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The multiple uses of land-cover models have led to validation with choice metrics or an ad hoc choice of
the validation metrics available. To address this, we have identified the major dimensions of land-cover
maps that ought to be evaluated and devised a Similarity Validation (SimiVal) tool. SimiVal uses a linear
regression to test a modelled projection against benchmark cases of, perfect, observed and systematic-
bias, calculated by rescaling the metrics from a random case relative to the observed, perfect case. The
most informative regression coefficients, p-value and slope, are plot on a ternary graph of ‘similarity
space’ whose extremes are the three benchmark cases. SimiVal is tested on projections of two deliber-
ately contrasting land-cover models to show the similarity between intra- and inter-model parameter-
isations. We find metrics of landscape structure are important in distinguishing between different
projections of the same model. Predictive and exploratory models can benefit from the tool.
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1. Introduction

Land-Cover Change Models (LCCMs) can be used to support
science and decision-making for many domains, such as environ-
mental change and sustainability (National Research Council,
2014). LCCMs are a popular topic for this journal, fresh articles
address, the conversion of natural habitats (Ralha et al., 2013;
Soares-Filho et al., 2013; Tayyebi et al., 2014), agricultural change
(Celio et al., 2014; Tayyebi et al., 2014; Verstegen et al., 2014;
Olmedo et al., 2015), urban change (Fuglsang et al., 2013;
Pijanowski et al., 2014; Tayyebi et al., 2014; Liao et al., 2016),
improved LCCMmethodologies (Haase et al., 2012; Magliocca et al.,
2015; Liao et al., 2016; Verstegen et al., 2016) and, inter-model
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comparison (Mas et al., 2014). These examples, and similar LCCMs,
produce a land-cover change map, and usually involve evaluation
of the properties which signify change within these maps. How-
ever, after the following review of modelling motivation and
practices, it is clear these methods are inconsistent and we identify
the need for, and provide, a more comprehensive and dependable
assessment.

The major goals of LCCMs are to project land-cover change
within or beyond a historical period, and understand how pro-
cesses contribute to land-cover change, according to the influences
of socioeconomic and biophysical drivers input into the model
(Verburg et al., 2003, 2004). The influence of these drivers can often
change, i.e. they are often non-stationary, which may affect the
predictive accuracy of any model both within and beyond the his-
torical period (Verstegen et al., 2016). Hence multiple models, or
many intra-model, projections are oftenmade, to predict, or project
a range of possible outcomes. Furthermore, on a typical land-cover
scenario the outcome may vary between different models because
of the way individual LCCMs carry out similar procedures (Mas
et al., 2014). In these cases, recent studies have allowed for model
variability using multiple models (P�erez-Vega et al., 2012; Olmedo
et al., 2015), and using multiple calibrations of the same model
(Soares-Filho et al., 2013). Following evaluation, how similar these
model projections are to reality or a speculated outcome, and what
land-cover changes they determine, can give an insight into which
land-cover change processes are significant (e.g. Celio et al., 2014).
The operator is then better informed about how to interpret, use or
improve a LCCM (Pontius and Millones, 2011).

Quantification of this similarity between projections and the
observed map can be accomplished with validation, a statistical
measure representing the goodness of fit between the projected
and observed maps over the same time period (Costanza, 1989;
Pontius and Schneider, 2001; Pontius, 2002). There are many di-
mensions of land-cover maps that can be validated, each with their
own metric or metrics (Section 2). However, modellers are free to
choose, and may well favour, which dimension to validate
depending on the function of a LCCM and the discipline of a
researcher (Verburg et al., 2004). Moreover, recent literature illus-
trates how similarity between maps is reported in different ways.
For example, metrics may be summarised as bar charts (Tayyebi
et al., 2014), multiple metrics may be summarised as cumulative
bar graphs (Ralha et al., 2013; Olmedo et al., 2015), and validation
scores from intra-model projections have been visualised on radar
plots (Soares-Filho et al., 2013). This lack of consistency in evalua-
tion, reporting and appraisal of model outputs can be problematic
for retrospective inter-model comparisons (Rosa et al., 2014). Some
basic, consistent reporting would broaden the application of LCCMs
into the ever increasing environment of inter-disciplinary research.
This paper presents a validation tool that goes someway to address
these issues with land-cover change validation. In doing so we
respond to a call for improved validation methods (Brown et al.,
2013), a challenging prospect since LCCMs have multiple goals.

2. Validation methods

Spatially explicit LCCMs produce land-cover maps that show
spatial patterns in the landscape, the location of change, and the
quantity of change between different land-cover types (unless
quantity is explicitly specified in the LCCM itself). Increasingly
modellers have turned their attention to the evaluation of model
products, particularly if the goals of the modelling are predictive in
nature. This takes place with some form of ‘pattern validation’
(Brown et al., 2013) of the model projection against an observed
reference. The observed reference is usually a land-cover map
derived from aerial photographs (e.g. L�opez and Sierra, 2010) or
satellite data sources, such as Landsat (e.g. Messina and Walsh,
2001), or MODIS (e.g. Etter et al., 2006), but they can also include
other features such as fire hotspots (e.g. Silvestrini et al., 2011). In
contrast to predictive modelling, researchers may project with an
explanatory model to design policies and address specific societal
issues (Filatova et al., 2013). Validation of output patterns from an
explanatory model is generally considered to be of limited value
because, the interest of the investigation is not to replicate actual
outcomes, but to explain which parameterisations lead to partic-
ular spatial outcomes (Deadman et al., 2004). In these cases, at-
tempts are made to validate the processes in the model (e.g. Haase
et al., 2010; Sun and Müller, 2013). While reproduction of realistic
output patterns may contribute to process validation, we acknowl-
edge that additional information about the specific rules and
mechanisms, temporal dynamics of model output, and sensitivity
of model outputs to changes in parameters or processes are also
needed. Here we focus on the procedures for ‘pattern validation’ of
map-based outputs from LCCMs.

In the last few decades, researchers have concentrated on the
development of pattern validation methods (see Pontius et al.,
2011) and a suite of procedures have appeared, each with their
own advantages and limitations (Table 1). These validation
methods help score the accuracy of model calibration and output
with respect to key dimensions of the land-cover maps. The key
dimensions are identified as: differences in location, quantity,
landscape structure, change probability and optimal model reso-
lution. However, some metrics such as the popular Kappa statistics
(Pontius, 2000), have now been described to have limited value to
validation (Pontius and Millones, 2011).

Validation rarely covers all of these key dimensions, and it is
only possible to evaluate LCCM performance with the dimension
that a researcher has chosen to appraise their model with. Model to
model this appears ad hoc, as no consistent validation procedure is
ever applied, thus it is difficult to evaluate and compare the
strengths and weaknesses of different models (Rosa et al., 2014).
Presently, researchers may select one of the existing validation
methods, use several together, and sometimes combine those
methods or use their own validation scheme. As a result, the LCCM
literature is replete with different combinations of approaches to
validating land-cover maps: Kfuzzy and Receiver Operating Char-
acteristic (ROC) (Lapola et al., 2011); the Kappa indices (Michalski
et al., 2008); Kappa indices and Area Under Curve (AUC)
(Sangermano et al., 2012); error matrix, ROC and Chi squared
(L�opez and Sierra, 2010; P�erez-Vega et al., 2012); ROC (Pontius and
Pacheco, 2004; Tayyebi et al., 2014); ROC and expert knowledge
(Wassenaar et al., 2007); ROC and conversion probabilities (Vance
and Iovanna, 2008); multiple resolution filtering and landscape
metrics (Soares-Filho et al., 2002); landscape metrics (Verstegen
et al., 2014); fuzzy similarity (Almeida et al., 2008; Soares-Filho
et al., 2013); ROC, fuzzy map and time series analysis (Silvestrini
et al., 2011); AUC, distance-based metrics and pixel-by-pixel com-
parisons (Rosa et al., 2013); producers accuracy and visual inspec-
tion (Walker et al., 2004); cross tabulation (Etter et al., 2006;
Messina and Walsh, 2001; Geoghegan et al., 2004; Walsh et al.,
2008; Ralha et al., 2013; Celio et al., 2014; Olmedo et al., 2015);
and comparing a time series of land-cover maps to a statistical
envelope of several model projections (Evans et al., 2001). Spatial
and quantity allocation are the key dimensions usually covered by
these combinations, whilst configuration of landscape structure is
less frequently considered and should be included (Mas et al.,
2014). This may be because modellers consider that the correct
spatial allocationwill logically correct the problems with landscape
structure. Conversely, the reverse may also be true in that correct
simulation of landscape structure may help spatial allocation,
particularly if a model is built to simulate land-cover change via



Table 1
A selection of land-cover model validation procedures, indicating the validated dimension, quantitative measure, and limitations.

Validation and dimension Quantification Comments

Visual inspection
General appraisal of model projection in many dimensions

Qualitative Intuitively identifies problem areas that a computer cannot but it is
subjective and the operator may choose only to scrutinise one
dimension of the output.

Receiver Operating Characteristic
(Pontius and Schneider, 2001) Characterises relationship

between predicted probability of events (e.g. transitions)
and observed discrete phenomenon

0e1 (0e100%) Often incorrectly used in validation of final land-cover projections
but underexploited and open to more detailed interpretation in the
validation of calibration data (Pontius and Parmentier, 2014).

Cross Tabulation Matrices
(Congalton and Green, 1999)
Correct transitions and quantity of transitions. Methods can

be two (Pontius and Cheuk, 2006) and three dimensional
(Pontius and Millones, 2011)

Quantity allocation

True positives, true negatives, false
positives (commission error), false
negatives (omission error)

It becomes more complex to explain and validate land-cover
processes with increasing numbers of land-covers. No structural
information about the landscape.

kFuzzy maps
(and multiple resolution filtering)
(Costanza, 1989; Hagen, 2003; Almeida et al., 2008)
Spatial allocation

% and window resolution Intra- and inter-model comparison may not be possible as the best
resolution may vary for each parameterisation. Does not evaluate
landscape structure.

Kappa statistics
(Pontius, 2000)
(i) Kappa e quantity
(ii) Kstandard e quantity
(iii) Kno e quantity
(iv) Klocation e location
(v) Kquantity e quantity

1 to �1
%
%
%
%

Criticised by creator as having limited use (Pontius and Millones,
2011) because of: 1. Ambiguity over the numerator/denominator
determining value of ratio; 2. Does not separate two components of
disagreement, quantity and allocation; 3 The Kstandard is no
different from proportion correct, and; 4. Kappa compares to
randomness not a null or naïve model.

Three way map comparison statistics
(Pontius et al., 2008)
(i) Quantity disagreement
Quantity allocation

% These metrics concentrate on spatial and quantity allocation and do
not evaluate landscape structure.

(ii) Near and far location disagreement
Spatial allocation

%

(iii) Users and producers accuracy
Quantity allocation

% and score >1

(iv) Figure of merit
Overall score

% and score >1

Landscape metrics
(McGarigal and Marks, 1995)
Landscape structure and configuration

Depends on the metric With no reference envelope as to what a bad value is, it is difficult to
say how ‘out’ the value of the landscape metric is in comparison to
the observed value.
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landscape structural changes, e.g. the expander and patch function
in DINAMICA (Soares-Filho et al., 2002). Awkwardly, metrics of
landscape structure do not lend themselves well to validation as it
is uncertain how different the projected landscape metric values
have to be from the observed landscape metric values to signal a
poorly replicated landscape structure. A similar issue arises when
quantifying the degree of similarity in spatial allocation.

To reduce the temptation for researchers to use a selection of
metrics that favours a particular model, a procedure that avoids ad
hoc selection of comparison metrics and covers many different
dimensions of land-cover maps, is required. It must be a generic
approach that evaluates the key dimensions of quantity allocation,
location accuracy, and overall spatial configuration between maps.
The procedure must also overcome the difficulty of metrics with
boundless ranges that cannot describe the magnitude of difference
between observed and predicted projections, such as landscape
metrics. As there are a number of goals in land-change modelling,
such a validation method would need to be flexible in that the
method can provide:

(i) a comparison, for modellers who wish to validate how well
themodel parameterisation correctly replicates the observed
land-cover patterns, allowing them to evaluate the similarity
of projections beyond a historical period, assuming station-
ary processes. This may be when the goal is the validation of
a single model run;

(ii) a consistent assessment, for several model runs, so a mod-
eller will be better informed on how to interpret or reject
different model parameterisations based on their strengths
and weaknesses, and thereby help inform a subsequent
round of model improvement. This may be when the goal is
for an intra- or inter-model comparison;

(iii) a relative measure, to show the range of land-cover possi-
bilities, compared against either reality or a speculative
target land-cover map, to understand how different param-
eterisations (or processes) of the same model project land-
cover change. This may be when exploratory modelling is
the goal.

To address these needs we have developed and present the
Similarity Validation (SimiVal) tool. The output presents an intui-
tively interpretable graphic so a modeller can quickly assess how
dissimilar the projections are from reality and, understand how
different parameterisations of models influence the key di-
mensions of land-cover projections. To demonstrate the capabil-
ities of SimiVal, we deliberately use two structurally different
LCCMs to provide degrees of dissimilarity from the observed land-
cover and between each model projection. We do not focus on the
meaning of the outcomes of the model projections as the aim of the
paper is to demonstrate the versatility of the validation tool.

3. The similarity validation tool (SimiVal)

3.1. SimiVal design

SimiVal requires three maps: (1) the modelled land-cover pro-
jections (p) as a categorical map at the projected end time point
(pt2), and generated from a land-change model calibrated between



Fig. 1. The benchmark cases of random, perfect and systematic-bias of land-cover
projections. Axes are: the percentage difference between the random metrics (or the
modelled projection metrics) and the observed metrics (diff % predicted) versus the
percentage difference between the random model metrics and the observed metrics
(diff % random). Coefficients for model projections will depend how similar they are to,
a completely randommodel (slope ¼ 1, p ¼ 0), the observed ‘perfect’model, (slope ¼ 0,
p ¼ 1), or whether the model contains a systematic-bias, (slope ¼ �1, p ¼ 0).
Regression lines that rotate towards the observed regression (dark arrows) show
increasing similarity to the observed projection. Regression lines that rotate away from
the observed regression with a slope steeper than �1, are worse than a systematic-bias
or with a slope steeper than 1, are worse than random (light arrows). Metric symbols
are: N e number of patches, Ae average-area-to-edge-length ratio, V e variance-
average-area-to-edge-length ratio, M e Moran's I, G e Geary's C, L edistance alloca-
tion metric, 1, 5 & 9 persistence Px:x, and 2, 3, 4, 6, 7 & 8 the transitions Tx:y. (see
Section 3.2.1 for full details on Px:x and Tx:y).
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two observed (o) time points (ot0 and ot1); and (2, 3) the observed
change as two categorical maps for the beginning and end time
points of the projection period (ot1 and ot2). The tool then creates a
fourth random (r) change categorical map at the second time point
(rt2), that is constrained to duplicate the same amount of land-cover
change and land-cover transitions that occurred in each category
between ot1 and ot2. For each of these categorical maps, SimiVal
computes a series of component metrics representing different
dimensions of land-cover change, classified as non-spatial (quan-
tity) and spatial (structural) metrics. Metric scores from ot2 repre-
sent the perfect metric scores for which the modeller may aim.
Metric scores from rt2 represent the random metric scores form
which the modeller may want to avoid. Metric scores at pt2

represent the metric scores that the modeller wishes to evaluate
relative to the other two. SimiVal compares these component
metrics with a linear regression. However, since: (i) many of these
metrics are of different orders of magnitude, the metrics are first
log transformed as some metrics exert undue leverage on the
summary regression statistics while others exert very little and; (ii)
because there is no reference value to determine how wide of the
mark a projection is in a regression between the observed and
projected metrics, the random metric scores are scaled relative to
the observed scores, providing benchmark metric values for the
perfect and random cases. These benchmark conditions are calcu-
lated as the percentage difference between the perfect metric
scores and the random metric scores and then standardised by
setting the perfect metric scores to zero. This procedure also pro-
vides a ‘bad’ score for a boundless metric to compare to the
observed. The perfect case is, the regression between the stand-
ardised observed and standardised random metrics, a flat line, and
the random case is, a regression of the standardised random met-
rics against each other, a line at 45� (Fig. 1).

When the modelled metrics, pt2, are standardised and plot
against the standardised random metric scores on the same graph,
a modeller can now draw rigorous conclusions of how close or far
away a modelled projection is from either case.

SimiVal assumes that all modelled projections are similar to the
coefficients of the random case until proven otherwise. From the
regression statistics the test of how similar a modelled projection is
to a random model can be found with the p-value and the co-
efficients of the simple linear regression line (Eq (1).)

y ¼ mx þ c (1)

where m ¼ slope and c ¼ intercept. If we suppose that all models
are random until proven otherwise, then a perfect fit to the metrics
of a randommodel has a significant relationship between the diff %
predicted and diff % random values, p-value¼ 0, with a slopem¼ 1,
and intercept c¼ 0. By contrast, if the model projection conforms to
the null hypothesis it is perfect and therefore is not a random
model, there would be no significant relationship between the diff
% predicted and diff % random values, the p-value would approach
1, and the regressionwould have a slopem ¼ 0, and intercept c¼ 0.
In reality, the model projection that is tested will have values be-
tween these coefficients, providing a measure of how similar the
modelled projection is to the random or perfect case. The intercept
c, may also be ±0. There can also be cases when the regression has a
p-value ¼ 0 but with a slope m ¼ �1 and an intercept c ¼ 0.
Although the p-value suggests a random model, the slope coeffi-
cient predicts an opposite polarity to the random model metrics, a
condition that does not conform to the random model or the per-
fect model. In these cases SimiVal is indicating a model projection
that incorporates a systematic, non-random bias, and might sug-
gest that the land-cover change in the modelled projection is
structured and non-random, i.e. the model does not produce a
randommap but cannot fully replicate the processes that led to the
observed map patterns. To represent the case of systematic-bias, a
naïve model, where change is simulated adjacent to an obvious
predetermining factor (Pontius et al., 2007), could be used. How-
ever, a naïve model may return many manifestations of patterns
when limited to a fixed allocation of change, so we assume the case
of a perfect systematic-bias is a regression based on metric scores
with opposite behaviour to the random metric (Fig. 1).

Using the three benchmark cases, SimiVal is able to evaluate,
quantify, and visualise a modelled projection and help determine if
that model is random, perfect or contains a systematic-bias. The
regression also allows a deeper investigation into the structural
performance of models, as it is possible to see whether individual
metrics are being over-, or under-estimated as indicated by their
residuals from the linear regression. SimiVal also makes a direct
visual comparison between different modelled projections for an
inter- and intra-model comparison by plotting each modelled
projection in a ternary graph representing what we refer to as
‘similarity space’. At each extreme, or apex, of the ‘similarity space’,
is the benchmark score for the perfect, random and systematic-bias
cases (Fig. 2). The acceptable level of similarity to the perfect,
observed case is at the user's discretion depending on their specific
land-cover modelling goals.
3.2. SimiVal component metrics

The component metrics in SimiVal have been selected so land-
change modellers can identify how the structural features and



Table 2
Transitions (T) and persistence (P) between three land-covers.

t2

Class 1 2 3

1 P1:1 T1:2 T1:3
t1 2 T2:1 P2:2 T2:3

3 T3:1 T3:2 P3:3
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parameterisations within their land-cover changemodels influence
their different land-cover projections. These metrics are firstly
calculated for the observed land-cover map at time 2 (ot2), pro-
jected map at time 2 (pt2), and random map at time 2 (rt2). The
component metrics represent non-spatial and spatial differences
between the ot, pt2and rt2, land-cover maps. Non-spatial properties
are defined here as quantity of change metrics (total quantity for
each land-cover, quantity of transition between land-covers and
the persistence of each land-cover). Spatial metrics are defined here
as spatial autocorrelation of the overall change, landscape struc-
ture, and distance allocation.
3.2.1. Non-spatial (quantity) metrics
These metrics are computed to evaluate how well the model

reproduced how much of each land-cover change transitions (be-
tween all pairs of classes) actually happened. They are calculated by
comparing the observed number of land-cover transitions between
ot1 and ot2 with the projected number of transitions between ot1 to
pt2. SimiVal categorises, calculates and records the number of pixels
for all the possible pairwise transitions, including persistence
(Table 2 and Eq. (2) and Eq. (3)), and then sums each transition to
give the total transition between the two time periods (Eq. (4))

xt1 ∩ xt2 ¼ Px:x1�n (2)

xt1 ∩ yt2 ¼ Tx:y1�n (3)

Px:x¼ total units of persistence of land-cover x following the union
of the categorical land-cover maps from t1 and t2 for each transi-
tion 1 to n and, Tx:y¼ the total units of transition from land-cover x
to land-cover y following the union of the categorical land-cover
maps from t1 and t2 for each transition 1 to n.

P
(Tx:y1, Tx:y2 … Tx:yn) ¼ totaltranst1�t2 (4)
Fig. 2. Similarity space. Cross-hairs mark the benchmark apices for the perfect,
random and systematic-bias cases. Model predictions that fall inside the ternary graph
show how close that projection is to one of the three extreme cases, while any that
might fall outside the ternary graph are either worse than random or are extreme cases
with a systematic-bias. Dashed lines represent user-defined acceptable thresholds of
similarity to the perfect case. Dots represent values for models used in the worked
example, described in Section 4 are, all LCM projections (LCM.1-30), SML realisation 32,
and the SML cumulative probability maps (SML.101-107).
where, totaltranst1�t2 is the total sum of all possible transitions,
Tx:y 1 to n, between t1 and t2.

3.2.2. Spatial metrics
Spatial metrics are calculated from the categorical maps of total

observed and total projected land-cover change and quantify the
ability of land-cover models to replicate the spatial structure of
overall change in the landscape.

3.2.2.1. Spatial autocorrelation. The degree of clustering, random-
ness and dispersion in the map of transitions is quantified using
Moran's I (Gittleman and Kot, 1990) and Geary's C (Cliff and Ord,
1973) indices. A Moran's Index value near þ1.0 indicates clus-
tering while an index value near �1.0 indicates dispersion. Geary's
C ranges are generally inverse toMoran's I beginningwith a value of
0 for perfect spatial autocorrelation and with a value of 1 indicating
complete absence of spatial autocorrelation. Both indices are used
as Geary's C is more sensitive to localised clustering of data,
whereas Moran's I has better global sensitivity. These metrics
indicate how well the model has predicted patchiness and disper-
sion for all the combined land-cover transitions.

3.2.2.2. Landscape structure. Landscape metrics provide statistics
describing patterns in the landscape. Many landscape metrics are
correlated and provide redundant information (Riitters et al., 1995),
so for a concise account of landscape structure SimiVal uses:
number-of-patches (nop), average-perimeter-to-area-ratio
(paAve), and the variance-in-perimeter-to-area-ratio across all
patches (paVar) with units inmetres. These landscapemetrics were
quantified for the observed, random and all projected model runs
to determine if the maps had similar numbers of isolated land-
cover patches (nop), and if the individual patches have similar
shape or compactness (paAve and paVar). Higher values indicate
less compact shapes. The R algorithm we used to define a patch
includes adjacent corners (Chang et al., 2004).

3.2.2.3. Distance allocation of change pixels. The SimiVal spatial
allocation metric, uses the Wilcoxon rank sum test statistic, W
(Crawley, 2005), to measure and compare how near or far instances
of change pixels in the projected model and the random model are
from the observed change pixels. This is done by generating a W
score for a perfect match (observed compared to observed) and aW
score for the difference from observed to each model projection
and to the random projection. A model projection similar to the
observed will have a W score close to the perfect match. A random
model is unlikely to be the same as the observed and will have a
much largerW score, whereas a projectedmodel ought to have aW
score that falls between the perfect match and the random model
W scores, assuming the model projection is not worse than
random. The final W score is reported as a percentage of the perfect
W score (Eq (5).)

(Wproj/(Wperfect) � 100 (5)
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4. Data, and land-cover change models

4.1. Data description

We used an area of township boundaries that intersect, or are
inside, the watershed of the Plumb Island Ecosystems (PIE)
ecological research site, Massachusetts, USA (Fig. 3). In these
townships, housing is replacing forest and knock on effects of the
land-cover change are thought to be contributing to the depletion
of aquifers and increases of algal blooms in the coastal bays (Kirkby
et al., 2000).

Land-cover data at 30 m resolution for 1971, 1985 and 1999 was
used. There are 21 land-cover classes in these data sets, which were
simplified into the land-cover classes ‘forest’, ‘built’ and ‘other’ for
themodelling. The ‘other’ class consists of variety of relatively small
categories such as mines, dedicated open land, pasture, cropland,
wetlands and water bodies. Two land-cover-change models, with
contrasting structures, were used to demonstrate SimiVal: the
IDRISI Land Change Modeller (Clark Labs, 2009), referred herein as
LCM, and StocModLCC (Rosa et al., 2013), referred herein as SML.
Additional explanatory variables for the models were either
calculated from the land-cover maps or downloaded (http://pie-
lter.ecosystems.mbl.edu/). LCM used elevation data, geology, dis-
tance-to-1971-built-land and the 1971 land-cover map as predictor
variables, whereas SML used distance to major settlements,
wetland areas, protected areas, farmland, distance-to-roads, na-
tional landscapes, flood areas, geology and planning zones. Each
model was calibrated between the years 1971 (t0) and 1985 (t1).We
applied the land-cover models assuming that land-cover-change
processes were stationary, and projected forward another 14
years to 1999 (t2). SimiVal calculated the metrics, regression and
plot the coefficients in the ‘similarity space’ described in section 3.

4.2. Model 1: Land Change Modeller (LCM)

LCM bases its projection on transition sub-models that use the
calculated transition potentials between the calibration dates for
each land-cover type and chosen explanatory variables. Three sub-
models were defined: (i) built-gain-from-forest; (ii) other-gain-
Fig. 3. Land-cover within the township boundaries that intersect the watersh
from-forest and; (iii) built-gain-from-other, using combinations of
elevation, 1971 land-cover, surface geology and distance to-1971-
built-land as explanatory variables. Transition maps that indicate
the actual change in land-cover during the calibration period were
used as the input data to calculate the transition potentials of each
of the explanatory variables. The transition models then provided
transition evidence maps, which were used as the basis for the
transition matrix calculated by Markov Chain prediction. The
transition matrix supplied the proportion of change for each land-
cover transition, which remained the same for each projection. In
this instance, two transition models were used: the multiple layer
perceptron neural network model, and a similarity weighted
method. The model thus provided two different internal structures,
with three transitions and 15 combinations of explanatory vari-
ables to produce a total of 30 land-cover projections, labelled as
LCM.1 to LCM.30. For this exercise, the categorical map, or hard
classification, calculated from a land allocation model built into the
IDRISI software, was used. This model will tend to select locations
where the most influential explanatory variables coincide with
locations where transition potentials are highest, and we may
therefore expect land-cover change to occur as small contiguous
patches, which may be isolated or adjacent to the existing ‘built’
class. Considering these model characteristics, we would anticipate
that the SimiVal metrics of the modelled projections may show a
high spatial autocorrelation, consistency in compactness, and a
similar allocation distance to the observed. Different transition
evidence maps will vary the location and size of these patches
between each projection.

4.3. Model 2: StocModLCC (SML)

SML determines that land-cover change occurs when the tran-
sition probability of a pixel is high enough for the land-cover
transition. This probability is calculated from the combined indi-
vidual posterior probability distributions for each of the explana-
tory variables, and reflects the land-cover condition of surrounding
neighbourhood pixels as well as their proximity to a combination of
other explanatory variables. The posterior probability for each
parameter is drawn from a likelihood distribution that has been
eds draining into the Plumb Island Sound (ringed), Massachusetts, USA.

http://pie-lter.ecosystems.mbl.edu/
http://pie-lter.ecosystems.mbl.edu/
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calculated during the calibration with Markov Chain Monte Carlo
sampling, which themselves have been validated for goodness of fit
with a 50:50 split between calibration and test data. Three transi-
tions were calibrated using the following explanatory variables: (i)
forest-to-built-or-other, which used distance to roads, protected
areas, farms, national landscape areas, flood areas, planning zones
and geology plus the internal variable, ‘proportion of forest
neighbours’; (ii) built-to-other-or forest, which used distance to
roads, protected areas, farms, geology and the internal variable
‘proportion of built neighbours’, and; (iii) other-to-forest-or-built
which used distance to roads, protected areas, farms, national
landscape areas, flooded areas, planning zones and the internal
variable ‘proportion of other class neighbours’. The built-back-to-
forest transition did not occur in the calibration time period and,
therefore could not be projected, leaving the following transitions:
forest-to-other-or-built, other-to-forest-or-built (competition,
multinomial regression) and, built-back-to-other (no competition,
binomial regression). The predictions of the three models were
simultaneously combined to produce the final land-cover-change
projection. To allow for uncertainty in the calibration of this
model there were 100 iterations, or realisations, i.e., 100 equally
probable versions, labelled SML.1-SML.100, produced by a sto-
chastic process, normally combined to create a probability change
map (Rosa et al., 2013). However, for SimiVal a hard classification
land-cover map is required, meaning the probability maps
emerging from SML needed to be categorised. For this study, it was
sufficient to cap the highest probability pixels with a threshold
calculated from the average number of change pixels of the 100
SML realisations, giving a map showing pixels of change or no
change. This land-cover map is referred to as the cumulative
probability map. To evaluate the influence of the number of real-
isations on the final cumulative probability map, thresholds were
calculated for 4 � 25 (SML.1-SML.25, SML.26-SML.50, SML.51-
SML.75, SML.76-SML.100), 2 � 50 (SML.1-SML.50, SML.51-SML.
100), and 1 � 100 (SML.1-SML.100) realisations to create an addi-
tional seven cumulative probability maps labelled SML.101-
SML.107. SML selects individual pixels for change based on a
weighted probability ‘coin flip’. Thus contiguity in land-cover
change is less likely to occur than in LCM and change pixels could
be close to or far away from the observed change. Considering the
model characteristics, wewould anticipate that the SimiVal metrics
are likely to show, low values of spatial auto correlation, variation in
compactness of patches, large differences in quantity allocation,
and a wide range of variation in distance allocation against the
observed map.

5. Results

5.1. Modelled spatial patterns

The differences between the observed land-cover change and
three examples of contrasting modelled projections are shown as
subsets of the full model area (Fig. 4). Between 1985 (ot1) and 1999
(ot2), the observed land-cover class transitions (print/online colour
version) weremainly the appearance of small parcels and expansion
of forest-to-built (medium grey to dark grey/green to blue) areas
(Fig. 4a and b). The projection 1985 (ot1) to SML.107 (pt2) illustrates
transitions of both forest-to-built (medium grey to dark grey/green
to blue) and instances of other-to-forest (light grey to dark grey/
beige to blue), and transitions were distributed predominantly as
individual pixels or small groups of pixels rather than as small
parcels or expanding parcels (Fig. 4c). The projection from 1985 (ot1)
to LCM.18 (pt2) and to LCM.24 (pt2) also projected forest-to-built
(medium grey to dark grey/green to blue), but did not replicate
the 1999 (ot2) patterns, allocating different quantities in the same
and different places to 1999 (ot2). The projection of change in LCM.18
(pt2) had a more parcel like appearance of built (dark grey/blue)
areas (Fig. 4d) whereas LCM.24 (pt2) tended to systematically
expand existing built (dark grey/blue) areas (Fig. 4e). At this
particular location projection LCM.18 (pt2) showed a slight pro-
pensity to project more land-cover transitions between other-to-
built (light grey to dark grey/beige to blue), than did LCM.24 (pt2).

5.2. Metric summary

A summary of the metrics for the observed, random, LCM and
SML model projections are shown in Table 3. For the non-spatial
metrics (quantity, Tx:y, Px:x), the random model used the same
total quantity of change as the observed change, but over allocated
the change pixels across the transitions for the least likely transi-
tions (e.g. increases in T1:3 (built-to-other), T2:1 (built-to-forest)
and T2:3 (forest-to-other)), but under allocated change to the more
likely transition (e.g. increases in T1:2 (forest-to-built)). The mean
scores of the two models showed that both LCM and SML projected
a lower quantity of change pixels than was observed.

As expected for the dominant transitions during each model
calibration, change pixels were allocated to T1:2 (forest-to-built)
and T3:2 (other-to-built), but the models could not project T2:1
(built-to-forest). The remaining transitions either had low numbers
of pixels or no pixels at all. The predicted quantity allocation be-
tween the two models also differed (Table 3). For LCM there was no
variation around the mean, and the mean values were the same in
each individual projection because the quantity of change for each
transition was fixed by the transition matrix. By contrast, SML had
variation around the mean quantity allocation because, rather than
impose a fixed change quota, a change pixel was determined by
‘coin flip’. The transitions in the cumulative probability map,
LCM.107, slightly underestimated themean SML projection because
some of the high probability values of the combined realisations
were excluded during the probability capping.

For the spatial metrics scores (nop, paAve, paVar, M, G and alloc)
there was a wide variation between the observed and random
models. This was primarily due to larger contiguous change patches
occurring in the observed maps, whereas the random projected
allocated change to many isolated pixels and small patches. As
anticipated, the LCM projections predicted reasonably high levels
of spatial autocorrelation (M & G), whereas SML predicted much
lower levels. Therewere fewer patches (nop) predicted in LCM than
SML, and the compactness of the patches in LCM was closer to the
observed than to the random, whereas the compactness of patches
in the SML projections was more similar to the random than to the
observed. There was more variability in compactness from the LCM
than SML projections. The variability occurred because the SML
patches were consistently small groups of pixels that did not form
large contiguous areas of change, whereas the range of patch sizes
in the LCM projections was much larger. The allocation distance
was poorer in the LCM projections than the SML projections,
probably because the more widely distributed selection of change
pixels in SML ensures those pixels can end up being anywhere from
quite close to quite far from the observed change, whereas with the
LCM projections contiguous clusters of many pixels may collec-
tively be far away meaning that each component pixel in the
change patch has a similar distance to the observed change. Overall,
the mean spatial metric values for LCM were closer to the observed
than to the random model, whereas the opposite was true for the
SML realisations. However, the SML cumulative probability map
(SML.107) was less like the random model than the individual 100
realisations, demonstrating that the cumulative probability map
encouraged clustering of pixels with the effect of improving the
overall spatial predictions of SML.



Fig. 4. Land-cover maps for, (a) 1985, (b) 1999, (c) SML cumulative probability map 107, (d) LCM projection 18, (e) LCM projection 24. The arrow between (a) and (b) signifies
observed change. Land-cover classes are (print/online colour version), forest (medium grey/green), built (dark grey/blue), other (light grey/beige). Pixels are 30 m by 30 m. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5.3. SimiVal statistics

Typical examples of the SimiVal regression illustrate the relative
similarity of the validationmetrics for the LCM and SML projections
to the perfect, random, and systematic-bias cases (Fig. 5). The
metrics of one SML realisation, SML.32, scored very close to the
random case metrics with a slope 0.68, intercept �14.95 and p-
value <0.01 (Fig. 5a). This was largely due to the near-random se-
lection of individual pixels that did not replicate the observed
patterns of change well. However, combining all the 100 realisa-
tions into the cumulative probability map (SML.107) improved this
situation, changing the regression coefficients to a moderate slope
0.34, intercept �11.48 and p-value 0.09 (Fig. 5b). For LCM.18 many
of the metrics had values similar to those of the observed, perfect
casewith a shallow regression slope of 0.01, intercept of�76.79 and
p-value of 0.97 (Fig. 5c), reflecting the ability of the LCM model to
create patches of contiguous pixels that were more similar to the
observed map. By contrast some metrics in LCM.24 exhibited a
tendency to move towards the systematic-bias, resulting in a
negative slope �0.12, intercept �1.90 and p-value of 0.60 (Fig. 5d).
In this case the LCM model was concentrating change in a few
places rather than across the landscape. The remaining projections
showed variations of the themes in Fig. 5 and are summarised in
Table S1.

The plot between all the p-value and slope scores provides an
inter- and intra-comparison of all the modelled projections
together (Fig. 2.). The ternary plot provides an instant visual eval-
uation of the relative similarity of all these projections to the per-
fect, random, and systematic-bias cases. This is much simpler to
interpret than the table of values (Table S1) and gives a collective
summary of the individual regressions (e.g. Fig. 5). Model pro-
jections with the shallowest gradients, LCM runs 4, 11, 18, 24 and 26
had the highest p-values and were most similar to the observed,
perfect model. All other projections had greater positive or negative



Table 3
Summary of the metrics for the observed (n ¼ 1), random (n ¼ 1), LCM (n ¼ 30), and SML (n¼ 100) projections and for the selected individual projections LCM.18, LCM.24 and
SML.107. Quantity e total number of pixels of change of all land-cover transitions, T e refers to transition and P e refers to persistence between t1 and t2. nop e number of
patches, paAvee average area to edge length ratio, paVare variance average area to edge length ratio, MeMorans' I, GeGearys’ C, Alloce distance allocationmetric. Units are
in pixels.

Metric Observed Random LCM
(mean)

LCM
(SD)

LCM
18

LCM
24

SML
(mean)

SML
(SD)

SML
107

Quantity 95,361 95,361 72,605 0 72,605 72,605 58,750 327 49,993
P1:1 489,425 503,063 494,172 0 494,172 494,172 506,723 266 514,833
T1:2 47,260 20,663 41,521 0 41,521 41,521 36,754 269 28,710
T1:3 7,497 20,456 8,489 0 8,489 8,489 704.5 56 639
T2:1 121 15,507 0 0 0 0 0 0 0
P2:2 409,261 379,981 411,035 0 411,035 411,035 410,754 21 410,857
T2:3 1,653 15,547 0 0 0 0 281 21 178
T3:1 13,935 11,544 0 0 0 0 22 11 1
T3:2 24,895 11,644 22,595 0 22,595 22,595 20,988 204 20,465
P3:3 266,094 281,736 282,329 0 282,329 282,329 283,914 204 284,458
nop 2,917 68,806 3,294 2,436 3,774 2,882 34,843 166 10,823
paAv 0.05 0.13 0.08 0.02 0.09 0.09 0.13 0.83 *10-4 0.12
paVar 5.31*10-4 1.56 *10-4 9.18 *10-4 3.87 *10-4 13.44 *10-4 12.99 *10-4 2.23 *10-4 0.02 *10-4 4.70 *10-4

M 0.73 0.11 0.63 0.20 0.72 0.77 0.18 8.35 *10-4 0.54
G 0.30 0.99 0.41 0.23 0.32 0.25 0.92 9.37 *10-4 0.52
Alloc 100 183 151 14 158 154 141 <1 129

Fig. 5. Linear regression of SimiVal metrics for four model projections (a) SML.32 (b) SML.107, (c) LCM.18, (d) LCM.24. Metric symbols are described in Fig. 2.
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slopes, in particular a group of LCM projections with negative
gradients less than -0.2 and thereby exhibiting systematic-bias,
whereas the SML projections tended to have positive slopes
greater than 0.3, and thereby exhibiting a tendency to the random
case. Accordingly the p-values decrease to the base of the ternary
plot as the modelled projections become less similar to the
observed, perfect case.

6. Discussion

To validate land-cover maps from LCCMs we have built a tool in
R code that includes a set of metrics covering the major dimensions
of land-cover change maps: quantity allocation; distance allocation
and structural characteristics. When these metrics are combined
and analysed collectively the similarity between different model
projections can be visualised. The visualisation provides an instant
recognition of how similar or dissimilar models can be to the three
cases of a perfect, random, or systematic-bias. This is useful for: (i)
validation of a single model projection; (ii) validation of multiple
projections from for an intra- or inter-model comparison and; (iii)
identifying how different model parameterisations influence the
component metrics. This approach encourages consistent valida-
tion to evaluate the outcomes of one or many projections avoiding
ad hoc choices of metrics and arbitrary decisions that can highlight
specific objectives and model features.

The use of ‘similarity space’ (Fig. 2), avoids the first-past-the-
post vision that validation tends to invoke, and instead provides a
measure of similarity for each projection depending on how close
the projection is to each of three benchmark apices. A perfect
model will sit close to the perfect apex, calculated from what was
actually observed to occur, and indicates a parameterisation of
land-cover processes that leads to the same outcome as reality. A
projection that plots towards the centre of similarity space is
becoming more dissimilar to the perfect, and correspondingly
exhibiting greater similarity to the random or systematic-bias
cases. Additionally, when the projection is positioned towards
either the random or systematic-bias apices, the modelled run can
be judged as being parameterized in such away that the land-cover
change processes represented in the model are not realistic and
that the resultant outcome is not accurately reflecting reality.
Exactly where the boundary of realism sits in ‘similarity space’may
well be a decision for the individual analyst who ultimately judges
the realism of the modelled land-cover projections and, howgood a
model needs to be before it is acceptable for a particular purpose.
By drawing threshold lines across ‘similarity space’, the user can
add certainty to this subjective task, but the location of the
thresholds will likely be user-specific (Fig. 2).

The wide range of dimensions that are included in SimiVal is an
advance on existing validation procedures. In addition to the
metrics which are highly informativewith respect to allocation (e.g.
Costanza, 1989; Hagen, 2003; Almeida et al., 2008; Pontius et al.,
2008, 2011), we paid particular attention to evaluation of land-
cover maps including metrics of spatial correlation and landscape
structure, and therefore provide a more diverse pool of metrics.
Other authors have used metrics of landscape structure (e.g.
Soares-Filho et al., 2002; Dale et al., 1994), and this added dimen-
sion is particularly useful to models that specifically drive change
via landscape structure (e.g. DINAMICA Soares-Filho et al., 2002), as
opposed driving change via quantity and probability (e.g. LCM and
SML). Alarmingly, we found that when using quantity metrics alone
it was difficult to distinguish between different projections from
the same model (Table 3), and in fact was impossible for LCM. This
represents a critical problem, as each LCM projection had a
different modelled spatial pattern of change (Fig. 4). Thus the
addition of spatial metrics is useful in differentiating and
understanding these projections. For example, although LCM.18
(pt2) did not spatially allocate change in the right places, the model
was better at predicting the structural features of land-cover
change than LCM.24 (pt2).

Although SimiVal is not the ultimate answer to validation, it is a
step towards consistency. The method avoids inadvertently
imbalanced assessments and contributes to the need for improved
land-cover model validation (Brown et al., 2013), reducing the
difficulties identified during inter-model comparison (Rosa et al.,
2014). In our illustration of SimiVal we found models varied
greatly in their ability to recreate observed change, and that models
made erroneous predictions in very different ways. Using the
model positions in ‘similarity space’ we can explicitly quantify on:
(i) parameterisations that produced acceptable land-cover maps
and; (ii) parameterisations that produced inappropriate maps. This
approach could be used for explicit model comparison, although
results need to be interpreted with caution. For example, we found
that some parameterisations of LCM performed exceptionally well
in predicting observed patterns of change, whereas SML projections
did not generally perform so well. However, it should be noted that
SML was explicitly designed to model deforestation at large spatial
scales (Rosa et al., 2013), as opposed to simulating secluded urban
parcels over relatively small spatial scales as we used in this exer-
cise. A strict comparison of model performance in this single,
limited case might tell us what modelling approach is best suited to
projecting land-cover change in this type of situation, but tells us
nothing about the relative strengths and weaknesses of the two
approaches in other situations. Perhaps, then, these models were
unfairly compared in this exercise, but our explicit objective here
was to evaluate the versatility of SimiVal and not to make gener-
alised statements about the relative performance of different
modelling platforms.

Nonetheless, our worked example of applying SimiVal does
demonstrate how the tool can be used to assist in the selection of
the best suited parameterisation for exploratory studies and future
projection in a given situation. Of course, one has to assume land-
cover change processes are stationary and, that the credibility of
the final landscape projection and the representation of the land-
cover change processes have been considered to be appropriate.
If these are reasonable assumptions, the position of each parame-
terisation in similarity space is useful information for trying to
improve models, or during exploratory modelling when an analyst
is trying to understand parameterisations that lead to specific land-
cover outcomes. Using similarity space in this way is therefore
useful for understanding and improving predictive models where
validation has previously been considered to have limited value
(Deadman et al., 2004). With our exercise, for example, we were
able to use visual inspection of Fig. 2 to identify projections with
systematic-bias, and on further examination of those parameter-
isations we found that they represented malfunctioning models
that produced improbable landscape structures (e.g. one model
predicted stripes of change across the landscape). Such informa-
tion, along with more detailed examination of the SimiVal regres-
sion output (Fig. 5) helps guide the next round of model
improvements, an approach suggested by Pontius and Millones
(2011). If an analyst was trying to exactly replicate the observed
land-cover map, in depth analysis of the regression plots will give
clues to where a particular model parameterisation requires
attention. As a specific example, projection LCM.24 had problems
with allocation in the T3:1, T2:3 and T2:1 transitions, and difficulty
replicating the structural dimensions, paAve and paVar. Such in-
formation could tell an analyst two things that will help improve
future parameterisations: (i) that there was a problem because the
model was not calibrated with these transitions; and (ii) that the
model does not re-create landscape structure well and the
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simulation of patch size and clustering requires attention.
The applications of SimiVal reach into many disciplines and the

information that each discipline seeks is often quite different. For
example, an economist or policy analyst may be interested in
different outcomes to infer how a particular parameterisation
influenced specific policies or market mechanisms, whereas an
ecologist or spatial analyst may be interested in landscape structure
for conservation studies or development planning. Whatever the
purpose of the LCCM, using a similarity tool that provides a
comprehensive validation, can rigorously guide a user's choice of
model and their interpretation of land-cover projections.

7. Conclusion

Different parameterisations of the same land-cover model, and
different land-cover modelling approaches can produce a wide
range of land-change predictions from the same scenario and data.
Using a limited validation that focusses solely on specific di-
mensions of change, such as quantity allocation, it is not always
possible to distinguish how similar land-cover change projections
are to other land-change projections or to the actual, observed
land-cover change. More dimensions need to be considered, and in
particular metrics that consider landscape structure. Moreover, it is
also difficult to estimate how dissimilar particular model pro-
jections are unless they are compared to values from a known
benchmark condition. These benchmark conditions require the
rescaling of all metrics relative to the observed values, and the
subsequent regression plots provide coefficients to test the simi-
larity of a modelled projection. The most informative coefficients of
the regression are the p-value and slope coefficient, which when
plot simultaneously in a ternary graph of ‘similarity space’, indicate
how modelled projections vary with different model parameter-
isations, relative to the cases of perfect, random, and systematic-
bias. This approach, delivered as a program SimiVal, provides a
consistent method for land-cover map validation, improving on the
selective procedures widely practiced at present.
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