
 

 

Free and Open Source GIS: Will there ever be a Geo-

Linux? 

Gilberto Câmara, Lúbia Vinhas, Ricardo Cartaxo Modesto de 

Souza 

National Institute for Space Research, INPE, Av dos Astronautas 1758, São José dos Campos, 

SP, Brazil 

Abstract. This paper examines the constraints that limit the large-scale 

adoption of open source GIS. Although the open source GIS community 

has already achieved relevant results, their products have a small market 

share. There is equivalent to Linux and Apache in the open source GIS 

scene. We try to explain why this happens, by considering some factors 

that control the evolution and adoption of open source software. Our view 

is that the community effort is split in many different systems, not allow-

ing a dominant solution to come forth. Thus, none of the current open 

source GIS has the potential to be a disruptive technology. Then, we con-

sider a future scenario where most public geospatial data will be available 

as open access policy. This scenario is becoming more probable given 

recent data policy decision in Europe, USA and other countries. In this 

scenario, there is a major chance for a disruptive open source GIS to ap-

pear. 

1. Introduction 

Free and open source software (FOSS) has moved from being a specialist 

niche to the mainstream. The FOSS community has grown considerably, as 

illustrated by its multiple workshops and meetings. In some areas of in-

formation technology (supercomputers, data servers, and scripting lan-

guages) the leading market solutions are open source. Supercomputers and 

data servers use Linux as their operating system and companies such as 

IBM have hundreds of programmers in their Linux teams. All major script-

ing languages (Perl, Phyton, Lua, Ruby) are FOSS. However, there are 

some areas where FOSS has failed to gain a substantial market share. Doc-



2 

ument production software is dominated by a single proprietary solution, 

despite the community efforts for building solutions such as OpenOffice. 

Nagy et al [1] examine the rate of adoption of FOSS in the business com-

munity. Their estimates indicate that the Apache web server has about 50% 

market share and Linux is used as the operating system of about 30% of 

servers. By contrast, the Open Office suite has a marginal market share of 

about 3% of the desktop. As the authors state: “This pattern suggests that 

there may be significant barriers to open source software adoption among 

some sectors of the user populations”. Clearly, some applications areas are 

more prone for FOSS adoption than others. 

In the area of GIS (geographical information systems), the com-

mercial market is dominated by one company (ESRI), which has more 

than 30% of market share considering software and services. By contrast, 

the free and open source GIS scene (FOSS4G) is fragmented in diverse 

niches. Recent surveys of open source GIS provide a good overview of the 

different products [2-5]. The view expressed in these papers is generally 

positive of the accomplishments of OSS GIS community. Ramsey [4] re-

marks that “existing products are now entering a phase of rapid refinement 

and enhancement”. Steiniger and Bocher [2] point out that “[FOSS4G] 

projects have reached a mature stage and the software offers a multitude of 

functionalities.” Nevertheless, none of the many available open source 

desktop GIS has a significant market share. In this chapter, we examine the 

reasons that limit large-scale adoption of FOSS4G. Thus, the question we 

address in this paper is: will there ever be an FOSS4G equivalent to Linux 

or Apache? If so, how will a Geo-Linux appear? 

Thus, this paper is concerned with examining the structural con-

straints that limit the adoption of FOSS4G by a large number of users. We 

start by considering some factors that control the evolution and adoption of 

FOSS. By examining the reasons why Apache has 50% market share and 

OpenOffice only 3% [1], we can learn some lessons which are useful for 

the future of FOSS4G. Then, we try to explain why the FOSS4G scene is 

split up in many different systems. Finally, we propose some possible fu-

tures for FOSS4G development. 

2. Factors for User Adoption of FOSS 

This section proposes some structural reasons that influence users to select 

a FOSS product. There are many papers that analyze the nature and evolu-



3 

tion of FOSS [1, 6-13]. Most of these papers discuss the organization and 

motivation of FOSS teams and the economics of open source software 

development. We believe that the structural reasons that govern the users’ 

adoption of a FOSS have not been discussed in detail in the literature [14]. 

In the following discussion, we focus on the factors that users need to con-

sider for adoption of FOSS. On purpose, we left out an obvious factor: 

lower cost. Although promoted by FOSS advocates as a major drive for 

adoption of open source technology, lower cost by itself is not sufficient 

for users in most cases. This is verifiable empirically by considering the 

low adoption rate of OpenOffice. Thus, we propose the following factors 

as contributing to the adoption of FOSS. 

Degree of modularity. One of the major factors mentioned in favour of 

open source adoption is capacity of users to modify a FOSS to suit their 

needs [15]. In practice, such adaptability is not easy to achieve since it 

requires a modular software organization. The more a FOSS is modular, 

the easier it is to adapt it to the needs of different organizations. Each 

software product has a periphery to kernel ratio that constrains the poten-

tial for modularization, since the kernel needs a tightly organized and 

skilled programming team. An operating system such as Linux has a well-

defined kernel for process control and a periphery consisting of programs 

such as device drivers, applications, compilers and network tools. Differ-

ently, database management systems have a kernel of integrated functions 

(parser, querier, scheduler, and optimizer) and a much smaller periphery. A 

high periphery to kernel ratio means a more modular software. The more 

the kernel is dominant in a software product, the less modular it is, and the 

less potential contributors it has. One good example is the R suite of statis-

tical tools [16], whose kernel consists of a small and well-designed library 

to deal with scientific data. Developing a new application using R is very 

simple. Many different researchers have developed a large set of statistical 

software that makes R very popular worldwide. 

Shared conceptualization. A good conceptual design is a crucial part of 

any successful software project. Faulty designs are a major cause of fail-

ures in software projects [17]. The design problem is even more important 

for FOSS. If programmers scattered in different places are to communicate 

well, they need to share the same conceptual view. This conceptual view is 

difficult to capture in written documents, and is much easier to achieve 

when there is a prior common background. This explains why many suc-

cessful projects rely on existing designs.  We call this ‘shared conceptuali-

zation’ [14]. Again, the R suite of statistical tools is a good example. R has 

a simple and well-understood conceptual design, based on the S-PLUS  



4 

proprietary product [18]. Their innovative contribution lies not in their 

design, but on the analysis functions that scientists develop using these 

environments. The two main conditions for shared conceptualization to 

happen are: 

1. The post-mature perspective [19]: a private company de-

velops a software product, for which it holds the intellectual property 

rights. As the product becomes popular, its functionality and conceptual 

model becomes well settled, and it becomes part of the “public commons”. 

The popularity and usability of the software motivates other institutions to 

develop a public domain equivalent, as in the case of R. 

2. The standards-led perspective [19]: standards consolidate 

a technology and allow compatible solutions from different producers to 

compete in the marketplace. An example is the SQL database standard, 

which has motivated products such as mySQL and PostgreSQL. Another 

example is the POSIX standard for operating systems, which has served as 

guidance to Linux. 

Design and maintenance challenge. Many users and companies use 

FOSS because it would be hard for them to design and maintain a proprie-

tary solution. For example, consider a hardware company that needs an 

operating system and has to choose between building its own or adopting 

an OSS. Knowing that the Linux kernel has over 12 million lines of code 

and works well, the company´s managers have a large incentive of using 

Linux. Indeed, the high cost of maintaining a proprietary Unix-like operat-

ing system is the main reason why IBM, SGI, and HP switched to Linux. 

Munga et al [9] point out that IBM has made FOSS a core part of their 

business strategy, and there are an estimated 600 programmers working 

full-time as part of their Linux team. The same factor explains the adoption 

of the Apache web server. Designing and maintaining a reliable and fast 

web server is difficult. The Apache HTTP Server today powers nearly 112 

million websites world-wide. Apache´s proven reliability and large user 

base deters commercial companies or other OSS developers from develop-

ing alternatives. Thus, when an OSS provides a service that would be hard 

or costly to replicate, users have a large motivation for using it, instead of 

developing their own solutions or using proprietary software. 

Code stability and avoidance of forking. Programmers use the word 

“forking” to describe the situation when different groups develop incom-

patible products, starting from the same code. The avoidance of forking 

and the resulting code stability is an important factor in FOSS adoption by 

users. To show the negative impact of forking, consider the parallel evolu-



5 

tion of Linux and FreeBSD. From 1977 to 1995, the Computer Systems 

Research Group (CSRG) of the University of California at Berkeley de-

veloped a Unix-like operating system, called the Berkeley Software Distri-

bution (BSD). After the University stopped this activity in 1995, the code 

was released as open source and taken up by a community of program-

mers. Differences of opinion among the code developers led to fragmenta-

tion of the BSD-Unix community into FreeBSD, OpenBSD, and NetBSD 

camps [1]. By some accounts, the BSD-derived operating systems were 

more advanced than Linux in the early 2000s [20]. However, the disputes 

between the three BSD communities were damaging to their reputation. By 

contrast, Linus Torvalds has always maintained a tight control over the 

Linux kernel, an attitude that ensured code stability and user trust. Forking 

is thus one of the reasons why BSD failed to reach a wide user base, while 

Linux emerged as the leader of the open source operating systems [1].   

Path Dependence and Lock-in Effect. Path dependence is an established 

property of technology. Although definitions vary, the idea of path depend-

ence is that the current status of a technology (e.g., the dominant software 

at the desktop) has evolved as a consequence of the initial configuration 

(e.g., IBM´s selection of Microsoft for developing the operating system of 

its PC) [21]. According to Page [22] path dependence has different causes 

including increasing returns, self-reinforcement, positive feedbacks and 

lock-in. Increasing returns means that the more a choice of a product is 

made, the greater its benefits both to the producer and consumer. Self-

reinforcement means that when a costumer makes a choice, he gets con-

nected to other costumers that encourage that choice to be sustained. With 

positive feedbacks, the benefit of making a choice is increased when others 

do the same. The “lock-in” effect occurs when a customer is dependent on 

a single supplier for products and services and cannot move to another 

vendor without large switching costs. The lock-in effect is well-known in 

the software industry since the customer may become dependent on pro-

prietary data formats or interfaces, and high switching costs might prevent 

the change to another product [23]. 

Avoiding the “lock-in” effect has been proposed by some authors 

as an important motivation for using open source. According to this view, 

users of FOSS would have the capacity to switch between different ven-

dors and thus reduce their dependence on a single manufacturer. Thus, a 

Linux user can choose between hardware from different manufacturers, 

where an IBM mainframe user is constrained in his future choices. How-

ever, like all technology products, FOSS is also affected by path depen-

dence, mostly by increasing returns. When a user chooses Linux over 



6 

FreeBSD, he reinforces the notion that Linux is the best choice for a FOSS 

operating system. Considering that many FOSS products rely on commu-

nity support for helping novice users and producing documentation, path 

dependence is very relevant to FOSS. In the long run, increasing returns 

encourage a single FOSS solution to be dominant in each market segment. 

By contrast, the existence of many Linux distributions harms its expansion 

at the desktop. Non-technical users are discouraged by the alternatives and 

fear for their long-term endurance. We consider that the convergence to a 

single distribution is a necessary condition for Linux to reach a significant 

market share of the desktop users. 

Disruptive potential. An important factor in the adoption of a FOSS is its 

disruptive potential, considered as its capacity to provide a novel functio-

nality that can have long-term consequences. Such is the case of Linux. 

Before Linux emerged as a viable alternative, most Intel-based computers 

ran Windows, and each major UNIX workstation builder (such as IBM, 

DEC, SUN, HP and SGI) had its own line of CPUs. However, these com-

panies had a hard time competing with Intel, as the scale of investments 

each successive line of CPUs increased. Maintaining Moore´s Law is ex-

pensive. So, the availability of a UNIX-like operating system running on 

Intel chips caused the demise of non-Intel alternatives such as IRIX and 

Tru64 Unix, the transformation of Solaris into a FOSS, and the reduction 

of the market for HP-UX and AIX. Even IBM, which still maintains its 

AIX operating system, is making substantive investments on Linux [24]. 

Thus, Linux was a disruptive technology that ultimately changed the whole 

UNIX-like scene. 

Documentation. Another significant factor that limits FOSS large-scale 

adoption is user documentation. Users have different learning processes, 

and thus it is necessary to produce different types of manual and tutorials 

to help them. In most cases, producing such documentation is beyond the 

capacities of FOSS teams. That is one of the reasons why FOSS is more 

popular with computer-savvy experts that with the non-technical users.  

Community support. Having a strong support from an established com-

munity helps to decrease the path dependence effect of proprietary soft-

ware on users. As an example, the PROJ4 library has an active community 

that helps to support its use by different software products. 



7 

3. The Current FOSS4G Scene 

We now consider how the factors for adoption for FOSS relate to the cur-

rent FOSS4G scene, taking as our reference the works of Steiniger and 

Bocher [2] and Ramsey [4]. Based on these reviews, we can divide the 

FOSS4G scene into five clusters: 

(a) Java-based visualization and analysis software: programs written 

mostly in Java that enable the visualization of spatial data and provide 

functions for analysis of such data. They include uDig, gvSIG, KOSMO, 

and OpenJUMP and its derivatives. These software also provide functions 

for handling vector data. 

(b) C and C++ -based visualization and analysis software: programs 

for visualization and analysis of spatial data using the C and C++ pro-

gramming languages. These include QGIS, TerraView, and MapWindow. 

As in case (a) above, these software are capable of handling vector data. 

(c) Image and Raster data analysis software: programs for analysis of 

(mostly) raster data, such as images and digital terrain models. These in-

clude OSSIM, GRASS, SAGA, SPRING, and ILWIS. GRASS and 

SPRING also provides significant capabilities for working with vector 

data. 

(d) Database interfaces: APIs that provide support for access to ob-

ject-relational database systems to handle vector data. The best example is 

PostGIS [25]. Other example is the TerraLib library, designed for handling 

large-scale environmental data. It can access PostGIS and other DBMS’s 

and also allows access and storage to raster data [26]. Other notable effors 

include GDMS1 and Hybernate spatial2. 

(e) Supporting libraries: these libraries support functions which are 

needed by any GIS, and are used by many of the current front-end imple-

mentations. They include GDAL/OGR, PROJ4, GEOS, JTS (Java Topol-

ogy Suite) and Geotools. 

There are many additional differences between the above-mentioned 

software. Some support the OGC standards, others are file-based, and the 

analysis functionality varies greatly. In terms of visualization, most pro-

                                                 
1 http://hal.archives-ouvertes.fr/hal-00358740_v1/ 
2 http://www.hibernatespatial.org/ 



8 

vide similar capabilities. For vector data analysis, no FOSS4G package 

provides an equivalent quantity of functions as those available in the lead-

ing proprietary GIS (ESRI´s ArcGIS). For raster data analysis, the func-

tionalities of FOSS4G products approach those of proprietary software, 

although in some niche areas (digital photogrammetry, object-based image 

analysis) proprietary software still has the lead. 

The lack of accurate surveys makes it difficult to assess the impact of 

FOSS4G on the market. We have to rely on indirect assessments, such as 

the difference in user attendance in FOSS4G and ESRI´s conferences, and 

the small number of large-scale applications that use FOSS4G. Such scant 

evidence suggests that none of the available FOSS4G products has reached 

a significant proportion of desktop users, which continue to rely on pro-

prietary software. So far, no desktop GIS has shown potential for breaking 

the ‘lock-in’ effect which proprietary software products have on users. This 

is a direct consequence of the fragmentation of the community. To under-

stand more, we need to consider both the achievements and challenges to 

FOSS4G, as follows. 

3.1 Achievements of the FOSS4G community 

The most important achievement of the community is intangible: FOSS4G 

exists and is being used worldwide for real-world applications. Many case 

studies have been presented at the FOSS4G Conference and similar ven-

ues. These cases show that the skills required to build a FOSS4G applica-

tion are similar to those required to use proprietary software3. In general, 

the TCO (total cost of ownership) of a FOSS4G application is significantly 

less than that of a proprietary application. Personnel salaries and hardware 

costs are similar, and software costs are much reduced. 

A large part of the credit for the success of FOSS4G product is due to 

the PostGIS project and the activities of the GRASS user community. The 

GRASS user community includes users from all parts of the world, that 

actively participate in mailing lists and user conferences4.  As for PostGIS, 

we concur with Ramsey [4]: “The strength of PostGIS is that it has be-

come the standard spatial database backend for all the other open source 

                                                 
3 For some metrics on the subject, please see the discussion 

http://lists.osgeo.org/pipermail/conference_dev/2010-March/001029.html 
4 See for example http://gisws.media.osaka-cu.ac.jp/grass04/ 



9 

GIS tools.” Indeed, programs such as uDig, gvSIG, KOSMO, OpenJUMP, 

and TerraLib rely on PostGIS as their database support. 

PostGIS and the underlying PostgreSQL DBMS have proven capabili-

ties of support industry-grade applications. Take for example TerraAma-

zon, Brazil’s national database for monitoring deforestation in Amazonia. 

TerraAmazon is based on TerraLib that in turn uses PostGIS with added 

support for raster storage in PostgreSQL [27]. The database currently 

stores more than 3 million complex polygons and 600 GB of full resolu-

tion satellite images, using the TerraLib pyramidal resolution schema. 

Another area of achievement is that of application libraries. Products 

such as GDAL/OGR, PROJ4 and GEOS are being used by most of the 

FOSGIS community, due to their stability and quality. These libraries are 

well-designed and solve important issues in GIS design, namely:  interface 

to data formats (GDAL), cartographic projections (PROJ4) and topological 

predicates and operations (GEOS and JTS).   

3.2 Challenges to the FOSGIS Community 

The authors consider the division between the ‘C/C++’, ‘Java’, and ‘raster’ 

clusters as the major impediment for the growth of FOSS4G solutions in 

the market place. This fragmentation is a good example of the dreaded 

forking pattern which keeps users away from FOSS. In an ideal but unlike-

ly situation, if all FOSS4G developers would agree to use a single envi-

ronment, the community could build a system that would surpass the cur-

rent proprietary software in quality and functionality. As the situation 

stands, there are too many systems offering similar functions, whereas 

none has the power to become dominant.  

Modularity. Most desktop GIS are monolithic applications, where 

the visualization actions are closely tied to the handling of interface events. 

The design choices for GUI design and event handling are hard to share 

across a community of programmers. There are many incompatible options 

for GUI design (Qt, GTK+, SWT, SWING) and there are plausible reasons 

for choosing any of them. Once a GUI base library is chosen, the desktop 

GIS code becomes hard-wired on that library and is difficult for outsiders 

to make effective contributions to the software. Because of the hard-wired 

links between their interface and the underlying GUI library, desktop GIS 

applications tend to be monolithic and non-modular. 



10 

Leadership. Good programmers are notoriously strong-minded 

and respect only those they view as superior to them. As Fitzgerald [11] 

observes: “to lead an OSS project really successfully, the leader needs to 

be a ‘code god’ who inspires others and whose ability and authority is 

beyond discussion.” Most of the current FOSS4G is being developed inde-

pendently by like-minded teams, who had limited contact with their peers. 

While there are recognized programmers in the community, there is no 

established leadership in the sense of Linus Torvalds and Richard 

Stallman.  The project leaders of the different desktop GIS products have 

thus little incentive for merging their activities with those of similar initia-

tives. The main gathering of the FOSS4G community (the annual FOSS4G 

Conference) was established after most of the desktop GIS projects were 

already underway. The FOSS4G Conference serves as an important contact 

point for members of the community, but so far it has not promoted any 

convergence of FOSGIS technology. The authors hope that the OSGEO 

organization (founded in 2006) can act as a catalyst. In an ideal world, 

OSGEO could support a large scale communitarian effort that would pro-

duce a FOSS4G product that could outperform today´s proprietary solu-

tions. 

Standards and shared conceptualization. Most desktop GIS 

look similar, since they share a common paradigm for their interface (that 

of the proprietary software ArcView). Most of them also share the OGC 

standard interfaces for web services and vector data. However, the OGC 

effort on GIS standardization is commendable but incomplete. There has 

been significant progress in OGC for vector data storage, database query, 

and web services. However, there are no mature standards for data analy-

sis, image processing, map algebra, digital terrain modelling, and spatial 

statistics5. The lack of shared conceptualization for analysis and processing 

functions has led to incompatible products. Each GIS development team 

has developed his own implementation of these functions, leading to fur-

ther incompatibility between the products. Applications such as GRASS, 

SAGA, SPRING, and ILWIS use many different concepts. Indeed, proprie-

tary image processing software such as ENVI, ERDAS and PCI also have 

significant differences. As a result, each software has a slow learning curve 

which creates a lock-in effect on its users. By contrast, the spatial statistics 

community that uses the R software [16] has decided to join forces and 

develop a single product (called R-spatial) that provides most of the func-

tionality they need [28]. A further gray area concerns storage of raster data 

                                                 
5 Such lack of standards has motivated many developers to come up with new 

products, such as OGRS team at IRSTV Nantes (France) and the TerraLib team at 

INPE (Brazil). 



11 

in DBMS. Although ORACLE already provides support for storing raster 

data in its proprietary products, there is much debate on the FOSS4G 

community about the advantages and problems of storing raster data in a 

free spatial DBMS such as PostGIS.  This is another area which would 

benefit from a standard that could be followed by the community. 

Code stability and avoidance of forking. The large number of 

FOSS4G products indicates that designing a desktop GIS is relatively easy, 

within the reach of a small team of programmers. This is bad news. It is 

too easy to start a new project, and this reduces the motivation for adoption 

a solution developed elsewhere.  Some FOSS4G projects, such as JUMP 

and GeoTools, have gone through phases of forking and merging with 

other projects. This is negative for code stability and tends to restrain user 

adoption. Part of the problem has to do with language choice. Currently, 

most GIS programmers have adopted Java as their preferred development 

environment. However, many existing products (such as GRASS, 

SPRING, TerraView, ILWIS) have lots of code already developed and 

tested using C or C++. This causes an impasse when trying to expand a 

Java-based visualisation and vector handling software into a more com-

plete GIS. The solution here is to develop stable software libraries that 

could provide all the functionalities of products such as GRASS or 

SPRING and that could be used by different products. The PostGIS, 

GDAL, PROJ4 and GEOS libraries are good examples of code stability 

and continuous improvement that need to be complemented and extended. 

Innovation. To stay ahead of the market, companies have to inno-

vate continuously. As Andrew Grove of Intel said, “only the paranoid sur-

vive”. The GIS market is currently full of activities related to mobile de-

vices and to web services. However, FOSS4G products tend to be conser-

vative and focused on the desktop, based on the map metaphor. By con-

trast, the commercial vendors (especially ESRI and Google) are investing 

heavily in mobile GIS applications. Considering the money commercial 

companies spend on innovation, FOSS4G developers would need to be 

united behind a small number of innovative products to be able to com-

pete. 

Disruptive potential. PostGIS is the FOSS4G product with great-

est potential to be a disruptive technology and to change the GIS market. 

Should PostGIS evolve to support different types of geospatial data needed 

by emerging GIS applications, such as images, DTMSs, geo-sensor data, 

and location-based services, it could provide the support FOS GIS needs to 

provide strong competition to proprietary software. We will return to this 



12 

issue in the next section. In short, while PostGIS has a good potential to be 

an important player in the user GIS market, the other desktop GIS lack the 

momentum to become dominant, and the raster data processing solutions 

are incompatible and hard to combine. While this split persists, the leading 

commercial companies continue to innovate and to keep or increase their 

market share. 

4       GIS in the 21st Century: What can become of FOSS4G? 

The preceding sections tried to show why current there is currently no 

good candidate for a Geo-Linux. While PostGIS has a good momentum to 

provide the services needed by the different types of geospatial applica-

tions, there is no dominant solution in the desktop, nor there are emerging 

applications for mobile devices and web services. Does that mean that 

there will never be a Geo-Linux? As the baseball manager Yogi Berra said, 

“The future ain't what it used to be”. If the FOSS4G community is to de-

sign products that reach a significant market share, it needs to learn the 

lessons from Linux and Apache. We need products with disruptive poten-

tial, not limited to reproducing designs from proprietary products, provid-

ing truly innovative capabilities. In this perspective, this section examines 

two areas which have the potential to bring forth disruptive applications: 

Web services and data-intensive GIS. 

Consider Web services. In the early 2000s, the potential of the 

Web-enabled spatial applications became clear to the GIS community. 

Their reaction was build software for data visualization and browsing on 

the Web (such as MapServer) and to establish a set of standards, including 

WCS, WMS and WFS from the Open Geospatial Consortium (OGC). The 

abstractions encapsulated in OGC´s Web standards deal mostly with a non-

cooperative environment. This approach underestimates the Web´s poten-

tial for innovation and considers it just a medium for visualization of re-

mote information. Using OGC´s standards, users have access to informa-

tion produced by others, mostly for visualisation. The user is thus a passive 

consumer of information produced elsewhere [29]. Using social networks 

in the Internet, the FOSS4G community could build collaborative systems 

that go beyond the simple OGC abstractions and support cooperation and 

interaction. Although there are some exceptions, such as Open Street Map, 

most FOSS4G applications are conservative in their use of the Web´s po-

tential. 



13 

 The Spatial Web GIS is more and more being dominated by 

Google Maps and Google Earth. Google developers come from a different 

mindset than the map-centred GIS community. They recognized the value 

of supplying the base location layer (vectors and images) as a seamless 

data set, and of providing APIs for extensibility. The Google Maps API 

allows programmers to embed Google Maps in their web pages and to add 

content to the base layers. The KML format and the Google Earth API 

allow the user to add maps, images, routes, and other spatial documents to 

Google Earth, thus easing the task of creating a Web GIS server. Such 

flexibility and performance comes at a price: users must comply with the 

IP restrictions set by Google. From a FOSS4G viewpoint, Google´s poten-

tial for dominance of the Spatial Web is dismaying. Should it happen, the 

control of the Spatial Web by a proprietary solution will limit both the 

development of FOSS4G and reduce the incentive for sharing data, either 

voluntary or government produced. It is time the FOSS4G community 

learns the “Google lesson”: Those that control the data control the future 

of the Spatial Web. Google Maps and Google Earth show what can be done 

when only one company has access to key spatial data, such as street net-

works and remote sensing images.  

The limitations of RDBMS and SQL for handling geospatial data 

have been recognized long ago [30]. Nevertheless, object-relational data-

bases have been adopted by the GIS community as the primary way to 

organize collections of spatial data. Using PostGIS or its proprietary alter-

natives, GIS users have built huge datasets, each modelled using a differ-

ent conceptual schema. When these datasets were created in the early to 

mid 2000s, the prevailing business model was to have public data sold on a 

cost-recovery basis. This business model is changing and national mapping 

agencies are moving towards an open access model. In April 2010, the UK 

Ordnance Survey launched a service offering free and unrestricted access 

to most of its map data. Similarly, the US Geological Survey has released 

its complete LANDSAT imagery archive. Many other mapping agencies 

and image providers have released their datasets or are planning to do so. 

When achieved, full open access to spatial data will bring a complete 

change on the way GIS technology is used and will provide a unique op-

portunity for FOSS4G: the emergence of data-intensive GIS. 

We define data-intensive GIS as a software environment capable 

of handling distributed geospatial data sets, each with its own archival 

policy. These datasets include spatial databases in OGC format, WCS, 

WFS and WMS servers, and semi-structured data in different formats (flat 

files, indexed collections, relational tables). A data-intensive GIS applica-



14 

tion would be able to use these data sets in a coherent way combining dif-

ferent sources and making appropriate semantic inferences whenever 

needed. A data-intensive GIS would use techniques that go beyond what 

the current extensions of SQL allow. For example, such techniques would 

allow multiple passes over the same data to compute spatial algorithms, a 

task with is cumbersome to perform using SQL queries. They would also 

combine different types of spatio-temporal data in a way not possible for 

SQL and its extensions. 

 Consider a situation where all government-produced census data, 

streets and routes, and satellite imagery would be fully accessible on the 

Web, based on copyleft licences such as GPL or Creative Commons. The 

FOSGIS community could design, build and maintain applications that 

would handle distributed spatial data. They would use powerful inference 

techniques to make sense of the data they collect. These data-intensive GIS 

application could disrupt the current market and change the way we deal 

with geospatial information.   

 If the above proposal seems far-fetched, consider that similar tech-

niques are already available. Again, Google is the leading innovator. 

Google´s Map-Reduce technique has shown to be efficient for processing 

multi-terabyte datasets in parallel [31]. A Map/Reduce job has two steps. 

First, a master node splits the input dataset into independent chunks and 

passes each of them to a secondary node for processing. When the master 

node receives the results, sorts them, and passes which are processed by 

worker nodes in a completely parallel manner. The master node then takes 

the answers to all the sub-problems and combines them to answer the 

problem it was originally trying to solve. Typically both the input and the 

output of the job are stored in a file-system. More than 10,000 distinct 

programs have been implemented using Map-Reduce at Google, including 

algorithms for large-scale graph processing, text processing, machine 

learning, and statistical machine translation [31]. Even the defendants of 

RDBMS recognize that there are processing tasks that are well-suited for 

Map-Reduce [32]. The Map-Reduce paradigm is suited for investigation as 

one of the alternatives to SQL queries for handling geospatial data. 

In resume, the emergence of open access policies for geospatial 

data will provide an opportunity for the FOSS4G community to develop 

innovative and disruptive applications. To succeed, GIS developers will 

have to overcome a number of challenges. These include modelling the 

semantics of spatial concepts, understanding change in space and time, and 

developing information extraction methods for massive data sources [29]. 



15 

The success of information technologies such as Google´s shows that these 

challenges are hard, but not impossible to take on. Should the FOSS4G 

community succeed in producing innovative solutions for data-intensive 

GIS, it is likely that a Geo-Linux will finally emerge. 

5. Concluding Remarks 

This paper discusses the current situation of FOSS4G. We recognize that 

the FOSS4G community has already achieved relevant results. There are 

many good desktop FOSS4G available, which support the basic tasks of 

retrieval and visualization. The various OS raster data processing software 

have lots of functions. However, FOSS4G products still have a small mar-

ket share. In this paper, we try to explain why this happens. Based on the 

properties of open source software in general, we argue that there is exces-

sive fragmentation on the FOSS4G scene. Also, current FOSS4G are not 

modular enough to support large development teams. Furthermore, there is 

a lack of common standards for many important GIS applications, such as 

map algebra, spatial statistics and image processing, leading to similar but 

incompatible products. More important, no current FOSS4G has a disrup-

tive potential that could unbalance the market. We also indicate that there 

are structural reasons in GIS design that contribute to produce this status 

quo. 

 Then, the authors examine two areas that are relevant for the future 

of GIS: Web services and data-intensive GIS. We argue that the trend to-

wards open access geospatial data brings an opportunity for FOSS4G. We 

could develop disruptive GIS that could support data-intensive applica-

tions, combing data from diverse sources and allowing the user to over-

come semantic barriers. If the FOSS4G community succeeds in developing 

such an innovative product, we could finally have a Geo-Linux. The 

enormous potential of a dedicated community would be at last realized. 

Acknowledgments 

The first author thanks Erwan Bocher and his team at Nantes for organiz-

ing the OGRS 2009 conference and inviting him to deliver a keynote 

speech, which led to this paper. The authors also thank the Terralib devel-

opment team at INPE, especially Antonio Miguel Monteiro, Gilberto 



16 

Ribeiro, and Karine Ferreira for many hours of inspired discussion. Gil-

berto Camara’s work is partially funded by CNPq (grant PQ 550250/2005-

0) and FAPESP (grant 04/11012-0). 

Bibliography 

1. Nagy, D., Yassin, A.M., Bhattacherjee, A.: Organizational adoption of open source software: 

barriers and remedies. Commun. ACM 53 (2010) 148-151 

2.  Steiniger, S., Bocher, E.: An Overview on Current Free and Open Source Desktop GIS De-

velopments. International Journal of Geographic Information Science 23 (2009) 1345-1370 

3. Steiniger, S., Hay, G.J.: Free and Open Source Geographic Information Tools for Landscape 

Ecology. Ecological Informatics (2009) 

4. Ramsey, P.: The State of Open Source GIS. Refractions Research, Victoria, BC, CA (2007) 

5. Hall, G., Leahy, M. (eds.): Open source approaches in spatial data handling. Springer, Berlin 

(2008) 

6. O´Reilly, T.: Lesson from Open Source Software Development. Commun. ACM 42 (1999) 

7. Benkler, I.: Coase’s Penguin, or, Linux and The Nature of the Firm. Yale Law Journal 112 

(2003) 

8. Hertel, G., Niedner, S., Hermann, S.: Motivation of software developers in the F/OSS pro-

jects: an Internet-based survey of contributors to the Linux kernel. Research Policy 327 

(2003) 1159-1177 

9. Munga, N., Fogwill, T., Williams, Q.: The adoption of open source software in business 

models: a Red Hat and IBM case study. Proceedings of the 2009 Annual Research Confer-

ence of the South African Institute of Computer Scientists and Information Technologists. 

ACM, Vanderbijlpark, Emfuleni, South Africa (2009) 

10. Shibuya, B., Tamai, T.: Understanding the process of participating in open source communi-

ties. Proceedings of the 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open 

Source Software Research and Development. IEEE Computer Society (2009) 

11. Fitzgerald, B.: A Critical Look at Open Source. IEEE Computer 37 (2004) 92-94 

12. Mockus, A., Fielding, R., Herbsleb, J.: Two case studies of open source software develop-

ment: Apache and Mozilla. ACM Transactions on Software Engineering and Methodology 11 

(2002) 

13. Ghosh, R.A., Rudiger Glott, Kreiger, B., Gregario Robles: The Free/Libre and Open Source 

Software  Survey and Study—FLOSS Final Report. International Institute of Infonomics, 

University of Maastricht, Maastricht, The Netherlands (2002) 

14. Câmara, G., Fonseca, F.: Information Policies and Open Source Software in Developing 

Countries. Journal of American Society of Information Science and Technology 58 (2007) 

121-132 

15. Weber, S.: The Success of Open Source. Harvard University Press, Cambridge, MA (2004) 

16. Ihaka, R., Gentleman, R.: R: A Language for Data Analysis and Graphics. Journal of Compu-

tational and Graphical Statistics 5 (1996) 299-314 

17. Brooks, F.: No Silver Bullet: Essence and Accidents of Software Engineering. IEEE Com-

puter 20 (1987) 10-19 

18. Chambers, J.M.: Programming with Data. Springer-Verlag, New York, NY (1998) 

19. Câmara, G., Onsrud, H.: Open Source GIS Software: Myths and Realities. In: Esanu, J.M., 

Uhlir, P.F. (eds.): Open Access and the Public Domain in Digital Data and Information for 

Science: Proceedings of an International Symposium. The National Academies Press, Wash-

ington (2004) 127-133 



17 

20. Yu, L., Schach, S.R., Chen, K., Heller, G.Z., Offutt, J.: Maintainability of the kernels of open-

source operating systems: A comparison of Linux with FreeBSD, NetBSD, and OpenBSD. 

Journal of Systems and Software 79 (2006) 807-815 

21. David, P.: Path dependence: a foundational concept for historical social science. Cliometrica 

1 (2007) 91-114 

22. Page, S.: Path dependence. Quarterly Journal of Political Science 1 (2006) 87-115 

23. Ruttan, V.: Technology, Growth and Development. Oxford University Press, New York 

(2001) 

24. Samuelson, P.: IBM's pragmatic embrace of open source. Commun. ACM 49 (2006) 21-25 

25. Santilli, S., Leslie, M., Hodgson, C., Ramsey, P., Lounsbury, J., Blasby, D.: PostGIS Manual - 

Version 1.3.2. Refractions Research, Victoria, CA (2007) 

26. Câmara, G., Vinhas, L., Ferreira, K., Queiroz, G., Souza, R.C.M., Monteiro, A.M., Carvalho, 

M.T., Casanova, M.A., Freitas, U.M.: TerraLib: An open-source GIS library for large-scale 

environmental and socio-economic applications. In: Hall, B., Leahy, M. (eds.): Open Source 

Approaches to Spatial Data Handling. Springer, Berlin (2008) 247-270 

27. Freitas, U., Ribeiro, V., Queiroz, G.R., Petinatti, M., Abreu, E.: The Amazon Deforestation 

Monitoring System: A Large Environmental Database Developed on TerraLib and Post-

greSQL. OSGEO Journal 3 (2007) 70-75 

28. Bivand, R., Pebesma, E., Gómez-Rubio, V.: Applied spatial data analysis with R. Springer 

Verlag (2008) 

29. Câmara, G., Vinhas, L., Davis, C., Fonseca, F., Carneiro, T.: Geographical Information Engi-

neering in the 21 st Century. In: Navratil, G. (ed.): Research Trends in Geographic Informa-

tion Science. Springer, Berlin (2009) 203-218 

30. Egenhofer, M.: Why not SQL! International Journal of Geographical Information Systems 6 

(1992) 71-85 

31. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53 

(2010) 72-77 

32. Stonebraker, M., Abadi, D., DeWitt, D.J., Madden, S., Paulson, E., Pavlo, A., Rasin, A.: 

MapReduce and parallel DBMSs: friends or foes? Commun. ACM 53 (2010) 64-71 


