
  

The Architecture of a Flexible Querier for Spatio-Temporal 

Databases 

Karine Reis Ferreira, Lúbia Vinhas, Gilberto Ribeiro de Queiroz, Ricardo Cartaxo 

Modesto de Souza, Gilberto Câmara 

Divisão de Processamento de Imagens – Instituto Nacional de Pesquisas Espaciais 

(INPE)  

Av. dos Astronautas, 1758 – 12220-010 – São José dos Campos – SP – Brazil 

{karine, lubia, gribeiro,cartaxo,gilberto}@dpi.inpe.br 

Abstract. In this paper, we propose a solution to the problem of designing a 

flexible query processor for spatio-temporal databases. Our solution is to 

design a bottom-up interface, whose parameters handle different spatio-

temporal applications. We propose a relational schema that can cope with 

various spatio-temporal data types. Based on this model, we have design a 

flexible query processor for spatio-temporal databases. We have implemented 

this query processor in TerraLib open source GIS environment and we present 

a case study. 

1. Introduction 

Emerging database management systems that can handle spatial data types have changed 

both GISystems and GIScience. Systemwise, this technology enables a transition from 

the current GIS technology to a new generation of spatial information appliances, 

tailored to specific user needs [Egenhofer 1999].  For the GIScience community, it 

enables many theoretical proposals to face the crucial test of practice. One of the 

important challenges for the GIScience community is finding ways to use spatially 

enabled DBMS to build innovative applications which deal with spatio-temporal data 

[Erwig, Güting et al. 1999] [Hornsby and Egenhofer 2000]. Modeling spatio-temporal 

applications is a complex task that involves representing objects with spatial extensions 

and attributes values that change over time [Frank 2003]. To deal with spatio-temporal 

data, one alternative is building a specialized DBMS created for efficient support of 

spatio-temporal data types, as in the projects CONCERT [Relly, Schek et al. 1997]  and 

SECONDO [Dieker and Güting 2000]. When is not possible to use a specialized 

DBMS, one has to build a layered architecture on top of an existing object-relational 

DBMS. This is the focus of this paper, where we consider how to support applications 

of spatio-temporal data, using object-relational database management systems (OR-

DBMS).  In this case, one basic question arises: how to design a flexible query 

processor for spatio-temporal data using object-relational DBMS?   

 A flexible query processor needs to be able to cope with different applications of 

spatio-temporal data and their needs for queries and responses. To solve this problem, a 

popular approach in the literature is to provide specialized algebras for different 

applications. For example, Güting, Bohlen et al. [2003] present a model for moving 

objects that includes moving points and moving regions. Hornsby and Egenhofer [2000] 

and Medak [2001] propose models for the life and evolution of socio-economic objects. 



  

These specialised models can lead to databases where each type of application is 

handled by a different query processor. Obviously, this is not desirable for developers of 

applications using spatio-temporal databases. Ideally, the architecture of the query 

processor would have a unified and flexible way of dealing with the different 

applications of spatio-temporal data.  

 In this paper, we propose a solution to the problem of designing a flexible query 

processor for spatio-temporal databases using object-relational DBMS. Our proposed 

solution is to unify the internal architecture of the database for all different spatio-

temporal applications.  In this paper, we discuss the design and architecture of the query 

processor. In section 2, we review the issue of spatio-temporal query processing. In 

section 3, we present the database model and the architecture of the query processor. In 

section 4, we show a case study using the query processor.   

2. Spatio-temporal data handling: top-down x bottom-up approaches 

In this section, we discuss four different levels in a database design that address 

different aspects for handling of spatio-temporal data: (a) A set of data types and an 

associated algebra; (b) A conceptual data model for spatio-temporal data; (c) A spatio-

temporal query language; (d) An application programming interface with suitable 

parameters. We consider the first three as “top-down” approaches and the fourth as a 

“bottom-up” choice. 

 The first alternative is to define a set of spatio-temporal data types and operators. 

The DBMS is extended to support these data types and operators and will provide an 

associated query language. This is the approach taken by Güting [2005] that defines an 

algebra for moving objects. His spatio-temporal data types for moving objects are 

embedded in a query language to answer queries as: “Given the trajectories of two 

airplanes, when they will pass over the same location?”. Similarly, Medak [2001] 

proposes an algebra for modeling change in socio-economical units. Medak’s algebra 

provides answers to queries such as: “When was this parcel divided?” The main 

challenge of this approach is finding a suitably small set of data types and operators for 

handling all types of spatio-temporal data. Currently, we only find spatio-temporal 

algebras for specialized applications (e.g., moving objects). 

 The second choice is to design a conceptual model for spatio-temporal data.  In 

this case, the designer starts from an external view of the problem and provides a set of 

classes (or an equivalent E-R model). These classes encapsulate abstractions such as 

geometry, attributes and their changes. Examples include STER [Tryfona and Jensen 

1999] and MADS [Parent, Spaccapietra et al. 1999] (see also Pelekis et al [2004] for a 

review of similar models). The main drawback of these approaches is the large variety 

of different application semantics for combining space and time. These models work 

fine for some applications, but will not fit other cases well.  

 The third approach is the design of a general spatio-temporal query language, 

which needs a well-defined set of predicates for spatial, temporal, and spatio-temporal 

queries. For spatial data, topological and directional operators are already well-

established in the literature [Egenhofer and Franzosa 1991] [Papadias and Egenhofer 

1997] [Clementini and Di Felice 1996]. Dealing with temporal data is also a well-

researched issue. The interval algebra for temporal operators is established [Allen 



  

1983], as is the bitemporal model of Worboys [1994].    However, there are problems 

when trying to devise a unique canonical set of spatio-temporal predicates. As shown by 

Erwig and Schneider [2002], it is not practical to devise one such set because there are 

too many predicates that can be considered different. They propose two options. Either 

each application will develop a specialized subset of predicates, or the spatio-temporal 

database will provide combinators that allow the user to build up her or his own 

predicates.  

 Given the lack of generality of these approaches, we have taken a fourth route. 

Our bottom-up alternative is to design a query processor as a parametrizable function. 

Taking in consideration the suggestion by Erwig and Schneider [2002] to design a 

combinator, this query processor is flexible and can be used by different applications. 

The set of parameters of the query processor works as a combinator of spatio-temporal 

predicates. We discuss this query processor in the next sections of the paper. Since our 

proposal aims at a generic way of dealing of spatio-temporal queries, we do not discuss 

query optimization in this paper. We consider the main contribution of the work is to 

provide a programming interface that can be optimized later for handling specific 

applications. 

3. The architecture of a spatio-temporal query processor 

3.1. General view of a spatio-temporal database 

In this section, we describe a generic model for a geographical database, which is the 

basis for designing the query processor. We assume that a geographical database stores 

layers. A layer aggregates spatial information that covers a geographical region and has 

a common set of attributes and shares the same spatial reference system.  Layers supports 

both the object-based and field-based models of spatial information [Couclelis 1992]. 

The layer model is used by most spatial extensions of object-relational DBMS such as 

ORACLE SPATIAL and PostGIS. In this work we concentrate on the object-based 

layers.  

 Figure 1 shows a layer of districts of the Brazilian city of Recife. Each district 

has a set of descriptive attributes, such as its name, or the population of the district in 

the census of 2004. The spatial extension of each district is a polygon that represents its 

boundaries.  

  

 

Figure 1.  A layer of districts of Recife, PE. 



  

  Our model considers that a layer contains a set of spatio-temporal objects (ST-

Objects). An ST-Object is an entity that preserves its identity over time [Hornsby and 

Egenhofer 2000].  Static layers aggregate ST-Objects with geometry and attribute values 

that do not change. Temporal layers aggregate ST-Objects that change their attribute 

values or their geometry. We refer to the different versions of the same ST-Object as 

spatio-temporal instances (ST-Instances). Each ST-Instance has an associated interval 

that is the validity time of that instance and knows its current spatial extension and its 

current set of attribute values. 

3.2. A generic database model for spatio-temporal data 

3.2.1 Static Layers 

Our database model considers in a set of relations that include attribute relations, 

geometry relations and metadata relations. In a generic way, we represent the geometry 

and attribute relations as: 

 geometries(geomId:int, objId:string, spatialData: spatial) 

 attributes(objId:string, [att1:attType,...,attn:attType]). 

 We consider that each entity has a unique and persistent identification (objId). 

Each geometry also has a unique identifier (geomId). We use attType for 

conventional types such as int, double or string. We use the spatial keyword for 

types that can store a spatial extent. We consider these relations as data relations since 

they effectively store the spatial data.  

 We also need to store metadata information on the database. These relations 

describe the geometry and attributes relations associated to each layer. Our metadata 

relations are: 

 layers          (layerId: int, layerName: string) 

 representations (layerId: int, geomRelation: string) 

 attributesRel   (layerId: int, attrRelation: string) 

 The layers relation provides a unique identifier (layerId) for each layer. It 

can also contains other attributes that are relevant to the layer, such as a name or a link 

to its spatial reference system. The representations relation associate, to each 

layer, its geometries relations. The model allows multiple spatial representations for the 

objects of the layer.  The attributesRel relation points to the descriptive attributes 

relations associated to a layer. 

 This data model is suitable to store static layers. It allows more than one attribute 

relation for each object type, as needed by real data.  Mapping the example shown in 

Figure 1 to this database model, and including some data for clarity, we have the 

following data relations: 

 

 

 



  

 
DistrictsG 

geomId: int objectId: string spatialData: spatial 

1 261160605001 bbbbbbbbbbbbbbbbbb 

2 261160605010 bbbbbbbbbbbbbbbbbb 

3 261160605011 bbbbbbbbbbbbbbbbbb 

 
DistrictsA 

ID_: string name:string POP_2004:int 

261160605001 Recife 98361 

261160605010 Cabanga 102548 

261160605011 Sao Jose 1524 

The metadata relations would contains the following items: 
layers 

layerId: int layerName: string 

1 Recife 

 
representations 

layerId: int geomRelation: string 

1 DistrictsG 

 
attributesRel 

layerId: int attrRelation: string 

1 DistrictsA 

3.2.2 Temporal layers 

In this section, we consider how to extend the static model to deal with temporal data. 

Suppose that we want to keep track of changes in each district, to follow the evolution 

of  its population and its boundaries. We want to be able to register all of these changes 

in the same database and to extract information about the spatial and temporal changes 

on the data.  Since we consider that an ST-object preserves its identity over time, every 

change in its attributes or its geometries produces a new instance of this object. Since 

changes in attributes and geometries might be asynchronous, our generic database model 

needs two adjustments.  First, we have to introduce a unique identifier in every attribute 

relation. This identifier allows the distinction of different instances of attributes to the 

same object. The second adjustment is including one more relation, a status relation. 

This relation describes which instances of geometries and attributes are valid in a given 

interval:  



  

 status(geomId: int, uniqueId: string, initialTime: time,  

             finalTime: time) 

  The status relation maps every instance of geometry (identified by the field 

geomId) to an instance of attributes values (identified by the field uniqueId). Each 

mapping has an associated valid interval (identified by the field initialTime and 

finalTime). As is possible that a layer has more than one attribute and geometry 

relations, there should be one status relation to each combination of a geometry relation 

with an attribute relation.  Returning to our example of the districts of Recife, and 

showing some data, we would have the following data relations: 

 
DistrictsG 

geomId: int objectId: string spatialData: spatial 

1 261160605001 bbbbbbbbbbbbbbbbbb 

2 261160605010 bbbbbbbbbbbbbbbbbb 

3 261160605011 bbbbbbbbbbbbbbbbbb 

4 261160605001 bbbbbbbb 

5 261160605010 bbb 

 
DistrictsA  

ID_: string name:string POP_2004:int unique_id: string 

261160605001 Recife 98361 1 

261160605010 Cabanga 102548 2 

261160605011 Sao Jose 1524 3 

261160605011 Sao Jose 2789 4 

261160605010 Cabanga 106548 5 

  
DistrictsStatus  

attributeInst:string geomInst:string timeI:time timeF: time 

1 1 01/01/2003 31/12/2003 

2 2 01/01/2003 31/12/2003 

3 3 01/01/2003 31/12/2003 

1 4 31/12/2003  

4 3 31/12/2003  

5 5 31/12/2003  

 The status relation tracks both synchronous and asynchronous changes in the 

geometries or attribute values of the ST-Objects. It also allows the retrieval of individual 

ST-Instances of an ST-Object. 



  

3.3. Examples of Spatio-Temporal Data 

This section describes four sets of the spatio-temporal data that are representative of real 

world problems and demands. They are semantically different, and explain the 

requirements for the query processor and the expressive power of our generic database 

model. These four data sets are: 

• Crime events: the object is the crime occurrence. Its geometry is a point representing 

the location of the event. Each new event has a unique identifier, therefore, is a new 

object. The main characteristic of this data set is that for each object there is only 

one spatio-temporal instance.  

• Traps to count mosquito eggs: this data set originated from a joint work with public 

health researchers studying dengue fever in the Recife, Brazil. A set of traps were 

arbitrarily distributed along the city. Each trap attracts the mosquito female to lay 

her eggs in a special material inside the trap. Each trap has a unique identifier and 

once positioned its location does not change anymore. Researchers visit each trap 

weekly and count the number of eggs laid in the trap. The object is the trap, and the 

number of the eggs counted is the attribute that changes over time. Each new count 

creates a new instance of the object (the trap). 

• Land parcels: this data is an experimental data that reflects the changes happening in 

land parcels of a neighborhood or city. Parcels are divided, sold or reacquired over 

time. This means that they can suffer changes in its geometry (for example, when the 

parcel is divided) or in their attributes (for example, when the parcel is sold). The 

object is the parcel, and each change in their attribute values or geometries generates 

a new instance of the parcel. 

• Satellite tracking animals: this data results from a research project of surveying free 

ranging animals by radio transmitters. The transmitters are installed in collars 

attached to the animals and the signal is picked up by satellites. The object is the 

animal and each new signal detected is a new instance of the geometry of the object 

(or the animal location). This data represents the typical case of  moving objects. 

3.4. The Query Processor 

A spatio-temporal database can be queried in different ways, according to the 

applications. For example, “for each month, which changes occurred in the parcels?”, 

“Which crimes happened on Friday in the south zone of Recife?” or “how many eggs 

were counted by trap in each month?” “What was the path followed by this wolf in July 

of 2004?”.  To answer this demand, we have developed a flexible query processor, 

named Querier, able to deal with different applications of spatio-temporal data and their 

needs for queries and responses. The Querier is responsible for the link between 

applications and spatio-temporal databases, as shown in Figure 2.  



  

 

Figure 2.  The Querier architecture.  

 The Querier receives a set of parameters that define its behavior. These 

parameters control how applications retrieve ST-Instances and ST-Objects. Their 

combination provides a flexible way of querying a spatio-temporal database:   

•  Layer: the source of the ST-Instances recovered by the Querier. 

• Chronon: defines how the ST-Instances are split in time frames. The possible 

values of chronon are: second, minute, hour, day, month, year, day of 
week, day of month, day of year, month of year, week of year, 

hour of day, minute of hour or second of minute.  For example, if 

you want to watch the crime events separated by weekday, the Querier returns 

seven time frames, one for each weekday. In this case, all the crimes that 

happened on Sunday are in the first time frame, the ones that happened on 

Monday are in the second time frame, and so on.   

• Which time frames will be retrieved: controls whether the Querier returns either 

every time frame existent in the interval or only the time frames where some 

change occurred.  Suppose a user is querying a set of parcels in 2004 and 

Chronon month.  Changes on the parcels occurred only in January and in 

September of 2004. If the user requests the Querier to return every time frame, 

she will get twelve time frames. Otherwise, if she requests the Querier to return 

time frames where a change occurred, she will only get two time frames.  

• Temporal predicate: the possible values for this parameter are the temporal 

interval predicates defined by Allen [1983]: equals, before, after, meets, 

during, overlaps, ends or starts.        

• Aggregate functions: allows grouping a set of ST-Instances to produce a single 

value. The functions supported by the Querier are: maximum, minimum, 

average, sum, counting, or variance. This parameter should be used, for 

example, when one needs to know the average of eggs counted by trap is in each 

month.  



  

• Spatial predicate: Based on Egenhofer [1994], the possible spatial predicates are: 

disjoint, touches, crosses, within, overlaps, contains, 
intersects, equals, covers, and covered by.   

3.4.1 Querier Examples  

 In this section we show some examples of how to use the Querier to retrieve 

spatio-temporal data. We present the different ways of using the Querier combining the 

set of parameters to answer some usual questions.  

Example 1) Returns the crime events from database, its location and its properties. 

Step 1. Retrieve the layer information  

       CrimeLayer = database->getLayer (“Crimes”); 

Step 2. Set the parameters 

      Querier->setParams(loadGeometries, loadAllAttributes); 

      Querier->setParams(CrimeLayer); 

Step 3. Load the instances  

      Querier->loadInstances(); 

Step 4. Consume the returned instance (ST-instances). 

       while (Querier->fetchInstance(sti))  

      {            

           Geometry = sti.getGeometry();          

           Properties = sti.getProperties();              

           Time = sti.getTime(); 

      }  

 In this example, the Querier returns the crimes from the layer “Crimes”, its 

location (point geometry) and its attributes or properties. The first step loads the layer 

information from the database. The Querier behavior is defined by the parameters set in 

the step 2. Step 3 loads the instances and, in the final step, the Querier traverses every 

crime event and, for each one, gets its location (geometry), properties and time.  

Example 2) Which crimes happened in 2003 in the district named “Cabanga” of Recife 

city? 

Step 1. Retrieve the layer information  

       CrimeLayer = database->getLayer (“Crimes”); 

Step 2. Get the geometry from the layer that will be used in the spatial predicate 

       DistrictLayer = database->getLayer (“Districts”); 

      DistrictGeometry= DistrictLayer->getGeometry (“Cabanga”); 

Step 3. Set the parameters 

       Querier->setParams(loadGeometries, loadAllAttributes); 

      Querier->setParams(CrimeLayer, year, ChangedTimeFrames); 



  

       Querier->setSpatialRestriction(DistrictGeometry, within); 

Step 4. Load the instances of a specific time frame 

      TimeFrame = Querier->getTimeFrame(‘2003’, Year); 

      Querier->loadInstances(TimeFrame); 

Step 5. Consume the returned instance (ST-instances). 

       while (Querier->fetchInstance(sti)) 

       {  

          Geometry = sti.getGeometry(); 

          Properties = sti.getProperties(); 

             Time = sti.getTime(); 

      }  

 In this example the Querier returns the crimes events from the layer “Crimes” 

that spatially occurred within the district boundaries named “Cabanga”. The information 

about the layer that will be queried is loaded in step 1 and the district boundaries are 

retrieved from the layer “Districts” in step 2.  Step 3 sets the Querier parameters and its 

spatial predicate. The crimes are grouped by years, since we defined the chronon as 

year. This Querier is set to return only the time frames with changes 

(ChangedTimeFrames). Thus, each returned instance has at least one crime. The 

spatial predicate is defined by the district boundaries and by the spatial relation within.    

 The Querier loaded only the instances of the time frame associated to year 2003, 

as shown in the step 4. In the last step, the Querier traverses every crime that happened 

in 2003 and within the district “Cabanga”.     

Example 3) How many eggs were counted in each trap in each month? 

  Step 1. Retrieve the layer information 

       TrapLayer = database->getLayer (“Traps”); 

Step 2. Define the aggregation function  

       GroupingAttributes->insert (“num_eggs”, SUM); 

Step 3. Set the parameters 

       Querier->setParams(loadGeometries, GroupingAttributes); 

      Querier->setParams(TrapLayer, month, ChangedTimeFrames); 

 Step 4. Pass over each time frame loading its instances 

      numTimeFrames = Querier->getNumTimeFrames(); 

      for (frame=0 to numTimeFrames) 

      { 

          Querier->loadInstances(frame); 

Step 5. Consume the returned instance (ST-instances) for each time frame 

           while (Querier->fetchInstance(sti)) 



  

          {  

               Geometry = sti.getGeometry(); 

               Properties = sti.getProperties(); 

                  Time = sti.getTime(); 

          }  

      }     

  In this example, the Querier works with the layer “TrapLayer”, grouping the egg 

counting by trap in each month (month). Thus, the Querier returns only one monthly 

ST-Instance for each trap. This instance is of the sum of the egg counts in a trap 

location. Step 2 defines that the attribute “num_eggs” will be aggregated by function 

SUM.  

Example 4) Which changes occurred in the land parcels in each month?  

  Step 1. Retrieve the layer information  

       ParcelLayer = database->getLayer (“Parcels”); 

Step 2. Set the parameters 

       Querier->setParams(loadGeometries, loadAllAttributes); 

      Querier->setParams( ParcelLayer, month, ChangedTimeFrames,  

                          Starts | Ends); 

 Step 3. Traverse each time frame loading its instances 

      numTimeFrames = Querier->getNumTimeFrames(); 

      for (frame=0 to numTimeFrames) 

      { 

          Querier->loadInstances(frame); 

Step 4. Consume the returned instance (ST-instances) for each time frame 

           while (Querier->fetchInstance(sti)) 

          {  

               Geometry = sti.getGeometry(); 

               Properties = sti.getProperties(); 

                  Time = sti.getTime(); 

          }  

      }     

Each change in a parcel creates a new instance with an associated interval. This interval 

is composed of an initial time (when the validity of the instance started) and of a final 

time (when the validity of the instance ended). Thus, to recover which changes 

happened in a month, it is necessary to know which instances have an interval that 

started or ended in this month. 



  

  In this example, the Querier returns all the parcels that change in each month. 

Then, the temporal relation set in the Querier is the combination of the predicates starts 

and ends as shown in step 2. Finally, as in the previously examples, it traverses every 

time frames created by the Querier and retrieves the ST-Instances of each time frame, as 

shown in steps 3 and 4.  

 When the temporal relation between time frames and ST-Instances is not defined 

directly, as in the examples 2 and 3, the Querier returns all instances valid in each time 

frame. We say that an instance is valid in a time frame when its validity time has some 

intersection with the interval that represents the time frame.    

4. A case study  

This section shows a case study of the proposed query processor architecture. This case 

study uses the TerraLib library [Câmara, Souza et al. 2000]. TerraLib builds a layered 

database architecture on top of an existing object-relational DBMS (OR-DBMS) such as 

MySQL, PostgreSQL, PostGIS or ORACLE. TerraLib provides a database generic 

application interface that hides the differences among the spatial abstract data types 

provided by the OR-DBMS’s. The generic database interface also hides differences 

between spatial data handling by these DBMS [Ferreira, Queiroz et al. 2002].  

4.1. A Spatio-Temporal Database Observer 

 This section shows a graphical application with built using the TerraLib 

implementation of the query processor described in the sections above.  The main use of 

the application is to show the status of the database, following it in different time 

frames. The user can choose to see all the time frames or only the time frames where a 

change occurred.  The interface (shown in Figure 3) lets the user choose the layer and 

the query parameters. The right side of the interface allows to the user to group the 

instances, as shown in Example 3. 

 

Figure 3.  The selection interface. 

   



  

4.1.1 Viewing crime events 

Figures 4 and 5 show the first and the last time frames form the layer of crime events, 

using chronon month. The data in the database are the crime events from January 2000 

to June 2003, with 42 time frames. As we move from one time frame to the next, the 

interface shows the matching crime events. Had we chosen the chronon Year, the 

interface would show only 4 time frames. 

 

Figure 4.  Watching the layer of crime events. The first time frame. 

 

Figure 5.  Watching the layer of crime events. The last time frame 



  

4.1.2 Watching mosquito traps 

If we follow the layer of traps and the eggs counts in each trap using chronon day, we 

can see the first and third frames have counts associated to the trap identified as EM113. 

Figures  6 and 7 show these two time frames. 

 

Figure 6.  Watching the layer of traps. First time frame of chronon day. 

 

Figure 7.   Watching the layer of traps. Third time frame of chronon day. 

 If we watch the layer of traps using the chronon Month, we will get more than 

one instance associated to the trap EM113, in the time frame March, 2004. This happens 

because there were two data collections in this trap during this month.  Figure 8 shows 

the first time frame resulting from asking for the sum of eggs counted per month for 

each trap. The number of eggs in trap EM113 is the sum of the number of eggs that 

appeared in the instances shown in Figures 6 and 7. 



  

 

Figure 8.   Watching the layer of traps. First time frame of chronon Month. 

 In the example, the grouping function is a sum over a descriptive attributes, 

using statistical measures. This grouping operation transforms a set of instances into a 

single one. As the mosquito traps do not change their location, this function makes 

sense in the application domain. In cases where the geometry of the instances of the 

same object are different, we would have to provide a similar way to choose what 

geometry is representative of all instances on an object in a time frame. This could be 

done, for example, choosing their intersection or union. We have not yet addressed this 

requirement, but the query processor is flexible enough to include this new parameter.  

4.1.3 Watching change in parcels   

 The layer of parcels is more interesting, because it allows following changes in 

the geometries of the ST-Objects. Using chronon Month, and specifying that we want to 

see all the time frames available, there are 15 time frames. Figure 9 shows the first. 

 

Figure 9.   Watching the layer of parcels. First time frame of chronon Month. 



  

  Figure 10 shows the fiftieth time frame. We see that changes occurred in the 

attribute values of object lote3 as shown in rows 1 and 2 of the table. We get two 

instances of this object. The geometry of the first instance of an object in the time frame 

is shown in horizontal pattern brush style, the second in a vertical pattern brush style. 

Looking at the resulting cross pattern we see the geometries of the two instances 

coincide, or there where no changes in the geometries of the object. Row 1 of the table 

shows that the attributes changed in 2004/5/10 and row 2 shows that the next instance is 

valid until present time. 

 

Figure 10.   The fiftieth time frame of chronon Month, layer of parcels. 

 The Figure 11 shows the third change that happened in the twelfth time frame. 

The object lote1 was divided, given origin to the object lote4. We note in the table that 

two instances of lote1 where returned (rows 1 and 2).  The cross pattern and double 

horizontal pattern shows the piece of lote1 that was sold and created lote4. 

 

 

Figure 11.   The  twelfth time frame of chronon Month, layer of parcels. 



  

 A similar change occurred in object lote2 as shows Figure 12. 

 

Figure 12.   The fifteenth time frame of chronon Month, layer of parcels. 

5. Conclusions 

In this work, we presented a generic database model to deal with spatio-temporal data. 

Our idea is that the internal architecture of the database can be unified for different 

spatio-temporal applications.  Using this data model, we built a flexible query processor 

that can answer the demands of different applications. This processor is defined through 

parameters that define the different combinations of spatial and temporal restrictions. 

We have shown examples of how the Querier follows the state of the database in 

different time frames. This functionality is useful, for example, to build spatio-temporal 

statistical functions. We have also shown how to use Querier to answer questions that 

relate the spatial and temporal aspects of the data.  

 We have implemented the Querier using the TerraLib library and its generic 

database interface. This implementation of the Querier allows the use of different 

DBMS to build the generic model of a spatio-temporal database. We validated this 

implementation in different application of spatio-temporal data. For future research we 

intent to couple the Querier parameters to a spatio-temporal language, so that it will be a 

spatio-temporal language processor. We also intend to build indexing structures to 

optimize query processing. 
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