

Rule-based evolution of typed spatiotemporal objects

Olga Oliveira Bittencourt1, Gilberto Câmara1, Lúbia Vinhas1, Joice Seleme Mota1

1Image Processing Division – National Institute for Space Research (INPE)
Avenida dos Astronautas 1758 – 12227-001 – São José dos Campos – SP – Brazil

{olga,gilberto,lubia,joice}@dpi.inpe.br

Abstract. This paper describes a model for spatiotemporal objects whose
location is fixed, but its boundaries and properties change. We refer to these
as evolving objects. We consider cases where the evolution of an object is
dependent of its type and propose a rule-based approach for description of
spatiotemporal object’s evolution. By developing semantics of type-based
evolution, we can keep a detailed history of change. We present an example
where the model is able to represent type conversions and recover the
evolution history of a set of objects. The model allows answers to questions
about causes of change and thus deals with cases not supported by models
based on objects of a unique type.

1. General Information
A major research topic in GIScience is modelling and representation of geographical
objects whose properties change. We distinguish two broad categories of spatiotemporal
objects. The first case concerns those objects that change their position and extent
continuously. We refer to those as moving objects. Moving objects arise, for example,
in location-based systems that deal with spatial and temporal position of planes, storms
or cars. The second type concerns objects that do not move, but whose geometry,
topology and properties change. We refer to those objects as evolving objects. Evolving
objects arise, for example, in urban cadastre and in land change patterns.

 The two categories of spatiotemporal objects need different ways of data
modelling, representation and algorithms. Handling moving objects demands notions
such as trajectory (Güting et al., 2000), plus specialized query methods (Sistla et al.,
1997) and indexing techniques (Šaltenis et al., 2000). The widespread availability of
location-based systems motivated advances in moving objects databases (Erwig and
Schneider, 2002) (Güting and Schneider, 2005). By contrast, handling evolving objects
requires tracking the changes that occurred during an object’s lifetime, such as creation,
splitting and merging (Hornsby and Egenhofer, 2000; Medak, 2001).

 One recent technique for handling spatiotemporal objects is event-based
calculus (Worboys, 2005; Worboys and Hornsby 2004; Vidal and Rodriguez 2005).
Event-based calculus captures the semantics of spatiotemporal objects by specialized
events that are external to the objects themselves. Each application is associated to a
specialized set of events. For example, the semantics of traffic objects uses events such
as departure, arrival, or unexpected destination (Hornsby and Cole, 2007). Event-based
techniques have proven useful in applications such as traffic models.

 In this paper, we deal with evolving objects. We deal with cases where the
simple rules of merging and splitting are not enough to describe their evolution. These

situations arise when objects are defined not only by their shape and properties, but also
by their type. Consider the case of riverbanks. Definition of what is ‘the river’ and what
is ‘the land’ changes over the seasons. When a river expands during the wet season, the
part of the land that is flooded will be split and merged with the river. The object that
matches the flooded area will change its type and properties. In the dry season, this
object may become land once again. In this evolution, expansions and contractions
produce junctions and splitting which are type-dependent. In this and similar cases,
recording the history of changes needs keeping track of type-dependent cases. This
requires a higher-level of semantics above that of the basic operations of creation,
splitting and merging. We shall refer to those objects as typed evolving objects. This
raises the question we explore in this paper: “How can we deal with spatiotemporal
objects whose evolution is type-dependent?”

 This paper proposes a rule-based approach for description of object’s evolution.
The rules arise from knowledge about the application domain. They provide a higher-
level semantics layer that uses low-level operations and deals with type dependency.
By developing semantics of type-based evolution, we can keep a detailed history of
changes. Then, we can recover the evolution history of a set of objects and answer
important questions about the causes of changes. Our proposal involves defining a set of
object types and a set of functions applicable on those types. This leads to an algebraic
formulation, which can be implemented easily in a functional language or translated
into an imperative language or a specialized query processor.

 The rule-based evolution proposed in this paper has some similarities with the
event-based calculus. In both cases, we describe changes in objects by a set of
occurrences. The main difference is that rule-based evolution uses functions, which are
more general than events. An event can be modelled as a function, but there are some
functions that are needed to describe an object’s evolution which are not occurrents. For
example, the function history provides a description of the changes in an object.
Therefore, the function-based approach can be seen as a generalization of the event-
based calculus to include occurrents (modelled as events) and other types of operations.

 This paper is organized as follows. In section 2, we present the idea of rule-
based algebras for describing evolution of spatiotemporal objects, and review previous
work on the subject. In section 3, we present the operations defined for evolving
objects. In section 4, we present a case study on using rule-based evolution. In section
5, we discuss how to implement the proposal. In section 6 we present some conclusions
and future work.

2. Rule-based Evolution of Spatiotemporal Objects and its Relation to
Previous Work
Pelekis et al. (2004) and Roddick et al. (2004) review the different types of
spatiotemporal data models proposed in the literature. They point out the differences
between models that describe moving objects and those focused on object lifelines.
Moving objects are the ones whose position and extent change continuously. Güting et
al. (2003) and Güting and Schneider (2005) propose an algebra for moving objects,
composed by a set of spatiotemporal data types, axioms and their operations. Algebraic
data types provide a conceptually clean foundation for representation and querying of
moving objects (Güting et al., 2003). The specific data types defined to handle moving

objects are moving points (objects where only the position in space is relevant) and
moving regions (objects where the position and the time-dependent extent are relevant).
This algebra was implemented using SECONDO (Güting et al., 2004), an extensible
and modular DBMS environment created to support development of algebras. The set of
data types and operations can answer questions such as: “Given the trajectories of
snowstorms and aeroplane flights, which flights went through a snowstorm?”.

 A second area of research concerns object lifelines. These works focus on
describing the history of incremental changes in the life of an object. This happens in
applications such as urban cadastre, where parcels are created, merged, split and wiped
out. To keep track of an object’s history, all changes need to be modelled and recorded.
Hornsby and Egenhofer (2000) stress the need to preserve an object’s identity as it
changes its geometry, topology, and attributes in time. This view is also supported by
Grenon and Smith (2003). Medak (2001) developed an algebra to model object lifelines.
Medak’s algebra provides a set of basic operations, which are a foundation for more
specific applications. The literature on object lifelines uses three basic ideas: identity,
life, and genealogy. Identity is the characteristic that distinguishes each object during all
its life. Life is the time period from the object’s creation until its elimination. Genealogy
implies managing the changes that an object has during its life. Medak (2001) and
Hornsby and Egenhofer (2000) propose the use of ideas such as creation, destruction,
merging, splitting, death and reincarnation to record the history of the objects,
following the changes and keeping its identity.

 Our paper focuses on object lifelines. The current work on object lifelines
focuses on objects of the same type and the usual examples involve parcels and
counties. For more complex cases, we need to consider operations involving objects of
different types, which arise in many real-life applications. Consider the question “when
does a tropical storm become a hurricane?” To answer this question, we need to
consider more than the trajectory of the storm. There are many conditions that
determine how tropical storm becomes a hurricane. They include the storm’s wind-
force, the sea surface temperature and the trajectory. These conditions need to be fed
into a set of rules that will eventually convert an object of type ‘tropical storm’ to an
object of type ‘hurricane’.

 As a second example, consider the history of Bangladesh during the last 800
years. Islam was introduced to Bengal in the XII century. By the XVI century, the
Mughal Empire controlled the area around the Bay of Bengal. The British gained
control of Bengal in 1757. When India was partitioned in 1947, Bengal was split along
religious lines, with the western part going to India and the eastern part joining Pakistan
as a province called ‘East Pakistan’. The people from Bangladesh gained their
independence from Pakistan in 1971 (Wikipedia, 2007). Thus, the region changed their
status many times during the last 800 years. A history of the region that would consider
the Islam culture as its building block would need to account for the various status
changes. Consider the Islamic area around the Bay of Bengal as a spatiotemporal object.
Its status changed from ‘part of an empire’ to ‘part of a province of an empire’ and then
to ‘ province of an independent country’ and finally to ‘independent country’.

 These examples lead us to consider how to enrich our models of spatiotemporal
objects to capture the complexity of such changes. They lead us to propose the idea of
typed spatiotemporal objects. Our view of types comes from Computer Science, where

types are tools for expressing abstractions in a computer language (Cardelli and
Wegner, 1985). On a theoretical level, a type is a set of elements in a mathematical
domain that satisfy certain restrictions. A typed spatiotemporal object is an object
whose evolution is subject to constraints that are specific to its type. Thus, objects of
type ‘independent country’ will have different rules for evolution than those of type
‘province’. Using types to model the evolution, we can gather richer models for
capturing the semantics of evolving objects.

3. Operations for Evolving Objects
To carry out the evolution in a computer model we defined specific operations to
evolving objects. This section informally presents these operations with some
definitions and conventions we adopted:

1. Data types, functions and instances use monospaced font. Types are in
boldface, their instances and reserved words are shown in normal font.
For lists associated to types, we use list_typename.

2. Type definitions follow usual conventions for abstract data types. Types have an
externally viewable set of functions and a set of axioms that are applicable to
these functions.

3. Each function has a signature, given a
 function: typeA × typeB out_type.

typeA and typeB are the types of the input parameters and out_type is the
type of the output.

4. We describe each rule in pseudocode. For attribution, we use ‘:=’. ‘As’, ‘in’
and ‘with’ are reserved words. For sets of objects, we use ‘[]’. For groups, we
use ‘{}’ and the separator is ‘;’.

 We defined the functions create, split, merge, evolve, setType, getType,
getInstance and remove in our experiments. Table 1 presents an informal set of
signatures and explanations for these evolving operations.

Table 1. Informal definition of evolving operations

Function Signature

create
timestamp x type ST_object

Given a specific type and its timestamp, create an instance of a
spatiotemporal object of the same type.

getInstance
ST_object x timestamp S_object

Recover the static instance of the spatiotemporal object, given a
timestamp.

setType
ST_object x type ST_object

Set the type of the spatiotemporal object.

getType
ST_object x timestamp type

Given a timestamp, retrieve the type of the spatiotemporal object.

merge

ST_object x ST_object x timestamp
ST_object

Given two evolving objects, merge them produce an object based
on the evolution rules.

split

ST_object x ST_object x timestamp

ST_object x ST_object

Given two evolving objects, split them produce two objects based
on the evolution rules.

remove
ST_object null

Removes the spatiotemporal object of the model.

 We created the evolve function to allows grouping evolutions according with
similarity ideas or specific actions significant to user. These evolutions can be further
recognized during the history recovery. Its signature is:
evolve identifier timestamp { functions }

 Further, we defined a parametric function to recover the history of objects. This
function allows defining richer and relevant forms of recovering information inside the
history of objects. It is more than just recovering the static operations. Our distinct
signatures give us kinds of looking the history by different points of view, recovering
distinct information and combining it with relevant information related to
spatiotemporal object’s evolution. The basic signature of history is:
history ident_option form_option time_option [ST_object]

 Each parameter option and their combinations, presented in Table 2, allow
recovering different aspects of evolving object history.

Table 2. Parametric function history

Parameter Signature

ident_

option

ST_object [ST_object]

Recover the evolution of a spatiotemporal object using its identifier.
This evolution consists in a set of evolving objects with their respective
timestamps.

 Alias [ST_object]

Recover the evolution of a spatiotemporal object using the alias defined
to the spatiotemporal object.

complete [ST_object]

Recover the complete history of the spatiotemporal object, including all
evolutions that happened with any split or merge of this object. The idea
is recovering the tree with the original object on the root and all
subtrees with its evolutions.

form_

option
reverse [ST_object]

Recover the reverse history of the object with the focus on the last
evolution to its beginning.

from timestamp [ST_object]

Fix the early timestamp to recover the history. The result will contain
information until the last evolution of the spatiotemporal object.

until timestamp [ST_object]

Fix the end timestamp to recover the history. The result will contain
information from the spatiotemporal object creation until the evolution
before or equal the mentioned timestamp.

time_
option

from timestamp until timestamp [ST_object]

Fix the early and end timestamp to recover the history of the
spatiotemporal object.

4. A Simple Example of Rule-based evolution
To evolve our objects, we used a rule-based evolution approach. The idea is to derive a
set of rules from domain knowledge. These rules will act as the constraints on the
specific types of spatiotemporal objects. In a general case, we propose a series of steps
for using the concepts of typed spatiotemporal objects and rule-based evolution for
modelling a real-life case, as outlined below:

1. Use a domain expert to elicit the different types of objects needed to model
the problem.

2. Use a domain expert to set up the rules that govern the evolution of the
different types of objects.

3. Express the object types and the evolution rules in a computer model.
Preferably, develop a set of algebraic data types and operations on them.

4. Use the computer model to capture the history of the study area.

 In the next subsection, we present a case study where the idea of rule-based
evolution was applied to model the evolution of Bangladesh case.

4.1. The Bangladesh case

This section exemplifies the rule-based evolution of spatiotemporal objects. We present
a case study focusing on the history of Bangladesh (illustrated in Figure 1) during the
last 800 years. The history of the region that would consider the Islam culture as its
building block would need to account for the various status changes. It is on that
viewpoint that our example focuses on.

Figure 1. Illustration of Bangladesh in South Asia.

 Consider the Islamic area around the Bay of Bengal as a spatiotemporal object.
Bangladesh status changed from ‘part of an empire’ to ‘part of a province of an empire’
and then to ‘province of an independent country’ and finally to an ‘independent
country’. A model to account for its evolution would have rules, rather defined by a
domain expert, such as the following:

 R1. Splitting a province produces two provinces.

 R2. Splitting a province of one Empire produces one province and one Empire
without that province.

 R3. Splitting a province of one Country produces one province and one Country
without that province.

 R4. Merging two provinces produces one province.

 R5. Merging a province and a country produces a Country with a new region
and one region that is part f the Country.

 R6. Merging a province and an Empire produces an Empire with a new region
and one region that is part f the Empire.

 Table 3 summarizes the main information captured on these rules. It presents
rules, functions, input types of evolving objects and output types of resulting evolving
objects.

Table 3. Summary of Bangladesh case rules

Input Types Output Types
Rule Function

Status Status Status Status

Province_
split split Province Province Province

Province_
independence split Province part

of an Empire Empire Province Empire

Province_
independence split Province part

of a country Country Province Country

Province_
conquest merge Province Province Province

Country_
conquest merge Country Province Country Province part

of a Country

Empire_
conquest merge Empire Province Empire Province part

of an Empire

4.2. Modelling the evolution

Our spatiotemporal objects evolve as merging and splitting as the result of conquests
and independence events. The set of rules defined by the domain expert govern the
evolution of these events. The rules are expressed in a computer model through the
combination of input types of evolving objects and the possible functions defining the
output evolving objects. The evolution of rules is expressed by the operations on them.

 To exemplify the evolutions and to be able of querying the history by different
viewpoints, we defined some operations that describe the main events occurred.
Consider the indications of area_x, for example area_1, the spatial object. The model
allows answer questions such as: “How regions evolve? What happens when two
objects merge?” and understand how changes occurred in Bangladesh.

1. Islam was introduced to Bengal in the XII century.
create area_1 as “Ancient Asia” with status :=
“Empire”;

create area_2 as “Bay_of_Bengal”;

create area_3 as “Bengal” in “XII century”;

setType Bengal with religion := “Islam”;

merge “Ancient Asia” “Bengal”;

 The evolution on merge operation will follow the rules for merge and split
operations. It will detect that the applied rule is ‘Empire_conquest’ of ‘Ancient Asia’
Empire that evolves Bengal to ‘Province part of an Empire’.

2. By the XVI century, the Mughal Empire controlled the area around the Bay of
Bengal.

 create area_4 as “Mughal Empire” with status :=
“Empire”;

evolve Mughal_Empire_control_Bengal in “XVI century”

{

split “Ancient Asia” Bengal;
merge “Mughal Empire” Bengal;

};

 This step contains two different evolutions. The first is a
‘Province_independence’ where Bengal is a Province that is not anymore part of
‘Ancient Asia’ and ‘Ancient Asia’ is an Empire without Bengal Province. The second
evolution is an ‘Empire_conquest’ where Bengal is ‘Province part of an Empire’,
‘Mughal Empire’ in this case.

 This step also presents the option of grouping evolutions in a meaningful event
defined by ‘Mughal_Empire_control_Bengal that favours the understanding of
evolutions. Other steps in this example continue representing changes on the area.

3. The British gained control of Bengal in 1757.
 create area_5 as “United Kingdom” with status :=
“Empire”;

evolve British_control_of_Bengal in 1757

{

split “Mughal Empire” Bengal;

merge “United Kingdom” Bengal;

};

4. When India was split in 1947, Bengal was split along religious lines, with the
western part going to India and the eastern part joining Pakistan as a province
called ‘East Pakistan’.

 create area_6 as “Pakistan” with status := “Country”;

 create area_7 as “India” with status := “Country”;

evolve divisao_provincia_Bengala in 1947

 {

split “Britain” Bengala;

split Bengala area_4 as West_Bengal and
East_Pakistan;

 merge East_Pakistan Pakistan;

merge West_Bengal India;

};

5. The people from Bangladesh gained their independence from Pakistan in 1971.
evolve Bangladesh_independence in 1971

 {

split Pakistan East_Pakistan;

create East_Pakistan as Bangladesh with status :=
“country”;

};

4.3. Recovering the history

To exemplify some uses of history function, tables 4 and 5 show the result of two
history queries. These tables include the most relevant information about the model: (a)
the timestamp; (b) operations applied on the spatiotemporal objects; (c) the optional
alias on that timestamp; (d) the spatiotemporal object’s type; (e) the typed evolution of
the spatiotemporal object on that timestamp.

 Table 4 shows the answer to the query ‘history Bangladesh from
1971’. This query focuses on changes in the object since its creation in 1971. Then, the
only result that this query will recover is the creation of the object in 1971.

Table 4. Result of ‘history Bangladesh from 1971’

Timestamp Operation Alias Status Type Evolution

1971 Creation Bangladesh Country Bangladesh_independence

 Table 5 shows a summary of the answer to the query ‘history
Bangladesh reverse’. This query specifies the interest in all changes that
occurred with the object Bangladesh and its predecessors. The query specifies the
reverse order, then, the user focuses on looking from the last Bangladesh evolutions
until the beginning of the generation.

Table 5. Answers to ‘history Bangladesh reverse’

Timestamp Operation Alias / Status Type Evolution

1971 Split Pakistan; creation; Bangladesh / Country Bangladesh_inde
pendence

1947 Split Britain; merge
Pakistan;

East_Pakistan / Part of a
Country

divisao_provincia
_Bengala

1715 Split Mughal Empire;
merge with Britain;

Bengal / Province part of
a Province of an Empire

British_control_o
f_Bengal

XVI
century

Split Ancient Asia; merge
Mughal Empire;

Bengal / Province part of
an Empire

Mughal_Empire_
control_Bengal

XII
century

Creation; Type religion: =
Islam; Merge Ancient Asia;

Bengal / Province part of
an Empire

Nondefined

 With this approach and the operations we are able of easily answering questions
such as “How do the Bengal region of XVI century evolved?”, “What happened when
the Bengal region was split?” or “What happened when East_Pakistan merged with
Pakistan?”. These questions show some new possibilities that our approach allows to
model and query data.

5. Implementation Road Map
This section presents an implementation road map to the rule based evolution approach.
The first step is to create evolution rules composed by: 1) detecting the objects of
interest; 2) analysis of evolution cases by the specialist and; 3) development of a set of
evolution rules. Through the set of rules it is possible to define the second step:
proposing and implementing a group of operations to characterize and evolve the
spatiotemporal objects.

 The set of evolution rules leads to an algebraic formulation, which can be easily
implemented in a functional language or translated into an imperative language or a
specialized query processor. From an implementation point of view, the rule-based
evolution of typed spatiotemporal objects is possible and simple.

 Currently, we are in the second step on the development of a model to land use
changes in the Amazon region (Escada et al., 1997, INPE, 2005). This is a complex
scenario and future work will present this complete model based on the idea of
evolution rules. The experiments are being performed in a prototype developed in the
environment TerraHS (Costa et al., 2006). TerraHS integrates the functional
programming and the spatial databases for GIS application development. We are using
TerraHS because it allows prototyping algebras and we are implementing our evolving
objects and functions in an easy and complete manner.

6. Conclusions
In this paper, we deal with evolving objects. We are interested in cases where the simple
rules of merging and splitting are not enough to describe their evolution and the
evolution of objects is dependent of their types.

 This paper proposes the concept of typed spatiotemporal objects and the use of
rule-based evolution approach to capture a detailed history of changes of spatiotemporal
objects. Rule-based evolution works best when the domain knowledge is well known,
and we are able to assign a meaningful type system to the objects. Our proposal
involves defining a set of object types and a set of functions applicable on those types.
Then, we can recover the evolution history of a set of objects, answer important
questions about causes of change and thus deals with cases not supported by models
based on objects of a unique type.

 Future works will be realized on other areas and scenarios. Currently, we are
interested in studying the evolution of land use changes in the Amazon region. For next
steps, an algebra of evolving objects will be developed as well as new operations to
advance our model and to characterize other problems.

Acknowlegment
Gilberto Camara’s work is partly funded by CNPq (grants PQ – 300557/19996-5 and
550250/2005-0) and FAPESP (grant 04/11012-0). Olga Oliveira Bittencourt’s work is
funded by CAPES.

References
CARDELLI, L. and WEGNER, P., 1985, On Understanding Type, Data Abstraction, and

Polymorphism. ACM Computing Surveys, 17, 471-552.

COSTA, S. S., CÂMARA, G., and PALOMO, D., 2006, TerraHS: Integration of Functional
Programming and Spatial Databases for GIS Application Development. In:
Advances in Geoinformatics, VII Brazilian Symposium in Geoinformatics,
GeoInfo2006, Davis, C. A. Jr. and Monteiro, A. M., eds. (Campos do Jordão,
Brazil: Springer), 24, 127-148.

ERWIG, M. and SCHNEIDER, M., 2002, Spatio-Temporal Predicates. IEEE Transactions
on Knowledge and Data Engineering, 14, 881-901.

ESCADA, M. I. S., MONTEIRO, A. M., AGUIAR, A. P., CARNEIRO, T. and CAMARA, G.,
2005, Análise de padrões e processos de ocupação para a construção de modelos
na Amazônia (Analysis of land use patterns and processes for the construction of
models in Amazonia: Experiments in Rondonia). In XII Brazilian Symposium on
Remote Sensing, (Goiania, Brazil: SELPER), 2973-2983.

GRENON, P. and SMITH, B., 2003, SNAP and SPAN: Towards Dynamic Spatial
Ontology. Spatial Cognition & Computation, 4, 69-104.

GÜTING, R. H., BEHR, T. and ALMEIDA, V., 2004, SECONDO: An Extensible DBMS
Architecture and Prototype. Report (Hagen: Fernuniversität Hagen).

GÜTING, R. H., BOHLEN, M. H., ERWIG, M., JENSEN, C. S., LORENTZOS, N., NARDELLI,
E., SCHNEIDER, M. and VIQUEIRA, J. R. R., 2003, Spatio-temporal Models and
Languages: An Approach Based on Data Types. In Spatio-Temporal Databases,
Koubarakis, M., ed., (Berlin: Springer).

GÜTING, R. H., BÖHLEN, M. H., ERWIG, M., JENSEN, C. S., LORENTZOS, N. A.,
SCHNEIDER, M. and VAZIRGIANNIS, M., 2000, A Foundation for Representing
and Querying Moving Objects. ACM Transactions of Database Systems, 25.

GÜTING, R. H. and SCHNEIDER, M., 2005, Moving Objects Databases. (New York:
Morgan Kaufmann).

HORNSBY, K. S. and EGENHOFER, M., 2000, Identity-Based Change: A Foundation for
Spatio-Temporal Knowledge Representation. International Journal of
Geographical Information Science, 14, 207-224.

HORNSBY, K. S. and COLE, S., 2007, Modeling Moving Geospatial Objects from an
Event-based Perspective. Transactions in GIS, 11(4), 555-573.

INPE, 2005, Monitoramento da Floresta Amazônica Brasileira por Satélite (Monitoring
the Brazilian Amazon Forest by Satellite). Report (São José dos Campos: INPE).

http://www.dpi.inpe.br/gilberto/papers/costa_geoinfo2006.pdf
http://www.dpi.inpe.br/gilberto/papers/costa_geoinfo2006.pdf

MEDAK, D., 2001, Lifestyles. In Life and Motion of Socio-Economic Units. ESF Series,
A. U. Frank, Raper, J., & Cheylan, J.-P., ed., (London: Taylor & Francis).

PELEKIS, N., THEODOULIDIS, B., KOPANAKIS, I. and THEODORIDIS, Y., 2004, Literature
review of spatio-temporal database models. The Knowledge Engineering
Review, 19, 235-274.

RODDICK, J., EGENHOFER, M. and HOEL, E., 2004, Spatial, Temporal and
Spatiotemporal Databases Hot Issues and Directions for PhD Research.
SIGMOD '93, SIGMOD Record, 33, 126-131.

ŠALTENIS, S., JENSEN, C. S., LEUTENEGGER, S. T. and LOPEZ, M. A., 2000, Indexing the
positions of continuously moving objects. ACM SIGMOD Record, 29, 331-342.

SISTLA, A. P., WOLFSON, O., CHAMBERLAIN, S. and DAO, S., 1997, Modeling and
Querying Moving Objects. Proceedings of the Thirteenth International
Conference on Data Engineering, 422-432.

VIDAL, C. and RODRIGUEZ, A., 2005, A Logical Approach for Modeling Spatio-
temporal Objects. 2nd International Workshop on Conceptual Modeling for
Geographic Information Systems, CoMoGIS 2005, 218-227.

WIKIPEDIA, 2007. Wikipedia, The Free Encyclopedia. Retrieved in October, from:
http://en.wikipedia.org/wiki/Bangladesh.

WORBOYS, M. F., 2005, Event-oriented approaches to geographic phenomena.
International Journal of Geographical Information Science, 19(1), 1-28.

WORBOYS, M. F. and HORNSBY, K. S., 2004, From Objects to Events: GEM, the
Geospatial Event Model. In: Third International Conference, GIScience 2004,
Egenhofer, M. J., Freksa, C. and Miller, H. J. eds., (Adelphi, USA: Springer),
327-343.

http://osdir.com/ml/db.dbworld/2005-05/msg00148.html
http://www.informatik.uni-trier.de/~ley/db/journals/gis/gis19.html#Worboys05

	1. General Information
	2. Rule-based Evolution of Spatiotemporal Objects and its Relation to Previous Work
	3. Operations for Evolving Objects
	
	4. A Simple Example of Rule-based evolution
	4.1. The Bangladesh case
	4.2. Modelling the evolution
	4.3. Recovering the history
	5. Implementation Road Map
	6. Conclusions
	Acknowlegment
	References

