

The Architecture of a Flexible Querier for Spatio-Temporal

Databases

Karine Reis Ferreira, Lúbia Vinhas, Gilberto Ribeiro de Queiroz, Ricardo Cartaxo

Modesto de Souza, Gilberto Câmara

Divisão de Processamento de Imagens – Instituto Nacional de Pesquisas Espaciais

(INPE)

Av. dos Astronautas, 1758 – 12220-010 – São José dos Campos – SP – Brazil

{karine, lubia, gribeiro,cartaxo,gilberto}@dpi.inpe.br

Abstract. In this paper, we propose a solution to the problem of designing a

flexible query processor for spatio-temporal databases. Our solution is to

design a bottom-up interface, whose parameters handle different spatio-

temporal applications. We propose a relational schema that can cope with

various spatio-temporal data types. Based on this model, we have design a

flexible query processor for spatio-temporal databases. We have implemented

this query processor in TerraLib open source GIS environment and we present

a case study.

1. Introduction

Emerging database management systems that can handle spatial data types have changed

both GISystems and GIScience. Systemwise, this technology enables a transition from

the current GIS technology to a new generation of spatial information appliances,

tailored to specific user needs [Egenhofer 1999]. For the GIScience community, it

enables many theoretical proposals to face the crucial test of practice. One of the

important challenges for the GIScience community is finding ways to use spatially

enabled DBMS to build innovative applications which deal with spatio-temporal data

[Erwig, Güting et al. 1999] [Hornsby and Egenhofer 2000]. Modeling spatio-temporal

applications is a complex task that involves representing objects with spatial extensions

and attributes values that change over time [Frank 2003]. To deal with spatio-temporal

data, one alternative is building a specialized DBMS created for efficient support of

spatio-temporal data types, as in the projects CONCERT [Relly, Schek et al. 1997] and

SECONDO [Dieker and Güting 2000]. When is not possible to use a specialized

DBMS, one has to build a layered architecture on top of an existing object-relational

DBMS. This is the focus of this paper, where we consider how to support applications

of spatio-temporal data, using object-relational database management systems (OR-

DBMS). In this case, one basic question arises: how to design a flexible query

processor for spatio-temporal data using object-relational DBMS?

 A flexible query processor needs to be able to cope with different applications of

spatio-temporal data and their needs for queries and responses. To solve this problem, a

popular approach in the literature is to provide specialized algebras for different

applications. For example, Güting, Bohlen et al. [2003] present a model for moving

objects that includes moving points and moving regions. Hornsby and Egenhofer [2000]

and Medak [2001] propose models for the life and evolution of socio-economic objects.

These specialised models can lead to databases where each type of application is

handled by a different query processor. Obviously, this is not desirable for developers of

applications using spatio-temporal databases. Ideally, the architecture of the query

processor would have a unified and flexible way of dealing with the different

applications of spatio-temporal data.

 In this paper, we propose a solution to the problem of designing a flexible query

processor for spatio-temporal databases using object-relational DBMS. Our proposed

solution is to unify the internal architecture of the database for all different spatio-

temporal applications. In this paper, we discuss the design and architecture of the query

processor. In section 2, we review the issue of spatio-temporal query processing. In

section 3, we present the database model and the architecture of the query processor. In

section 4, we show a case study using the query processor.

2. Spatio-temporal data handling: top-down x bottom-up approaches

In this section, we discuss four different levels in a database design that address

different aspects for handling of spatio-temporal data: (a) A set of data types and an

associated algebra; (b) A conceptual data model for spatio-temporal data; (c) A spatio-

temporal query language; (d) An application programming interface with suitable

parameters. We consider the first three as “top-down” approaches and the fourth as a

“bottom-up” choice.

 The first alternative is to define a set of spatio-temporal data types and operators.

The DBMS is extended to support these data types and operators and will provide an

associated query language. This is the approach taken by Güting [2005] that defines an

algebra for moving objects. His spatio-temporal data types for moving objects are

embedded in a query language to answer queries as: “Given the trajectories of two

airplanes, when they will pass over the same location?”. Similarly, Medak [2001]

proposes an algebra for modeling change in socio-economical units. Medak’s algebra

provides answers to queries such as: “When was this parcel divided?” The main

challenge of this approach is finding a suitably small set of data types and operators for

handling all types of spatio-temporal data. Currently, we only find spatio-temporal

algebras for specialized applications (e.g., moving objects).

 The second choice is to design a conceptual model for spatio-temporal data. In

this case, the designer starts from an external view of the problem and provides a set of

classes (or an equivalent E-R model). These classes encapsulate abstractions such as

geometry, attributes and their changes. Examples include STER [Tryfona and Jensen

1999] and MADS [Parent, Spaccapietra et al. 1999] (see also Pelekis et al [2004] for a

review of similar models). The main drawback of these approaches is the large variety

of different application semantics for combining space and time. These models work

fine for some applications, but will not fit other cases well.

 The third approach is the design of a general spatio-temporal query language,

which needs a well-defined set of predicates for spatial, temporal, and spatio-temporal

queries. For spatial data, topological and directional operators are already well-

established in the literature [Egenhofer and Franzosa 1991] [Papadias and Egenhofer

1997] [Clementini and Di Felice 1996]. Dealing with temporal data is also a well-

researched issue. The interval algebra for temporal operators is established [Allen

1983], as is the bitemporal model of Worboys [1994]. However, there are problems

when trying to devise a unique canonical set of spatio-temporal predicates. As shown by

Erwig and Schneider [2002], it is not practical to devise one such set because there are

too many predicates that can be considered different. They propose two options. Either

each application will develop a specialized subset of predicates, or the spatio-temporal

database will provide combinators that allow the user to build up her or his own

predicates.

 Given the lack of generality of these approaches, we have taken a fourth route.

Our bottom-up alternative is to design a query processor as a parametrizable function.

Taking in consideration the suggestion by Erwig and Schneider [2002] to design a

combinator, this query processor is flexible and can be used by different applications.

The set of parameters of the query processor works as a combinator of spatio-temporal

predicates. We discuss this query processor in the next sections of the paper. Since our

proposal aims at a generic way of dealing of spatio-temporal queries, we do not discuss

query optimization in this paper. We consider the main contribution of the work is to

provide a programming interface that can be optimized later for handling specific

applications.

3. The architecture of a spatio-temporal query processor

3.1. General view of a spatio-temporal database

In this section, we describe a generic model for a geographical database, which is the

basis for designing the query processor. We assume that a geographical database stores

layers. A layer aggregates spatial information that covers a geographical region and has

a common set of attributes and shares the same spatial reference system. Layers supports

both the object-based and field-based models of spatial information [Couclelis 1992].

The layer model is used by most spatial extensions of object-relational DBMS such as

ORACLE SPATIAL and PostGIS. In this work we concentrate on the object-based

layers.

 Figure 1 shows a layer of districts of the Brazilian city of Recife. Each district

has a set of descriptive attributes, such as its name, or the population of the district in

the census of 2004. The spatial extension of each district is a polygon that represents its

boundaries.

Figure 1. A layer of districts of Recife, PE.

 Our model considers that a layer contains a set of spatio-temporal objects (ST-

Objects). An ST-Object is an entity that preserves its identity over time [Hornsby and

Egenhofer 2000]. Static layers aggregate ST-Objects with geometry and attribute values

that do not change. Temporal layers aggregate ST-Objects that change their attribute

values or their geometry. We refer to the different versions of the same ST-Object as

spatio-temporal instances (ST-Instances). Each ST-Instance has an associated interval

that is the validity time of that instance and knows its current spatial extension and its

current set of attribute values.

3.2. A generic database model for spatio-temporal data

3.2.1 Static Layers

Our database model considers in a set of relations that include attribute relations,

geometry relations and metadata relations. In a generic way, we represent the geometry

and attribute relations as:

 geometries(geomId:int, objId:string, spatialData: spatial)

 attributes(objId:string, [att1:attType,...,attn:attType]).

 We consider that each entity has a unique and persistent identification (objId).

Each geometry also has a unique identifier (geomId). We use attType for

conventional types such as int, double or string. We use the spatial keyword for

types that can store a spatial extent. We consider these relations as data relations since

they effectively store the spatial data.

 We also need to store metadata information on the database. These relations

describe the geometry and attributes relations associated to each layer. Our metadata

relations are:

 layers (layerId: int, layerName: string)

 representations (layerId: int, geomRelation: string)

 attributesRel (layerId: int, attrRelation: string)

 The layers relation provides a unique identifier (layerId) for each layer. It

can also contains other attributes that are relevant to the layer, such as a name or a link

to its spatial reference system. The representations relation associate, to each

layer, its geometries relations. The model allows multiple spatial representations for the

objects of the layer. The attributesRel relation points to the descriptive attributes

relations associated to a layer.

 This data model is suitable to store static layers. It allows more than one attribute

relation for each object type, as needed by real data. Mapping the example shown in

Figure 1 to this database model, and including some data for clarity, we have the

following data relations:

DistrictsG

geomId: int objectId: string spatialData: spatial

1 261160605001 bbbbbbbbbbbbbbbbbb

2 261160605010 bbbbbbbbbbbbbbbbbb

3 261160605011 bbbbbbbbbbbbbbbbbb

DistrictsA

ID_: string name:string POP_2004:int

261160605001 Recife 98361

261160605010 Cabanga 102548

261160605011 Sao Jose 1524

The metadata relations would contains the following items:
layers

layerId: int layerName: string

1 Recife

representations

layerId: int geomRelation: string

1 DistrictsG

attributesRel

layerId: int attrRelation: string

1 DistrictsA

3.2.2 Temporal layers

In this section, we consider how to extend the static model to deal with temporal data.

Suppose that we want to keep track of changes in each district, to follow the evolution

of its population and its boundaries. We want to be able to register all of these changes

in the same database and to extract information about the spatial and temporal changes

on the data. Since we consider that an ST-object preserves its identity over time, every

change in its attributes or its geometries produces a new instance of this object. Since

changes in attributes and geometries might be asynchronous, our generic database model

needs two adjustments. First, we have to introduce a unique identifier in every attribute

relation. This identifier allows the distinction of different instances of attributes to the

same object. The second adjustment is including one more relation, a status relation.

This relation describes which instances of geometries and attributes are valid in a given

interval:

 status(geomId: int, uniqueId: string, initialTime: time,

 finalTime: time)

 The status relation maps every instance of geometry (identified by the field

geomId) to an instance of attributes values (identified by the field uniqueId). Each

mapping has an associated valid interval (identified by the field initialTime and

finalTime). As is possible that a layer has more than one attribute and geometry

relations, there should be one status relation to each combination of a geometry relation

with an attribute relation. Returning to our example of the districts of Recife, and

showing some data, we would have the following data relations:

DistrictsG

geomId: int objectId: string spatialData: spatial

1 261160605001 bbbbbbbbbbbbbbbbbb

2 261160605010 bbbbbbbbbbbbbbbbbb

3 261160605011 bbbbbbbbbbbbbbbbbb

4 261160605001 bbbbbbbb

5 261160605010 bbb

DistrictsA

ID_: string name:string POP_2004:int unique_id: string

261160605001 Recife 98361 1

261160605010 Cabanga 102548 2

261160605011 Sao Jose 1524 3

261160605011 Sao Jose 2789 4

261160605010 Cabanga 106548 5

DistrictsStatus

attributeInst:string geomInst:string timeI:time timeF: time

1 1 01/01/2003 31/12/2003

2 2 01/01/2003 31/12/2003

3 3 01/01/2003 31/12/2003

1 4 31/12/2003

4 3 31/12/2003

5 5 31/12/2003

 The status relation tracks both synchronous and asynchronous changes in the

geometries or attribute values of the ST-Objects. It also allows the retrieval of individual

ST-Instances of an ST-Object.

3.3. Examples of Spatio-Temporal Data

This section describes four sets of the spatio-temporal data that are representative of real

world problems and demands. They are semantically different, and explain the

requirements for the query processor and the expressive power of our generic database

model. These four data sets are:

• Crime events: the object is the crime occurrence. Its geometry is a point representing

the location of the event. Each new event has a unique identifier, therefore, is a new

object. The main characteristic of this data set is that for each object there is only

one spatio-temporal instance.

• Traps to count mosquito eggs: this data set originated from a joint work with public

health researchers studying dengue fever in the Recife, Brazil. A set of traps were

arbitrarily distributed along the city. Each trap attracts the mosquito female to lay

her eggs in a special material inside the trap. Each trap has a unique identifier and

once positioned its location does not change anymore. Researchers visit each trap

weekly and count the number of eggs laid in the trap. The object is the trap, and the

number of the eggs counted is the attribute that changes over time. Each new count

creates a new instance of the object (the trap).

• Land parcels: this data is an experimental data that reflects the changes happening in

land parcels of a neighborhood or city. Parcels are divided, sold or reacquired over

time. This means that they can suffer changes in its geometry (for example, when the

parcel is divided) or in their attributes (for example, when the parcel is sold). The

object is the parcel, and each change in their attribute values or geometries generates

a new instance of the parcel.

• Satellite tracking animals: this data results from a research project of surveying free

ranging animals by radio transmitters. The transmitters are installed in collars

attached to the animals and the signal is picked up by satellites. The object is the

animal and each new signal detected is a new instance of the geometry of the object

(or the animal location). This data represents the typical case of moving objects.

3.4. The Query Processor

A spatio-temporal database can be queried in different ways, according to the

applications. For example, “for each month, which changes occurred in the parcels?”,

“Which crimes happened on Friday in the south zone of Recife?” or “how many eggs

were counted by trap in each month?” “What was the path followed by this wolf in July

of 2004?”. To answer this demand, we have developed a flexible query processor,

named Querier, able to deal with different applications of spatio-temporal data and their

needs for queries and responses. The Querier is responsible for the link between

applications and spatio-temporal databases, as shown in Figure 2.

Figure 2. The Querier architecture.

 The Querier receives a set of parameters that define its behavior. These

parameters control how applications retrieve ST-Instances and ST-Objects. Their

combination provides a flexible way of querying a spatio-temporal database:

• Layer: the source of the ST-Instances recovered by the Querier.

• Chronon: defines how the ST-Instances are split in time frames. The possible

values of chronon are: second, minute, hour, day, month, year, day of
week, day of month, day of year, month of year, week of year,

hour of day, minute of hour or second of minute. For example, if

you want to watch the crime events separated by weekday, the Querier returns

seven time frames, one for each weekday. In this case, all the crimes that

happened on Sunday are in the first time frame, the ones that happened on

Monday are in the second time frame, and so on.

• Which time frames will be retrieved: controls whether the Querier returns either

every time frame existent in the interval or only the time frames where some

change occurred. Suppose a user is querying a set of parcels in 2004 and

Chronon month. Changes on the parcels occurred only in January and in

September of 2004. If the user requests the Querier to return every time frame,

she will get twelve time frames. Otherwise, if she requests the Querier to return

time frames where a change occurred, she will only get two time frames.

• Temporal predicate: the possible values for this parameter are the temporal

interval predicates defined by Allen [1983]: equals, before, after, meets,

during, overlaps, ends or starts.

• Aggregate functions: allows grouping a set of ST-Instances to produce a single

value. The functions supported by the Querier are: maximum, minimum,

average, sum, counting, or variance. This parameter should be used, for

example, when one needs to know the average of eggs counted by trap is in each

month.

• Spatial predicate: Based on Egenhofer [1994], the possible spatial predicates are:

disjoint, touches, crosses, within, overlaps, contains,
intersects, equals, covers, and covered by.

3.4.1 Querier Examples

 In this section we show some examples of how to use the Querier to retrieve

spatio-temporal data. We present the different ways of using the Querier combining the

set of parameters to answer some usual questions.

Example 1) Returns the crime events from database, its location and its properties.

Step 1. Retrieve the layer information

 CrimeLayer = database->getLayer (“Crimes”);

Step 2. Set the parameters

 Querier->setParams(loadGeometries, loadAllAttributes);

 Querier->setParams(CrimeLayer);

Step 3. Load the instances

 Querier->loadInstances();

Step 4. Consume the returned instance (ST-instances).

 while (Querier->fetchInstance(sti))

 {

 Geometry = sti.getGeometry();

 Properties = sti.getProperties();

 Time = sti.getTime();

 }

 In this example, the Querier returns the crimes from the layer “Crimes”, its

location (point geometry) and its attributes or properties. The first step loads the layer

information from the database. The Querier behavior is defined by the parameters set in

the step 2. Step 3 loads the instances and, in the final step, the Querier traverses every

crime event and, for each one, gets its location (geometry), properties and time.

Example 2) Which crimes happened in 2003 in the district named “Cabanga” of Recife

city?

Step 1. Retrieve the layer information

 CrimeLayer = database->getLayer (“Crimes”);

Step 2. Get the geometry from the layer that will be used in the spatial predicate

 DistrictLayer = database->getLayer (“Districts”);

 DistrictGeometry= DistrictLayer->getGeometry (“Cabanga”);

Step 3. Set the parameters

 Querier->setParams(loadGeometries, loadAllAttributes);

 Querier->setParams(CrimeLayer, year, ChangedTimeFrames);

 Querier->setSpatialRestriction(DistrictGeometry, within);

Step 4. Load the instances of a specific time frame

 TimeFrame = Querier->getTimeFrame(‘2003’, Year);

 Querier->loadInstances(TimeFrame);

Step 5. Consume the returned instance (ST-instances).

 while (Querier->fetchInstance(sti))

 {

 Geometry = sti.getGeometry();

 Properties = sti.getProperties();

 Time = sti.getTime();

 }

 In this example the Querier returns the crimes events from the layer “Crimes”

that spatially occurred within the district boundaries named “Cabanga”. The information

about the layer that will be queried is loaded in step 1 and the district boundaries are

retrieved from the layer “Districts” in step 2. Step 3 sets the Querier parameters and its

spatial predicate. The crimes are grouped by years, since we defined the chronon as

year. This Querier is set to return only the time frames with changes

(ChangedTimeFrames). Thus, each returned instance has at least one crime. The

spatial predicate is defined by the district boundaries and by the spatial relation within.

 The Querier loaded only the instances of the time frame associated to year 2003,

as shown in the step 4. In the last step, the Querier traverses every crime that happened

in 2003 and within the district “Cabanga”.

Example 3) How many eggs were counted in each trap in each month?

 Step 1. Retrieve the layer information

 TrapLayer = database->getLayer (“Traps”);

Step 2. Define the aggregation function

 GroupingAttributes->insert (“num_eggs”, SUM);

Step 3. Set the parameters

 Querier->setParams(loadGeometries, GroupingAttributes);

 Querier->setParams(TrapLayer, month, ChangedTimeFrames);

 Step 4. Pass over each time frame loading its instances

 numTimeFrames = Querier->getNumTimeFrames();

 for (frame=0 to numTimeFrames)

 {

 Querier->loadInstances(frame);

Step 5. Consume the returned instance (ST-instances) for each time frame

 while (Querier->fetchInstance(sti))

 {

 Geometry = sti.getGeometry();

 Properties = sti.getProperties();

 Time = sti.getTime();

 }

 }

 In this example, the Querier works with the layer “TrapLayer”, grouping the egg

counting by trap in each month (month). Thus, the Querier returns only one monthly

ST-Instance for each trap. This instance is of the sum of the egg counts in a trap

location. Step 2 defines that the attribute “num_eggs” will be aggregated by function

SUM.

Example 4) Which changes occurred in the land parcels in each month?

 Step 1. Retrieve the layer information

 ParcelLayer = database->getLayer (“Parcels”);

Step 2. Set the parameters

 Querier->setParams(loadGeometries, loadAllAttributes);

 Querier->setParams(ParcelLayer, month, ChangedTimeFrames,

 Starts | Ends);

 Step 3. Traverse each time frame loading its instances

 numTimeFrames = Querier->getNumTimeFrames();

 for (frame=0 to numTimeFrames)

 {

 Querier->loadInstances(frame);

Step 4. Consume the returned instance (ST-instances) for each time frame

 while (Querier->fetchInstance(sti))

 {

 Geometry = sti.getGeometry();

 Properties = sti.getProperties();

 Time = sti.getTime();

 }

 }

Each change in a parcel creates a new instance with an associated interval. This interval

is composed of an initial time (when the validity of the instance started) and of a final

time (when the validity of the instance ended). Thus, to recover which changes

happened in a month, it is necessary to know which instances have an interval that

started or ended in this month.

 In this example, the Querier returns all the parcels that change in each month.

Then, the temporal relation set in the Querier is the combination of the predicates starts

and ends as shown in step 2. Finally, as in the previously examples, it traverses every

time frames created by the Querier and retrieves the ST-Instances of each time frame, as

shown in steps 3 and 4.

 When the temporal relation between time frames and ST-Instances is not defined

directly, as in the examples 2 and 3, the Querier returns all instances valid in each time

frame. We say that an instance is valid in a time frame when its validity time has some

intersection with the interval that represents the time frame.

4. A case study

This section shows a case study of the proposed query processor architecture. This case

study uses the TerraLib library [Câmara, Souza et al. 2000]. TerraLib builds a layered

database architecture on top of an existing object-relational DBMS (OR-DBMS) such as

MySQL, PostgreSQL, PostGIS or ORACLE. TerraLib provides a database generic

application interface that hides the differences among the spatial abstract data types

provided by the OR-DBMS’s. The generic database interface also hides differences

between spatial data handling by these DBMS [Ferreira, Queiroz et al. 2002].

4.1. A Spatio-Temporal Database Observer

 This section shows a graphical application with built using the TerraLib

implementation of the query processor described in the sections above. The main use of

the application is to show the status of the database, following it in different time

frames. The user can choose to see all the time frames or only the time frames where a

change occurred. The interface (shown in Figure 3) lets the user choose the layer and

the query parameters. The right side of the interface allows to the user to group the

instances, as shown in Example 3.

Figure 3. The selection interface.

4.1.1 Viewing crime events

Figures 4 and 5 show the first and the last time frames form the layer of crime events,

using chronon month. The data in the database are the crime events from January 2000

to June 2003, with 42 time frames. As we move from one time frame to the next, the

interface shows the matching crime events. Had we chosen the chronon Year, the

interface would show only 4 time frames.

Figure 4. Watching the layer of crime events. The first time frame.

Figure 5. Watching the layer of crime events. The last time frame

4.1.2 Watching mosquito traps

If we follow the layer of traps and the eggs counts in each trap using chronon day, we

can see the first and third frames have counts associated to the trap identified as EM113.

Figures 6 and 7 show these two time frames.

Figure 6. Watching the layer of traps. First time frame of chronon day.

Figure 7. Watching the layer of traps. Third time frame of chronon day.

 If we watch the layer of traps using the chronon Month, we will get more than

one instance associated to the trap EM113, in the time frame March, 2004. This happens

because there were two data collections in this trap during this month. Figure 8 shows

the first time frame resulting from asking for the sum of eggs counted per month for

each trap. The number of eggs in trap EM113 is the sum of the number of eggs that

appeared in the instances shown in Figures 6 and 7.

Figure 8. Watching the layer of traps. First time frame of chronon Month.

 In the example, the grouping function is a sum over a descriptive attributes,

using statistical measures. This grouping operation transforms a set of instances into a

single one. As the mosquito traps do not change their location, this function makes

sense in the application domain. In cases where the geometry of the instances of the

same object are different, we would have to provide a similar way to choose what

geometry is representative of all instances on an object in a time frame. This could be

done, for example, choosing their intersection or union. We have not yet addressed this

requirement, but the query processor is flexible enough to include this new parameter.

4.1.3 Watching change in parcels

 The layer of parcels is more interesting, because it allows following changes in

the geometries of the ST-Objects. Using chronon Month, and specifying that we want to

see all the time frames available, there are 15 time frames. Figure 9 shows the first.

Figure 9. Watching the layer of parcels. First time frame of chronon Month.

 Figure 10 shows the fiftieth time frame. We see that changes occurred in the

attribute values of object lote3 as shown in rows 1 and 2 of the table. We get two

instances of this object. The geometry of the first instance of an object in the time frame

is shown in horizontal pattern brush style, the second in a vertical pattern brush style.

Looking at the resulting cross pattern we see the geometries of the two instances

coincide, or there where no changes in the geometries of the object. Row 1 of the table

shows that the attributes changed in 2004/5/10 and row 2 shows that the next instance is

valid until present time.

Figure 10. The fiftieth time frame of chronon Month, layer of parcels.

 The Figure 11 shows the third change that happened in the twelfth time frame.

The object lote1 was divided, given origin to the object lote4. We note in the table that

two instances of lote1 where returned (rows 1 and 2). The cross pattern and double

horizontal pattern shows the piece of lote1 that was sold and created lote4.

Figure 11. The twelfth time frame of chronon Month, layer of parcels.

 A similar change occurred in object lote2 as shows Figure 12.

Figure 12. The fifteenth time frame of chronon Month, layer of parcels.

5. Conclusions

In this work, we presented a generic database model to deal with spatio-temporal data.

Our idea is that the internal architecture of the database can be unified for different

spatio-temporal applications. Using this data model, we built a flexible query processor

that can answer the demands of different applications. This processor is defined through

parameters that define the different combinations of spatial and temporal restrictions.

We have shown examples of how the Querier follows the state of the database in

different time frames. This functionality is useful, for example, to build spatio-temporal

statistical functions. We have also shown how to use Querier to answer questions that

relate the spatial and temporal aspects of the data.

 We have implemented the Querier using the TerraLib library and its generic

database interface. This implementation of the Querier allows the use of different

DBMS to build the generic model of a spatio-temporal database. We validated this

implementation in different application of spatio-temporal data. For future research we

intent to couple the Querier parameters to a spatio-temporal language, so that it will be a

spatio-temporal language processor. We also intend to build indexing structures to

optimize query processing.

References

Allen, J. F. (1983). "Maintaining Knowledge about Temporal Intervals."

Communications of the ACM 26(11): 832-843.

Câmara, G., R. Souza, B. Pedrosa, et al. (2000). TerraLib: Technology in Support of

GIS Innovation. II Brazilian Symposium on Geoinformatics, GeoInfo2000, São

Paulo.

Clementini, E. and P. Di Felice (1996). "A Model for Representing Topological

Relationships Between Complex Geometric Features in Spatial Databases."

Information Sciences 90(1-4): 121-136.

Couclelis, H. (1992). People Manipulate Objects (but Cultivate Fields): Beyond the

Raster-Vector Debate in GIS. Theories and Methods of Spatio-Temporal

Reasoning in Geographic Space. A. Frank, I. Campari and U. Formentini. Berlin,

Springer-Verlag. 639: 65-77.

Dieker, S. and R. H. Güting (2000). Plug and Play with Query Algebras: SECONDO, A

Generic DBMS Development Environmen. Proc. of the Int. Database

Engineering and Applications Symp. (IDEAS 2000).

Egenhofer, M. (1994). "Spatial SQL: A Query and Presentation Language." IEEE

Transactions on Knowledge and Data Engineering 6(1): 86-95.

Egenhofer, M. (1999). Spatial Information Appliances: A Next Generation of

Geographic Information Systems. First Brazilian Workshop on GeoInformatics,

Campinas, Brazil.

Egenhofer, M. and R. Franzosa (1991). "Point-Set Topological Spatial Relations."

International Journal of Geographical Information Systems 5(2): 161-174.

Erwig, M., R. H. Güting, M. Schneider, et al. (1999). "Spatio-Temporal Data Types: An

Approach to Modeling and Querying Moving Objects in Databases."

GeoInformatica 3(3): 269-296.

Erwig, M. and M. Schneider (2002). "Spatio-Temporal Predicates." IEEE Transactions

on Knowledge and Data Engineering 14(4): 881-901.

Ferreira, K. R., G. Queiroz, J. A. Paiva, et al. (2002). Arquitetura de Software para

Construção de Bancos de Dados Geográficos com SGBD Objeto-Relacionais.

XVII Simpósio Brasileiro de Banco de Dados, Gramado, RS.

Frank, A. U. (2003). Ontology for spatio-temporal databases. Spatiotemporal Databases:

The Chorochronos Approach. T. Sellis. Berlin, Springer-Verlag.

Güting, R. H., M. H. Bohlen, M. Erwig, et al. (2003). Spatio-temporal Models and

Languages: An Approach Based on Data Types. Spatio-Temporal Databases. M.

Koubarakis. Berlin, Springer.

Güting, R. H. and M. Schneider (2005). Moving Objects Databases. New York, Morgan

Kaufmann.

Hornsby, K. and M. Egenhofer (2000). "Identity-Based Change: A Foundation for

Spatio-Temporal Knowledge Representation." International Journal of

Geographical Information Science 14(3): 207-224.

Medak, D. (2001). Lifestyles. Life and Motion of Socio-Economic Units. ESF Series. A.

U. Frank, Raper, J., & Cheylan, J.-P. London, Taylor & Francis.

Papadias, D. and M. Egenhofer (1997). "Hierarchical Spatial Reasoning about Direction

Relations." GeoInformatica 1(3): 251-273.

Parent, C., S. Spaccapietra and E. Zimányi (1999). Spatio-temporal conceptual models:

data structures + space + time. 7th ACM international symposium on Advances

in geographic information systems, Kansas City, USA, ACM Press.

Pelekis, N., B. Theodoulidis, I. Kopanakis, et al. (2004). "Literature review of spatio-

temporal database models." The Knowledge Engineering Review 19(3): 235 -

274

Relly, L., H.-J. Schek, O. Henricsson, et al. (1997). Physical Database Design for Raster

Images in Concert. 5th International Symposium on Spatial Databases (SSD'97),

Berlin, Germany, Springer.

Tryfona, N. and C. Jensen (1999). "Conceptual Data Modeling for Spatiotemporal

Applications." GeoInformatica 3: 245-268.

Worboys, M. (1994). "A Unified Model for Spatial and Temporal Information." The

Computer Journal 37(1): 27-34.

