

1

Accepted for publication in Transactions in GIS, 2013

An Algebra for Spatiotemporal Data: From Observations To

Events

Karine Reis Ferreira1, Gilberto Camara1, Antônio Miguel Vieira Monteiro1

1DPI – Image Processing Division, INPE – National Institute for Space Research,

Av. dos Astronautas 1758, 12227-001 – São José dos Campos – SP – Brazil

 (corresponding author: karine@dpi.inpe.br)

2

Abstract. Recent technological advances in geospatial data gathering have created

massive data sets with better spatial and temporal resolution than ever. These large

spatiotemporal data sets have motivated a challenge for Geoinformatics: how to model

changes and design good quality software. Many existing spatiotemporal data models

represent how objects and fields evolve over time. However, to proper capture changes,

it is also necessary to describe events. As a contribution to this research, this paper

presents an algebra for spatiotemporal data. Algebras give formal specifications at a

high-level abstraction, independently of programming languages. This helps to develop

reliable and expressive applications. Our algebra specifies three data types as generic

abstractions built on real-world observations: time series, trajectory and coverage.

Based on these abstractions, it defines object and event types. The proposed data types

and functions can model and capture changes in a large range of applications, including

location-based services, environmental monitoring, public health, and natural disasters.

Keywords: spatiotemporal data model, algebra, observations, fields, objects, events.

3

1 Introduction

The age of big geospatial data has come. Mobile phones, social networks and GPS

devices create data useful for planning better cities, capturing human interactions and

improving quality of life. Geosensors allow scientists to observe the world in novel

ways. Space agencies worldwide plan to launch around 260 Earth observation satellites

over the next 15 years. These massive data sets present a challenge for Geoinformatics.

To use these large spatiotemporal data sets properly, we need innovative software

designs. As a contribution to this design challenge, this paper presents an algebra for

spatiotemporal data. The types and functions of the algebra can model data from many

sources, including moving objects, remote sensing images, and geosensors.

 Our model takes observations as a starting point, revisiting the classical work of

Sinton (1978). This approach follows the ideas of Kuhn (2005): “All information

ultimately rests on observations, whose semantics is physically grounded in processes

and mathematically well understood. Exploiting this foundation to understand the

semantics of information derived from observations would produce more powerful

semantic models”.

 The model is set forth as an algebraic specification, describing data types and

operations in a language-independent and formal way. By separating specification from

implementation, algebras help to develop reliable and expressive GIS applications

(Frank et al. 1995; Frank 1999). Programmers can translate algebraic specifications into

software using languages and environments of their choice. As an example, we have

implemented the algebra using the open source TerraLib geospatial software library

(Câmara et al. 2008).

2 Related work

To design spatiotemporal models, it is important to look at works that discuss change in

objects (individual geographical units) and in fields (mappings from spatial locations to

values). Relevant early results on object change include the bitemporal model of

Worboys (1994) and the three-domain model of Yuan (1999). These models track

4

changes on the boundaries and attributes of an object, keeping its identity. These models

have been extended by works such as Hornsby et al. (2000), who present a change

description language with operations like ‘create’, ‘destroy’ and ‘continue existence’.

Recent growth of mobile computing inspired much work on moving objects, notably the

foundational algebra of Güting et al. (2000). Interest on location-based applications led

to an ISO (2008) standard that defines a moving feature as an object whose geometry

moves as a rigid body.

 As to change in fields, Peuquet et al. (1995) propose a model that groups changes in

raster cells by time of occurrence. Liu et al. (2008) introduce the idea of a general field

with three spatial plus one temporal dimension to generalise previous definitions of

fields. Mennis (2010) extends the conventional map algebra to include three-

dimensional space and time. Efforts on standardisation led to the OGC coverage

definition (OGC 2006). A coverage associates positions in a spatial, temporal or

spatiotemporal domain to attribute values.

 A further line of research is that of geospatial ontologies, that group real world

phenomena in continuants and occurrents (Galton 2008). Continuants are entities whose

identities remain constant as they undergo change, such as an aircraft and a volcano.

Occurrents are entities that happen or occur, like a flight and an eruption. On the

geospatial domain, ‘objects’ and ‘fields’ are taken as continuants and ‘events’ as

occurrents (Galton et al. 2009). In this view, modelling only objects and fields misses

part of the semantics of change. One also needs to consider events and the relations

between events and objects (Worboys 2005). Following these ideas, Worboys et al.

(2004) propose a model combining objects and events, defining event-event and event-

object relations. Galton et al. (2005) refine these relations for events, states, and

processes in dynamic networks. Hornsby et al. (2007) model events associated to

moving objects and propose an approach to extract patterns of movements from them.

 In this paper, we put together ideas from these three areas, proposing an algebra

that represents objects, fields and events. We argue there are three key data types for

spatiotemporal data: time series, trajectory, and coverage, from which we can derive the

5

object and event types. Using this step-by-step approach, the resulting algebra is useful

for building many different applications.

3 From observations to events

We start with observations, our means to assess spatiotemporal phenomena in the real

world (Kuhn 2009). According to Sinton (1978), there is an inherent structure to

geographical information. For him, an observation should have three attributes: space,

time and theme (the term “theme” refers to the real-world phenomenon or object being

observed). He argues that we can create generalizations of geographical information

based on how these attributes (space, time and theme) are assessed. In a general way, we

observe the world by fixing one attribute, controlling another and measuring the other.

Our observations are obtained by: (1) keeping one attribute constant; (2) varying the

second attribute in a controlled way; and (3) measuring the third attribute, given the

constraints of the second attribute. This produces six possible combinations. We

consider that three of those are necessary and sufficient to model spatiotemporal data:

1) Fixing space, controlling time, and measuring theme results in a time series.

2) Fixing theme, controlling time, and measuring space results in a trajectory.

3) Fixing time, controlling space, and measuring theme results in a coverage.

 The other three possible combinations are:

4) Fixing time, controlling theme, and measuring space.

5) Fixing space, controlling theme, and measuring time.

6) Fixing theme, controlling space, and measuring time.

 As an example of combination (4), Sinton proposes a “vegetation map” created by

finding out all locations of a given land cover type. However, these maps are more

likely produced by a systematic data collection over a given area, resulting in

coverages. Combination (5) occurs in cases like “measuring arrival times by runners in

a marathon”. Yet it is also possible to get this type of data by analysing trajectories of

runners. Sinton suggests “tide tables” as an example of combination (6). Since such

tables can be obtained from time series that maps times to tide heights at a specific

6

location, there is no need for an additional type. Thus, using Occam’s razor, only three

data types (time series, coverage, and trajectory) are needed to model all combinations

of theme, time and space obtained by fixing one attribute, controlling another and

measuring the third.

3.1 Data Abstractions

Using the time series, trajectory, and coverage types, we can define different views on

the same observation set, meeting application needs. Take Figure 1 that shows the

tracks of three cars equipped with GPS and air pollution sensors in a city. These cars

produce a set of observations, each one containing a car identity, a time instant, a

location and an air pollution value. Suppose the observations are collected hourly during

one day. From this data it is possible to extract three different representations. Taking

one of the cars as a sensor and the city as a spatial reference, we can build time series

that shows the hourly air pollution in the city. Considering each car an individual object,

we can get a set of trajectories. Fixing the whole day as a time reference and taking all

air pollution data, we can create a coverage that conveys how pollution varied within

the city during that day.

Figure 1. Different views on observations produced by moving cars.

 A time series represents the variation of a property over time in a fixed location.

Figures 2(a) and 2(b) show time series used in disease surveillance of dengue in the city

7

of Recife in Brazil (Regis et al. 2009). Dengue is a viral disease transmitted by

mosquitoes. These mosquitoes lay their eggs in standing water; the eggs hatch in hot

weather. To assess dengue risk, health services use buckets of water as egg traps. Figure

2(a) shows five meteorological stations and one of the associated temperature time

series. The second set of time series shows the number of mosquito eggs gathered

weekly from the egg traps. Figure 2(b) presents egg traps (red points) in a district of

Recife and a time series produced by one of them.

(a) (b)

Figure 2: Examples of time series: (a) temperature collected by meteorological stations
and (b) number of mosquito eggs gathered from one egg trap in a district of Recife,

Brazil.

A trajectory represents how locations or boundaries of an object evolve over time.

Figures 3(a) and 3(b) show trajectories. Figure 3(a) presents routes of sea elephants in

Antarctica. Figure 3(b) shows the evolution of three city limits in the Brazilian state of

Rondonia from 2001 to 2005.

8

(a) (b)

Figure 3: Examples of trajectories: (a) tracking of sea elephants in Antarctica and (b)
evolution of three Rondônia’s municipality limits during 2001 and 2005.

 A coverage represents the variation of a property within a spatial extent at a time.

Putting together the air pollution observations obtained by all cars of Figure 1 produces

a coverage that shows how pollution varies in the city during one day. Other examples

of coverages appear in Figure 4, which shows grids with the rain variation in the state of

Rio de Janeiro during the natural disaster of 11 January 2011. The examples in the paper

assume we have grids in 15-minute intervals. Figure 4 also shows the cities of the state

of Rio de Janeiro, which will be used in the examples of events.

Figure 4: Example of coverages: rain in the state of Rio de Janeiro, Brazil, in 11 January
2011.

9

Since observations are discrete, they need to be combined with interpolation functions

to approximate continuous change. Interpolators estimate values at locations in space

and moments in time for which there is no data. Consider two observations of a moving

car (Figure 1), one at instant 4 and the other at 8, shown in Figure 5(a). There are

different methods to estimate car location at the non-observed time 6. Choices include a

linear interpolator (Figure 5(b)) or a method that uses a street map as a spatial

constraint, as in Figure 5(c). The proposed algebra allows choosing the most suitable

interpolation function for each case.

Figure 5. Observations of a moving car and different kinds of interpolation
functions.

3.2 Objects and Events

Our model defines objects as continuants and events as occurrents. An object is an

identifiable entity whose spatial and non-spatial properties can change over time. It is

present as a whole at each moment of its existence (Galton et al. 2009). Examples of

objects are cars (Figure 1), egg traps (Figure 2), sea elephants and municipalities

(Figure 3) and cities of the state of Rio de Janeiro (Figure 4). An event is an individual

episode with a definite beginning and end. It only exists as a whole across the interval

over which it occurs. An event does not change over time. It can involve one or more

objects, and an object can be involved in any number of events (Galton et al. 2009). In

our model, we can derive events from specific conditions of spatial and non-spatial

properties of objects. If we know what conditions lead to an event, we can express

events using operations over the proposed types.

10

 Consider the following objects: the cities of Rio and Recife and a group of sea

elephants. A ‘flood’ event occurs in Rio if “rain is more than 10 mm/hour for more than

5 hours”. A ‘dengue epidemic’ event happens in Recife when “the average temperature

is above 300 C for more than a week and more than 50 eggs on average were found in

the egg traps in the same week”. A ‘meeting of two animals’ occurs when “the minimal

distance between two sea elephants is less than 2 meters”. These constraints are

expressed through operations on time series, trajectories and coverages, which in turn

are built from observations (Figure 6).

Figure 6. The proposed model.

4 An Algebra for Spatiotemporal Data

We use data types to express our abstractions. A data type is a set of values and a

collection of operations on those values that defines their behaviour. An algebraic

specification of a data type T consists in: (1) a syntactic description which defines the

names, domains, and ranges of the operations of T; and (2) a semantic specification

which contains a set of axioms in the form of equations which relate operations of T to

each other (Guttag et al. 1978). In what follows, functions and type signatures use

monospaced font. Type names are given in TitleCase and function names in

lowercase. Sets are enclosed by curly braces and square brackets denote parameterized

types.

11

4.1 Primitive data types

There are three primitive types: Value, Time and Geometry. Value is a generic type to

express attribute values that can be Integer, Float, String or Boolean. Typical

operations on Value include less_than, greater_than, equal_to, max, and min. The

meaning of such operations is evident when applied to numerical types. When applied

to textual and boolean types, we consider the alphabetical order.

 Time is a generic type that can be an Instant or a Period. The types Time,	

Instant	 and	 Period match the types TM_GeometricPrimitive, TM_Instant and

TM_Period defined by the ISO temporal model (ISO 2002). Operations on Time include

equals, before, after, begins, ends, during, contains, overlaps, meets,

overlappedBy, metBy, begunBy and endedBy. They compare two time instances

based on the temporal relationships of Allen (1983). Their behaviour when applied to

instants and periods is described in the ISO standard (ISO 2002). Chronon is a generic

type to represent temporal resolutions.

Geometry is a generic type compliant with the Geometry type defined in the OGC

Geometry Model (OGC 2006). It can be a Point,	 Line,	 Polygon,	 MultiPoint,	

MultiLineString,	 or	 MultiPolygon type. Operations on Geometry include equals,

touches, disjoint, crosses, within, overlaps, contains and intersects, as

defined by OGC (2006). The types are:	 	
Number:	 	 	 	 	 Integer,	 Float	

Value:	 	 	 	 	 Number,	 String	 and	 Boolean	

Time:	 	 	 	 	 Instant,	 Period	

Chronon:	 	 	 	 Year,	 Month,	 Week,	 Day,	 Minute,	 Second.	

Geometry:	 	 	 	 Point,	 Line,	 Polygon,	 MultiPoint,	 MultiLineString,	

	 	 	 	 	 	 	 MultiPolygon.	

We also define a null type, Null, to represent invalid values. In what follows, we

omit the null type in the function signatures for clarity. Functions can return Null types

in some cases, as described in the axioms. This behaviour should be considered when

implementing the algebra.

12

4.2 Observations

type	 	 Observations	 [F:Type,	 C:Type,	 M:Type]	 	

operations:	 	

new:	 	 {(F,C,M)1,(F,C,M)2,…,(F,C,M)n}	 →	 Observations	 |	 n>0	

	 reference:	 Observations	 →	 F	 	 	

	 positions:	 Observations	 →	 {C1,…,Cn}	 	 	

	 measure:	 Observations	 x	 C	 →	 M	 	 	 	 	

An observation is a tuple of three attributes: time (Time), location (Geometry) and value

(Value). The Observations type has three type parameters. Following Sinton (1978),

the first type is the fixed reference (F), the second is the controlled attribute (C) and the

other is the measured attribute (M). The constructor new builds an observation set from a

set of instances of types F, C and M. Reference returns the value of the fixed attribute.

The positions function reports the variation of the controlled attribute and measure

returns the observed value associated to a position.

4.3 Interpolator

type	 	 	 Interpolator	 [F:Type,	 C:Type,	 M:Type]	

operations:	 	

estimate:	 Interpolator	 x	 Observations[F,C,M]	 x	 C	 →	 M	

Interpolator is a generic interface for interpolation methods. As it is an interface to

other concrete types, it has no constructor. The estimate function takes an interpolator,

an observation set and a position in space or time, and calculates a value of the

measured attribute (M) for that position.

4.4 SpatioTemporal

type	 	 	 	 	 	 	 SpatioTemporal	 	

operations:	 	

	 	 	 observations:	 SpatioTemporal	 → Observations	 	

	 interpolator:	 SpatioTemporal	 → Interpolator	

	 begins,	 ends:	 SpatioTemporal	 →	 Instant	

13

boundary:	 SpatioTemporal	 →	 Geometry	

after,	 before,	 during:	 	 SpatioTemporal	 x	 Time	 →	 SpatioTemporal	

	 intersection,	 difference:	 SpatioTemporal	 x	 Geometry	 →	 {st1,…,stn}	 	

	 	 	 	 	 	 	 	 	 	 	 	 |	 st:	 SpatioTemporal	 	

axioms:	

	 st1,st2:	 SpatioTemporal;	 t:	 Time;	 g:	 Geometry;	

	 before(st1,begins(st1))	 =	 Null	 	

	 after(st1,ends(st1))	 =	 Null	

	 during(before(st1,t),t)	 =	 Null	

	 during(after(st1,t),t)	 =	 Null	

	 after(before(st1,t),t)	 =	 Null	 	

	 before(after(st1,t),t)	 =	 Null	

	 difference(st1,boundary(st1))	 =	 ∅	

	 intersection(st1,boundary(st1))	 =	 {st1}	

	 within(boundary(st1),g)	 =	 TRUE	 ⇒	 intersection(st1,g)=	 {st1}	

	 disjoint(boundary(st1),g)	 =	 TRUE	 ⇒	 intersection(st1,g)=	 ∅	

	 st2	 ∈	 intersection(st1,g)	 ⇒	 difference(st2,g)=	 ∅	

	 st2	 ∈	 intersection(st1,g)	 ⇒	 boundary(st2)=	 g	

The SpatioTemporal type provides an abstract interface to the concrete types time

series, trajectory, and coverage. These concrete types implement the SpatioTemporal

operations according to their needs. This type is an abstract interface and has no

instances.

 Observations and interpolator return the two building elements of a

SpatioTemporal	 type.	 Begins and ends return its initial and final times. Boundary

reports its spatial extent. After, before and during return a subset of a

SpatioTemporal instance, whose temporal range is after, before and during a given

time. Intersection and difference select subsets of a SpatioTemporal instance,

whose geometries intersect and do not intersect, respectively, a given geometry.

4.5 Time Series

type	 TimeSeries	 [G:Geometry,	 T:Time,	 V:Value]	 inherits	 SpatioTemporal	 	

14

operations:	 	

	 new:	 	 Period	 x	 Observations[G,T,V]	 x	 Interpolator[G,T,V]	 	

	 	 	 	 →	 TimeSeries	 	 	

	 value:	 TimeSeries	 x	 T	 → V	

	 min,	 max:	 TimeSeries	 →	 V	

	 less,	 greater,	 equals:	 TimeSeries	 x	 V	 →	 {ts1,…,tsn}	 	

	 	 	 	 	 	 	 	 	 	 	 	 |	 ts:	 TimeSeries	 	

axioms:	

	 ts1,ts2:	 TimeSeries;	 t1,tn:	 Time;	 v:	 Value;	 	

	 p:	 Period;	 obs:	 Observations;	 interp:	 Interpolator;	

	 ts1=	 new(p,obs,interp)	 ⇒	 begins(ts1)	 =	 begin(p)	

	 ts1=	 new(p,obs,interp)	 ⇒	 ends(ts1)	 =	 end(p)	

	 value(ts1,t1)	 =	 estimate(interpolator(ts1),observations(ts1),t1)	

	 after(t1,ends(ts1))	 ∨	 before(t1,begins(ts1))	 ⇒	 value(ts1,t1)=Null	

	 value(after(ts1,t1),t1)	 =	 Null	

	 value(before(ts1,t1),t1)	 =	 Null	

	 less(ts1,min(ts1))	 =	 ∅	

	 greater(ts1,max(ts1))	 =	 ∅	

	 ts2	 ∈	 equals(ts1,v)	 ⇒	 min(ts2)	 =	 max(ts2)	 =	 v	

	 ts2	 ∈	 less(ts1,v)	 ⇒	 max(ts2)	 <	 v	 	

	 ts2	 ∈	 greater(ts1,v)	 ⇒	 min(ts2)	 >	 v	

	 boundary(ts1)	 =	 reference(observations(ts1))	

	 positions(observations(ts1))={t1,...,tn}	 ⇒	 begins(ts1)	 ≤	 t1	

	 positions(observations(ts1))={t1,...,tn}	 ⇒	 ends(ts1)	 ≥ tn	 	 	

	 TimeSeries is parameterized by Geometry (G), Time (T) and Value (V) types. New

builds a TimeSeries from a temporal range (Period), an observation set and an

interpolator. These observations have a fixed geometry (G) and measured values (V) at

controlled times (T). The interpolator estimates values (V) at times during the temporal

range of the series. Value uses the interpolator to provide a value at a given time. If this

given time is outside the temporal range, value returns Null. Min and max return its

minimum and maximum values. Less, greater and equal select subsets of a time

15

series whose values are, respectively, less than, greater than or equal to a given value. It

inherits and implements the SpatioTemporal operations. For example, boundary

returns the fixed geometry of its observations.

The temperature measures of Figure 2(a) can be represented by an

Observations[Point,	 Instant,	 Float]	 type. The station location (Point) is fixed

and the temperature (Float) is measured at controlled times (Instant). We can build a

TimeSeries[Point,	 Instant,	 Float] from these observations. The egg traps of

Figure 2(b) map to Observations[Point,	 Period,	 Integer]. The trap location

(Point) is fixed and the number of eggs (Integer) is measured at controlled times

(Period). We can capture the variation of the eggs in the egg traps as a

TimeSeries[Point,	 Period,	 Integer].

4.6 Trajectory

type	 Trajectory	 [V:Value,	 T:Time,	 G:Geometry]	 inherits	 SpatioTemporal	

operations:	 	

	 new:	 	 	 Period	 x	 Observations[V,T,G]	 x	 Interpolator[V,T,G]	 	

	 	 	 	 	 →	 Trajectory	 	

value:	 Trajectory	 x	 T	 →	 G	

axioms:	

	 tj:	 Trajectory;	 t1,tn:	 Time;	 g:	 Geometry;	

	 p:	 Period;	 obs:	 Observations;	 interp:	 Interpolator;	

	 	 tj=	 new(p,obs,interp)	 ⇒	 begins(tj)	 =	 begin(p)	

	 tj=	 new(p,obs,interp)	 ⇒	 ends(tj)	 =	 end(p)	

	 value(tj,t1)=	 estimate(interpolator(tj),observations(tj),t1)	

	 after(t1,ends(tj))	 ∨	 before(t1,begins(tj))	 ⇒	 value(tj,t1)=Null	

	 value(after(tj,t1),t1)	 =	 Null	

	 value(before(tj,t1),t1)	 =	 Null	

	 positions(observations(tj))	 =	 {t1,...,tn}	 ⇒	 begins(tj)	 ≤	 t1	

	 positions(observations(tj))	 =	 {t1,...,tn}	 ⇒	 ends(tj)	 ≥	 tn	
	 measure(observations(tj),tn)	 =	 g	 ⇒	 within(g,boundary(tj))=TRUE	 	

16

	 Trajectory	 is parameterized by Value (V), Time (T) and Geometry (G) types. New

constructs a Trajectory from a temporal range, an observation set and an interpolator.

Trajectory observations have a fixed identity (V) and measured geometries (G) at

controlled times (T). Value uses the interpolator to provide a geometry at a given time.

When this given time is out of the Trajectory temporal range, value returns Null. It

inherits SpatioTemporal operations and implements them according to its needs. For

example, boundary returns a bounding box that contains all measured geometries of a

trajectory. 	

 Each sea elephant of Figure 3(a) is described as an instance of

Observations[Integer,	 Instant,	 Point]. The animal’s identity (Integer) is fixed

and its location (Point) is measured at controlled times (Instant). We can capture this

data as an instance of Trajectory[Integer,	 Instant,	 Point].

 Each city of Figure 3(b) is described by an Observations[String,	 Period,	

MultiPolygon], where each observation contains the city’s identity (String) and a

boundary (MultiPolygon) valid during a period. From these observations, we build an

instance of a Trajectory[String,	 Period,	 MultiPolygon] which captures the

variation of a city’s boundary. During the temporal range 2001 and 2012, each city’s

trajectory has two observations, one valid for period [2001, 2004] and the other for

period [2005, 2012].

 We now compare our Trajectory type with previous models such as ISO (2008)

and Güting et al. (2000). Trajectory allows geometry deformations over time,

whereas the ISO moving feature model does not (ISO 2008). Therefore, our model can

cope with applications where entities change their shape, like oil spills and boundary

changes in cities. The moving point and moving region defined by Güting et al. (2000)

uses a linear interpolator. As Trajectory is built from an observation set and an

interpolator, we can choose the most suitable interpolation function.

17

4.7 Coverage and Coverage Series

type	 	 	

	 Coverage	 [T:Time,	 G:Geometry,	 V:Value]	 inherits	 SpatioTemporal	 	

operations:	 	

	 new:	 	 Geometry	 x	 Observations[T,G,V]	 x	 Interpolator[T,G,V]	

	 	 	 	 →	 Coverage	 	

	 value:	 Coverage	 x	 G	 → V	

min,	 max:	 Coverage	 →	 V	

	 less,	 greater,	 equals:	 Coverage	 x	 V	 →	 Coverage	

axioms:	

cv1,cv2:	 Coverage;	 g:	 Geometry;	 v:	 Value;	 obs:	 Observations;	 	

interp:	 Interpolator;	 t:	 Time;	 	

	 cv1=	 new(g,obs,interp)	 ⇒	 boundary(cv1)	 =	 g	

	 begins(cv1)=	 begin(reference(observations(cv1)))	 	 	

	 ends(cv1)=	 end(reference(observations(cv1)))	 	

	 value(cv1,g)	 =	 estimate(interpolator(cv1),observations(cv1),g)	

	 disjoint(g,boundary(cv1))=TRUE	 ⇒	 value(cv1,g)	 =	 Null	

	 less(cv1,min(cv1))	 =	 Null	

	 greater(cv1,max(cv1))	 =	 Null	

	 equals(cv1,v)=cv2	 ⇒	 min(cv2)=	 max(cv2)=	 v	

	 less(cv1,v)=cv2	 ⇒	 max(cv2)<v	 	

	 greater(cv1,v)=cv2	 ⇒	 min(cv2)>v	

	 less(equals(cv1,v),v)	 =	 Null	

	 greater(equals(cv1,v),v)	 =	 Null	

	 cv2	 ∈	 intersection(cv1,g)	 ⇒	 boundary(cv2)=	 g	 	

	 cv2	 ∈	 difference(cv1,g)	 ⇒	 boundary(cv2)=	 boundary(cv1)	

	 Coverage is parameterized by Time (T), Geometry (G) and Value (V). New builds a

Coverage from three elements: (1) a geometry that defines the coverage spatial extent

or boundary; (2) an observation set that has a fixed time and measured values at

controlled geometries; and (3) an interpolator. In most cases, the boundary is a

18

Polygon. However, the boundary can be other geometry types. For moving cars in a

highway, the boundary could be a MultiLineString.

Value provides a value at a given location, using the interpolator. If the location is

outside the coverage boundary, value returns Null. Min and max return the minimum

and maximum values. Less, greater and equal select the coverage observations

whose values are less than, greater than or equal to a given value. They return a new

coverage built on such selected observations. Coverage inherits and implements

SpatioTemporal operations. For example, boundary returns the coverage’s spatial

extent.

type	 	 CoverageSeries	 [G:Geometry,	 T:Time,	 CV:Coverage]	 inherits	

SpatioTemporal	 	

operations:	 	

	 new:	 Period	 x	 Observations[G,T,CV]	 x	 Interpolator[G,T,CV]	 	

	 	 	 	 →	 CoverageSeries	 	 	 	 	

	 snapshot:	 	 CoverageSeries	 x	 T	 →	 CV	 	

timeseries:	 	 CoverageSeries	 x	 Point	 →	 TimeSeries	 	

axioms:	

cs:	 CoverageSeries;	 c:	 Coverage;	 t1,tn:	 Time;	 l:	 Point;	 	

obs:	 Observations;	 interp:	 Interpolator;	 p:	 Period;	 	

cs	 =	 new(p,obs,interp)	 ⇒	 begins(cs)=	 begin(p)	 	

cs	 =	 new(p,obs,interp)	 ⇒	 ends(cs)=	 end(p)	 	

	 snapshot(cs,t1)	 =	 estimate(interpolator(cs),observations(cs),t1)	

	 snapshot(after(cs,t1),t1)	 =	 Null	 	

	 snapshot(before(cs,t1),t1)	 =	 Null	

	 after(t1,ends(cs))	 ∨	 before(t1,begins(cs))	 ⇒	 snapshop(cs,t1)=	 Null	

	 begins(timeseries(cs,l))=	 begins(cs)	

	 ends(timeseries(cs,l))=	 ends(cs)	

	 boundary(cs)	 =	 reference(observations(cs))	

	 measure(observations(cs),t1)=	 c	 ⇒	 boundary(cs)	 =	 boundary(c)	

	 measure(observations(cs),t1)=	 c	 ⇒	 begins(c)	 =	 begin(t1)	

	 measure(observations(cs),t1)=	 c	 ⇒	 ends(c)	 =	 end(t1)	

19

	 positions(observations(cs))	 =	 {t1,...,tn}	 ⇒	 begins(cs)	 ≤	 t1	

	 positions(observations(cs))	 =	 {t1,...,tn}	 ⇒	 ends(cs)	 ≥	 tn	

 CoverageSeries is an auxiliary type that represents a time-ordered set of

coverages that have the same boundary. This type is useful in many applications. It is

parameterized by Geometry (G), Time (T) and Coverage (CV) types. Taking coverages

as measured units, we construct a CoverageSeries from: (1) a temporal range

(Period); (2) an observation set that has a fixed boundary (G) and measured coverages

(CV) at controlled times (T); and (3) an interpolator that estimates coverages at non-

observed times. Snapshot uses the interpolator to provide a coverage at a given time. If

this given time is out the coverage series temporal range, snapshot returns Null.

Timeseries returns a time series associated to a given location within the coverage

series boundary.

 Consider the hourly observations of air pollutions of Figure 1 obtained by cars

moving in the city during one day. We can capture all observations from the same hour

as an instance of Observations[Period,	 Point,	 Float]. These observations have a

fixed time (Period) with measured air pollution values (Float) at controlled locations

(Point). There are 24 instances of Observations,	 each leading to a

Coverage[Period,	 Point,	 Float]. These coverages can be grouped in a

CoverageSeries[Polygon,	 Period,	 Coverage], producing an hourly coverage set

of air pollution in the city in one day. In the rain grids of Figure 4, all observations of

the same grid are represented as an instance of Observations[Period,	 Point,	

Float]. These observations have a fixed time (Period) and rain values (Float) at

controlled cell locations (Point). We encapsulate each instance of Observations as a

Coverage[Period,	 Point,	 Float]. Then, we group all coverages from 11 January

2011 as an instance of CoverageSeries[Polygon,	 Period,	 Coverage].

Our Coverage type is consistent with existing field or coverage definitions

(Goodchild 1992; Cova et al. 2002; OGC 2006; Liu et al. 2008). Regularly and

irregularly spaced sample points can be represented by Coverage[Point,	 Value,	

Polygon] and isolines by Coverage[Line,	 Value,	 Polygon]. We can also specialize

20

Coverage for tessellation structures, such as raster and TIN. OGC coverage with

spatiotemporal domains can be mapped to our CoverageSeries type.

4.8 Additional Functions

The proposed signatures for TimeSeries,	 Trajectory,	 Coverage	 and	

CoverageSeries	 types provide minimal interfaces. From those functions, a user can

build more complex ones. In this section, we give some examples.
min,	 max,	 mean,	 sum,	 mult:	 	 TimeSeries	 x	 Chronon	 →	 TimeSeries	 	

These operations aggregate time series values considering a given temporal

resolution (Chronon) and return a new time series.
distance:	 	 Trajectory	 x	 Trajectory →	 TimeSeries	

enters,	 exits,	 reaches,	 leaves:	 Trajectory	 x	 Geometry	 →	 {tj1,…,tjn}	 	

	 	 	 	 	 	 	 	 	 	 	 	 |	 tji	 =	 Trajectory	 	

speed:	 	 	 	 Trajectory	 →	 TimeSeries	

direction:	 	 	 Trajectory	 →	 TimeSeries	

	 Distance computes a time series with the distance between two trajectories.

Enters, exits, reaches and leaves select subsets of a trajectory that enter, exit, reach

or leave a given geometry. They are based on the spatial relations between the

geometries of a trajectory and a given geometry. Speed	 and	 direction	 return the

velocity and direction variation over time. 	

min,	 max:	 CoverageSeries	 →	 TimeSeries	

	 Min and max aggregate values of a coverage series and return a time series. We

compute each value of the returned time series by taking the minimum and maximum

value of a coverage at a specific time.

21

4.9 Object

type	 Object	 [ID:Value,	 TS:TimeSeries,	 TJ:Trajectory]	 	

operations:	 	

	 new:	 	 ID	 x	 TS	 x	 TJ	 →	 Object	

	 id:	 	 Object	 →	 ID	

timeseries:	 	 Object	 →	 TS	

trajectory:	 	 Object	 →	 TJ	

state:	 	 Object	 x	 Time	 →	 (Value,	 Geometry)	 	

axioms:	 	

	 o:Object;	 t:Time;	 v:Value;	 g:Geometry;	 	

	 id(o)	 =	 reference(observations(trajectory(o)))	

	 intersects(boundary(trajectory(o)),	 boundary(timeseries(o)))=	 TRUE	

	 begins(trajectory(o))	 =	 begins(timeseries(o))	

	 ends(trajectory(o))	 =	 ends(timeseries(o))	

	 state(o,t)	 =	 (value(timeseries(o),t),	 value(trajectory(o),t))	 	

 An object is an identifiable entity whose spatial and non-spatial properties can

change. The Object type is parameterized by its identity type (ID), a TimeSeries	 (TS)

that represents the variation of its non-spatial property and a Trajectory	 (TJ) that

describes the change of its spatial property. An object can have one or more non-spatial

properties, but we consider only one in the type definition for simplicity. New constructs

an Object. Id, timeseries and trajectory access the object parts. State returns the

state of an object at a given time, that is, the values of its spatial and non-spatial

properties at that time.

 Each car of Figure 1 maps to an Object	 [Integer,	 TimeSeries[Polygon,	

Period,	 Float],	 Trajectory[Integer,	 Instant,	 Point]]. Each car’s identity is

represented by an Integer, its air pollution measures by a TimeSeries and its location

change by a Trajectory. Each sea elephant of Figure 3 maps to an Object[Integer,	

∅,	 Trajectory[Integer,	 Instant,	 Point]], where its identity is represented by

an Integer and its location variation by a Trajectory. Since the sea elephants do not

have non-spatial properties, they have no associated time series. Each city of the state of

Rio de Janeiro in Figure 4 maps to an Object[String,	 TimeSeries[Polygon,	

22

Instant,	 Float],	 Trajectory[String,	 Period,	 Polygon]]. The city name is its

identity (String), the average rain variation is a TimeSeries and its boundary variation

is a Trajectory. In this case, the Trajectory	 has a single geometry.

4.10 Event

type	 Event	 [ID:Value,	 T:Time,	 G:Geometry]	 	

operations:	 	

	 new:	 	 ID	 x	 T	 x	 G	 x	 {obj1,	 obj2,...,	 objn}	 →	 Event	 	

	 	 	 	 |	 obj:	 Object	 and	 n	 ≥	 0	 	 	

	 id:	 Event	 →	 ID	

	 time:	 	 	 	 Event	 →	 T	

location:	 	 Event	 →	 G	

objects:	 	 Event	 →	 {obj1,	 obj2,...,	 objn}	

axioms:	 	

	 e:Event;	 o:Object;	 t:Time;	 v:Value;	 g:Geometry;	 	

	 o	 ∈	 objects(e)	 ∧	 time(e)	 =	 t	 ⇒	 state(o,t)	 ≠	 Null	 	

	 o	 ∈	 objects(e)	 ∧	 location(e)	 =	 g	 	

	 	 ⇒	 intersects(boundary(trajectory(o)),	 g)	 =	 TRUE	 	

	 An event is an individual episode with a definite beginning and end which can

involve one or more objects. Event is parameterized by the types of its identity (ID),

time (T) and spatial location (G). New constructs an event from an identity, a time of

occurrence, a geometry that stands for the event’s location, and the objects involved in

the event. The events of flood, dengue epidemic and animal meeting described in

section 3.2 can be mapped to instances of Event[Integer,	 Period,	 Polygon]. Each

instance has the event’s identity (Integer), when it occurred (Period) and the region

where they happened (Polygon). These events involve objects. The flood event is

associated to the city of Rio. The dengue epidemic happened in the city of Recife. The

meeting event involves two sea elephants.

 Using operations over sets of events, we can answer questions like “how many

meetings did animal a1 participate and where did they occur?”, “what meetings

occurred near island x?”, “when and in which districts did dengue epidemics occur in

23

Recife?”, “which are all events that occurred in Rio?” and “what floods have occurred

in Rio during the last 5 years and what have been their average rains?”.

 Galton (2004) distinguishes punctual (instantaneous) events from durative ones

(those that take time). The Event type can be used to represent both instances of

punctual events (using Instant) and durative ones (using Period). Events associated

to moving objects, such as those discussed by Hornsby et al. (2007), can also be

expressed using Event.

5 Model Validation and Example

We tested and validated our algebra using a C++ open source geospatial software

library called TerraLib (Câmara et al. 2008). Each type and its operations were

implemented as classes and their methods. We also created classes to represent sets,

such as TimeSeriesSet and ObjectSet, and used R-tree and B-tree for indexing

geometries and times.

 This section presents code examples, using the following conventions. The

statement “Type	 instance(p1,p2,…,pn)” builds instance of a type using a set of

parameters “p1,p2,…,pn”. This is equivalent to the new constructor. The code

“Trajectory	 a1_tj(a1_obs,interp)” creates a Trajectory instance “a1_tj” with

parameters “a1_obs” and “interp”. An operation whose first parameter is the instance

and the other parameters are “p1,p2,…,pn” is “instance.operation(p1,p2,…,pn)”.

This is the same as “operation(instance,p1,p2,…,pn)”. For example,

“a1_tj.distance(a2_tj)” gives the distance of “a1_tj” and “a2_tj”. The command

“for each	 element	 in	 set	 {…}” executes the commands between brackets “{…}”

for each “element” of a “set”.

 Figure 7(a) shows the code to create events of “meeting of two animals” that occur

when “the distance between two sea elephants is less than 2 meters”. We create two

trajectories “a1_tj” and “a2_tj” from observation sets “a1_obs” and “a2_obs” and

interpolator “interp”. These are trajectories of sea elephants “a1” and “a2”, read from

a KML file whose metadata is described by a XML file called “tracks.xml”, as

described in Ferreira et al. (2012). Using “distance” between “a1_tj” and “a2_tj”,

24

returns the time series “dist”. The function “less” selects the subsets of “dist” whose

values are less than 2 meters, yielding the set of time series “tsSet”. Each time series

“ts” of “tsSet” leads to an event. From each “ts”, we create an event “ev” with the

time (“m_per“) and place (“m_region”) of a meeting between sea elephants “a1” and

“a2”.

 Figure 7(b) shows the code to create events of “flood” in Rio, using the grids

described in Figure 4. A ‘flood’ event occurs if “rain is more than 10 mm/hour for more

than 5 hours”. The coverage series “cs” is built from these grids using function

“createCS”, based on a metadata file “metadata.xml” and an interpolator “interp”.

To select the part of “cs” inside Rio, we use the operation “intersection” that returns

a coverage series “rioCS” whose boundary is the limits of Rio “rioLim”. We use

operation “max” over “rioCS” to get the time series “rain”. It maps times to maximum

precipitation values in Rio. Since the rain grids are taken at 15-minute intervals, the

time series “rain” also contains values at each 15 minutes. Aggregating “rain” by

adding the precipitation values per hour, using the operation “add” and chronon “Hour”,

gets a time series “rainPerHour”. Then, we select parts of “rainPerHour” whose

values are more than 10 mm/hour, using “greater”, getting a new time series set

“tsSet”. Each flood event “ev” is created from a time series “ts” of “tsSet” whose

extent is greater than 5 hours. All events are associated to object “rio”.

25

(a)

(b)

Figure 7. Code to create events of: (a) “meeting of two animals” and (b) “flood“.

6 Final Remarks

This paper presents an algebra for spatiotemporal data types. We capture the inherent

structure of geospatial observations using three types, time series, trajectory and

coverage. Based on these types, the algebra allows defining objects and events. The

proposed data types and functions can model and capture changes in a large range of

applications, including location-based services, environmental monitoring, public

health, and natural disasters.

 A limitation of our model is to consider only two dimensional space. Since OGC

geometry types can be built using 3-dimensional coordinates (x, y and z), we intend to

solve this limitation in future works. In its current version, the algebra does have types

that express relationships between objects and events or between events and events.

These kinds of relationships, as defined by Worboys et al. (2004) and Galton et al.

26

(2005), can be built on top of our model. We intend to extend our algebra to represent

these relationships, such as “event e3 is composed of events e1 and e2” and “event e1

initiates event e2”.

 We tested the algebra using the TerraLib software library. However, we chose to

implement it in a general-purpose library that can access spatiotemporal data from

different sources, including databases, files and web services. The next step is to

develop an interface with the R software for statistical analysis. This includes a mapping

from our types to the ones proposed by Pebesma (2011) to handle spatiotemporal data in

R structures.

References

Allen J F 1983 Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11): 832-843

Câmara G, Vinhas L, Ferreira K, Queiroz G, Souza R C M, Monteiro A M, Carvalho M
T, Casanova M A and Freitas U M 2008. TerraLib: An open-source GIS library
for large-scale environmental and socio-economic applications. In Hall B and
Leahy M (eds) Open Source Approaches to Spatial Data Handling. Berlin,
Springer: 247-270

Cova T J and Goodchild M F 2002 Extending geographical representation to include
fields of spatial objects. International Journal of Geographical Information
Science 16(6): 509-532

Ferreira K R, Vinhas L, Monteiro A M V and Camara G 2012. Moving objects and
KML files. 28th International Conference on Data Engineering (ICDE 2012)
Workshop on Spatio Temporal data Integration and Retrieval. Washington D.C.,
USA

Frank A 1999 One Step up the Abstraction Ladder: Combining Algebras - From
Functional Pieces to a Whole. In Freksa C and Mark D (eds.) COSIT -
Conference on Spatial Information Theory, Springer-Verlag: 95-108

Frank A and Kuhn W 1995. Specifying Open GIS with functional languages. In
Egenhofer M and Herring J (eds) Advances in Spatial Databases—4th
International Symposium (SSD ‘95), Portland, ME. Berlin, Springer-Verlag.
951: 184-195

Galton A 2004 Fields and objects in space, time, and space-time. Spatial Cognition and
Computation 1: 39--68

Galton A 2008 Experience and History: Processes and their Relation to Events. Journal
of Logic and Computation 18(3): 323-340

27

Galton A and Mizoguchi R 2009 The water falls but the waterfall does not fall: New
perspectives on objects, processes and events. Applied Ontology 4(2): 71-107

Galton A and Worboys M 2005. Processes and events in dynamic geo-networks.
GeoSpatial Semantics (GeoS 2005). Rodrguez M A, Cruz I F, Levashkin S and
Egenhofer M J. New York, LNCS. 3799: 45–59

Goodchild M 1992 Geographical Data Modeling. Computers and Geosciences 18(4):
401-408

Güting R H, Böhlen M H, Erwig M, Jensen C S, Lorentzos N A, Schneider M and
Vazirgiannis M 2000 A Foundation for Representing and Querying Moving
Objects. ACM Transactions of Database Systems 25(1)

Guttag J and Horning J 1978 The Algebraic Specification of Abstract Data Types. Acta
Informatica 10: 27-52

Hornsby K and Egenhofer M 2000 Identity-based change: A foundation for
spatiotemporal knowledge representation. International Journal of
Geographical Information Science 14(3): 207-224

Hornsby K S and Cole S 2007 Modeling moving geospatial objects from an event-
based perspective. Transactions in GIS 11(4): 555-573

ISO 2002. Geographic information - Temporal schema (ISO 19108). Geneva,
Switzerland, International Standard Organization

ISO 2008. Geographic information - Schema for moving features (ISO 19141). Geneva,
Switzerland, International Standards Organization

Kuhn W 2005 Geospatial Semantics: Why, of What, and How? Journal of Data
Semantics 3: 1-24

Kuhn W 2009 A Functional ontology of observation and measurement. In Krzysztof
Janowicz M R a S L (ed. International Conference on GeoSpatial Semantics
(GeoS 2009) Mexico City, Mexico, Springer, Lecture Notes in Computer
Science

Liu Y, Goodchild M F, Guo Q, Tian Y and Wu L 2008 Towards a general field model
and its order in GIS. International Journal of Geographical Information Science
22(6): 623-643

Mennis J 2010 Multidimensional map algebra: Design and implementation of a
spatiotemporal GIS processing language. Transactions in GIS 14(1): 1-21

OGC 2006. OpenGIS abstract specification topic 6: Schema for coverage geometry and
functions., Open Geospatial Consortium

OGC 2006. OpenGIS implementation specification for geographic information - Simple
feature access - Part 1: common architecture. Boston, Open GIS Consortium:
95

Pebesma E 2011. Classes and methods for spatio-temporal data in R: the spacetime
package. Available from http://cran.r-

28

project.org/web/packages/spacetime/vignettes/spacetime.pdf. Munster,
Germany, Institute for Geoinformatics, University of Munster

Peuquet D J and Duan N 1995 An event-based spatiotemporal data model (ESTDM) for
temporal analysis of geographical data. International Journal of Geographical
Information Science 9(1): 7-24

Regis L, Souza W V, Furtado A F, Fonseca C D, Silveira J C, Ribeiro P J, Melo-Santos
M A V, Carvalho M S and Monteiro A M 2009 An entomological surveillance
system based on open spatial Information for participative Dengue control.
Anais da Academia Brasileira de Ciências 81: 655-662

Sinton D 1978. The Inherent structure of information as a constraint to analysis:
Mapped thematic data as a case study. In Dutton G (ed) Harvard Papers on
Geographic Information Systems. Reading, MA, Addison-Wesley. 7: 1-17

Worboys M 1994 A Unified Model for Spatial and Temporal Information. The
Computer Journal 37(1): 27-34

Worboys M 2005 Event-oriented approaches to geographic phenomena. International
Journal of Geographical Information Science 19(1): 1-28

Worboys M F and Hornsby K 2004 From objects to events: GEM, the geospatial event
model. In Egenhofer M, Freska C and Miller H (eds.) Third International
Conference on GIScience, Berlin Heidelberg New York, Springer-Verlag: 327-
343

Yuan M 1999 Three-domain representation to enhance GIS support for complex
spatiotemporal queries. Transaction in GIS 3(2): 137-159

