
In: Erwan Bocher (ed), Proceedings of Open Source Geospatial Research Conference
(OGRS 2009). Lecture Notes in Geoinformation and Cartography (2010). Berlin,
Springer, 2010.

Free and Open Source GIS: Will there ever be a Geo-Linux?

Gilberto Câmara, Lúbia Vinhas, Ricardo Cartaxo Modesto de Souza

National Institute for Space Research, INPE, Av dos Astronautas 1758, São José dos Campos, SP, Brazil

Abstract. This paper examines the constraints that limit the large-scale adoption

of open source GIS. Although the open source GIS community has already

achieved relevant results, their products have a small market share. There is

equivalent to Linux and Apache in the open source GIS scene. We try to explain

why this happens, by considering some factors that control the evolution and

adoption of open source software. Our view is that the community effort is split

in many different systems, not allowing a dominant solution to come forth. Thus,

none of the current open source GIS has the potential to be a disruptive technol-

ogy. Then, we consider a future scenario where most public geospatial data will be

available as open access policy. This scenario is becoming more probable given

recent data policy decision in Europe, USA and other countries. In this scenario,

there is a major chance for a disruptive open source GIS to appear.

1. Introduction

Free and open source software (FOSS) has moved from being a specialist niche to

the mainstream. The FOSS community has grown considerably, as illustrated by its

multiple workshops and meetings. In some areas of information technology (su-

percomputers, data servers, and scripting languages) the leading market solutions

are open source. Supercomputers and data servers use Linux as their operating

system and companies such as IBM have hundreds of programmers in their Linux

teams. All major scripting languages (Perl, Phyton, Lua, Ruby) are FOSS. Howev-

er, there are some areas where FOSS has failed to gain a substantial market share.

Document production software is dominated by a single proprietary solution, de-

spite the community efforts for building solutions such as OpenOffice. Nagy et al

2

[1] examine the rate of adoption of FOSS in the business community. Their esti-

mates indicate that the Apache web server has about 50% market share and Linux

is used as the operating system of about 30% of servers. By contrast, the Open

Office suite has a marginal market share of about 3% of the desktop. As the au-

thors state: “This pattern suggests that there may be significant barriers to open

source software adoption among some sectors of the user populations”. Clearly,

some applications areas are more prone for FOSS adoption than others.

In the area of GIS (geographical information systems), the commercial

market is dominated by one company (ESRI), which has more than 30% of mar-

ket share considering software and services. By contrast, the free and open source

GIS scene (FOSS4G) is fragmented in diverse niches. Recent surveys of open

source GIS provide a good overview of the different products [2-5]. The view ex-

pressed in these papers is generally positive of the accomplishments of OSS GIS

community. Ramsey [4] remarks that “existing products are now entering a phase

of rapid refinement and enhancement”. Steiniger and Bocher [2] point out that

“[FOSS4G] projects have reached a mature stage and the software offers a multi-

tude of functionalities.” Nevertheless, none of the many available open source

desktop GIS has a significant market share. In this chapter, we examine the rea-

sons that limit large-scale adoption of FOSS4G. Thus, the question we address in

this paper is: will there ever be an FOSS4G equivalent to Linux or Apache? If so,

how will a Geo-Linux appear?

Thus, this paper is concerned with examining the structural constraints that

limit the adoption of FOSS4G by a large number of users. We start by considering

some factors that control the evolution and adoption of FOSS. By examining the

reasons why Apache has 50% market share and OpenOffice only 3% [1], we can

learn some lessons which are useful for the future of FOSS4G. Then, we try to

explain why the FOSS4G scene is split up in many different systems. Finally, we

propose some possible futures for FOSS4G development.

3

2. Factors for User Adoption of FOSS

This section proposes some structural reasons that influence users to select a FOSS

product. There are many papers that analyze the nature and evolution of FOSS [1,

6-13]. Most of these papers discuss the organization and motivation of FOSS

teams and the economics of open source software development. We believe that

the structural reasons that govern the users’ adoption of a FOSS have not been

discussed in detail in the literature [14]. In the following discussion, we focus on

the factors that users need to consider for adoption of FOSS. On purpose, we left

out an obvious factor: lower cost. Although promoted by FOSS advocates as a

major drive for adoption of open source technology, lower cost by itself is not

sufficient for users in most cases. This is verifiable empirically by considering the

low adoption rate of OpenOffice. Thus, we propose the following factors as con-

tributing to the adoption of FOSS.

Degree of modularity. One of the major factors mentioned in favour of open

source adoption is capacity of users to modify a FOSS to suit their needs [15]. In

practice, such adaptability is not easy to achieve since it requires a modular soft-

ware organization. The more a FOSS is modular, the easier it is to adapt it to the

needs of different organizations. Each software product has a periphery to kernel

ratio that constrains the potential for modularization, since the kernel needs a

tightly organized and skilled programming team. An operating system such as

Linux has a well-defined kernel for process control and a periphery consisting of

programs such as device drivers, applications, compilers and network tools. Dif-

ferently, database management systems have a kernel of integrated functions

(parser, querier, scheduler, and optimizer) and a much smaller periphery. A high

periphery to kernel ratio means a more modular software. The more the kernel is

dominant in a software product, the less modular it is, and the less potential con-

tributors it has. One good example is the R suite of statistical tools [16], whose

kernel consists of a small and well-designed library to deal with scientific data.

Developing a new application using R is very simple. Many different researchers

4

have developed a large set of statistical software that makes R very popular

worldwide.

Shared conceptualization. A good conceptual design is a crucial part of any suc-

cessful software project. Faulty designs are a major cause of failures in software

projects [17]. The design problem is even more important for FOSS. If program-

mers scattered in different places are to communicate well, they need to share the

same conceptual view. This conceptual view is difficult to capture in written

documents, and is much easier to achieve when there is a prior common back-

ground. This explains why many successful projects rely on existing designs. We

call this ‘shared conceptualization’ [14]. Again, the R suite of statistical tools is a

good example. R has a simple and well-understood conceptual design, based on

the S-PLUS proprietary product [18]. Their innovative contribution lies not in

their design, but on the analysis functions that scientists develop using these envi-

ronments. The two main conditions for shared conceptualization to happen are:

1. The post-mature perspective [19]: a private company develops a

software product, for which it holds the intellectual property rights. As the prod-

uct becomes popular, its functionality and conceptual model becomes well settled,

and it becomes part of the “public commons”. The popularity and usability of the

software motivates other institutions to develop a public domain equivalent, as in

the case of R.

2. The standards-led perspective [19]: standards consolidate a technol-

ogy and allow compatible solutions from different producers to compete in the

marketplace. An example is the SQL database standard, which has motivated

products such as mySQL and PostgreSQL. Another example is the POSIX stan-

dard for operating systems, which has served as guidance to Linux.

Design and maintenance challenge. Many users and companies use FOSS because

it would be hard for them to design and maintain a proprietary solution. For ex-

ample, consider a hardware company that needs an operating system and has to

choose between building its own or adopting an OSS. Knowing that the Linux

kernel has over 12 million lines of code and works well, the company´s managers

5

have a large incentive of using Linux. Indeed, the high cost of maintaining a pro-

prietary Unix-like operating system is the main reason why IBM, SGI, and HP

switched to Linux. Munga et al [9] point out that IBM has made FOSS a core part

of their business strategy, and there are an estimated 600 programmers working

full-time as part of their Linux team. The same factor explains the adoption of the

Apache web server. Designing and maintaining a reliable and fast web server is

difficult. The Apache HTTP Server today powers nearly 112 million websites

world-wide. Apache´s proven reliability and large user base deters commercial

companies or other OSS developers from developing alternatives. Thus, when an

OSS provides a service that would be hard or costly to replicate, users have a large

motivation for using it, instead of developing their own solutions or using pro-

prietary software.

Code stability and avoidance of forking. Programmers use the word “forking” to

describe the situation when different groups develop incompatible products, start-

ing from the same code. The avoidance of forking and the resulting code stability

is an important factor in FOSS adoption by users. To show the negative impact of

forking, consider the parallel evolution of Linux and FreeBSD. From 1977 to

1995, the Computer Systems Research Group (CSRG) of the University of Cali-

fornia at Berkeley developed a Unix-like operating system, called the Berkeley

Software Distribution (BSD). After the University stopped this activity in 1995,

the code was released as open source and taken up by a community of program-

mers. Differences of opinion among the code developers led to fragmentation of

the BSD-Unix community into FreeBSD, OpenBSD, and NetBSD camps [1]. By

some accounts, the BSD-derived operating systems were more advanced than

Linux in the early 2000s [20]. However, the disputes between the three BSD

communities were damaging to their reputation. By contrast, Linus Torvalds has

always maintained a tight control over the Linux kernel, an attitude that ensured

code stability and user trust. Forking is thus one of the reasons why BSD failed to

reach a wide user base, while Linux emerged as the leader of the open source op-

erating systems [1].

6

Path Dependence and Lock-in Effect. Path dependence is an established property

of technology. Although definitions vary, the idea of path dependence is that the

current status of a technology (e.g., the dominant software at the desktop) has

evolved as a consequence of the initial configuration (e.g., IBM´s selection of Mi-

crosoft for developing the operating system of its PC) [21]. According to Page [22]

path dependence has different causes including increasing returns, self-

reinforcement, positive feedbacks and lock-in. Increasing returns means that the

more a choice of a product is made, the greater its benefits both to the producer

and consumer. Self-reinforcement means that when a costumer makes a choice, he

gets connected to other costumers that encourage that choice to be sustained.

With positive feedbacks, the benefit of making a choice is increased when others

do the same. The “lock-in” effect occurs when a customer is dependent on a single

supplier for products and services and cannot move to another vendor without

large switching costs. The lock-in effect is well-known in the software industry

since the customer may become dependent on proprietary data formats or inter-

faces, and high switching costs might prevent the change to another product [23].

Avoiding the “lock-in” effect has been proposed by some authors as an im-

portant motivation for using open source. According to this view, users of FOSS

would have the capacity to switch between different vendors and thus reduce their

dependence on a single manufacturer. Thus, a Linux user can choose between

hardware from different manufacturers, where an IBM mainframe user is con-

strained in his future choices. However, like all technology products, FOSS is also

affected by path dependence, mostly by increasing returns. When a user chooses

Linux over FreeBSD, he reinforces the notion that Linux is the best choice for a

FOSS operating system. Considering that many FOSS products rely on community

support for helping novice users and producing documentation, path dependence

is very relevant to FOSS. In the long run, increasing returns encourage a single

FOSS solution to be dominant in each market segment. By contrast, the existence

of many Linux distributions harms its expansion at the desktop. Non-technical

users are discouraged by the alternatives and fear for their long-term endurance.

7

We consider that the convergence to a single distribution is a necessary condition

for Linux to reach a significant market share of the desktop users.

Disruptive potential. An important factor in the adoption of a FOSS is its disrup-

tive potential, considered as its capacity to provide a novel functionality that can

have long-term consequences. Such is the case of Linux. Before Linux emerged as

a viable alternative, most Intel-based computers ran Windows, and each major

UNIX workstation builder (such as IBM, DEC, SUN, HP and SGI) had its own

line of CPUs. However, these companies had a hard time competing with Intel, as

the scale of investments each successive line of CPUs increased. Maintaining

Moore´s Law is expensive. So, the availability of a UNIX-like operating system

running on Intel chips caused the demise of non-Intel alternatives such as IRIX

and Tru64 Unix, the transformation of Solaris into a FOSS, and the reduction of

the market for HP-UX and AIX. Even IBM, which still maintains its AIX operat-

ing system, is making substantive investments on Linux [24]. Thus, Linux was a

disruptive technology that ultimately changed the whole UNIX-like scene.

Documentation. Another significant factor that limits FOSS large-scale adoption is

user documentation. Users have different learning processes, and thus it is neces-

sary to produce different types of manual and tutorials to help them. In most cas-

es, producing such documentation is beyond the capacities of FOSS teams. That is

one of the reasons why FOSS is more popular with computer-savvy experts that

with the non-technical users.

Community support. Having a strong support from an established community

helps to decrease the path dependence effect of proprietary software on users. As

an example, the PROJ4 library has an active community that helps to support its

use by different software products.

3. The Current FOSS4G Scene

We now consider how the factors for adoption for FOSS relate to the current

FOSS4G scene, taking as our reference the works of Steiniger and Bocher [2] and

8

Ramsey [4]. Based on these reviews, we can divide the FOSS4G scene into five

clusters:

(a) Java-based visualization and analysis software: programs written mostly in

Java that enable the visualization of spatial data and provide functions for analysis

of such data. They include uDig, gvSIG, KOSMO, and OpenJUMP and its deriva-

tives. These software also provide functions for handling vector data.

(b) C and C++ -based visualization and analysis software: programs for visua-

lization and analysis of spatial data using the C and C++ programming languages.

These include QGIS, TerraView, and MapWindow. As in case (a) above, these

software are capable of handling vector data.

(c) Image and Raster data analysis software: programs for analysis of (mostly)

raster data, such as images and digital terrain models. These include OSSIM,

GRASS, SAGA, SPRING, and ILWIS. GRASS and SPRING also provides signifi-

cant capabilities for working with vector data.

(d) Database interfaces: APIs that provide support for access to object-

relational database systems to handle vector data. The best example is PostGIS

[25]. Other example is the TerraLib library, designed for handling large-scale envi-

ronmental data. It can access PostGIS and other DBMS’s and also allows access

and storage to raster data [26]. Other notable effors include GDMS1 and Hyber-

nate spatial2.

(e) Supporting libraries: these libraries support functions which are needed by

any GIS, and are used by many of the current front-end implementations. They

include GDAL/OGR, PROJ4, GEOS, JTS (Java Topology Suite) and Geotools.

There are many additional differences between the above-mentioned software.

Some support the OGC standards, others are file-based, and the analysis function-

ality varies greatly. In terms of visualization, most provide similar capabilities. For

1
 http://hal.archives-ouvertes.fr/hal-00358740_v1/

2
 http://www.hibernatespatial.org/

9

vector data analysis, no FOSS4G package provides an equivalent quantity of func-

tions as those available in the leading proprietary GIS (ESRI´s ArcGIS). For raster

data analysis, the functionalities of FOSS4G products approach those of proprie-

tary software, although in some niche areas (digital photogrammetry, object-based

image analysis) proprietary software still has the lead.

The lack of accurate surveys makes it difficult to assess the impact of FOSS4G

on the market. We have to rely on indirect assessments, such as the difference in

user attendance in FOSS4G and ESRI´s conferences, and the small number of

large-scale applications that use FOSS4G. Such scant evidence suggests that none

of the available FOSS4G products has reached a significant proportion of desktop

users, which continue to rely on proprietary software. So far, no desktop GIS has

shown potential for breaking the ‘lock-in’ effect which proprietary software prod-

ucts have on users. This is a direct consequence of the fragmentation of the com-

munity. To understand more, we need to consider both the achievements and chal-

lenges to FOSS4G, as follows.

3.1 Achievements of the FOSS4G community

The most important achievement of the community is intangible: FOSS4G exists

and is being used worldwide for real-world applications. Many case studies have

been presented at the FOSS4G Conference and similar venues. These cases show

that the skills required to build a FOSS4G application are similar to those required

to use proprietary software3. In general, the TCO (total cost of ownership) of a

FOSS4G application is significantly less than that of a proprietary application.

Personnel salaries and hardware costs are similar, and software costs are much

reduced.

A large part of the credit for the success of FOSS4G product is due to the

PostGIS project and the activities of the GRASS user community. The GRASS user

community includes users from all parts of the world, that actively participate in

3
 For some metrics on the subject, please see the discussion

http://lists.osgeo.org/pipermail/conference_dev/2010-March/001029.html

10

mailing lists and user conferences4. As for PostGIS, we concur with Ramsey [4]:

“The strength of PostGIS is that it has become the standard spatial database

backend for all the other open source GIS tools.” Indeed, programs such as uDig,

gvSIG, KOSMO, OpenJUMP, and TerraLib rely on PostGIS as their database sup-

port.

PostGIS and the underlying PostgreSQL DBMS have proven capabilities of

support industry-grade applications. Take for example TerraAmazon, Brazil’s na-

tional database for monitoring deforestation in Amazonia. TerraAmazon is based

on TerraLib that in turn uses PostGIS with added support for raster storage in

PostgreSQL [27]. The database currently stores more than 3 million complex

polygons and 600 GB of full resolution satellite images, using the TerraLib py-

ramidal resolution schema.

Another area of achievement is that of application libraries. Products such as

GDAL/OGR, PROJ4 and GEOS are being used by most of the FOSGIS commu-

nity, due to their stability and quality. These libraries are well-designed and solve

important issues in GIS design, namely: interface to data formats (GDAL), carto-

graphic projections (PROJ4) and topological predicates and operations (GEOS

and JTS).

3.2 Challenges to the FOSGIS Community

The authors consider the division between the ‘C/C++’, ‘Java’, and ‘raster’ clus-

ters as the major impediment for the growth of FOSS4G solutions in the market

place. This fragmentation is a good example of the dreaded forking pattern which

keeps users away from FOSS. In an ideal but unlikely situation, if all FOSS4G de-

velopers would agree to use a single environment, the community could build a

system that would surpass the current proprietary software in quality and functio-

nality. As the situation stands, there are too many systems offering similar func-

tions, whereas none has the power to become dominant.

4
 See for example http://gisws.media.osaka-cu.ac.jp/grass04/

11

Modularity. Most desktop GIS are monolithic applications, where the visu-

alization actions are closely tied to the handling of interface events. The design

choices for GUI design and event handling are hard to share across a community

of programmers. There are many incompatible options for GUI design (Qt,

GTK+, SWT, SWING) and there are plausible reasons for choosing any of them.

Once a GUI base library is chosen, the desktop GIS code becomes hard-wired on

that library and is difficult for outsiders to make effective contributions to the

software. Because of the hard-wired links between their interface and the underly-

ing GUI library, desktop GIS applications tend to be monolithic and non-modular.

Leadership. Good programmers are notoriously strong-minded and respect

only those they view as superior to them. As Fitzgerald [11] observes: “to lead an

OSS project really successfully, the leader needs to be a ‘code god’ who inspires

others and whose ability and authority is beyond discussion.” Most of the current

FOSS4G is being developed independently by like-minded teams, who had limited

contact with their peers. While there are recognized programmers in the commu-

nity, there is no established leadership in the sense of Linus Torvalds and Richard

Stallman. The project leaders of the different desktop GIS products have thus

little incentive for merging their activities with those of similar initiatives. The

main gathering of the FOSS4G community (the annual FOSS4G Conference) was

established after most of the desktop GIS projects were already underway. The

FOSS4G Conference serves as an important contact point for members of the

community, but so far it has not promoted any convergence of FOSGIS technol-

ogy. The authors hope that the OSGEO organization (founded in 2006) can act as

a catalyst. In an ideal world, OSGEO could support a large scale communitarian

effort that would produce a FOSS4G product that could outperform today´s pro-

prietary solutions.

Standards and shared conceptualization. Most desktop GIS look similar,

since they share a common paradigm for their interface (that of the proprietary

software ArcView). Most of them also share the OGC standard interfaces for web

services and vector data. However, the OGC effort on GIS standardization is

12

commendable but incomplete. There has been significant progress in OGC for

vector data storage, database query, and web services. However, there are no ma-

ture standards for data analysis, image processing, map algebra, digital terrain

modelling, and spatial statistics5. The lack of shared conceptualization for analysis

and processing functions has led to incompatible products. Each GIS development

team has developed his own implementation of these functions, leading to further

incompatibility between the products. Applications such as GRASS, SAGA,

SPRING, and ILWIS use many different concepts. Indeed, proprietary image

processing software such as ENVI, ERDAS and PCI also have significant differenc-

es. As a result, each software has a slow learning curve which creates a lock-in ef-

fect on its users. By contrast, the spatial statistics community that uses the R soft-

ware [16] has decided to join forces and develop a single product (called R-spatial)

that provides most of the functionality they need [28]. A further gray area con-

cerns storage of raster data in DBMS. Although ORACLE already provides sup-

port for storing raster data in its proprietary products, there is much debate on the

FOSS4G community about the advantages and problems of storing raster data in a

free spatial DBMS such as PostGIS. This is another area which would benefit

from a standard that could be followed by the community.

Code stability and avoidance of forking. The large number of FOSS4G

products indicates that designing a desktop GIS is relatively easy, within the reach

of a small team of programmers. This is bad news. It is too easy to start a new

project, and this reduces the motivation for adoption a solution developed else-

where. Some FOSS4G projects, such as JUMP and GeoTools, have gone through

phases of forking and merging with other projects. This is negative for code stabil-

ity and tends to restrain user adoption. Part of the problem has to do with lan-

guage choice. Currently, most GIS programmers have adopted Java as their pre-

ferred development environment. However, many existing products (such as

GRASS, SPRING, TerraView, ILWIS) have lots of code already developed and

tested using C or C++. This causes an impasse when trying to expand a Java-

5
 Such lack of standards has motivated many developers to come up with new products, such as OGRS

team at IRSTV Nantes (France) and the TerraLib team at INPE (Brazil).

13

based visualisation and vector handling software into a more complete GIS. The

solution here is to develop stable software libraries that could provide all the func-

tionalities of products such as GRASS or SPRING and that could be used by dif-

ferent products. The PostGIS, GDAL, PROJ4 and GEOS libraries are good exam-

ples of code stability and continuous improvement that need to be complemented

and extended.

Innovation. To stay ahead of the market, companies have to innovate con-

tinuously. As Andrew Grove of Intel said, “only the paranoid survive”. The GIS

market is currently full of activities related to mobile devices and to web services.

However, FOSS4G products tend to be conservative and focused on the desktop,

based on the map metaphor. By contrast, the commercial vendors (especially ESRI

and Google) are investing heavily in mobile GIS applications. Considering the

money commercial companies spend on innovation, FOSS4G developers would

need to be united behind a small number of innovative products to be able to

compete.

Disruptive potential. PostGIS is the FOSS4G product with greatest poten-

tial to be a disruptive technology and to change the GIS market. Should PostGIS

evolve to support different types of geospatial data needed by emerging GIS appli-

cations, such as images, DTMSs, geo-sensor data, and location-based services, it

could provide the support FOS GIS needs to provide strong competition to pro-

prietary software. We will return to this issue in the next section. In short, while

PostGIS has a good potential to be an important player in the user GIS market, the

other desktop GIS lack the momentum to become dominant, and the raster data

processing solutions are incompatible and hard to combine. While this split per-

sists, the leading commercial companies continue to innovate and to keep or in-

crease their market share.

14

4 GIS in the 21st Century: What can become of FOSS4G?

The preceding sections tried to show why current there is currently no good can-

didate for a Geo-Linux. While PostGIS has a good momentum to provide the ser-

vices needed by the different types of geospatial applications, there is no dominant

solution in the desktop, nor there are emerging applications for mobile devices

and web services. Does that mean that there will never be a Geo-Linux? As the

baseball manager Yogi Berra said, “The future ain't what it used to be”. If the

FOSS4G community is to design products that reach a significant market share, it

needs to learn the lessons from Linux and Apache. We need products with disrup-

tive potential, not limited to reproducing designs from proprietary products, pro-

viding truly innovative capabilities. In this perspective, this section examines two

areas which have the potential to bring forth disruptive applications: Web services

and data-intensive GIS.

Consider Web services. In the early 2000s, the potential of the Web-

enabled spatial applications became clear to the GIS community. Their reaction

was build software for data visualization and browsing on the Web (such as Map-

Server) and to establish a set of standards, including WCS, WMS and WFS from

the Open Geospatial Consortium (OGC). The abstractions encapsulated in

OGC´s Web standards deal mostly with a non-cooperative environment. This ap-

proach underestimates the Web´s potential for innovation and considers it just a

medium for visualization of remote information. Using OGC´s standards, users

have access to information produced by others, mostly for visualisation. The user

is thus a passive consumer of information produced elsewhere [29]. Using social

networks in the Internet, the FOSS4G community could build collaborative sys-

tems that go beyond the simple OGC abstractions and support cooperation and

interaction. Although there are some exceptions, such as Open Street Map, most

FOSS4G applications are conservative in their use of the Web´s potential.

 The Spatial Web GIS is more and more being dominated by Google Maps

and Google Earth. Google developers come from a different mindset than the

map-centred GIS community. They recognized the value of supplying the base

15

location layer (vectors and images) as a seamless data set, and of providing APIs

for extensibility. The Google Maps API allows programmers to embed Google

Maps in their web pages and to add content to the base layers. The KML format

and the Google Earth API allow the user to add maps, images, routes, and other

spatial documents to Google Earth, thus easing the task of creating a Web GIS

server. Such flexibility and performance comes at a price: users must comply with

the IP restrictions set by Google. From a FOSS4G viewpoint, Google´s potential

for dominance of the Spatial Web is dismaying. Should it happen, the control of

the Spatial Web by a proprietary solution will limit both the development of

FOSS4G and reduce the incentive for sharing data, either voluntary or govern-

ment produced. It is time the FOSS4G community learns the “Google lesson”:

Those that control the data control the future of the Spatial Web. Google Maps

and Google Earth show what can be done when only one company has access to

key spatial data, such as street networks and remote sensing images.

The limitations of RDBMS and SQL for handling geospatial data have been

recognized long ago [30]. Nevertheless, object-relational databases have been

adopted by the GIS community as the primary way to organize collections of spa-

tial data. Using PostGIS or its proprietary alternatives, GIS users have built huge

datasets, each modelled using a different conceptual schema. When these datasets

were created in the early to mid 2000s, the prevailing business model was to have

public data sold on a cost-recovery basis. This business model is changing and na-

tional mapping agencies are moving towards an open access model. In April 2010,

the UK Ordnance Survey launched a service offering free and unrestricted access

to most of its map data. Similarly, the US Geological Survey has released its com-

plete LANDSAT imagery archive. Many other mapping agencies and image pro-

viders have released their datasets or are planning to do so. When achieved, full

open access to spatial data will bring a complete change on the way GIS technol-

ogy is used and will provide a unique opportunity for FOSS4G: the emergence of

data-intensive GIS.

16

We define data-intensive GIS as a software environment capable of han-

dling distributed geospatial data sets, each with its own archival policy. These

datasets include spatial databases in OGC format, WCS, WFS and WMS servers,

and semi-structured data in different formats (flat files, indexed collections, rela-

tional tables). A data-intensive GIS application would be able to use these data sets

in a coherent way combining different sources and making appropriate semantic

inferences whenever needed. A data-intensive GIS would use techniques that go

beyond what the current extensions of SQL allow. For example, such techniques

would allow multiple passes over the same data to compute spatial algorithms, a

task with is cumbersome to perform using SQL queries. They would also combine

different types of spatio-temporal data in a way not possible for SQL and its ex-

tensions.

 Consider a situation where all government-produced census data, streets

and routes, and satellite imagery would be fully accessible on the Web, based on

copyleft licences such as GPL or Creative Commons. The FOSGIS community

could design, build and maintain applications that would handle distributed spa-

tial data. They would use powerful inference techniques to make sense of the data

they collect. These data-intensive GIS application could disrupt the current market

and change the way we deal with geospatial information.

 If the above proposal seems far-fetched, consider that similar techniques

are already available. Again, Google is the leading innovator. Google´s Map-

Reduce technique has shown to be efficient for processing multi-terabyte datasets

in parallel [31]. A Map/Reduce job has two steps. First, a master node splits the

input dataset into independent chunks and passes each of them to a secondary

node for processing. When the master node receives the results, sorts them, and

passes which are processed by worker nodes in a completely parallel manner. The

master node then takes the answers to all the sub-problems and combines them to

answer the problem it was originally trying to solve. Typically both the input and

the output of the job are stored in a file-system. More than 10,000 distinct pro-

grams have been implemented using Map-Reduce at Google, including algorithms

17

for large-scale graph processing, text processing, machine learning, and statistical

machine translation [31]. Even the defendants of RDBMS recognize that there are

processing tasks that are well-suited for Map-Reduce [32]. The Map-Reduce para-

digm is suited for investigation as one of the alternatives to SQL queries for han-

dling geospatial data.

In resume, the emergence of open access policies for geospatial data will

provide an opportunity for the FOSS4G community to develop innovative and

disruptive applications. To succeed, GIS developers will have to overcome a num-

ber of challenges. These include modelling the semantics of spatial concepts, un-

derstanding change in space and time, and developing information extraction

methods for massive data sources [29]. The success of information technologies

such as Google´s shows that these challenges are hard, but not impossible to take

on. Should the FOSS4G community succeed in producing innovative solutions for

data-intensive GIS, it is likely that a Geo-Linux will finally emerge.

5. Concluding Remarks

This paper discusses the current situation of FOSS4G. We recognize that the

FOSS4G community has already achieved relevant results. There are many good

desktop FOSS4G available, which support the basic tasks of retrieval and visuali-

zation. The various OS raster data processing software have lots of functions.

However, FOSS4G products still have a small market share. In this paper, we try

to explain why this happens. Based on the properties of open source software in

general, we argue that there is excessive fragmentation on the FOSS4G scene.

Also, current FOSS4G are not modular enough to support large development

teams. Furthermore, there is a lack of common standards for many important GIS

applications, such as map algebra, spatial statistics and image processing, leading

to similar but incompatible products. More important, no current FOSS4G has a

disruptive potential that could unbalance the market. We also indicate that there

are structural reasons in GIS design that contribute to produce this status quo.

18

 Then, the authors examine two areas that are relevant for the future of

GIS: Web services and data-intensive GIS. We argue that the trend towards open

access geospatial data brings an opportunity for FOSS4G. We could develop dis-

ruptive GIS that could support data-intensive applications, combing data from

diverse sources and allowing the user to overcome semantic barriers. If the

FOSS4G community succeeds in developing such an innovative product, we could

finally have a Geo-Linux. The enormous potential of a dedicated community

would be at last realized.

Acknowledgments

The first author thanks Erwan Bocher and his team at Nantes for organizing the

OGRS 2009 conference and inviting him to deliver a keynote speech, which led to

this paper. The authors also thank the Terralib development team at INPE, espe-

cially Antonio Miguel Monteiro, Gilberto Ribeiro, and Karine Ferreira for many

hours of inspired discussion. Gilberto Camara’s work is partially funded by CNPq

(grant PQ 550250/2005-0) and FAPESP (grant 04/11012-0).

Bibliography

1. Nagy, D., Yassin, A.M., Bhattacherjee, A.: Organizational adoption of open source
software: barriers and remedies. Commun. ACM 53 (2010) 148-151

2. Steiniger, S., Bocher, E.: An Overview on Current Free and Open Source Desktop GIS
Developments. International Journal of Geographic Information Science 23 (2009)
1345-1370

3. Steiniger, S., Hay, G.J.: Free and Open Source Geographic Information Tools for Land-
scape Ecology. Ecological Informatics (2009)

4. Ramsey, P.: The State of Open Source GIS. Refractions Research, Victoria, BC, CA
(2007)

5. Hall, G., Leahy, M. (eds.): Open source approaches in spatial data handling. Springer,
Berlin (2008)

6. O´Reilly, T.: Lesson from Open Source Software Development. Commun. ACM 42
(1999)

7. Benkler, I.: Coase’s Penguin, or, Linux and The Nature of the Firm. Yale Law Journal
112 (2003)

8. Hertel, G., Niedner, S., Hermann, S.: Motivation of software developers in the F/OSS
projects: an Internet-based survey of contributors to the Linux kernel. Research Policy
327 (2003) 1159-1177

19

9. Munga, N., Fogwill, T., Williams, Q.: The adoption of open source software in busi-
ness models: a Red Hat and IBM case study. Proceedings of the 2009 Annual Research
Conference of the South African Institute of Computer Scientists and Information
Technologists. ACM, Vanderbijlpark, Emfuleni, South Africa (2009)

10. Shibuya, B., Tamai, T.: Understanding the process of participating in open source
communities. Proceedings of the 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development. IEEE Computer Society
(2009)

11. Fitzgerald, B.: A Critical Look at Open Source. IEEE Computer 37 (2004) 92-94
12. Mockus, A., Fielding, R., Herbsleb, J.: Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology 11 (2002)

13. Ghosh, R.A., Rudiger Glott, Kreiger, B., Gregario Robles: The Free/Libre and
Open Source Software Survey and Study—FLOSS Final Report. International Institute
of Infonomics, University of Maastricht, Maastricht, The Netherlands (2002)

14. Câmara, G., Fonseca, F.: Information Policies and Open Source Software in De-
veloping Countries. Journal of American Society of Information Science and Technol-
ogy 58 (2007) 121-132

15. Weber, S.: The Success of Open Source. Harvard University Press, Cambridge, MA
(2004)

16. Ihaka, R., Gentleman, R.: R: A Language for Data Analysis and Graphics. Journal
of Computational and Graphical Statistics 5 (1996) 299-314

17. Brooks, F.: No Silver Bullet: Essence and Accidents of Software Engineering. IEEE
Computer 20 (1987) 10-19

18. Chambers, J.M.: Programming with Data. Springer-Verlag, New York, NY (1998)
19. Câmara, G., Onsrud, H.: Open Source GIS Software: Myths and Realities. In:
Esanu, J.M., Uhlir, P.F. (eds.): Open Access and the Public Domain in Digital Data and
Information for Science: Proceedings of an International Symposium. The National
Academies Press, Washington (2004) 127-133

20. Yu, L., Schach, S.R., Chen, K., Heller, G.Z., Offutt, J.: Maintainability of the ker-
nels of open-source operating systems: A comparison of Linux with FreeBSD, NetBSD,
and OpenBSD. Journal of Systems and Software 79 (2006) 807-815

21. David, P.: Path dependence: a foundational concept for historical social science.
Cliometrica 1 (2007) 91-114

22. Page, S.: Path dependence. Quarterly Journal of Political Science 1 (2006) 87-115
23. Ruttan, V.: Technology, Growth and Development. Oxford University Press, New
York (2001)

24. Samuelson, P.: IBM's pragmatic embrace of open source. Commun. ACM 49
(2006) 21-25

25. Santilli, S., Leslie, M., Hodgson, C., Ramsey, P., Lounsbury, J., Blasby, D.: PostGIS
Manual - Version 1.3.2. Refractions Research, Victoria, CA (2007)

26. Câmara, G., Vinhas, L., Ferreira, K., Queiroz, G., Souza, R.C.M., Monteiro,
A.M., Carvalho, M.T., Casanova, M.A., Freitas, U.M.: TerraLib: An open-source GIS
library for large-scale environmental and socio-economic applications. In: Hall, B.,
Leahy, M. (eds.): Open Source Approaches to Spatial Data Handling. Springer, Berlin
(2008) 247-270

27. Freitas, U., Ribeiro, V., Queiroz, G.R., Petinatti, M., Abreu, E.: The Amazon De-
forestation Monitoring System: A Large Environmental Database Developed on Terra-
Lib and PostgreSQL. OSGEO Journal 3 (2007) 70-75

28. Bivand, R., Pebesma, E., Gómez-Rubio, V.: Applied spatial data analysis with R.
Springer Verlag (2008)

20

29. Câmara, G., Vinhas, L., Davis, C., Fonseca, F., Carneiro, T.: Geographical Infor-
mation Engineering in the 21 st Century. In: Navratil, G. (ed.): Research Trends in
Geographic Information Science. Springer, Berlin (2009) 203-218

30. Egenhofer, M.: Why not SQL! International Journal of Geographical Information
Systems 6 (1992) 71-85

31. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun.
ACM 53 (2010) 72-77

32. Stonebraker, M., Abadi, D., DeWitt, D.J., Madden, S., Paulson, E., Pavlo, A.,
Rasin, A.: MapReduce and parallel DBMSs: friends or foes? Commun. ACM 53 (2010)
64-71

