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AbstrAct

Daily, different satellites capture data of distinct contexts, which images are processed and stored in 
many institutions. This chapter presents relevant definitions on remote sensing and image mining domain, 
beyond referring to related work on this field and to the importance of appropriate tools and techniques 
to analyze satellite images and extract knowledge from this kind of data. The Amazonia deforestation 
problem is discussed, as well INPE’s effort to develop and spread technology to deal with challenges 
involving Earth observation resources. An image mining approach is presented and applied on a case 
study, detecting patterns of change on deforested areas of Amazonia. The purpose of the authors is to 
present relevant technologies, new approaches and research directions on remote sensing image mining, 
demonstrating how to increase the analysis potential of such huge strategic data.

IntroductIon

Motivation

Data acquisition and storage technology progress 
has led to a huge amount of data stored in reposi-

tories, which grow fast. Among increasing and 
relevant data acquired and processed, there is a 
strategic segment: satellite images, also known 
as remote sensing images. 

The search for less expensive and more efficient 
ways to observe Earth motivated man in develop-
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ing remote sensing satellites. They are currently 
the most significant source of new data about the 
planet, and remote sensing image databases are the 
fastest growing archives of spatial information. 
The variety of spatial and spectral resolutions for 
remote sensing images ranges from IKONOS 1-
meter panchromatic images to the next generation 
of polarimetric radar imagery satellites. Given the 
widespread availability of remotely sensed data, 
many government and private institutions have 
built large remote sensing image archives.

The US National Satellite Land Remote Sens-
ing Data Archieve, managed by USGS EROS 
Data Center, hosts 1.400 terabytes of satellite 
data gathered during 40 years. Satellites, like 
Terra and Aqua (NASA), generate 3 terabytes of 
images every day. The Brazil’s National Institute 
for Space Research (INPE) holds more than 130 
terabytes of image data, covering 30 years of 
remote sensing activities which are available on 
a database with free online access.

Actual society problems demand smart explo-
ration of the vast and growing remote sensing data. 
There is a need for understanding relevant data and 
use it effectively and efficiently. Although valuable 
information is contained in image repositories, 
the volume and complexity of this data makes 
difficult (generally impossible) for human beings 
extract strategic information (knowledge) without 
appropriate tools (Piatetsky-Shapiro, Djeraba, 
Getoor, Grossman, Feldman & Zaki, 2006). 

Data mining research has enabled powerful 
tools, new technologies and challenging tech-
niques for relevant data domains. However, large 
image datasets need specific analysis resources 
and smart techniques and methodologies. The 
availability of huge remote sensing image reposi-
tories demands appropriate resources to explore 
this data. 

A vast remote sensing database is a collection 
of landscape snapshots, which supplies a single 
opportunity to understand how, when and where 
changes occurred in the world. When such rich 
data is not analyzed, or it is done inefficiently, 

relevant information to understand complex 
processes and help solving challenging problems 
is wasted.

General Perspective and objectives 
of the chapter

In this chapter, which extends previous work 
(Silva, Câmara, Souza, Valeriano, & Escada, 
2005), the authors intend to present relevant 
definitions on remote sensing and image mining 
domain, beyond presenting related work on this 
field and the importance of appropriate tools and 
techniques to explore satellite images and extract 
strategic knowledge from this kind of data.

They also discuss the Amazonia deforestation 
problem to demonstrate, through an image mining 
process, the strength of this approach to identify 
patterns and fight against the increase of affected 
areas in this forest. Developed technologies to sup-
port the process will be presented, providing an 
overview of methodologies, tools and techniques 
involved in research efforts.

Future trends and conclusion will bring reflec-
tion elements to consider classical and new mining 
resources to deal with challenging demands, citing 
limitations and also revealing directions to new 
research initiatives and relevant problems.

reMote sensInG And IMAGe 
MInInG

Broad Definitions

The first operational remote sensing satellite 
(LANDSAT-1) was launched in 1972, since 
then there has been a large worldwide experi-
ence in data gathering, processing and analysis 
of remotely sensed data. According to Canada 
Centre for Remote Sensing (2003), remote sens-
ing is the science (and to some extent, art) of 
acquiring information about the Earth surface 
without actually being in contact with it. In 
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other words, remote sensing is a field of applied 
sciences for information acquisition of the Earth 
surface through devices that perform the sensing 
and recording of the reflected or emitted energy, 
followed by processing, analysis, and applica-
tion of this information. Such devices are called 
remote sensors, which are boarded on remote 
sensing aircrafts or satellites—also called Earth 
observation satellites. Images obtained through 
remote sensing acquisition and processing are 
used in many fields, once information from these 
remote sensing images is strongly demanded in 
many areas, including government, economy, 
infrastructure, and hydrology (e.g., security and 
social purposes, crop forecasting, urban planning, 
water resources monitoring).

In the image acquisition process, four concepts 
are fundamental: spatial, spectral, radiometric 
and temporal resolution. The spatial resolution 
defines the detail level of an image, that is, if a 
sensor has a spatial resolution of 20m then each 
pixel represents an area of 20m x 20m. The spec-
tral resolution determines the sensor capability to 
define short intervals of wavelength; the finer the 
spectral resolution, the narrower the wavelength 
range for a particular channel or band. The radio-
metric resolution of an imaging system describes 
its ability to discriminate very slight differences 
in energy; the finer the radiometric resolution of 
a sensor, the more sensitive it is to detect small 
differences in reflected or emitted energy. The 
temporal resolution determines the necessary time 
for the sensor revisit a specific target and image 
the exact same area, that is, the time required to 
complete one entire orbit cycle; if a sensor is able 
to obtain an image of an area each 16 days, then 
its temporal resolution is this period (Canada 
Centre for Remote Sensing, 2003).

Before getting into remote sensing image 
mining, it is necessary to state spatial data min-
ing, which refers to the extraction of knowledge, 
spatial relationships, or other interesting but not 
explicit patterns stored in spatial databases. Such 
mining approaches integrate spatial database and 

data mining issues, bringing valuable resources 
to understand facts and processes represented 
in spatial data, discovering spatial relationships, 
building up spatial knowledge bases, and reveal-
ing spatial patterns and processes contained in 
spatial repositories. Applications of the technol-
ogy include, beyond remote sensing, geographic 
information systems, medical imaging, geomar-
keting, navigation, traffic control, enviromental 
studies, and many other areas where spatial data 
are used (Han & Kamber, 2001).

Remote sensing image mining deals specifi-
cally with the challenge of capturing patterns, 
processes, and agents present in the geographic 
space, in order to extract specific knowledge to 
understand or to make decisions related to a set 
of relevant topics, including land change, climate 
variations and biodiversity studies. Events like de-
forestation patterns, weather change correlations 
and species dynamics are examples of precious 
knowledge contained in remote sensing image 
repositories.

The Amazonia forest, located in South Amer-
ica, has 6,500,000 km2, involving seven frontier 
countries. Brazil holds 63.4% of South America 
Amazonia, which extends to the following Bra-
zilian states: Mato Grosso, Tocantins, Maranhão, 
Amazonas, Pará, Acre, Amapá, Rondônia and 
Roraima. Since it is the world’s largest tropical 
forest, deforestation in the Amazonia rainforest 
is an important contributor to global land change. 
According to INPE’s estimates, close to 200,000 
km2 of forest were cut in Brazilian Amazonia in 
the period from 1995 to 2005 (INPE, 2005). INPE 
uses LANDSAT and CBERS images to provide 
yearly assessments of the deforestation in Ama-
zonia. Given the extent of the deforestation on 
tropical forests, figuring out the processes and its 
agents are important issues for setting up public 
policies that can help preserve the environment 
(Figure 1).
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related Work 

Nagao and Matsuyama (1980) developed, at 
Kyoto University (Japan), the first high level vi-
sion system for aerial image interpretation. The 
system processing modules operated on a common 
dataset. The analysis process was divided in the 
following steps: smoothing, when the images were 
processed to remove noise and spots on bound-
aries; segmentation, when elementary regions 
were extracted through a basic region growing 
algorithm; global exam of the scene, to estimate 
object domains using image metadata; detailed 
area analysis, when object detection subsystems 
analyzed a knowledge base to find specific ob-
jects; communication among object detection 
subsystems, in order to control the analysis flow 
managing the information on databases, resolve 
conflicts among detection subsystems and correct 
segmentation problems.

GeoMiner (Han, Koperski & Stefanovic, 
1997), developed at Simon Fraser University 
(Canada), is a prototype of spatial data mining 
system, with resources to characterize spatial 
data through rules, compare, associate, classify 
and group datasets, analyze patterns and perform 
mining tasks in differente levels. The prototype 
has a language for mining tasks of spatial data 
(GMQL), beyond visualization tools for data and 

spatial mining results. GeoMiner is integrated 
to data warehousing technology, and it is able to 
access different spatial database servers.

SPIN! project (May & Savinov, 2002), devel-
oped by the Fraunhofer Institute for Autonomous 
Intelligent Systems (Germany), is focused on 
producing a spatial data mining system that inte-
grates Geographic Information Systems and data 
mining in a open, extensible and tightly coupled 
framework. The project prioritizes issues like 
scalability, security, multiuser access, robustness, 
and platform independence. Its functionality levels 
include data access and management, interactive 
thematic mapping for statistic data visualization, 
detection and explanation of spatial clusters and 
spatial events.

ADaM, a NASA’s project with the University 
of Alabama at Huntsville (USA), is a set of sci-
entific data and image mining tools (Rushing, 
Ramachandran, Nair, Graves, Welch & Lin, 2005). 
Its resources include pattern recognition, image 
processing, optimization, association rule mining, 
among others. The system is a set of components 
that may be put together to perform complex tasks. 
A focus of the project is the efficient implementa-
tion of critical performance components, keeping 
each component of the system as independent as 
possible, in order to enable the use of appropriate 
module subsets to specific applications, including 
linking to third party software.

 

Figure 1. Amazonia deforestation  (source: Isabel Escada - INPE)
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Position about the technology

Such initiatives, among other important projects, 
led by institutions and researchers of different 
countries since 1980, demonstrates the relevance, 
strength and demand for efficient and robust 
approaches, once the mining process on image 
repositories demand a strong commitment with 
efficiency and robustness. The huge volume of the 
datasets need an efficient hardware and software 
infrastructure. The relativity of values, the spatial 
complexity, and the multitude of interpretations 
require robust implementations, competent do-
main specialists and experient data analysts for 
the mining task performances.

However, still a limited capacity is available 
for extracting information from large remote 
sensing image databases. Currently, most image 
processing techniques are designed to operate on 
a single image, and there are few algorithms and 
techniques for handling multitemporal images. 
This situation has lead to a “knowledge gap” in the 
process of deriving information from images and 
digital maps (MacDonald, 2002). This “knowl-
edge gap” has arisen because there are currently 
very few techniques for image data mining and 
information extraction in large image data sets, 
and thus researchers are failing to exploit the huge 
remote sensing data archives.

Although there has been a large research effort 
in content-based image retrieval (CBIR) tech-
niques (Rui, Huang & Chang, 1999; Smeulders, 
Worring, Santini, Gupta & Jain, 2000; Wang, 
Khan & Breen, 2002), the specific problem of min-
ing remote sensing image databases has received 
much less attention. Proposals such as VISIMINE 
(Aksoy, Koperski, Tusk, & Marchisio, 2004) and 
KIM (Schröder, Rehrauer, Seidel& Datcu, 2000) 
are focused on clustering methods that operate 
on the feature space, the multidimensional space 
which is created by the different spectral bands of a 
remote sensing image. These techniques are useful 
for distinguishing spectral signatures of different 

land cover types, such as finding areas which are 
classified as “lakes,” “cities” or “forests.”

Nevertheless, in remote sensing image mining, 
one of the most important challenges is tracking 
patterns of land use change. A large remote sens-
ing image database is a collection of snapshots of 
landscapes, which provide a unique opportunity 
for understanding how, when, and where changes 
take place in the world. Extensive fieldwork also 
indicates that the different actors involved in land 
cover change (e.g., small-scale farmers, large 
plantations, cattle ranchers) can be distinguished 
by their different spatial patterns of land use 
(Lambin, Geist & Lepers, 2003). Furthermore, 
these patterns evolve in time; new small farms 
will be created and large farms will increase their 
agricultural area at the expense of the forest. In 
these and related situations, patterns of land use 
change will have similar spectral signatures and 
image mining techniques based on clustering in 
the feature space will not be able to distinguish 
between them. Therefore, tracking the temporal 
evolution of patterns in remote sensing imagery 
requires methods that are different from standard 
content-based image retrieval (CBIR) systems. A 
typical CBIR system uses a query image as the 
source and images in the database as targets, and 
query results are a set of images sorted by feature 
similarities with respect to the source (Chen, Wang 
& Krovetz, 2003). When searching for patterns in 
remote sensing image databases, a different ap-
proach is necessary. Instead of similarity searches 
between image pairs, a system for mining remote 
sensing image databases must be able to do simi-
larity searches between patterns found in different 
images. Therefore, mining remote sensing image 
databases is searching for patterns of change, not 
searching for internal content.
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chAllenGes And
technoloGIcAl strAteGIes
on deforestAtIon Issue

brazil’s challenge: Monitor and
decrease Amazonia deforestation

The land cover describes the physical state of the 
land surface, which may be forest, water, build-
ings, and so on. Changes on this cover may be 
caused by climate variations, changes on river 
courses, and so on. However, most changes on 
land cover are attributed to human activities. Such 
modifications implies on changes on the extension 
(area increase or decrease) of a specific type of 
coverage. The land use, influenced by human ac-
tivities and enviromental processes and features, 
is related to the purpose to which it is used, like 
agriculture, habitation, mining, leisure, among 
others. Land use changes occur in several spatial 
levels and in different periods, characterizing the 
environment and human dynamics on territorial 
segments (Briassoulis, 2004). 

Desertification, climate change, biodiversity 
loss—among others—can imply in severe con-
sequences to the environment and consequently 
to humans. The modification of forest and crop 
areas for urban use is an important land change, 
due to serious implications. The causes and 
consequences of land use and cover change, its 
social, economics and enviromental impacts have 
motivated different research projects. One of them 
is (Lambin, 1999), which emphasizes that land 
cover change is an important global change factor, 
interacting with climate, ecosystem processes, 
biochemical cycles, biodiversity and even with 
human activities. The key issues of the project 
deal with land cover patterns, change processes, 
human response to changes, integrated global 
and local models, development of databases about 
Earth surface, biophysics processes and funda-
mental factors. This approach aims to increase 
the understanding, and get new knowledge about 
interactive land change.

The Amazonia case is characterized by the 
complexity, dimension, and interests involved in 
the issues concerning land change (Becker, 1997). 
Alves (2002) presents an investigation on spatio-
temporal deforestation dynamics of the Amazonia, 
using remote sensing images to analyze deforesta-
tion spatial patterns on 1970’s, and between 1991 
and 1997. This work brings valuable information: 
the deforested area increased from 10,000,000 ha 
(1970’s) to 59,000,000 ha in 2000; an intensifica-
tion on the deforestation rate on 1970’s and 1980’s 
was caused by the federal government politics, 
which included huge highway infrastructures, 
and a roadside colonization of 100 km along the 
extended highways; analyzing the images and the 
patterns, it is clear that beyond of the roadside 
deforestation along main roads and development 
areas, there is still the merging of little deforested 
areas, what originates large ones. 

Once the fast deforestation process causes land 
degradation, social tension and irregular urbaniza-
tion, faster the precise identification of areas with 
these tendencies, higher the chances of prevent-
ing, managing and reducing the consequences of 
the processes. Daily, different satellites capture 
data belonging to this context, which images are 
available to many institutions. Image mining 
tools can, in fact, increase the analysis potential 
of such huge strategic data.

developed technologies at InPe 
concerning Image Analysis
and Mining

Researchers of the Brazil’s National Institute for 
Space Research (INPE) has been studying the 
structural patterns on Amazonia, holding a wide 
know-how on the forest issues. Moreover, the 
historical development process is also a research 
topic at INPE, which maintains a rich dataset of 
remote sensing images that provide an extensive 
spatiotemporal perspective of the Amazonia terri-
tory. In addition, the Institute experience on image 
processing and analysis, as well the development 
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of methodologies and software tools, supplies 
important elements to keep building up image 
analysis and mining technologies. In this context, 
relevant ones developed at INPE are: SPRING, 
TerraLib, CBERS, PRODES and DETER, which 
are freely available on Internet.

SPRING (www.dpi.inpe.br/spring) is a state-
of-the-art geographic information system (GIS) 
and remote sensing image processing system with 
an object-oriented data model which provides the 
integration of raster and vector data representa-
tions in a single environment (Figure 2). SPRING 
main features include: an integrated GIS for en-
vironmental, socioeconomic and urban planning 
applications; a multiplatform system, including 
support for Windows and Linux; a widely acces-
sible freeware for the GIS community with a quick 
learning curve. The software is a mechanism of 
diffusion of the knowledge developed by INPE 
and its partners with the introduction of new 
algorithms and methodologies (Câmara, Souza, 
Freitas & Garrido 1996).

TerraLib (www.dpi.inpe.br/terralib) is a GIS 
classes and functions library, available from the 
Internet as open source, allowing a collaborative 
environment and its use for the development of 

multiple GIS tools. Its main objective is to enable 
the development of a new generation of GIS ap-
plications, based on the technological advances 
on spatial databases. TerraLib is free software 
developed by INPE and its partners. The main 
motivation for this project is the current lack of 
either public or commercial GIS libraries that 
provide components for the diversity of GIS data 
and algorithms, especially when viewed upon 
the latest advances in geographical information 
science. On a practical side, TerraLib enables 
quick development of custom-built geographical 
applications using spatial databases. As a research 
tool, TerraLib is aimed at providing a rich and 
powerful environment for the development of 
GIScience research, enabling the implementation 
of GIS prototypes that include new concepts such 
as spatio-temporal data models, geographical 
ontologies and advanced spatial analysis tech-
niques (Câmara, Vinhas, Souza, Paiva, Monteiro, 
Carvalho, 2001).

The CBERS program (http://www.cbers.inpe.
br/en/index_en.htm), a joint effort of Brazil and 
China, embodied the development and construc-
tion of two remote sensing satellites that carry 
on-board imaging cameras and additionally a 

Figure 2. SPRING - image processing and geographic information system 
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repeater for the Brazilian System of Environmen-
tal Data Collection. CBERS-1 and CBERS-2 are 
identical in their technical structure, space mission 
and payload (on-board equipment like cameras, 
sensors, computers, among other equipment de-
signed for scientific experiments). CBERS-1 was 
launched by the Chinese Long March 4B launcher 
from the Taiyuan Launch Base on October 14, 
1999. CBERS-2 was launched on October 21, 
2003 from the Taiyuan Satellite Launch Center 
in China (Figure 3). CBERS-2 was integrated 
and tested in the integration and test laboratory 
of INPE. The CBERS satellite has a set of sensors 
– WFI (wide field imager), CCD (charge coupled 
device high resolution imaging camera), IRMSS 
(infrared multispectral scanner) - with a high po-
tential to meet multiple application requirements 
including: forestry alteration, signs of recent fires, 
monitoring of agricultural development, support 
for crop forecasting, identification of anthropic 
anomalies, analysis of natural recurrent events, 
mapping of land use, urban sprawling, identifica-
tion of water-continent borders, coast studies and 
management, reservoir monitoring, acquisition 
of stereoscopic images for proper cartographic 
analysis, support for soil survey and geology, 
generation of support material for educational 
activities. In 2002, both governments decided to 
expand the initial agreement by including CBERS-
3 and 4, which must be launched, respectively, in 

2008 and 2012. The program objectives are: build 
a family of remote sensing satellites to support 
the needs of users in Earth resource applications, 
and improve the industrial capabilities of space 
technology in Brazil. 

Since 1988 INPE has been monitoring Brazil-
ian Amazonia using satellite images, producing 
estimations on annual deforestation rates of the 
forest through the PRODES project (Amazônia 
deforestation calculation program). From 2002 on, 
these estimations are being generated by image 
digital classification with PRODES methodology 
(www.obt.inpe.br/prodes/). The main advantage 
of this approach is the precision of georeferenced 
deforestation polygons, enabling a multitemporal 
geografic database. Using deforestation incre-
ments identified on each image, the annual rates 
are estimated for August 1st of the reference year. 
For the 2003/2004 period, the deforestation rates 
were obtained from 207 LANDSAT images; INPE 
estimates that the deforestation from August 2003 
to August 2004 was 27.429 km2. For the 2004/2005 
period, the deforestation rates were obtained from 
211 LANDSAT classified images; INPE estimates 
that the deforestation from August 2004 to August 
2005 was 18.793 km2. The Institute estimates a 
deforested area of 13,100 km2 for the 2005/2006 
period. PRODES digital results of 2000 until 2004 
are available on SPRING databases containing 
LANDSAT satellite images, thematic map of the 

Figure 3. CBERS-2 - Launch and Web interface of image catalog (source: www.cbers.inpe.br)
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deforestation of the year, thematic map of the ac-
cumulated deforestation, and the shapefiles of the 
year with polygons of deforestation increment of 
the year, forest, total accumulated deforestation 
until the previous year, clouds and non-forest. 
From 2005 on, it is also available on the shapefile 
of the deforestation thematic map of the year for 
each LANDSAT image, and the shapefile of the 
mosaic of all images. 

The DETER system (deforestation detection 
on real time) uses sensors with high observation 
frequency to reduce cloud cover limitations dur-
ing the process of detecting deforestation incre-
ments (www.obt.inpe.br/deter). The instruments 
used are the MODIS sensor, aboard TERRA and 
AQUA satellites (NASA), with a spatial resolu-
tion of 250 m and temporal resolution (Brazil) 
of three to five days, and the WFI sensor, aboard 
CBERS-2, with a spatial resolution of 260 m and 
temporal resolution of five days. These resolutions 
enable the detection of recent deforested areas 
superior to 0,25 km2. The results of the method-
ology—which produces information in almost 
real time about regions where new deforestation 
areas occur—allow DETER supplies environment 
surveillance institutions with periodic informa-
tion about deforestation events (Figure 4). The 
goal of the system is not the estimation of total 
deforestated area in Amazonia, once estimations 

obtained through DETER are error-prone due to 
the spatial resolution of MODIS and WFI. The 
system is concerned on supplying recent and 
updated information to support government ac-
tions against the forest destruction using a higher 
temporal resolution of the sensors. The system is 
an INPE project, part of a federal plan of reducing 
Amazonia deforestation.

InPe’s effort to spread earth
observation technologies

There is a need for global land observation ad-
vance, once the world is changing rapidly. Global 
land observation is a crucial need for the world, 
and Earth observation (EO) systems are a public 
good. INPE’s effort on advanced policies of de-
velopment of state-of-the-art software, hardware, 
methodologies and products relies on the need 
of building capacity in EO to supply the wide 
demand of the area.

Build capacity in Earth observation implies 
on removing the barriers to make all sectors of 
society use publically funded EO data. Three 
relevant obstacles are: lack of data (much EO data 
is expensive or unavailable), lack of tools (once 
good software is required to explore EO data), and 
lack of expertise (it is necessary to build capacity 

Figure 4. Amazonia deforestation process detected by DETER
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at a massive scale). INPE’s approach to overcome 
such barriers are: make EO data free, produce 
good open source software for EO data handling, 
and provide open access to on-line training and 
to scientific literature. 

The Internet has reduced the cost of data distri-
bution to very close to zero, and society responds 
very quickly to open availability of free data 
and good on the Web. CBERS images received 
in Brazil are freely available on the Internet for 
Brazilian and Latin American users, and CBERS 
images received in China are freely available on 
the Internet for Chinese users (www.cbers.inpe.
br). Free EO data and free EO technology create 
new users and new applications, increasing the 
need for other types of EO data. Private companies, 
for example, state the free CBERS data benefit: 
enables new business development, facilitates 
trial uses for new clients, creates jobs by reduc-
ing cost of data buys, increases work quality by 
adding data previously unavailable, and eases the 
planning of new applications. 

Commercial EO market in many countries 
does not have enough income to research and 
development investment, once it is still a small 
size market. To let it grow, it is necessary to supply 
improvements on information extraction through 
high-quality software. Concerning the tool chal-
lenge, INPE developed GIS and image-processing 
softwares (TerraLib and SPRING) available free 
on the Internet, providing good software for EO 
data handling (www.dpi.inpe.br/spring; www.dpi.
inpe.br/terralib). 

The research system on EO in the developed 
world discourages the production of training mate-
rial, once academic institutions in US and Europe 
graduate qualified personnel and there are good 
books on GIS and remote sensing (unfortunately, 
these books are in English and are expensive). 
Developing countries need innovative responses, 
especially good training material and on-line 
books. Brazilian experience is overcoming the 
expertise challenge releasing free books online, 
a three-volume set: Introduction to GIS, Spatial 

Analysis, and Spatial Databases (http://www.dpi.
inpe.br/gilberto/livros.html).

INPE is focusing on the “white-box” model: 
results = people + data + software. This means 
support for people learning by doing and using, 
timely and free geospatial datasets, and adequate 
data analysis and integration softwares. The re-
sults: an enormous demand for remote sensing 
data in developing countries, a relevant increase 
on the number of users of Earth observation data 
due to free online data access, and the success of 
CBERS data policy that has been extremely well-
received by government and society in Brazil.

detectInG deforestAtIon
PAtterns throuGh sAtellItes

Patterns of change in remote
sensing Image databases

Given a large remote sensing image database, 
researchers would like to explore the database 
with questions such as: What are the different 
land use patterns present in the database? When 
did a certain land use pattern emerge? What are 
the dominant land use patterns for each region? 
How do patterns emerge and change over time? 
The answer to these and similar questions requires 
the availability of data mining techniques which 
are able to perform searches for patterns found 
in different images. Silva (2006) approached 
this problem by using spatial patterns as a mean 
of describing relevant semantic features of an 
image. 

The primary consideration is that the instru-
ments onboard remote sensing satellites capture 
energy at different parts of the electromagnetic 
spectrum, which is then converted into digital 
imagery. These instruments are not designed for 
a specific application, but are a compromise be-
tween sensor technology and requirements from 
different user communities. As a result, remote 
sensing images have a structural description 
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which is independent of the application domain 
that a scientist employs to extract information. 
The image domain and the application domain 
are distinguished, as shown in Figure 5:

• Spatial patterns: The geometric structures 
that can be extracted from the images using 
techniques for feature extraction, segmen-
tation, and image classification. They must 
be identified and labeled according to a 
typology which expresses their semantics. 
Examples of such patterns include corridor-
like regions and regular-shaped polygons 
representing patterns of the mined data.

• Application concepts: The different classes 
of spatial objects, which are associated to a 
specific domain. For example, in deforesta-
tion assessments, concepts include large-
scale agriculture, small-scale agriculture, 
cattle ranching, and wood logging.

To associate structures found in the image 
to concepts in the application, there is a struc-
tural classifier, which is able to relate the same 
structures to different application domains. This 
strategy differs from most remote sensing image 
database mining systems, such as KIM (Schröder 
et al., 2000) and VISIMINE (Aksoy et al., 2004), 
which implicitly assume that there is one “best 
fit” for associating semantic concepts in the user 
domains to image-derived structures. In this ap-
proach, different structural classifiers will produce 
different associations between spatial patterns 
and the user domain concepts, and each associa-
tion is valid within a given application context. 
In other words, there are many ways to bridge 

the “sensory gap” and a “best fit” should not be 
searched. For each type of application, there will 
be an appropriate structural classifier.

In what follows, the methodology for image 
mining is described and applied to the problem of 
mining patterns in INPE’s remote sensing image 
database. In this context, the application domain 
is concerned with describing land use change in 
tropical forests using remote sensing satellites.

Methodology for Mining land use 
Patterns on remote sensing Images

The methodology for image mining in large remote 
sensing databases uses the application-dependent 
structural classifier, as outlined previously. The 
methodology consists of three steps:

• Definition of a spatial pattern typology 
according to the user’s application domain 
(Figure 6).

• Building a reference set of spatial patterns. 
This reference set is built using a prototypical 
set of images. Landscape objects are identi-
fied and labeled: the identification employs 
image segmentation and the labeling is 
performed according to the spatial pattern 
typology (Figure 7).

• Mining the database using a structural clas-
sifier (guided by the application concepts 
of the domain), matching the reference set 
of spatial patterns to the landscape objects 
identified in images, thus revealing the 
spatial configurations present in each image 
(Figure 9).

Figure 5. Overview of pattern mining process
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Defining a Spatial Pattern Typology

The first phase of the methodology calls for the 
definition of a spatial pattern typology which is 
associated to a given application domain (Escada, 
Monteiro, Aguiar, Carneiro & Câmara, 2005). In 
order to illustrate the proposal, a typology defined 
for mapping different types of land use change 
in tropical forests will be used.

When using remote sensing images for under-
standing the forces driving changes in tropical 
forests, the assumption is that the expression of 
change is captured by changes in land use. Ex-
tensive fieldwork also indicates that the different 
actors involved in land use change (small-scale 
farmers, large plantations, cattle ranchers) can 
be distinguished by their different patterns of 
land use (Lambin, Geist & Lepers, 2003). They 
propose a typology of the land use patterns in 
terms of deforestation processes (see Figure 6): 
corridor (commonly associated with riverside 
and roadside colonization), diffuse (generally 
related to smallholder subsistence agriculture), 
fishbone (typical of planned settlement schemes), 
and geometric (frequently linked to large-scale 
clearings for modern sector activities).

Three spatial patterns typology of Lambin 
will be used (corridor, diffuse, geometric), relat-
ing them to the structures of landscape objects 
in order to obtain the spatial patterns, through a 
cognitive assessment process, in which a human 

specialist associates landscape objects to spatial 
patterns typology elements.

Building a Reference Dataset of Spatial 
Patterns

To represent the structures detected in remote 
sensing images, the concept of a landscape ob-
ject will be introduced. A landscape object is a 
structure detected in a remote sensing image 
by means of an image segmentation algorithm. 
Landscape objects can be associated to different 
types of spatial patterns. 

To build a reference set of spatial patterns 
(Figure 7), a set of prototypical landscape ob-
jects is obtained, which are extracted from a set 
of sample images. Segmentation algorithms are 
used to partition the image into regions which are 
spatially continuous, disjoint and homogenous. 
Recent surveys (Meinel & Neubert, 2004) indicate 
that region-growing approaches are well suited 
for producing closed and homogenous regions. 
In this proposal, it is adopted the region-grow-
ing segmentation algorithm developed by INPE 
(Bins, 1996), and implemented in the SPRING 
software system (Câmara, 1996). This algorithm 
has been extensively validated for extracting land 
use patterns in tropical forests (Shimabukuro et 
al., 1998) and has been very favorably reviewed 
in a survey (Meinel & Neubert, 2004).

Figure 6. Spatial patterns of tropical deforestation (from left to right): corridor, diffuse, fishbone, and 
geometric (Source: Lambin, Geist & Lepers, 2003)
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SPRING’s region growing algorithm works 
as follows (Figure 8) (Bins, 1996): (a) the image 
is first segmented into atomic cells of one or few 
pixels; (b) each segment is compared with its 
neighbors to determine if they are similar or not. If 
similar, they are merged and the mean gray level 
of the new segment is updated; (c) the segment 
continues growing by comparing it with all the 
neighbors until there is no remaining joinable 
region, at which point the segment is labeled as a 
completed region; (d) the process moves to the next 
uncompleted cell, repeating the entire sequence 
until all cells are labeled. The algorithm requires 

two parameters: a similarity threshold value, and 
an area threshold value.

Mining the Database Using a Structural 
Classifier

Once the reference set of spatial patterns is built, 
the next phase will use it to mine spatial configura-
tions from image databases. The structural clas-
sifier enables the association between landscape 
objects extracted from images and the reference 
set of spatial patterns (Figure 9).

Figure 7. Building a reference set of spatial patterns

Figure 8. Example of a segmentation process
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The structural classifier must be able to distin-
guish between different spatial patterns. It uses 
the C4.5 classifier (Quinlan, 1993), a classification 
method based on a decision tree. It predicts the 
value of a categorical attribute (Witten & Frank, 
1999) based on noncategorical attributes. The 
categorical attribute is the pattern type and the 
noncategorical attributes are a set of numerical 
attributes that characterize each pattern. 

To select the attributes that distinguish the 
different types of land use patterns, the concepts 
from landscape ecology (Turner, 1989) are used. 
Landscape ecology is based on the notion that 
environmental patterns strongly influence eco-
logical processes. One of the key components 
of landscape ecology theory is the definition of 
metrics that characterize geometric and spatial 
properties of categorical map patterns (McGari-
gal, 2002). The pattern metrics used in landscape 
ecology include metrics of spatial configuration 
that operate at the patch level. Patches form the 
building blocks for categorical maps and within-
patch heterogeneity is ignored. Patch metrics refer 
to the spatial character and arrangement, position, 
or orientation of patches within the landscape. The 
pattern metrics proposed by the FRAGSTATS 

(Spatial Pattern Analysis Program for Categorical 
Maps) software (McGarigal & Marks, 1995) are 
used, which include:

• Perimeter (m) and area (ha).
• Para (perimeter-area ratio): A measure of 

shape complexity.
• Shape (shape index): Patch perimeter divided 

by the minimum perimeter possible for a 
maximally compact patch of the correspond-
ing patch area.

• Frac (fractal dimension index): Two times 
the logarithm of patch perimeter (m) divided 
by the logarithm of patch area (m2).

• Circle (related circumscribing circle): 
1 minus patch area (m2) divided by the area 
(m2) of the smallest circumscribing circle.

• Contig (contiguity index): Equals the average 
contiguity value for the cells in a patch.

The landscape ecology metrics are fed into 
the C4.5 classification algorithm to distinguish 
the different types of spatial patterns. After this 
classifier is properly trained, it can be used to 
label the landscape objects found in other images. 
Therefore, for each image in the database, this 

Figure 9. Obtaining spatial configurations
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procedure identifies the number and location of 
the different types of spatial patterns. A specific 
set of spatial patterns found in an image is referred 
as a spatial configuration.

By identifying the spatial configurations of 
different images, the user will be able to evaluate 
the emergence and evolution of different types 
of change. Each spatial pattern is associated to a 
different type of land use change. Therefore, the 
comparison between spatial configurations of 
images in different locations and between spatial 
configurations of images at the same location in 
different times will allow new insights into the 
processes and actors that bring about change.

case study: Image Mining for
deforestation Patterns

Controlling deforestation on Amazon rain forest 
is a difficult challenge for Brazil, once the causes 
of deforestation include economic, social and 
political factors, and the current pace of land use 
change is substantial, with a deforested area of 
about 200,000 km2 during the decade 1995-2005. 

The situation demands fast and effective actions 
for reducing this pace of devastation. In order to 
monitor the extremely fast process of land use 
change in Amazonia, it is very important that 
INPE be able to use its huge data archive to the 
maximum extent possible. In this context, the 
image mining methodology was used to achieve 
a better understanding of the processes of land 
use change in Amazonia.

A case study was developed using Landsat 
TM images (225/64, 226/64, 226/65, 225/65) of 
1997, 2000, 2001, 2002 and 2003, which cover the 
region of São Félix do Xingu in the state of Pará. 
This is a region with many violent land conflicts 
and one of the largest annual rates of deforestation 
in Amazônia (INPE, 2005). The main land use 
activity developed in São Felix do Xingu is cattle 
ranching, which holds around 10% of the cattle of 
Pará state (Américo, Vieira, Veiga & Araujo, in 
press). Deforestation in the region has two main 
agents: migrants, that have settled in small areas, 
and large cattle ranchers, many of whom have 
occupied land illegally (Escada, Vieira, Amaral, 
Araújo, Veiga, Aguiar, & Veiga, 2005). The images 
and deforestation data were provided by PRODES 
Project (INPE, 2005). The application concepts 
for this task are guided by the land use change 
domain in tropical forests (Table 1).

Building Spatial Patterns

According to the image mining methodology, 
landscape objects were extracted from prototypi-

Figure 10. Spatial patterns representing corridor, diffuse, and geometric patterns

Landscape object Land use change 

Corridor pattern Roadside colonization

Riverside deforestation

Diffuse pattern Smallholder agriculture

Small deforestation increments

Geometric pattern Large farms

Table 1. Land use change in tropical forests
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cal images. Then, a human specialist, through 
cognitive assessment, obtained spatial patterns 
based on the spatial patterns typology of tropi-
cal deforestation (Figure 6). Spatial patterns are 
presented in Figure 10.

Obtaining Spatial Configurations

The structural classifier, using the spatial pat-
terns, extracted spatial configurations from 
the set of images just mentioned. Results are 
presented below. 

In a first case, it is necessary to answer the 
following question: “What’s the behavior of large 
farmers in São Félix do Xingu during 1997-2003 
period? Is the area of new large farms increasing?” 
Observing the evolution of the corresponding spa-
tial configuration (geometric patterns - GEOM) 
in Figure 11, it was possible to conclude that, “in 
2000, this kind of deforestation reached a peak of 
55,000 ha, but decreased in the following years. 
In 2003, the deforestation area associated to large 
farms decreased to 29,000 ha. This indicates that 
large farms are reducing their contribution to 
deforestation.”

Figure 11. Large farms dynamic in São Félix do Xingu

Figure 12. Diffuse pattern in São Félix do Xingu 1997-2003
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There is a second question: “What’s the dis-
tribution of smallholder agriculture and small 
deforestation increments in São Félix do Xingu 
area during the years 1997-2003?” Observing 
Figure 12, it is possible to conclude: “the distri-
bution of this land use pattern (diffuse) in this 
period was mainly concentrated in the northeast 
and southeast of this area.”

The next question is: “In São Félix do Xingu 
region, is there any dominant land use change 
pattern?” Observing Figure 13, the conclusion is: 
“Diffuse pattern represented 61% of total occur-
rences of land use changes in 2001, indicating an 
increase in smallholder agriculture / small incre-
ments in deforested areas in that year.”

future trends

A consortium of Earth observation satellites for 
global land monitoring, a network of cooperating 
ground stations, EO data free on the Internet with 
global weekly coverage, satellite sensor resolutionsatellite sensor resolution 
improvements and the availability of web services 
to perform image mining tasks will provide 

necessary resources for new applications and a 
wide range of demands, specially in developing 
countries. Moreover, hardware and software per-
formance increase will support mining processes 
on huge and improved image datasets, allowing 
a more intensive and extensive use of satellite 
image mining in strategic fields like forestry and 
reservoir monitoring, agricultural expansion, 
soil survey, analysis of natural phenomena, and 
urban studies. 

Future research directions in remote sensing 
image mining include tracking individual trajec-
tories of change. Patterns found in one map are 
linked to those in earlier and later maps, thus 
enabling a description of the trajectory of change 
of each landscape object. The current method ag-
gregates landscape objects of the same type. A 
more sophisticated approach would be to describe 
the evolution of each landscape object, including 
operations such as merging of adjacent regions. 
This description would allow the image-mining 
tool to describe when two irregular areas of land 
use (associated to small settlers) were merged. It 
would also show when the merged region was 
extended with a regular pattern (suggesting that 

Figure 13. Diffuse patterns in São Félix do Xingu
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a large cattle ranch had been established). This 
description could increase even more the ability 
to understand the land use changes that are detect-
able in remote sensing image databases.

conclusIon

This chapter presents relevant issues on satellite 
image mining, describing a method for mining 
patterns of change that enables extracting spatial 
arrangements from remote sensing image data-
bases. It addresses the problem of describing land 
use change. It combines techniques from data 
mining, digital image processing and landscape 
ecology to identify patterns in images of distinct 
dates. The method points out that patch metrics 
can be used to identify agents of land use change. 
Images of distinct dates enabled the detection of 
pattern changes, which are extremely valuable 
when assessing, managing or preventing defor-
estation processes. 

This methodology enables associating land 
change objects to causative agents, and it can 
assist the environmental community to respond 
to the challenge of understanding and modeling 
relevant issues in a rapidly changing world. The 
results from the case study show that image-min-
ing techniques are a step forward in understanding 
and modeling land use and cover change. The 
proposed method also enables a more effective 
use of the large land remote sensing image data-
bases available in agencies such as USGS, ESA 
and INPE.

The remote sensing image-mining process is 
an interactive one; once it demanded the sample 
selection, model building and rating, context 
evaluation, return to specific points of the process, 
among others. During experiments, the result 
evaluation in different phases demonstrated the 
need of new prototype objects, better model 
calibration, or even adjustments on the spatial 
pattern typology. Once provided such topics, rel-

evant results were obtained and validated through 
extensive fieldwork.

Taking into account the heterogeneity of the 
Amazonia context, a relevant (and expected) 
question is the fact that the model training and 
application must be performed in spatially similar 
regions, that is, train the structural classifier in 
a specific region and apply it in another region, 
with different spatial features, causes the genera-
tion of inconsistent results. Another methodology 
limitation concerns the quantity and quality of 
prototype objects used to generate the model for 
structural classification. If the number of ele-
ments or their description ability to distinguish 
patterns is not appropriate, the generated model 
(decision tree) will classify inconsistently many 
objects. The methodology also demands a proper 
spatial pattern typology, which must characterize 
the spatial patterns and the semantic aspects that 
must be detected during the process. 

The mining process requires a domain spe-
cialist, due to the intense Amazonia dynamics, 
especially on the prototype object selection and 
during the spatial configuration interpretation. 
Further experiments are necessary to improve 
the method, to test alternatives for image seg-
mentation algorithms and for pattern classifiers. 
The limitations of the current method are also 
associated to the two-dimensional nature of land 
use maps. An extension of the method would 
combine spatial information (patch metrics) with 
spectral information (pixel and region trajectories 
in multitemporal images).

Uncle Scrooge principle states that, “a penny 
saved is a penny earned.” However, the anti-Uncle 
Scrooge principle reveals that, “a pixel saved is a 
penny wasted.” Why is that so? Because “value 
comes from use.” Coherent EO programs can 
supply strategic components for the enormous 
demand of remote sensing data, expertise, and 
analysis tools in developing countries. This 
work resources may help to leverage the power 
of detecting, evaluating and reducing the pace of 
Amazonia deforestation, once INPE holds know-



72  

Image Mining

how and a wide spatiotemporal coverage of the 
forest. Moreover, the present technology can be 
ported to provide solutions to a broad range of 
image mining applications.
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