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A B S T R A C T

This paper presents innovative methods for using satellite image time series to produce land use and land cover
classification over large areas in Brazil from 2001 to 2016. We used Moderate Resolution Imaging
Spectroradiometer (MODIS) time series data to classify natural and human-transformed land areas in the state of
Mato Grosso, Brazil’s agricultural frontier. Our hypothesis is that building high-dimensional spaces using all
values of the time series, coupled with advanced statistical learning methods, is a robust and efficient approach
for land cover classification of large data sets. We used the full depth of satellite image time series to create large
dimensional spaces for statistical classification. The data consist of MODIS MOD13Q1 time series with 23
samples per year per pixel, and 4 bands (Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI), near-infrared (nir) and mid-infrared (mir)). By taking a series of labelled time series, we fed a 92-
dimensional attribute space into a support vector machine model. Using a 5-fold cross validation, we obtained an
overall accuracy of 94% for discriminating among nine land cover classes: forest, cerrado, pasture, soybean-
fallow, fallow-cotton, soybean-cotton, soybean-corn, soybean-millet, and soybean-sunflower. Producer and user
accuracies for all classes were close to or better than 90%. The results highlight important trends in agricultural
intensification in Mato Grosso. Double crop systems are now the most common production system in the state,
sparing land from agricultural production. Pasture expansion and intensification has been less studied than crop
expansion, although it has a stronger impact on deforestation and greenhouse gas (GHG) emissions. Our results
point to a significant increase in the stocking rate in Mato Grosso and to the possible abandonment of pasture
areas opened in the state’s frontier. The detailed land cover maps contribute to an assessment of the interplay
between production and protection in the Brazilian Amazon and Cerrado biomes.

1. Introduction

Since the 1980s, Brazil has become one of the world’s largest agri-
cultural exporters. Brazil is the world’s largest producer of sugarcane,
coffee, and orange juice, and the second largest producer of soybeans,
beef, and chicken meat. Brazilian crop and livestock producers face a
major challenge. While producing food for a growing world demand,
Brazilian agriculture has to contribute to the country’s commitments to
reduce its deforestation rates and greenhouse gas (GHG) emissions

(Garnett, 2015). In the coming decades, Brazil needs to equalize eco-
nomic gains and sustainable agricultural practices. A way to achieve
this aim consists of (1) promoting new agricultural practices to increase
productivity and (2) implementing efficient command-and-control and
market-oriented policies to control deforestation (Nepstad et al., 2014;
Arvor et al., 2016).

Brazil’s government has acted to reduce deforestation and the re-
sulting emissions. Combining rapid assessment of new forest cuts with
strong law enforcement, Brazil cut tropical deforestation by 80% from
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2005 to 2010 (Assunção et al., 2015). These initiatives were com-
plemented by actions in the private sector, such as the Soy Moratorium.
The moratorium is an agreement signed by the major soybean traders
pledging not to buy soy grown in Amazon forest areas cleared after July
2008. During 2004 and 2005, 30% of the soybean expansion in this
region occurred through deforestation. In 2014, only 1% of the new soy
expansion in the Amazon biome resulted from the direct conversion of
forest to cropland (Gibbs et al., 2015). Despite these advances, the
environmental impacts of crop production and cattle-raising in Brazil’s
Amazonia and Cerrado biomes continue to raise concerns (Nepstad
et al., 2014). To develop adequate public policies that balance pro-
duction with protection, Brazil needs comprehensive information on
land change dynamics.

Previous studies of Brazilian agricultural dynamics have focused on
the state of Mato Grosso, one of the world’s fast expanding agricultural
frontiers. Spera et al. (2014) used satellite remote sensing to examine
patterns of cropland expansion in Mato Grosso from 2001 to 2011. They
used the Enhanced Vegetation Index (EVI) from the Moderate-Resolu-
tion Imaging Spectroradiometer (MODIS) time series, coupled with a
decision-tree algorithm. Data from crop-specific growing season lengths
and maximum EVI thresholds were used to classify large-scale crop-
lands into five classes: soy, cotton, soy-corn, soy-cotton, and irrigated
crops. Their paper describes how crop expansion depends on land at-
tributes such as soil, climate, and topography. The authors found that
most of the suitable areas for cropland expansion in Mato Grosso had
been occupied by 2006. As a consequence, farmers increased double
crop systems to make up for the scarcity of high quality agricultural
land. Since their paper deals with how land quality affects farmers’
decision-making, it does not include accuracy assessments for the
classification results.

Arvor et al. (2011) used MODIS EVI time series to identify five crop
classes: soybean, corn, cotton, soybean-corn, and soybean-cotton. They
assume that corn is only planted in consortium with soybeans. The
authors collected ground data sets at 50 farms in Mato Grosso in
2005–2006 and 2006–2007. The study used a two-step classification
method, first creating a cropland mask and then discriminating the crop
varieties of interest inside the mask. To create the mask, they assumed
that crop EVI profiles are identifiable as having one of two cycles with
high maximum values and low minimum values. To classify crop types
inside the cropland mask, they used the Jeffries-Matsushita distance to
rank the 23 dates of each MODIS EVI series. The authors used the best
subset of these dates as inputs to a supervised classifier, followed by
post-processing using segmentation to produce more homogeneous re-
sults. Their reported accuracy is 85% for the agricultural mask and 74%
for the crop classification, using validation data not included in the
training set.

To describe the spatial dynamics of crop production in Mato Grosso
from 2001 to 2014, Kastens et al. (2017) used MODIS Normalized

Difference Vegetation Index (NDVI) time series. They take ground re-
ference data from 2009 to 2016 to train and validate a random forest
classification model. The reported accuracy was 79% for distinguishing
five crop classes (soybean-fallow, fallow-cotton, soybean-cotton, soy-
bean-crop, and pasture/cerrado). The soybean-crop class includes corn,
millet, sorghum, and sunflower, which the authors stated they could
not distinguish well.

Studies covering the whole Amazonia biome focus on deforestation
and its relation to pasturelands. The PRODES (Programa de Cálculo do
Desflorestamento da Amazônia) developed by Brazil’s National Institute
for Space Research (INPE) maps clear cuts in the Amazon forest yearly,
producing a forest/non-forest mask (INPE, 2014). Hansen et al. (2013)
produced global maps of forest-cover change using LANDSAT-class
data. Parente et al. (2017) present maps of pastureland areas in Brazil
using LANDSAT-8 images. INPE, together with the Brazilian Agriculture
Research Corporation (EMBRAPA), produced TerraClass, a map of land
cover change in the Amazon biome (Almeida et al., 2016). TerraClass
produces a cropland mask, using Landsat-5 Thematic Mapper (TM) and
MODIS data, and does not distinguish between different crops. These
efforts are relevant and produce important data sets, but none provides
a complete assessment of overall land cover change and its relation to
different crop systems.

There are no previous studies in the literature that map both the
dynamics of crop expansion and the land changes due to pasture ex-
pansion in Brazil’s agricultural frontiers. To address this challenge, we
have developed new methods to produce consistent multi-year maps of
the different types of land cover in Brazil. These maps provide in-
formation on crop production systems and pasture expansion into
natural vegetation. The results enable an informed assessment of the
interplay between production and protection in the Brazilian Amazon
and Cerrado biomes.

This work presents innovative methods for using satellite image
time series to produce land use and land cover classification over large
areas in Brazil from 2001 to 2016. We use the full depth of the MODIS
time series data to classify natural and human-transformed land areas
in the state of Mato Grosso, Brazil’s agricultural frontier. Our hypothesis
is that building high-dimensional spaces using all values of the time
series, coupled with advanced statistical learning methods, is a robust
and efficient approach for land cover classification of large data sets.

2. Background

2.1. Overview

Since remote sensing satellites revisit the same place, we can cali-
brate their images so that measures of the same place at different times
are comparable (Fig. 1(a)). These observations can be organized so that
each measure from the sensor maps to a three-dimensional array in

Fig. 1. A 3-dimensional array of satellite data (a) and events describing change at a particular location (b).
Source: Maus et al. (2016).
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space-time. From a data analysis perspective, each pixel location x y( , )
at consecutive times, …t t, , m1 , makes up a satellite image time series
(SITS), such as the one in Fig. 1(b). From these time series, we can
extract land-use and land-cover change information. In Fig. 1(b), after
the forest was cut in 2002, the area was used for cattle raising (pasture)
for three years, during 2002–2008, then turned into cropland.

Using time series derived from big Earth Observation (EO) data sets
is one of the leading research trends in Land Use Science (Verbesselt
et al., 2010; Kennedy et al., 2014; Pasquarella et al., 2016). Multiyear
time series of land surface attributes allow a broader view of land cover
change. Time series of remote sensing data show that land cover
changes do not always occur in a progressive and gradual way; they
may highlight periods of rapid and abrupt change followed by quick
recovery (Lambin and Helmut, 2006). Applications of SITS include
mapping for detecting forest disturbance (Kennedy et al., 2010), eco-
logical dynamics (Pasquarella et al., 2016), agricultural intensification
(Galford et al., 2008), and phenological change detection (Verbesselt
et al., 2010).

One of the more promising uses of satellite time series is land use
and land cover classification and change detection. The growing de-
mand for agricultural (crops, livestock) and natural (timber, ore) re-
sources has caused major environmental impacts, especially in the
tropics. From 1980 to 2000, 55% of the new agricultural land in the
tropics came from intact forests, and another 28% came from disturbed
forests (Gibbs et al., 2010). Algorithms for land cover classification
include those using SITS such as BFAST (Verbesselt et al., 2010) and
TIMESAT (Jönsson and Eklundh, 2004) and methods based on Dynamic
Time Warping (DTW) (Petitjean et al., 2012; Maus et al., 2016). Despite
these advances, classification of satellite time series in large areas re-
mains a challenging task (Pasquarella et al., 2016).

Most studies on the use of SITS for land cover classification pub-
lished in the literature use variations of classical remote sensing image
classification methods. In their review of land use and land cover
classification using SITS, Gomez et al. (2016) highlight 12 papers.
These works are all similar. For multiyear studies, researchers first
derived ‘’best-fit” yearly composites and then classified each composite
image. An example is the work by Hansen et al. (2013) who processed
650,000 LANDSAT images from 2000 to 2010 to produce maps of
global forest loss. Their method classifies each two-dimensional yearly
image composite one by one. A pixel-based classification algorithm
processed each image to detect forest cover. Comparing the results for
2000 and 2010, the authors produced an account of global forest loss
during the 2000–2010 decade. Camara et al. (2016) denote these works
as taking a space-first, time-later approach.

Space-first, time-later methods do not use the full potential of remote
sensing time series. The benefits of SITS increase when the temporal
resolution of the big data set captures the most important changes. In
these cases, the temporal autocorrelation of the data will be stronger
than the spatial autocorrelation. Given data with adequate repeat-
ability, a pixel is more related to its temporal neighbours than to its
spatial ones. In these cases, time-first, space-later methods may lead to
better results than the space-first, time-later approach (Camara et al.,
2016).

2.2. Combining SITS with statistical learning methods

This work combines SITS with statistical learning. In a broad sense,
statistical learning refers to a class of algorithms used for classification
and regression analysis (Hastie et al., 2009). These methods include
linear and quadratic discrimination analysis, support vector machines,
random forests, and neural networks. In a typical classification pro-
blem, we have measures that capture class attributes. Based on these
measures, referred to as training data, the task is to select a predictive
model that allows us to infer the classes of a larger data set.

There has been much recent interest in using classifiers such as
support vector machines (Mountrakis et al., 2011) and random forests

(Belgiu and Dragut, 2016). Most often, researchers use a space-first,
time-later approach, in which the dimension of the decision space is
limited to the number of spectral bands or their transformations.
Sometimes, the decision space is extended with temporal attributes. To
do this, researchers filter the raw data to get smoother time series
(Brown et al., 2013; Kastens et al., 2017). Then, using software such as
TIMESAT (Jönsson and Eklundh, 2004), they derive a small set of
phenological parameters from vegetation indexes, like the beginning,
peak, and length of the growing season (Estel et al., 2015; Pelletier
et al., 2016). These approaches do not use the power of advanced sta-
tistical learning techniques to work on high-dimensional spaces with
big training data sets (James et al., 2013). They have one thing in
common: raw time series data is considered too noisy to be used di-
rectly. This questions the impact of the noise removal and homo-
genization steps since it may reduce the information present in the SITS.

An alternative approach, proposed in this paper, is to use the full
depth of SITS to create larger dimensional spaces. We tested different
methods of extracting attributes from time series data, including those
reported by Maus et al. (2016), Pelletier et al. (2016), and Kastens et al.
(2017). Our conclusion is that part of the information in raw time series
is lost after filtering or statistical approximation. By choosing a statis-
tical classifier which is robust with respect to noise, one should be able
to achieve better results than using the current approaches. Thus, the
method we developed has a deceptive simplicity: use all the data
available in the time series samples. The idea is to have as many temporal
attributes as possible, increasing the dimension of the classification
space. In this work, we used the MODIS MOD13Q1 product with 23
samples per year per pixel and 4 bands (NVDI, EVI, near-infrared (nir)
and mid-infrared (mir)). By taking a series of labelled time series, we
fed a 92-dimensional attribute space into the statistical inference
model.

Table 1 shows a performance comparison of the classifiers for the
state of Mato Grosso data set. This assessment was carried out using
cross-validation to estimate the expected prediction error. We ran five
trials. In each trial, 80% of the samples were used to train the classifier,
and 20% were set aside for testing. A simple average of the five pre-
dictions gives us an estimation of the expected prediction error. Among
the models tested were a support vector machine (SVM): a classifier
that uses linear and non-linear mapping of the input vectors into high-
dimensional spaces, building hyperplanes that allow distinguishing
between the data classes; random forest (RFOR): an ensemble learning
method for classification that works by building a multitude of decision
trees at training time; and linear discriminant analysis (LDA): a method
that finds a linear combination of features that characterizes or sepa-
rates the desired classes. The SVM classifier has a better discriminating
power than RFOR and LDA. This result cannot be generalized, however
(Shao and Lunetta, 2012) compared the algorithms: support vector
machine, neural network, and CART to test classification performance
using MODIS time-series data, also concluded the SVM was superior to
the other algorithms in the land use classification.

As an example, Fig. 2 shows a plot of the NDVI values of 370 time
series for the land cover class “Pasture” based on ground samples. Each
thin line is one time series. The darker lines are the median and first and
third quartile values. By visualizing the data, the challenge of distin-
guishing noise from natural variation becomes clear. The data shows
natural variability due to different climate regimes and shows noise
associated with cloud cover. To avoid losing information, we used the
raw data to train a SVM, a classifier which is robust with respect to

Table 1
Experiments with the SVM, RFOR and LDA models, for model selection.

SVM RFOR LDA

Accuracy 0.93 0.92 0.91
Kappa 0.92 0.91 0.90
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noisy data sets (Hastie et al., 2009).
The SVM is a classifier which considers that the boundary between

two classes is non-linear. In its simplest form, an SVM implements a
linear classifier by defining boundaries in an n-dimensional space to
distinguish two classes. SVMs build hyperplanes that represent the
largest separation between the two classes. The hyperplanes maximize
the distance from the planes to the nearest data point on each side. The
training samples that define the hyperplane of maximum margin are
called support vectors. There are many cases where the classes cannot
be correctly distinguished by linear hyperplanes. In these situations, the
SVM algorithm uses non-linear mappings to project the input vectors to
a very high-dimension feature space. In this new feature space, the SVM
builds a linear decision surface (Cortes and Vapnik, 1995). SVM im-
plementations include polynomial and radial kernels to deal with non-
linear class boundaries.

2.3. Computational infrastructure

Progress on big EO data analytics depends on researchers devel-
oping and sharing new methods. Thus, an architecture for big EO data
analytics should meet the needs of the researchers. Results should be
shared with the scientific community, enabling collaborative work.
Researchers should be able to replicate best practices and build their
own infrastructure. To achieve these goals, our architecture uses the
following building blocks:

1. The SciDB open source array database (Stonebraker et al., 2013)
that allows easy mapping of big EO data to its data structure.

2. R as the tool for big data analytics, so that researchers can thus scale
up their methods, reuse previous work, and collaborate with their
peers.

3. The R packages SITS (Simoes et al., 2017) and dtwSat (Maus et al.,
2017), for big EO analytics on SITS.

4. A set of web services for big EO data, adapted to the needs of SITS
(Vinhas et al., 2016).

Array databases split large volumes of data into distributed servers
in a “nothing shared” way: a big array is broken into “chunks” that are
distributed among different servers. Array database management
system (DBMS) such as SciDB (Stonebraker et al., 2013) reduce the
impedance mismatch between the data model (raster), the storage
model (arrays), and the analysis functions. Entire collections of image
data fit into single spatiotemporal arrays. Using array DBMS with

statistical computing is a natural solution for EO applications. SciDB has
an R interface that allows researchers to paralleliz complex analyses
and run algorithms on large remote sensing data sets (Fig. 3). This
solution is a suitable compromise between the needs for massive par-
allel data processing and maximum flexibility in algorithm design.

In terms of hardware, our architecture has five servers with two six-
core CPUs, operating at 2.4 GHz with a 15MB cache. Each server has
96 GB of RAM and 16 TB of data storage. This gives 60 cores that can
work in parallel in a nothing shared data storage. The array database
SciDB includes the full set of MODIS MOD13Q1 images for South
America at a 250m resolution, with 13,800 images associated with
317 billion data series. The case study described in this paper covers the
state of Mato Grosso, Brazil, an area of 900,000 km2, which has about
20 billion measures. The full processing of all time series to classify
16 years of data in Mato Grosso takes about 6 h using the R-SciDB in-
terface. Given these results, we argue that using SciDB combined with R
is an adequate solution for big EO data analytics.

3. Methods

3.1. Study area

The state of Mato Grosso has an area of 903,357 km2 and is the third
largest state of Brazil. It includes three of Brazil’s biomes: Amazon,
Cerrado, and Pantanal (Fig. 4). The Cerrado biome covers 40% of the
whole territory and is an important biome related to animals species (more
than 1,500 species), birds (837 species), amphibians (150 species), and
reptiles (120 species). The Pantanal biome, which occupies 7% of the
state, is rich in bio-diversity, and is an UNESCO World Natural Heritage
and Biosphere Reserve. In the Amazon biome in Mato Grosso, there are
two types of forest: Amazon Forest and Seasonal Forest, which together
occupy about 53% of the territory of Mato Grosso.

3.2. Data

We used the MOD13Q1 product from National Aeronautics and
Space Administration from 2001 to 2016, provided every 16 days at
250-meter spatial resolution in the sinusoidal projection (Didan, 2015)
1. To do the analysis, we selected the indices NDVI and EVI, and the

Fig. 2. Time series of 370 ground samples for land cover class ”Pasture” in the state pf Mato Grosso, Brazil.
Source: authors.

1 Since the 2004 MODIS image presented high amount of noise in the MIR
band, results from 2004 were not used in the analysis.
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original bands nir and mir. We defined nine land cover classes: (1)
forest, (2) cerrado, (3) pasture, (4) soybean-fallow (single crop), (5)
fallow-cotton (single crop), (6) soybean-cotton (double crop), (7)

soybean-corn (double crop), (8) soybean-millet (double crop), and (9)
soybean-sunflower (double crop). According to the Brazilian Institute of
Geography and Statistics (IBGE), crop classes (4)–(9) accounted for
more than 93% of Mato Grosso agricultural lands in 2015. Crop and
pasture ground data was collected through field observations and
farmer interviews (Kastens et al., 2017; Sanches et al., 2018). Samples
for the cerrado and forest classes were provided through field work and
high resolution images. Ground samples for soybean-fallow class were
provided through field work, based on previous work (Arvor et al.,
2011). Table 2 lists the distribution of the ground samples.

To get an overall view of the temporal signatures of the ground
samples, we used a generalized additive model (GAM) to estimate the
joint distribution of the set samples for each class (Maus et al., 2016).
The GAM estimates use a smoothing function that approximates the
idealized temporal patterns (Fig. 5). One can observe that the temporal
signatures of the soy-corn, soy-millet and soy-sunflower classes are

Fig. 3. Remote execution of R scripts in SciDB.

Fig. 4. Left: Location of Mato Grosso relative to South America continent and Brazil. Right: Biomes, conservation units and indigenous lands in Mato Grosso.

Table 2
Ground samples used as training data for Mato Grosso.

Class label Count Freq

Cerrado 400 18.9%
Fallow-Cotton 34 1.6%
Forest 138 6.5%
Pasture 370 17.5%
Soy-Corn 398 18.8%
Soy-Cotton 399 18.9%
Soy-Fallow 88 4.2%
Soy-Millet 235 11.1%
Soy-Sunflower 53 2.5%
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similar, leading to some possible confusion. As our experiments show,
these are the classes which are harder to distinguish (see Section 4.1).

3.3. Time series classification

The MODIS images were inserted into the SciDB database, and the
three-dimensional array of satellite data was created. In order to re-
trieve the time series for the set of ground sample points, from which
we knew latitude, longitude, and land cover over a specific time in-
terval, we used the web time series service (WTSS), available in the
SITS R package. These time series were used to train the SVM model.

The SVM is a generalization of the separating hyperplane classifier
(Hastie et al., 2009). This generalization combines the notions of the
optimal separating hyperplanes, soft margins, and the enlargement of
the input attribute space with a nonlinear mapping to a feature space.
In a separating hyperplane formulation, the classifier works only with
separable sample sets. It finds a linear boundary in the input attribute
space that not only divides two classes but maximizes its margin
betrween them. A boundary is a hyperplane that divides the entire at-
tribute space into two parts. Fig. 6 presents an overview of the meth-
odology used to classify the SITS.

3.4. Post-processing masks

We applied three masks to the final classified maps. The sugarcane
masks from 2003 to 2016 come from the Canasat project (Rudorff et al.,
2010). This project maps sugarcane areas in the South-Central region of
Brazil using LANDSAT images (Adami et al., 2012). Sparovek et al.
(2015) provided the urban area mask. The water mask comes from
Pekel et al. (2016), who used three million LANDSAT satellite images to
quantify changes in global surface water over the past 32 years
(1984–2015).

3.5. Accuracy

To estimate the classification accuracy, we ran a 5-fold cross-

validation procedure (Wiens et al., 2008). In this validation, we ran five
different assessments. For each assessment, 80% of the samples were
used for training and 20% for prediction. The accuracy of all five
classifications is averaged to produce a single estimation. Using a 5-fold
validation has some advantages compared to other validation methods.
The goal of cross-validation is to find out how well a given statistical
learning procedure can be expected to perform using independent data
(James et al., 2013). Increasing the fold reduces the bias of the estimate
of model performance using independent data, at the cost of increasing
its variance. Given the number of samples for each class (see Table 2),
we consider a 5-fold cross-validation to be adequate for our training set.

4. Results and discussion

4.1. Classification accuracy

The 5-fold cross-validation estimated an overall accuracy of 94%
and the Kappa index was 0.92. Producer and user accuracies for all
classes were close to or better than 90% (Table 3). This confirms the
applicability of the proposed method to classify agricultural areas. As
expected, the matrix shows some confusion between the soybean-corn
and soybean-millet classes. Since corn and millet have similar physical
characteristics, they can be spectrally confused (Fig. 5). Both are
grasses, with lanceolate leaves; the height of corn can reach up to 3.5 m,
whereas millet varies between 1.5 and 3m, and can reach more than
5m. The results show a good discrimination between the different
crops, which improves on previous work (see Table 4). This metho-
dology brought advance in the agricultural crop mappings accuracy.
Until then, the highest overall accuracy achieved in a mapping in Mato
Grosso, which distinguished different crops, using MODIS time series
had been 80% (Chen et al., 2018). Galford et al. (2008) study was
overall accuracy equal 94%, however the authors used only three
classes: single crop, double crop, and not row crops.

Measured deforestation in Mato Grosso from 2005 to 2016 was
4.1 million hectares, 12% of the total forest area, considering both the
Amazon and Cerrado biomes. The areas classified as forest were

Fig. 5. Estimated temporal patterns of NDVI, EVI, NIR and MIR bands for the selected land cover classes.
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compared with the Hansen et al. (2013) mapping for the year 2000.
These authors used LANDSAT images to map the percent of tree crown
cover densities. Trees were defined as all vegetation taller than 5m in
height. In order to separate the forest areas, we examined the areas with
more than 25% tree cover on the Hansen et al. (2013) map. We found
that 99% of the pixels classified as forest match the pixels indicated by
Hansen et al. (2013) as having more than 25% tree cover. For the
cerrado class, 62% of the pixels match the pixels indicated by Hansen
et al. (2013) as having more than 25% tree cover. This difference occurs
because our cerrado class includes both wooded and wooded-herbac-
eous physiognomies.

The pixels labelled as pasture were compared to the pasture map-
ping done by Parente et al. (2017), who produced a pasture mask for
Brazil in 2015 using LANDSAT-8 images and a RFOR classifier. The
difference between the total pasture area in our results and that mapped
by Parente et al. (2017) for the state of Mato Grosso was 4%. The
correlation between the individual pasture pixels in both maps was

89%. Part of this difference can be explained by the fact that the map by
Parente et al. (2017) uses additional masks to exclude indigenous areas
and national parks. An additional factor is that Parente et al. (2017)
used LANDSAT images, whereas we used MODIS. We note that user
accuracy for the pasture class on the map made by Parente et al. (2017)
is 83%, whereas the user accuracy for the pasture class using SVM
classification is 96%. Further detailed studies are required to assess the
quality of these approaches and to improve pasture assessments in the
Amazonia and Cerrado biomes.

Fig. 7 shows two of the resulting maps of the spatial distribution of
land cover classes, for the years 2005 and 2016. The full data set, in-
cluding all resulting maps and the ground sample data as well as the
software used to produce the maps, is openly available on the internet.
Please see the end of the paper for more detailed information.

Fig. 6. Time series classification methodology.

Table 3
Confusion matrix of MODIS time series images, obtained by 5-fold cross validation of classification of field data, and values of producer’s accuracy (PA) and user’s
accuracy (UA) for each class.

1 2 3 4 5 6 7 8 9 UA

1 Cerrado 393 0 0 12 0 0 0 0 0 0.97
2 Fallow-Cotton 0 33 0 0 1 2 0 0 0 0.92
3 Forest 1 0 136 0 0 0 0 0 0 0.99
4 Pasture 6 0 1 357 3 1 0 5 0 0.96
5 Soy-Corn 0 1 1 1 352 18 0 26 4 0.87
6 Soy-Cotton 0 0 0 0 13 376 0 4 0 0.96
7 Soy-Fallow 0 0 0 0 0 0 88 0 0 1.00
8 Soy-Millet 0 0 0 0 25 2 0 199 2 0.87
9 Soy-Sunflower 0 0 0 0 4 0 0 1 47 0.90
PA 0.98 0.97 0.99 0.96 0.88 0.94 1.00 0.85 0.89
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4.2. Cropland expansion and intensification

We compared our crop classification to the IBGE official crop sta-
tistics (IBGE, 2017). IBGE holds yearly sample surveys of agricultural
production at the municipal level, the so-called PAM (“Pesquisa Agrí-
cola Municipal”). At the state level, the soybean, cotton, corn, and
sunflower areas mapped by our work had a correlation of 98%, 96%,

73%, and 80%, respectively, with the state level results of the IBGE
PAM (Fig. 8). Compared to the IBGE PAM, the classification over-
estimated the soybean and corn areas and underestimated the cotton
and sunflower areas. These differences may have been caused by the
spatial resolution of the MODIS images (250m), which generates
spectral mixing due to different land uses within a single pixel (Friedl
et al., 2002; Zhong et al., 2016). However, the lack of a reliable

Table 4
Summary of selected approaches for cropland mapping using MODIS time-series data.

Method Description of examples Accuracy References

Traditional classifiers and machine
learning classifiers

Maximum likelihood classifier based on MODIS EVI time-series data to map
crop types and cropping system in Mato Grosso, Brazil

Soybean: 66.67% (UA) 64% (PA) Arvor et al. (2011)
Soybean-Non commercial crop:
56.03% (UA) 65% (PA)
Soybean-Maize: 72.63% (UA) 69%
(PA)
Soybean-Cotton: 93.41% (UA) 85%
(PA)
Cotton: 85.29% (UA) 87% (PA)
Overall accuracy: 74%
Kappa index: 0.67

Decision tree classifier based on MODIS EVI time-series data to classify
agricultural land use data in Mato Grosso, Brazil

Forest: 93.85 (UA) 89.71 (PA) Macedo et al.
(2012)Pasture: 93.55 (UA) 94.16 (PA)

Cropland: 89.02 (UA) 91.25 (PA)
Overall accuracy: 92.38
Kappa: 0.88

Decision tree classifier based on MODIS NDVI and EVI time-series data to
classify agricultural land use data in Mato Grosso, Brazil

Soy-Commercial∗: 79% (UA) 84%
(PA)

Brown et al. (2013)

Soy-Cover∗∗: 80% (UA) 83% (PA)
Soy-Cotton: 76% (UA) 43% (PA)
Cotton: 77% (UA) 66% (PA)
Pasture: 76% (UA) 58% (PA)
Overall accuracy: 79.3%
Kappa: 0.66

Random forest classifier based on MODIS NDVI time-series data to classify
agricultural land use data in Mato Grosso, Brazil

Pasture/Cerrado: 89% (UA) 92%
(PA)

Kastens et al. (2017)

Soy-Single: 74% (UA) 75% (PA)
Cotton: 70% (UA) 49% (PA)
Soy-Double: 78% (UA) 83% (PA)
Soy-Cotton: 85% (UA) 59% (PA)
Overall Accuracy: 79%
Kappa: 0.71

Decision tree classifier based on MODIS NDVI time-series data to classify
agricultural land use data in Mato Grosso, Brazil

Soy-Maize: 78% (UA) 79% (PA) Chen et al. (2018)
Soy-Cotton: 88% (UA) 70% (PA)
Soy-Fallow: 30% (UA) 61% (PA)
Soy-Pasture: 81% (UA) 74% (PA)
Fallow-Cotton: 78% (UA) 66% (PA)
Single crop: 87% (UA) 80% (PA)
Overall accuracy: 73%

Suport vector machine classifier based on MODIS NDVI, EVI, nir and mir
time-series data to classify agricultural land use data in Mato Grosso, Brazil

Cerrado: 0.97 (UA) 0.98 (PA) by authors
Fallow-Cotton: 0.92 (UA) 0.97 (PA)
Forest: 0.99 (UA) 0.99 (PA)
Pasture: 0.96 (UA) 0.96 (PA)
Soy-Corn: 0.87 (UA) 0.88 (PA)
Soy-Cotton: 0.96 (UA) 0.94 (PA)
Soy-Fallow: 1 (UA) 1 (PA)
Soy-Millet: 0.87 (UA) 0.85 (PA)
Soy-Sunflower: 0.90 (UA) 0.89 (PA)
Overall accuracy: 94%

Data transform algorithms Wavelet analysis based on MODIS EVI time-series data to map cropland
distribution in Mato Grosso, Brazil

Not row crops∗∗∗: 94.7% (UA)
100.0% (PA)

Galford et al. (2008)

Single crop: 90.0% (UA) 81.8% (PA)
Double crop: 100.0% (UA) 71.4%
(PA)
Overall accuracy: 94%
Khat: 85.7%

∗ Double crop
∗∗ Single crop
∗∗∗ Row crops = soybean, maize, and dryland rice
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reference data set precludes an objective assessment. The IBGE PAM
results are based on surveys and not on samples. Thus, they contain
uncertainties as well and should not be taken as absolute references. To
produce the PAM, IBGE staff do not go into the field. They contact large
producers and also rely on subjective estimates of the local IBGE staff.
Therefore, comparing our results with data from the PAM does not
entail an accuracy estimate of our work. Correlation between the sum of
agricultural areas classified in this study and the estimates by IBGE for
the harvests from 2005 to 2016 are equal to 98%. Thus, we consider
that the proposed methodology is effective for mapping agricultural
crops in Mato Grosso.

In Mato Grosso, the cropland area increased by 1.83million hec-
tares (26.5%) from 2005 to 2016. The greatest expansion occurred
during 2007–2008 and 2012–2013, with a growth rate of 11.9% and
11.6%, respectively. The expansion of agricultural areas occurred
mainly around the BR163 highway, which crosses Mato Grosso in a
north-south direction. At the edge of this road, it is possible to observe
the expansion of agriculture in the northern direction within the

Amazon biome.
Today, municipalities such as Querencia and Tabaporã, where there

was almost no presence of agriculture in the early 2000s, are prolific
producers of soybeans. Arvor et al. (2012) also observed the same ex-
pansion trend around the BR163 highway. This area has the highest
soybean yields in Mato Grosso due to its soil, topography, and climate
(Spera et al., 2014). Thje area also has the largest proportion of double
cropping due to its longer rainy season (Arvor et al., 2013). Further-
more, the Brazilian government is asphalting the BR163 highway up to
its connection with the Mirituba and Santarem harbours in the state of
Para on the Amazon River, which would decrease the transportation
costs for soybean exports.

The soybean class also decreased in area from 2005 to 2006 and
from 2006 to 2007 due to the economic crisis, when the Brazilian
currency was devalued compared with the US dollar. The unfavourable
exchange rate affected soybean production from 2005 to 2007 (Arvor
et al., 2012). However, soybean cropland increased significantly by
0.93million hectares (12.9%) between 2012 and 2013. According to

Fig. 7. SVM classification for state of Mato Grosso in 2005 and 2016, with sugarcane, urban area and water masks.

Fig. 8. Total area of soybean, cotton, corn and sunflower in state of Mato Grosso estimated by SVM classification and the IBGE cropland survey.
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the Brazilian National Supply Company (CONAB, 2013), this growth is
due to better prices for soybean in the international market and the
repercussions of these prices in the domestic market. New commercial
arrangements, such as advance commercialization, also contributed to
this increase.

4.3. Cropland and pasture intensification

Due to the increased demand for food and biofuels, producers in the
state of Mato Grosso intensified agricultural production by adopting
double crop systems. The area cultivated with double crop systems,
involving soybeans (first cycle) + some other crop (second cycle) or
some other crop (first cycle) + cotton (second cycle), increased from
6.58 to 8.43million hectares during 2005 to 2016, an increase of 28%.
Double crop systems are currently predominant in Mato Grosso. The
area devoted to corn also increased by replacing millet, and corn is the
crop of choice for planting in consortium with soybeans. Millet lost an
area of 1.87million hectares (61%) to corn. Due to improvements in
corn varieties and the increase in Brazil’s corn exports, corn has re-
placed millet as a more profitable option. In the municipality of Campo
Verde (located in the Cerrado biome, in the south-east part of the state
of Mato Grosso), it is possible to observe this transition from single to
double crop systems, with the replacement of fallow-cotton by soybean-
cotton, from 2005 to 2015 (Fig. 9). The double crop system is more
profitable for the producer, and represents a better use of agricultural
areas, allowing an increase in production while at the same time re-
ducing the pressure of expansion over native vegetation, and protect
the soil surface from the hot temperatures and isolation typical of tro-
pical climates. Double crop also enables producers to adopt no tillage
practices (apart from cotton) which are better from an ecological point
of view. Previous authors (Kastens et al., 2017; Spera et al., 2014; Arvor
et al., 2012) have already pointed out the increase in double crop
production associated with soybeans.

Pasture area in Mato Grosso between 2005 and 2015 declined by
4.6 million hectares, from 28.1 to 23.5 million hectares. According to
IBGE, the cattle head in the state has increased from 26.7 million in
2005 to 29.3 million in 2015, a growth of 10% (IBGE, 2017). In Fig. 10,
we show that the stocking rate in Mato Grosso has grown steadily. The
cattle heads grew by 10%, while pasture decreased by 16% between
2005 and 2015. In general, there is a trend towards pasture in-
tensification coupled with abandonment of frontier areas, especially
those in the northern-most part of the state.

Our results for 2016 point to a total of 28.9 million hectares of
pasture. This increase in 2016 can be explained by the increase in de-
forestation that occurred in 2015. After the Soy Moratorium was

introduced in 2008, the deforested areas have generally been converted
to pasture areas. The deforested area in Mato Grosso has been suffering
oscillations since the beginning of the mapping in 1989, according to
PRODES. These oscillations can also be observed in pasture areas.
Between 2009 and 2014, the deforestation rate in the state of Mato
Grosso has remained around 1000 km2 per year. In 2015 there was an
increase to 1600 km2 per year. This increase directly reflected the in-
crease in pasture areas in 2016, which in turn reflected a decrease in the
stocking rate.

4.4. Overall discussion

The results highlight important trends in agricultural intensification
in Mato Grosso. Double crop systems are now the most common pro-
duction system in the state, thus increasing the potential for sparing
land from agricultural production. As pointed out by other authors
(Spera et al., 2014; Gibbs et al., 2015; Kastens et al., 2017) the impact
of crop production on deforestation has decreased since 2005. Argu-
ably, this is due to a combination of factors, including the Soy Mor-
atorium, increased law enforcement, and the occupation of the best
farming areas in the state’s Amazon biome (Spera et al., 2014; Arvor
et al., 2016). A less-studied issue is the increase in pasture productivity.
Pasture expansion and intensification has been less studied than crop
expansion, although it has a stronger impact on deforestation and GHG
emissions. Our data points to a significant increase in the stocking rate
in the state of Mato Grosso and to the possible abandonment of pasture
areas opened in the state’s frontier. As for analysing the deforestation
(Isabelle and Damien, 2016; Arvor et al., 2016) and cropland in-
tensifcation dynamics (VanWey et al., 2013), further studies coupling
fieldwork, mapping and economic models are required to better un-
derstand the underlying driving forces for the cattle-raising sector.

Our results point out the conflicting forces at play in the agricultural
expansion in Mato Grosso. In some segments (such as crop production),
there is a consolidation underway. The best producing areas have been
occupied, and the emphasis now is on increasing productivity by the
adoption of double crop systems. In the case of cattle-raising, one can
see mixed signs. On one hand, there is a modest, but significant, in-
crease in the stocking rate (until 2015); however, there is still expan-
sion going on in the northern frontiers of the state, which need to be
better studied. Many factors could be at play, including land specula-
tion, and indirect land use change due to crop expansion. This situation
poses important challenges. The large-scale mapping that we produced
for Mato Grosso needs to be expanded to the whole Amazon and
Cerrado biomes, and also needs to be supported by economic analysis.
There is a need for continuous improvement of land cover classification

Fig. 9. Change in the production system in the municipality of Campo Verde - MT from single crop in 2005 to double crop in 2016. In the gray highlight it is possible
to observe the change from the fallow cotton class in 2005 to the soybean cotton class in 2016.
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using remote sensing time series, by using LANDSAT-class satellites to
increase the spatial resolution and classification accuracy.

For future classifications, we suggest new tests using new images
data sets (e.g., Sentinel, LANDSAT), and stratification of the study area
by geography before the classification as well as testing the inclusion of
ancillary data, such as climate data or digital elevation models.

5. Conclusion

This paper provides the first detailed mapping of cropland and
pasture intensification in the state of Mato Grosso that includes more
detailed information about different crops. It was possible to dis-
aggregate agricultural classes such as millet and corn and separate types
of vegetation such as forest and cerrado. The results allow a direct es-
timation of the direct land use change, expansion and intensification of
agricultural crops, and expansion of pasture monitoring. We were able
to contribute to an assessment of the interplay between production and
protection in the Brazilian Amazon and Cerrado biomes.

The methods presented in this paper are innovative in their use of
SITS coupled with advanced statistical learning. The idea of increasing
the dimension of the classification space by using the full depth of the
time series is, to our knowledge, a new one. The good validation results
we have obtained demonstrate the power of the proposed method. Two
important qualities of the method are its reproducibility and directness.
We hope that our results encourage further work on the processing of
SITS using open source software.

Data and software

The detailed maps for the state of Mato Grosso from 2001 to 2016 at
full MODIS resolution as well as the ground samples used as training
data have been deposited at the PANGAEA Earth Sciences Data
Repository. The DOI to access the data is https://doi.pangaea.de/10.
1594/PANGAEA.881291.
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