIEW, a system for meteorological
and climatological data, used operationally at the European Centre for Medium-Range Weather Forecasts
and Brazil’s Centro de Previsão do Tempo e Estudos Climáticos (CPTEC).

Keywords. Visualisation systems, environmental applications, distributed graphical architectures

1 Introduction

This work presents a distributed architecture for
environmental visualisation systems. Our proposal is
based on the idea of service-oriented architectures,
which allow for the combination of different services
(such as data access, data manipulation and
visualisation) on a single environment.

Most current visualisation systems, such as AVS
and KHOROS (Rasure and Williams, 1991), are based
on the “data-flow metaphor”. This metaphor is closely
linked to the idea of a visualisation pipeline (pre-
processing, feature selection, geometric modelling and
rendering). These systems provide a large set of
individual specialised modules, which can be combined
by the user to perform a complex operation, by means
of a visual programming interface. These systems also
enable the user to add new functions, by means of
extension mechanisms. For examples of extensions to
KHOROS, see Barrera, Banon and Lotufo (1993).

Although very flexible and modular, this class of
systems has some disadvantages: the data access
facilities are typically limited to file handling (data
management has to be provided by the user) and the

sheer number of functions creates a semantic gap for
the user without a Computer Graphics background (e.g.
what does “display pixmap” mean?).

Our proposed architecture presents two important
differences in comparison with existing scientific
visualisation systems such as KHOROS, AVS and Data
Explorer:

• Integration with data base management systems for
data access and management.

• A communications protocol which simplifies
process distribution on a network.

In practice, the architecture described herein has
been used as a basis for the development of
METVIEW, a system for retrieval, manipulation and
visualisation of meteorological and climatological data.
METVIEW is a joint development of the of the
European Centre for Medium-Range Weather Forecasts
(ECMWF) and Brazil’s Centre for Weather Prediction
and Climate Studies (CPTEC), with participation from
the French Weather Service (Météo-France).

B.RAOULT, B.NORRIS, J. DAABECK, R. CARTAXO, G. CÂMARA

Anais do VIII SIBGRAPI, Outubro de 1995

250

The paper is divided into two parts. Initially, our
conceptual design of distributed environmental
visualisation systems is outlined, and we later show its
use in the implementation of METVIEW.

2 Conceptual Design

In this section, we present the general ideas behind our
conception of distributed graphics systems for
environmental visualisation.

2.1 General Considerations

Distributed architectures are becoming an important
alternative to client-server and file-based architectures
for graphical systems.

The growing power of individual workstations has
blurred traditional distinctions between client and
server machines. Therefore, sharing processes on a
network is a more efficient way of using the potential of
current hardware platforms than designing large,
single-process systems. For that reason, this type of
systems are also called “service-oriented
architectures”, by way of contrast of with client-server
environments.

In a client-server architecture, the process rôles
are clearly specified: the client processes receive user
commands and execute applications, which request
data over the network from a server process, by means
of SQL queries or NFS calls.

In service-oriented environments this distinction
between clients and servers is removed: all processes
are service providers. The idea is each service
providers is specialised on a specific task, and that the
tasks may be distributed over different machines.

2.2 System Design

The architecture’s heart is the interoperability
layer (also called “request broker”), that provides
communication between services. For environmental
visualisation applications, the system should also
provide:

• An iconic based user interface, which appropriate
metaphors.

• A visualisation module, which implements a fixed
rendering pipeline, since the application domain is
known beforehand.

• Image and Graphics animation modules.

• Data Access module, which communicates with the
data base management system.

• Data Manipulation module, by means of a macro
language.

Figure 1 - Distributed Architecture for
Visualisation

Our design also allows for extensions: by means of
a simple programming interface, the users can add new
functions to the system.

2.3 Request Broker

A request broker implements an object model, a
representation that rises above the limits over a single
program or language, and is responsible for:

• Matching client requests and available services.

• Translation and transfer of parameters and objects
between different machines and processes.

The most important decisions on the
implementation of a request broker are the object
model and the communication protocol used. Current
technological alternatives include competing proposals
such as CORBA (Common Object Request Broker
Architecture, proposed by a consortium that includes
IBM, Sun, HP and Digital) and OLE (Object Linking
and Embedding, championed by Microsoft).

These proposals are incompatible with each other.
Furthermore, even though specifications such as
CORBA define a distributed standard, some of its

Request

Broker

User

Interface

Animation2D

Visualisation

Macro

Language

Data

Access
User

Applications

DISTRIBUTED ARCHITECTURES FOR ENVIRONMENTAL VISUALIZATION SYSTEMS

Anais do VIII SIBGRAPI, Outubro de 1995

251

implementations (like IBM’s SOM) operate in a single
address space (Campagnoni, 1994).

An even more serious question is the “original sin
problem”: standards such as SOM and OLE are being
proposed as a means of supporting the idea of
“compound documents”, typical of office automation
applications, and there are doubts about their scalability
for complex and large environmental data sets. There is
a significant difference between encapsulating a 2Kb
drawing from a CAD program into a text editor, and
transferring a 200 Mb satellite image from an image
processing application into a map generation
procedure.

Therefore, we propose that the request broker be
implemented on a simple and straightforward manner.
We chose to implement the “request broker” (RB) using
a simple and user-configurable protocol and to write it
in ANSI C language, using standard RPC calls to
ensure maximum portability.

Our RB has no “internal intelligence”. At
initialisation time, the process reads a configuration
file, which indicates:

• the services available;

• the commands associated to each service;

• how to run the modules associated with each
service.

The communication between processes is purely
asynchronous and all processes are clients and servers
simultaneously. Since the modules communicate using
the TCP/IP protocol, they can be run on different
machines.

The object model, described below, is based on the
idea of “self-describing data sets”. The RB process
does not perform any decoding of objects, but is limited
to passing parameters and data among the processes.

2.4 Distributed Object Model

Objects used in environmental visualisation
applications consist of three main groups: point
observations, 2D and 3D files (scalar and vector fields).
The fields include satellite imagery and numerical
weather prediction results.

Our object model is based on the idea of “self-
describing data”: each data object exchanged between
the applications contains information which enables the
receiving service to decode its contents without having
to resort to any additional file.

We feel that self-describing data sets simplify the
design and implementation of the request broker, since

the additional space needed is small, relative to the data
size.

There are currently various proposals of formats
for self-describing scientific data, which include
Net/CDF (Rew and Davis, 1990). Net/CDF is a more
complete proposal, which consists both of a data format
and a decoding library, freely available.

In the meteorological field, the World
Meteorological Organisation (WMO) has defined the
GRIB (2D fields and images) and BUFR (observation)
formats., which were used in the implementation of
METVIEW.

2.5 Communications Protocol

The typical user of an environmental visualisation
system follows a direct processing pipeline: data
retrieval based on a query request, data transformation
by mathematical functions and data presentation (2D,
3D or animation).

In line with our ideas of a clear design, we propose
a simple, yet powerful protocol, based on a language
with the following abstract syntax:

COMMAND,

 PARAMETER1 = VALUE,

 PARAMETER2 = VALUE1/VALUE2,

 PARAMETER3= VAL1/TO/VAL2/BY/VAL3

We consider that this protocol is general enough to
portray the batch-oriented nature of visualisation
requests.

For example, a data retrieval command may be written
as:

RETRIEVE,

PARAM = IMAGE,

TYPE = METEOSAT5,

BAND = IR1,

DATE = 860125,

TIME = 14Z.

This command requests an METEOSAT satellite
image (first infrared band), obtained at 14:00 Utc in 25
January 1986.

2.6 Data Access

One key issue which is usually not considered in most
scientific visualisation systems is the problem of data
access: data is supposed to be available at the user’s
workstation. Whilst this approach may be acceptable in

B.RAOULT, B.NORRIS, J. DAABECK, R. CARTAXO, G. CÂMARA

Anais do VIII SIBGRAPI, Outubro de 1995

252

some cases (such as biochemical applications), it is not
compatible with the large and complex data sets typical
of environmental centres.

Data for environmental applications typically
consists of numerical weather forecasts and climate
prediction (archived as grids or spectral coefficients),
satellite imagery and observational data.

Centres which handle environmental data are
accumulating data at staggering rates. ECMWF MARS
archive currently holds 15 years of meteorological data
(10+ Tera bytes), on various media including automatic
cartridge robots.

Such massive quantities of data cannot be handled
effectively by traditional relational DBMS, operating on
client-server mode. We also note that SQL queries are
not supported in most current mass-storage systems. In
many environments, it is not even feasible to query the
availability of data or to browse its contents.

Our architectural design envisages a multi-level
hierarchy, based on the notion that most environmental
visualisation applications are “read-only”: data is read
from a large archive and manipulated before graphical
presentation. When a data request is issued, the system
will search through a hierarchy of data repositories:

• user files on a local workstation (typically 1~10
Gb).

• files in one or more network servers, managed by an
RDBMS (optionally, the files may be stored as long
fields within the RDBMS) (typical values:
10~100Gb).

• files on data servers, based on massive data
handling technology such as CFS (Common File
System) or UniTree (1~1000Tb).

2.7 Data Visualisation

In dealing with environmental data, 2D visualisation
and animation are still widely used, but 3D (Hibbard et
alli., 1994) visualisation techniques are being more and
more in demand by the user community.

The main problem in building 3D visualisation
modules for environmental data is displaying the
temporal evolution of such phenomena. In other words,
there is no practical use in presenting environmental
data as static 3D pictures. Fast interactive animation,
showing more than one variable simultaneously (the so-
called “5D paradigm”) is mandatory for 3D
visualisation.

2.8 Extensibility Issues

It is extremely important, in any graphical system, to
allow the user to provide extension and therefore add
functionality to the system.

In our proposal, the user should develop his
application following a well-defined protocol. This
protocol is a set of procedures which establish
communication between the new application and the
request broker. These procedures include:

• registration of the new module to the request
broker;

• a “service” callback function, which associate a
command name that the module must execute with
the actual application.

• a “reply” callback function, which is called when
the module is completed.

The user also needs to create a file which contains
information for the request broker (which service is
provided and how to run it). This file should also
include the definition of the parameters used by the
application, what are their valid values, their default
values, a set of rules for performing simple consistency
checks, and a meaningful icon which represents the
application.

This file is then included in the main system
configuration file, and the main user interface will
create the various items required, such as menus and
input fields.

3 Implementation of METVIEW

In what follows, we describe the implementation
of the proposed architecture in the METVIEW system.
METVIEW is an interactive meteorological
visualisation application, which runs on UNIX
workstations, using TCP/IP sockets as its
communication protocol, and its user interface is Motif-
based.

The METVIEW graphics visualisation is based on
the ECMWF MAGICS package (O’Sullivan, 1993) and
the supported data formats are WMO GRIB format for
fields and images, and WMO BUFR format for
observations.

3.1 User Interface

An important requirement for user interfaces for
visualisation system is the need for powerful
abstractions. For a general discussion on the issue, see
Freitas and Wagner (1994).

DISTRIBUTED ARCHITECTURES FOR ENVIRONMENTAL VISUALIZATION SYSTEMS

Anais do VIII SIBGRAPI, Outubro de 1995

253

The general philosophy of the METVIEW
interface is that the user creates objects and performs
operations on them. These objects are instances of the
various classes of services available on the system.

We consider a typical visualisation request to
consist of a combination of :

• a data retrieval definition (consisting of one or
more fields, observations or images);

• a data transformation definition(consisting of a
mathematical formula to be applied to the data set).

• a visual definition (which describes how the data
unit is presented);

• a plot window definition (indicating geographical
area and cartographic projection).

As outlined in Figure 2, the interface uses the
“drag-and-drop” metaphor: by dragging the data
retrieval object together with a data transformation
definition and a visual definition into a plot window,
the user instructs METVIEW to perform a series of
actions, including data retrieval, data manipulation and
visualisation. A general view of METVIEW’s interface
is shown in Figure 3 and a typical plot window is
portrayed in Figure 4.

Figure 2 - “Drag and drop” metaphor

Each object definition can be modified, by means
of a context-sensitive editor which is associated with all
icons in the interface.

3.2 Applications

The current METVIEW version provides the following
basic modules:

• User Interface.

• Data retrieval from a hierarchical archive (or from
a local file).

• Data manipulation by mathematical formulas.

• Execution of a program written in METVIEW’s
macro language.

• Visualisation and animation of observations, images
and fields (combined).

In addition, the following meteorological
applications are available:

• Cross section: vertical cross-sectional plot of fields
(figure 4 bottom left).

• Metgram: displays the evolution of a forecast at
selected points in time.

• Tephigram: plot soundings from observations or
from fields at selected points.

• Vertical profile: graph for the vertical profile of
upper air fields.

• Average plot: vertical cross section of averaged
upper air parameters (zonal or meridional).

• Colour wind: displays wind fields coloured by a
temperature field.

• Relative humidity: computes relative humidity from
temperature and specific humidity.

• Total rain: computes total precipitation (convective
precipitation added to large scale precipitation).

3.3 Data Manipulation

Data Manipulation requirements vary greatly from
system to system, and may include 3/4D modelling. A
core minimum which is assumed to be typical of most
meteorological, environmental and remote sensing
centres is the ability to perform mathematical and
thematic operations on fields and images.

METVIEW provides two facilities for data
manipulation:

• the possibility of performing a mathematical
operation on data being retrieved (the COMPUTE
command);

• a macro language, with facilities for both interactive
and batch interfaces.

When a COMPUTE request is issued, it contains a
formula expressed as a text field. The formula should
contain a list of items such as:

COMPUTE,

FORMULA = 'CP+LSP',

FIELDSET = precip

This formula indicates the calculation of a total
precipitation field, which is computed based on the sum

Data Unit Vis. Def.

Plot Window

“drag-and-drop”

B.RAOULT, B.NORRIS, J. DAABECK, R. CARTAXO, G. CÂMARA

Anais do VIII SIBGRAPI, Outubro de 1995

254

of a convective precipitation and a large scale
precipitation fields. The data manipulation module
understands arithmetic, trigonometric and exponential
expressions. It will perform implicit loops when the
formula applies to more than one field.

4 Project Status

METVIEW version 1.2, described in this paper, has
been delivered and is operational both at ECMWF and
INPE. For further references to METVIEW, please see
Daabeck, Norris and Raoult (1994).

METVIEW 1.2 consists of various software
components:

• Request broker: 1,000 lines of code (LOC) in C.

• Services, including user interface, meteorological
applications, visualisation, utilities and macro
language interpreter: 62,000 LOC in C++.

• Class libraries, used by services: 36,000 LOC in
C++

• Low-level C library for interprocess communication
routines, language processing, database and file
access, free-form manipulation: 20,000 LOC in C.

• Libraries for graphics (MAGICS) and data handling
(GRIB and BUFR): 80,000 LOC in FORTRAN.

• C++ interface to MAGICS (5,600 LOC in C++).

METVIEW is being developed at ECMWF and
INPE with contributions from Bruno David, David
Dent, Arne Jørgensen, Vesa Karhila, Elisa Nishimura,
Brian Norris, Patrick O’Sullivan and Baudouin Raoult
from ECMWF, Leonardo Bins, Fernando Mitsuo Ii,
Ricardo Cartaxo and Lúbia Vinhas from INPE and
Sylvie Lamy-Thépaut from Meteo-France. Jens
Daabeck (ECMWF) and Gilberto Câmara (INPE) are
the joint project managers.

The concept of the distributed architecture
described in this paper and its implementation in
METVIEW has been primarily developed by Baudouin
Raoult.

References

Barrera, J.; Banon, G.J.F. and Lotufo, R.A. (1994). “A
Mathematical Morphology Toolbox for the
KHOROS System”. Proceedings of International
Symposium on Optics, Imaging and
Instrumentation - Image Algebra and
Morphological Image Processing, San Diego, July
1994.

Campagnoni, F.R. (1994). “IBM’s System Object
Model”. Dr. Dobb’s Special Report on
Interoperable Objects Revolution, Winter
1994/95, pages 24-28.

Daabeck, J.; Norris, B.; Raoult, B. (1994).
“METVIEW: Interactive Access, Manipulation
and Visualisation of Meteorological Data on
UNIX Workstations”. ECMWF Newsletter,
number 68, pages 9-28, Winter 1994/95.

Freitas, C. M.S.; Wagner, F.R. (1994). “Tool-Oriented
Exploratory Visual Analysis”. Proceedings of
SIBGRAPI `94, pages 197-203. (In Portuguese).

Hibbard, W.; Paul, B.; Santek, D.A.; Dyer, C.E.;
Battaiola, A.; Voidrot-Martinez, M.-F.
“Interactive Visualisation of Earth and Space
Science Computations”. IEEE Computer, vol. 27
(7), pages 65-72, July 1994.

O’Sullivan, P. (1993) “MAGICS - the ECMWF
Graphics Package”. ECMWF Newsletter, number
62, June 1993.

Raoult, B. (1994). "Workstation MARS: Access to
ECMWF's Data Base". IV Workshop on
Meteorological Operational Systems, Reading,
England, November de 1993. Proceedings,
ECMWF, 1994.

Rasure, J. And Williams (1991). “An Integrated Visual
Language and Software Development
Environment”. Visual Languages and Computing,
vol. 2, pages 217-246, 1991.

Rew, R.; Davis, G. (1990). “NetCDF: An Interface for
Scientific Data Acess”. IEEE Computer Graphics
and Applications, vol.10 (4), pages 76-82, July
1990.

Acknowledgements

This project has been partially supported by Brazil’s
Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq), through the RHAE and
ProTem/CC initiatives.

DISTRIBUTED ARCHITECTURES FOR ENVIRONMENTAL VISUALIZATION SYSTEMS

Anais do VIII SIBGRAPI, Outubro de 1995

255

Figure 4 - Example of a METVIEW plot of image and observations

B.RAOULT, B.NORRIS, J. DAABECK, R. CARTAXO, G. CÂMARA

Anais do VIII SIBGRAPI, Outubro de 1995

256

Figure 5 - Example of METVIEW contour plotting (above) and cross section plotting (below)

