

Design Patterns in GIS Development: The Terralib Experience

�������� 	
��� ��		�� �� 	��� � ���		��
�� � 	
���� 	�� � ���� 	� �	�� � � ��	

JOÃO ARGEMIRO PAIVA1, ANTONIO MIGUEL VIEIRA MONTEIRO1,

MARCELO TILIO DE CARVALHO2, BAUDOUIN RAOULT3
��� ���	��� �!!"#�	� "$"!"�#�	� �%"�#�&	�#!%"%'%�	(��	�)� �	��!��� *	+�� ��,�		�-�	.�!/	0�!	
��)�!�	���1"&	

{lubia, gilberto, cartaxo, miro, miguel}@dpi.inpe.br	
2
��)'%��	���)*" !	���')	+��
��3,�	
�%*�&" 	� #"$��!"%4	�(�"�	0�	.�#�"���	���1"&	

tilio@tecgraf.puc-rio.br	
3European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, UK

baudouin.raoult@ecmwf.int

5!%�� %5!%�� %5!%�� %5!%�� %6	� *"!)�)��	0"! '!!�!	%*�	'!�	�(70�!"�#)�%%��#!8	"#	%*�	 �# �)%"�#	�#0	"�)&�� �#%�%"�#	�(�#	�)�#	
!�'� �	 ���	 &"5���4	 �&&�0	 � �����"56	 � *�	 9 ��:	 "#0" �%�!	 *�9 	 !�� �	 9 �&&;:#�9#	 0�!"�#)�%%��#!	 +!' *	 �!	
�"#�&�%�#�	
��)�!"%�	�#0	3� %��4,	 �#	5�	�((� %"$�&4	'!�0	"#	%*�	0�$�&�)� �#%	�(���	�))&" �%"�#!6	

< �49 ��0!< �49 ��0!< �49 ��0!< �49 ��0!6	����	!�(%9���	�#�"#���"#��	0�!"�#)�%%��#!�	!)�%"�&	"#(��� �%"�#	�#�"#���"#�6	

1 Introduction
This work discusses the use of the concepts of “Design
Patterns” in the context of the development of GIS
systems. The authors argue that these ideas are well suited
to capture the complexity of the components of a GIS and
that software developers in the spatial information
engineering area can benefit substantially by using
patterns in their development.

A design pattern can be defined as a common
solution to recurring problems in software design. It
encapsulates the problem, its context and a proposed
solution including classes and their rôles and
collaborations. Patterns help create a shared language for
communicating insight and experience about these
problems and their solutions (Appleton, 2000).

Following the wide acceptance of the book Design
Patterns: Elements of Reusable Object-Oriented Software
(Gamma, Helm et al., 1995), the concept of patterns has
emerged as one of most important areas of software
engineering. The aim of the patterns movement is to create
a body of literature to help software developers share
experience and code. The basic motivation is that all
software projects face a large number of common
problems, which are usually solved by the programmer on
his own. The programmer may be unaware that an
experienced colleague, who has produced a simple and
elegant solution, has solved a very similar problem before.

Important books dealing with patterns include Gamma et
al (1995), Buschmann et al (1996) and Vlissides (1998).

GIS software development has much to benefit from
the use of design patterns. To begin with, the GIS
community lacks open source software tools that would
allow research results and academic prototypes to be
widely shared. Since GIS is an applied science area,
academic ideas need to be experienced and tested in real-
life applications. Unfortunately, GIS software
development in academic groups has been very limited,
given the complexities of spatial data structures and
algorithms and the fact that most GIS software
development has taken place in private companies. By
contrast, the computer science community has benefited
enormously from the availability of software tools such as
the Linux operating system, the GNU compilers and the
mySQL and PostgreSQL data base management systems.
In other words, the evolution of Geographical Information
Science needs a similar evolution in Geographical
Information Engineering.

We consider that Design Patterns can provide a
common ground for GIS academic software development,
promoting reuse and sharing experience. Of particular
importance in the case of GIS is the combination of the
idea of Design Patterns with the emerging paradigm of
Generic Programming (Austern, 1998). This paradigm
relies on a programming language’s support for
parameterised classes (templates), and has been made
increasingly popular in the C++ environment since the

adoption of the STL library as part of the ISO C++
standard. By expressing the patterns as templates and
deriving specific classes by inheritance, pattern reuse is
substantially enhanced.

We will illustrate the use of design patterns in GIS in
the context of the development of the TerraLib open
source library. Earlier works (Gordillo, Balaguer et al.,
1997; Lisboa and Iochpe, 1999) have discussed the use of
design patterns in the derivation of the architecture of a
GIS.

Lisboa and Iochpe (1999) propose GeoFrame, a
conceptual framework for GIS design, based on a generic
data model of spatial data types. The authors propose that
specific models for GIS applications can be reduced to a
number of typical analysis patterns. Their proposal is
therefore directed towards conceptual data modelling of a
GIS and not towards the actual implementation of a GIS
system.

Gordillo et al (1997) go a step further, by suggesting
that some new types of design patterns specific to GIS
environments. Particularly interesting is their proposals of
the Role and the Appearance pattern. The Role pattern
allows the same geo-object to have different functions in a
GIS application, and to be grouped in different layers
according to a query operation. The Appearance pattern
aim at distinguishing between the object in a spatial
database and its visual presentation.

Whilst the emphasis of these authors has been in
proposing patterns that could be use in the process of GIS
design, our work emphasizes the actual use of patterns in
GIS software development. Since our aim is developing a
general-purpose GIS component library, our primary aims
are code reuse, readability and clarity of expression.
Therefore, our examples are concentrated on the use of
patterns on a real-life application.

2 General Description of TerraLib
TerraLib is a GIS component library being developed by
INPE (National Institute for Space Research),
TECGRAF/PUC-RIO (Computer Graphics Group at the
Catholic University in Rio de Janeiro) and PRODABEL
(Informatics Corporation for the City of Belo Horizonte),
available from the Internet as open source. Its main aim is
to enable the development of a new generation of GIS
applications, based on the technological advances on
spatial databases (Câmara, Souza et al., 2000). The basic
idea behind TerraLib is that the current and expected
advances in database technology will enable, in the next
few years, the complete integration of spatial data types in
data base management systems (DBMS). This integration
is bound to change completely the development of GIS

technology, enabling a transition from the monolithic
systems of today (that contain hundreds of functions) to a
generation of spatial information appliances. The
transition from file-based GIS systems to spatial databases
will enable different applications to use the same data, as
also is being proposed by the OpenGIS consortium.

 On a practical side, TerraLib enables quick
development of custom-built applications using spatial
databases. Currently, such capabilities are only available
by means of proprietary solutions such as COM
components available in products such as MapObjects,
GeoMedia and ARC/INFO-8. These components are
based on transitional technologies that either duplicates in
memory the data available in the DBMS, or uses
additional access mechanisms such as ArcSDE. TerraLib
aims to improve on such capabilities, by providing direct
access to a spatial database, without unnecessary
middleware.

As a research tool, TerraLib aims to enable the
development of GIS prototypes that include new concepts
such as spatio-temporal data models (Hornsby and
Egenhofer, 2000), geographical ontologies (Fonseca and
Egenhofer, 1999) and advanced spatial analysis techniques
(Heuvelink, 1998).

The library development has been divided in three
components:
• kernel: composed of classes for storing geometries and

attributes in an object-relational DBMS, such as
ORACLE and PostgreSQL, cartographic projections,
topological and directional operators and spatio-
temporal models. Kernel maintenance and upgrade is
the responsibility of the project core team, as typical
for other free software projects.

• functions: algorithms that use the kernel basic
structures, including spatial analysis, query and
simulation languages, and data conversion procedures.
Again, maintenance and upgrade is the responsibility
of the project core team, but it is expected that new
functions developed by external collaborators will be
incorporated.

• contrib: applications built by users of TerraLib,
including external authors, who are responsible for
their maintenance.

3 Design Patterns in TerraLib
In the next sections, we present code excerpts from actual
TerraLib classes, which have been designed using the
concepts of design patterns. We have chosen to discuss the
real C++ code, rather than generic diagrams, since it

provides a better understanding of the rationale behind our
choices.

In order to support reuse of patterns in Terralib, one
of our basic ideas was to combine the notions of generic
programming (templates) with object-oriented
programming (inheritance). The idea is to define a design
pattern as a template and use this pattern in two steps.
First, a base class is defined as an instantiation of this
template and then the desired class can be defined as a
specialisation of this base class. Consider the following
code extract:

// generic pattern

template class<T>
class Pattern<T> {
// ...

}

// pattern applied to a specific class

class Example: public Pattern<Example> {
// ...

}

What’s happening here? The new class Example
has been defined as inheriting from an instantiation of a
template, where the instantiated type is the class itself.
This odd-looking derivation is in fact quite logical, since
we want the new class to have the same behaviour as the
pattern. This type of combination is discussed in Coplien
(1996), who describes different examples of its use and
considers this combination of templates with inheritance
as a very powerful way of promoting code reuse.

4 Singletons and Co-ordinate Precision
A Singleton is a class that has only one instance, with a
global access point (Gamma, Helm et al., 1995). One of
the many uses of the singleton pattern in a GIS is the
precision associated with geometric operations such as
equality of co-ordinates. In this case, we want to use the
same value of precision for all operations involving co-
ordinates.

The Singleton pattern template is defined as having a
protected constructor (accessible only by its descendants),
and is accessible externally only by means of a static
function (Instance). The singleton instance is created
only once, in the first time this function is called.

template class<T>
class TeSingleton<T> {
public:
 static T& instance () {
 static T unique_;

 return unique_; }

protected:
// -- Constructor
 TeSingleton() {}

};

// example of using a singleton

class TePrecision:
public TeSingleton<TePrecision> {
 void setPrecision (double precision)
 { precision_ = precision; }

double precision ()
 { return precision_; }
protected:
 double precision_;
}

// Usage of TePrecision
class TeCoord2D {
double x, y_; // co-ordinates

public:
// ... other operations omitted
 bool operator == (const TeCoord2D& cd)
 { return ((fabs(y_- cd.y)<
TePrecision::Instance().precision())
 && (fabs(x_- cd.x) <

TePrecision::Instance().precision()))}

}

In this case, we consider that the desired precision
has been set previously (based on issues such as scale and
projection) and that this unique value can be used by all
applications. An additional advantage of using a Singleton
class is avoiding global variables, always a problem when
building a library.

5 Counted Instances and the “Pimpl” Idiom
One of the important issues when dealing with

geometric data structures is optimising memory usage.
Since many maps have a large number of polygons or
lines, copy operations can become very costly. To
illustrate the idea, consider the following code fragment:

// Creation of a polygon set

TePolygonSet pSet;

//... put data in pset (not shown)

// Copying a polygonSet

TePolygonSet pSet2 = pSet;

// what happens here?

In this case, copying all polygons from the first set to
the second set can be a very costly operation. In order to
avoid such unnecessary memory congestion, we have used
the so-called “pointer to implementation” or “pimpl”
idiom (Sutter, 2000), which is also called the “Bridge”
pattern (Gamma, Helm et al., 1995). This programming
idiom proposes a separation between a class and its

implementation, by using an opaque pointer to hide the
implementation details. De-coupling the abstraction from
its implementation allows different instances of a class to
share the same implementation. Therefore, no copying will
take place, but simply the new object points to the same
memory area that contains the data for the first polygon
set.

The “pimpl” idiom is usually combined with the idea
of a “counted” pattern, a class that keeps track of how
many abstract instances are pointing to the same
implementation. In Terralib, the “counted” class is
implemented as follows:

class TeCounted {
public:
// -- Constructor

 TeCounted(): refCount_ (0){}

// -- Methods

 void attach () { refCount_++; }
 void detach ()
 { if (--refCount_ == 0)
 delete this; }
private:
 int refCount_; // members
};

The idea here is that all constructors and copy
operators for classes which are derived from the “counted”
class will increments the number of its virtual instances
(refCount_) using the attach method. Conversely,
when an instance of a counted object is destroyed the
number of virtual references to it is decremented. When
the reference count reaches zero, which means that there
are no virtual instances of it, the object is effectively
destroyed. This is done by the using the detach method.

The use of the “pimpl” and “counted” idioms is best
considered in the context of constructing the geometric
structures of TerraLib, as explained in the next section.

6 Composite Pattern and Vector Geometries
The vector data structures used for representation of

spatial information (points, lines, polygons, triangular
meshes) can be directly represented by a Composite
pattern. This pattern “defines class hierarchies consisting
of primitive objects and composite objects. Primitive
objects can be composed into more complex objects,
which in turn can be composed, and so on recursively.”
(Gamma, Helm et al., 1995). As the Composite pattern can
be used in many components of a GIS we propose a
parameterised implementation of it (shown partially
below):

template <class T>
class TeComposite: public TeCounted {
public:
 // Add a new component

 void add (const T& elem)
 { components_.push_back (elem);

 // Return the i-th element

 T& operator [] (int i)
 { return components_[i]; }

protected:
 vector<T> components_;

};

Based on this pattern, we can now define a
“Geometry Composite”, a basic template which will be
used to derive all vector geometries and that supports the
idea of counted instances, for more efficient memory
usage.

// Geometry composite (simplified version)

template <class T>
class TeGeomComposite {
protected:
 TeComposite<T> * pImpl_;

public:
 // Constructor

 TeGeomComposite() {

 pImpl_ = new TeComposite<T>;
 pImpl_->attach(); }

// Destructor

 virtual ~TeGeomComposite()
 { pImpl_->detach(); }

// Operator =

TeGeomComposite& operator=

(const TeGeomComposite& other) {

 if (this != &other){

 other.pImpl_->attach();

 pImpl_->detach();

 pImpl_ = other.pImpl_;}

 return *this;

 }

 // Add a new component

 void add (T& elem) {

 pImpl_->add (elem); }

 // Return the i-th element

 T& operator[] (int i)
 { return pImpl_->operator[] (i); }
};

As can be seen in the above definition, a geometry
composite is a generic geometry whose implementation is
a pointer to an instance of a Composite template. This idea
allows for multiple copies of the same data to point to the
same memory area and enables a simple definition for the
vector geometries in TerraLib. For example, consider the
definitions of TeLine, TeLinearRing,
TePolygon, and TePolygonSet:

// A class for handling lines

class TeLine2D :
 public TeGeomComposite<TeCoord2D> {};

// A class for handling rings (closed

lines)

class TeLinearRing : public TeLine2D {
public:
 // -- Contructor from a line

 TeLinearRing (TeLine2D& line); };

// a class for handling polygons

class TePolygon:
 public TeGeomComposite<TeLinearRing> {};
// a class for handling sets of polygons

class TePolygonSet:
 public TeGeomComposite<TePolygon> {};

As the code shows, the TePolygonSet class is a
composite of TePolygon. A TePolygon is a
composition of TeLinearRing. A TeLine is a
composite of TeCoord2D. Each new class has been
defined in a straightforward fashion, achieving substantial
code reuse and economy of expression.

7 Factories and Projections
The “Factory” pattern defines an interface for creating an
object and delegating the instantiation to another object. In
this pattern “the creator relies on its subclasses to define
the factory method so that it returns an instance of the
appropriate concrete product” (Gamma, Helm et al.,
1995). This pattern is used whenever we want to create a
specific subclass of an abstract base class based on type
information. For example, consider the case of selecting a
cartographic projection, given an abstract base class
TeProjection. A naïve code would be similar to the
following:

// selection of a projection

// given a projection name

TeProjection* proj;
if (name == “UTM”)
 proj = new TeUTM (params);
elseif (name == “Albers”)

 proj = new TeAlbers (params)
// and so on...

Why is this coding style not to be recommended? In
an open source library such as TerraLib, where
contributions from many partners are expected, each new
projection contributed to the code would require changes
in all applications that use the projection facilities. In
order to avoid this problem, we would like that each new
projection class can be automatically included in a
projection list, without requiring code recompilation. This
can be achieved by a generic factory pattern, as follows:

// Factory template (short description)

// uses STL map
template <class T, class Arg>
class TeFactory {
public:
// -- Dictionary of factories

typedef map<string, TeFactory<T,Arg>*>
TeFactoryMap;

// -- Normal Constructor

 TeFactory (const string& fName)
 { fMap_ [fName] = this; }

// -- Builds a new type (should be

implemented by descendants)

 virtual T* build (const Arg& arg) = 0;

// -- Virtual Constructor

 static T* make
(const string& name, const Arg& arg);

private:
 // factory list (static)

 static TeFactoryMap fMap_;
};

// Virtual Constructor implementation

// (called by applications)

template <class T, class Arg>
T*

TeFactory<T,Arg>::make

(const string& name, const Arg& arg)
{

 // try to find the name on the

 // factory dictionary

 TeFactoryMap::iterator i =

 fMap_.find (name);

 // Not found ? return zero

 if (i == fMap_.end())
 return 0;
 // Create an object,

 // based on the input parameters

 return (*i).second->Build (arg);
}

How does this template code work? The basic idea is
to create “families of factories”. First, an abstract base
class will be created, based on an instantiation of this
template. Then, a set of concrete factories will be defined
as descendants of this base class. Each new concrete
factory, when created, will be placed on the factory map,
which will contain a list of factories, indexed by their
name (which must be unique).

This pattern relies on the fact that all static objects
are created by the compiler before the program starts its
execution. If one instance of each concrete factory is
defined as a static variable, a pointer to it will be placed
on the factory dictionary (the fMap variable in the
template). Therefore, when the make method is called, it
will search in its list, and will find the appropriate factory.

The advantage of this code is that there is no need for
an explicit “if...elseif...” piece of code which
would require constant maintenance. Each new subclass
will have an associated factory, that, when created, will be
automatically “registered” in the factory list. Although the
code may look a bit awkward for programmers not at ease
with templates, its application is relatively straightforward,
as shown is the following example.

In TerraLib, we have used this template for handling
multiple cartographic projections. We have defined a base
projection class called TeProjection and an auxiliary
class TeProjParams that holds all the parameters that
define a specific projection. To define a “factory of
projections”, the first step is to define an abstract factory
pattern to build different cartographic projections, and
then to define concrete factories for each specific
projection.

The following code shown the definition of a
specialisation of TeProjection, to handle UTM
projections. Note that we create two new classes TeUTM
for the projection and a factory called TeUTMFactory.
It is also required that a static instance of the factory is
defined, which will be registered in the “factory list”
before execution takes place.

// abstract class for projection factories
class TeProjectionFactory:
public TeFactory<TeProjection,TeProjParams>
{}

// concrete factory for UTM projections

class TeUTMFactory:
public TeProjectionFactory
{

public:
// called by “make” virtual constructor

virtual TeProjection* build
 (TeProjParams& arg)

 { return new TeUTM(arg); }
}

// actual UTM projection class

class TeUTM: public TeProjection {
public:
 // -- constructor

 TeUTM(TeProjParams& arg);

}

// Static instance of the UTM proj factory

// (will be placed in the factory list)

static TeUTMFactory fact(“UTM”);

The inclusion of a new projection and its factory does
not require recompilation of the existing classes. The
interface for all applications that use cartographic
projections will then be very simple, consisting of a single
line of code:

// Projection parameters for a projection

TeProjParams par;

// The projection factory builds an

instance of projection

TeProjection* proj =

TeProjectionFactory::make(“UTM”, par);

The factory template is extremely useful for GIS
library development. In GIS application, there are a large
number of situations where the subclass to be instantiated
depends on a type field. Consider the following examples:

• selection of a database driver based on a database
name.

• choice of a data conversion function based on file
type.

• selection of an appropriate algorithm, given a
family of similar techniques (such as the line
simplification case).

In all these and similar situations, the “factory”
pattern proves to be an appropriate solution. The
additional care to be exercised when building the classes
will result in much benefit later.

8 In Conclusion: Using Design Patterns for GIS
This paper has given examples of the use of design
patterns in the implementation of a particular GIS library
(TerraLib), and we conclude with some general remarks.
In large-scale programming projects, which involve the
collaboration of many users at different places, it is
extremely important to propose and enforce coding
practices that enhance reusability and reduce the impact on
existing code.

We have shown concrete situations where design
patterns provide substantial improvements, by reducing
memory usage and avoid code duplication (case of the
Composite pattern) and by easing code maintenance (as in
the case of the Factory pattern). In resume, we hope to
have shown that a judicious combination of Design
Patterns and Generic Programming is recommended for
building reliable and maintainable GIS implementations.

Acknowledgements
The idea of combining templates with patterns was
conceived by the last author (Baudouin Raoult) in
discussions with the first two authors (Gilberto Câmara
and Lúbia Vinhas), as part of the development of the
METVIEW meteorological visualisation software at
ECWMF.

This paper has been supported by a joint CNPq
(Brazil)/NSF (USA) grant on "Computational Issues in
Interoperability in GIS" (award number CNPq 480322/99)
and by Brazil’s MCT/PCTGE (Ministry of Science and
Technology—Program for Science and Technology on
Ecosystems Management).

Software Availability
The Terralib software library will be made available from
the website http://www.tecgraf.puc-rio.br/terralib, as open
source, under the GNU Public License, before the end of
2001.

References
Appleton, B. (2000). Patterns and Software: Essential

Concepts and Terminology. 2001.
<http://www.enteract.com/~bradapp/docs/>.

Austern, M. (1998). Generic Programming and the STL :
Using and Extending the C++ Standard Template
Library. Reading, MA, Addison-Wesley.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad
and M. Stal (1996). Pattern-Oriented Software
Architecture. New York, John Wiley.

Câmara, G., R. Souza, B. Pedrosa, L. Vinhas, A.
Monteiro, J. Paiva, M. Carvalho and M. Gattass (2000).
TerraLib: Technology in Support of GIS Innovation. II
Workshop Brasileiro de Geoinformática, GeoInfo2000.

Coplien, J. (1996). Curiously Recurring Template
Patterns. In: S. Lippman, C++ Gems. New York, SIGS
Books: 135-143.

Fonseca, F. and M. Egenhofer (1999). Ontology-Driven
Geographic Information Systems. 7th ACM GIS
Symposium, Kansas City, MO, ACM Press, N.Y.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1995).
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA, Addison-Wesley.

Gordillo, S., F. Balaguer and F. das Neves (1997).
Generating the Architecture of GIS Applications with
Design Patterns. 5th ACM GIS Symposium, Las Vegas,
ACM Press.

Heuvelink, G. (1998). Error Propagation in
Environmental Modelling with GIS. London, Taylor and
Francis.

Hornsby, K. and M. Egenhofer (2000). “Identity-Based
Change: A Foundation for Spatio-Temporal Knowledge
Representation.” International Journal of Geographical
Information Science 14(3): 207-224.

Lisboa, J. and C. Iochpe (1999). Specifying Analysis
Patterns For Geographic Databases on the basis of a
Conceptual Framework. 7th ACM GIS, Kansas City,
ACM Press.

Sutter, H. (2000). Exceptional C++: 47 Engineering
Puzzles, Programming Problems, and Exception-Safety
Solutions. Reading, Addison-Wesley.

Vlissides, J. (1998). Pattern Hatching: Design Patterns
Applied. Reading, MA, Addison Wesley.

