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Abstract. Recent technological advances in geospatial data gathering have created 

massive data sets with better spatial and temporal resolution than ever. These large 

spatiotemporal data sets have motivated a challenge for Geoinformatics: how to model 

changes and design good quality software. Many existing spatiotemporal data models 

represent how objects and fields evolve over time. However, to proper capture changes, 

it is also necessary to describe events. As a contribution to this research, this paper 

presents an algebra for spatiotemporal data. Algebras give formal specifications at a 

high-level abstraction, independently of programming languages. This helps to develop 

reliable and expressive applications. Our algebra specifies three data types as generic 

abstractions built on real-world observations: time series, trajectory and coverage. 

Based on these abstractions, it defines object and event types. The proposed data types 

and functions can model and capture changes in a large range of applications, including 

location-based services, environmental monitoring, public health, and natural disasters. 

Keywords: spatiotemporal data model, algebra, observations, fields, objects, events.  
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1 Introduction 

The age of big geospatial data has come. Mobile phones, social networks and GPS 

devices create data useful for planning better cities, capturing human interactions and 

improving quality of life. Geosensors allow scientists to observe the world in novel 

ways. Space agencies worldwide plan to launch around 260 Earth observation satellites 

over the next 15 years. These massive data sets present a challenge for Geoinformatics. 

To use these large spatiotemporal data sets properly, we need innovative software 

designs. As a contribution to this design challenge, this paper presents an algebra for 

spatiotemporal data. The types and functions of the algebra can model data from many 

sources, including moving objects, remote sensing images, and geosensors. 

 Our model takes observations as a starting point, revisiting the classical work of 

Sinton (1978).  This approach follows the ideas of Kuhn (2005): “All information 

ultimately rests on observations, whose semantics is physically grounded in processes  

and mathematically well understood. Exploiting this foundation to understand the 

semantics of information derived from observations would produce more powerful 

semantic models”.  

 The model is set forth as an algebraic specification, describing data types and 

operations in a language-independent and formal way. By separating specification from 

implementation, algebras help to develop reliable and expressive GIS applications 

(Frank et al. 1995; Frank 1999). Programmers can translate algebraic specifications into 

software using languages and environments of their choice. As an example, we have 

implemented the algebra using the open source TerraLib geospatial software library 

(Câmara et al. 2008). 

2 Related work  

To design spatiotemporal models, it is important to look at works that discuss change in 

objects (individual geographical units) and in fields (mappings from spatial locations to 

values). Relevant early results on object change include the bitemporal model of 

Worboys (1994) and the three-domain model of Yuan (1999). These models track 
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changes on the boundaries and attributes of an object, keeping its identity. These models 

have been extended by works such as Hornsby et al. (2000), who present a change 

description language with operations like ‘create’, ‘destroy’ and ‘continue existence’. 

Recent growth of mobile computing inspired much work on moving objects, notably the 

foundational algebra of Güting et al. (2000). Interest on location-based applications led 

to an ISO (2008) standard that defines a moving feature as an object whose geometry 

moves as a rigid body.  

 As to change in fields, Peuquet et al. (1995) propose a model that groups changes in 

raster cells by time of occurrence. Liu et al. (2008) introduce the idea of a general field 

with three spatial plus one temporal dimension to generalise previous definitions of 

fields. Mennis (2010) extends the conventional map algebra to include three-

dimensional space and time. Efforts on standardisation led to the OGC coverage 

definition (OGC 2006). A coverage associates positions in a spatial, temporal or 

spatiotemporal domain to attribute values. 

  A further line of research is that of geospatial ontologies, that group real world 

phenomena in continuants and occurrents (Galton 2008). Continuants are entities whose 

identities remain constant as they undergo change, such as an aircraft and a volcano. 

Occurrents are entities that happen or occur, like a flight and an eruption. On the 

geospatial domain, ‘objects’ and ‘fields’ are taken as continuants and ‘events’ as 

occurrents (Galton et al. 2009). In this view, modelling only objects and fields misses 

part of the semantics of change. One also needs to consider events and the relations 

between events and objects (Worboys 2005). Following these ideas, Worboys et al. 

(2004) propose a model combining objects and events, defining event-event and event-

object relations. Galton et al. (2005) refine these relations for events, states, and 

processes in dynamic networks. Hornsby et al. (2007) model events associated to 

moving objects and propose an approach to extract patterns of movements from them.  

 In this paper, we put together ideas from these three areas, proposing an algebra 

that represents objects, fields and events. We argue there are three key data types for 

spatiotemporal data: time series, trajectory, and coverage, from which we can derive the 
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object and event types. Using this step-by-step approach, the resulting algebra is useful 

for building many different applications. 

3 From observations to events 

We start with observations, our means to assess spatiotemporal phenomena in the real 

world (Kuhn 2009). According to Sinton (1978), there is an inherent structure to 

geographical information. For him, an observation should have three attributes: space, 

time and theme (the term “theme” refers to the real-world phenomenon or object being 

observed). He argues that we can create generalizations of geographical information 

based on how these attributes (space, time and theme) are assessed. In a general way, we 

observe the world by fixing one attribute, controlling another and measuring the other. 

Our observations are obtained by: (1) keeping one attribute constant; (2) varying the 

second attribute in a controlled way; and (3) measuring the third attribute, given the 

constraints of the second attribute. This produces six possible combinations. We 

consider that three of those are necessary and sufficient to model spatiotemporal data: 

1) Fixing space, controlling time, and measuring theme results in a time series. 

2) Fixing theme, controlling time, and measuring space results in a trajectory. 

3) Fixing time, controlling space, and measuring theme results in a coverage. 

 The other three possible combinations are: 

4) Fixing time, controlling theme, and measuring space. 

5) Fixing space, controlling theme, and measuring time. 

6) Fixing theme, controlling space, and measuring time. 

 As an example of combination (4), Sinton proposes a “vegetation map” created by 

finding out all locations of a given land cover type. However, these maps are more 

likely produced by a systematic data collection over a given area, resulting in 

coverages. Combination (5) occurs in cases like “measuring arrival times by runners in 

a marathon”. Yet it is also possible to get this type of data by analysing trajectories of 

runners. Sinton suggests “tide tables” as an example of combination (6). Since such 

tables can be obtained from time series that maps times to tide heights at a specific 
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location, there is no need for an additional type. Thus, using Occam’s razor, only three 

data types (time series, coverage, and trajectory) are needed to model all combinations 

of theme, time and space obtained by fixing one attribute, controlling another and 

measuring the third.  

3.1 Data Abstractions 

Using the time series, trajectory, and coverage types, we can define different views on 

the same observation set, meeting application needs. Take Figure 1 that shows the 

tracks of three cars equipped with GPS and air pollution sensors in a city. These cars 

produce a set of observations, each one containing a car identity, a time instant, a 

location and an air pollution value. Suppose the observations are collected hourly during 

one day. From this data it is possible to extract three different representations. Taking 

one of the cars as a sensor and the city as a spatial reference, we can build time series 

that shows the hourly air pollution in the city. Considering each car an individual object, 

we can get a set of trajectories. Fixing the whole day as a time reference and taking all 

air pollution data, we can create a coverage that conveys how pollution varied within 

the city during that day.  

 

Figure 1. Different views on observations produced by moving cars. 

 
 A time series represents the variation of a property over time in a fixed location. 

Figures 2(a) and 2(b) show time series used in disease surveillance of dengue in the city 
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of Recife in Brazil (Regis et al. 2009). Dengue is a viral disease transmitted by 

mosquitoes. These mosquitoes lay their eggs in standing water; the eggs hatch in hot 

weather. To assess dengue risk, health services use buckets of water as egg traps. Figure 

2(a) shows five meteorological stations and one of the associated temperature time 

series. The second set of time series shows the number of mosquito eggs gathered 

weekly from the egg traps. Figure 2(b) presents egg traps (red points) in a district of 

Recife and a time series produced by one of them.  

 

 

 

(a) (b) 

Figure 2: Examples of time series: (a) temperature collected by meteorological stations 
and (b) number of mosquito eggs gathered from one egg trap in a district of Recife, 

Brazil. 
 

A trajectory represents how locations or boundaries of an object evolve over time. 

Figures 3(a) and 3(b) show trajectories. Figure 3(a) presents routes of sea elephants in 

Antarctica. Figure 3(b) shows the evolution of three city limits in the Brazilian state of 

Rondonia from 2001 to 2005.  
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(a) (b) 

Figure 3: Examples of trajectories: (a) tracking of sea elephants in Antarctica and (b) 
evolution of three Rondônia’s municipality limits during 2001 and 2005. 

 

 A coverage represents the variation of a property within a spatial extent at a time. 

Putting together the air pollution observations obtained by all cars of Figure 1 produces 

a coverage that shows how pollution varies in the city during one day. Other examples 

of coverages appear in Figure 4, which shows grids with the rain variation in the state of 

Rio de Janeiro during the natural disaster of 11 January 2011. The examples in the paper 

assume we have grids in 15-minute intervals. Figure 4 also shows the cities of the state 

of Rio de Janeiro, which will be used in the examples of events. 

 

   

Figure 4: Example of coverages: rain in the state of Rio de Janeiro, Brazil, in 11 January 
2011. 
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Since observations are discrete, they need to be combined with interpolation functions 

to approximate continuous change. Interpolators estimate values at locations in space 

and moments in time for which there is no data. Consider two observations of a moving 

car (Figure 1), one at instant 4 and the other at 8, shown in Figure 5(a). There are 

different methods to estimate car location at the non-observed time 6. Choices include a 

linear interpolator (Figure 5(b)) or a method that uses a street map as a spatial 

constraint, as in Figure 5(c). The proposed algebra allows choosing the most suitable 

interpolation function for each case. 

 

 

Figure 5. Observations of a moving car and different kinds of interpolation 
functions. 

 
 

3.2 Objects and Events 

Our model defines objects as continuants and events as occurrents. An object is an 

identifiable entity whose spatial and non-spatial properties can change over time. It is 

present as a whole at each moment of its existence (Galton et al. 2009). Examples of 

objects are cars (Figure 1), egg traps (Figure 2), sea elephants and municipalities 

(Figure 3) and cities of the state of Rio de Janeiro (Figure 4).  An event is an individual 

episode with a definite beginning and end. It only exists as a whole across the interval 

over which it occurs. An event does not change over time. It can involve one or more 

objects, and an object can be involved in any number of events (Galton et al. 2009). In 

our model, we can derive events from specific conditions of spatial and non-spatial 

properties of objects. If we know what conditions lead to an event, we can express 

events using operations over the proposed types.   
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 Consider the following objects: the cities of Rio and Recife and a group of sea 

elephants. A ‘flood’ event occurs in Rio if “rain is more than 10 mm/hour for more than 

5 hours”. A ‘dengue epidemic’ event happens in Recife when “the average temperature 

is above 300 C for more than a week and more than 50 eggs on average were found in 

the egg traps in the same week”. A ‘meeting of two animals’ occurs when “the minimal 

distance between two sea elephants is less than 2 meters”. These constraints are 

expressed through operations on time series, trajectories and coverages, which in turn 

are built from observations (Figure 6). 

 

Figure 6. The proposed model. 

4 An Algebra for Spatiotemporal Data 

We use data types to express our abstractions. A data type is a set of values and a 

collection of operations on those values that defines their behaviour. An algebraic 

specification of a data type T consists in: (1) a syntactic description which defines the 

names, domains, and ranges of the operations of T; and (2) a semantic specification 

which contains a set of axioms in the form of equations which relate operations of T to 

each other (Guttag et al. 1978). In what follows, functions and type signatures use 

monospaced font. Type names are given in TitleCase and function names in 

lowercase. Sets are enclosed by curly braces and square brackets denote parameterized 

types.  
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4.1 Primitive data types 

There are three primitive types: Value, Time and Geometry. Value is a generic type to 

express attribute values that can be Integer, Float, String or Boolean. Typical 

operations on Value include less_than, greater_than, equal_to, max, and min. The 

meaning of such operations is evident when applied to numerical types. When applied 

to textual and boolean types, we consider the alphabetical order.  

 Time is a generic type that can be an Instant or a Period. The types Time,	  

Instant	   and	   Period match the types TM_GeometricPrimitive, TM_Instant and 

TM_Period defined by the ISO temporal model (ISO 2002). Operations on Time include 

equals, before, after, begins, ends, during, contains, overlaps, meets, 

overlappedBy, metBy, begunBy and endedBy. They compare two time instances 

based on the temporal relationships of Allen (1983). Their behaviour when applied to 

instants and periods is described in the ISO standard (ISO 2002). Chronon is a generic 

type to represent temporal resolutions. 

Geometry is a generic type compliant with the Geometry type defined in the OGC 

Geometry Model (OGC 2006). It can be a Point,	   Line,	   Polygon,	   MultiPoint,	  

MultiLineString,	  or	  MultiPolygon type. Operations on Geometry include equals, 

touches, disjoint, crosses, within, overlaps, contains and intersects, as 

defined by OGC (2006). The types are:	  	  
Number:	  	  	   	   	   Integer,	  Float	  

Value:	  	  	   	   	   Number,	  String	  and	  Boolean	  

Time:	  	   	   	   	   Instant,	  Period	  

Chronon:	  	   	   	   Year,	  Month,	  Week,	  Day,	  Minute,	  Second.	  

Geometry:	  	  	   	   Point,	  Line,	  Polygon,	  MultiPoint,	  MultiLineString,	  

	   	  	   	   	   	   	   MultiPolygon.	  

We also define a null type, Null, to represent invalid values. In what follows, we 

omit the null type in the function signatures for clarity. Functions can return Null types 

in some cases, as described in the axioms. This behaviour should be considered when 

implementing the algebra. 
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4.2 Observations  

type	  	  Observations	  [F:Type,	  C:Type,	  M:Type]	  	  

operations:	  	  

new:	  	  {(F,C,M)1,(F,C,M)2,…,(F,C,M)n}	  →	  Observations	  |	  n>0	  

	   reference:	  Observations	  →	  F	  	  	  

	   positions:	  Observations	  →	  {C1,…,Cn}	  	  	  

	   measure:	  Observations	  x	  C	  →	  M	  	  	  	  	  

An observation is a tuple of three attributes: time (Time), location (Geometry) and value 

(Value). The Observations type has three type parameters. Following Sinton (1978), 

the first type is the fixed reference (F), the second is the controlled attribute (C) and the 

other is the measured attribute (M). The constructor new builds an observation set from a 

set of instances of types F, C and M. Reference returns the value of the fixed attribute. 

The positions function reports the variation of the controlled attribute and measure 

returns the observed value associated to a position.   

4.3 Interpolator 

type	  	  	  Interpolator	  [F:Type,	  C:Type,	  M:Type]	  

operations:	  	  

estimate:	  Interpolator	  x	  Observations[F,C,M]	  x	  C	  →	  M	  

Interpolator is a generic interface for interpolation methods. As it is an interface to 

other concrete types, it has no constructor. The estimate function takes an interpolator, 

an observation set and a position in space or time, and calculates a value of the 

measured attribute (M) for that position.   

4.4 SpatioTemporal 

type	  	  	  	  	  	  	  SpatioTemporal	  	  

operations:	  	  

	  	  	   observations:	  SpatioTemporal	  → Observations	  	  

	   interpolator:	  SpatioTemporal	  → Interpolator	  

	   begins,	  ends:	  SpatioTemporal	  →	  Instant	  
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boundary:	  SpatioTemporal	  →	  Geometry	  

after,	  before,	  during:	  	  SpatioTemporal	  x	  Time	  →	  SpatioTemporal	  

	   intersection,	  difference:	  SpatioTemporal	  x	  Geometry	  →	  {st1,…,stn}	  	  

	   	  	   	   	   	   	   	   	   	   	   	  |	  st:	  SpatioTemporal	  	  

axioms:	  

	   st1,st2:	  SpatioTemporal;	  t:	  Time;	  g:	  Geometry;	  

	   before(st1,begins(st1))	  =	  Null	  	  

	   after(st1,ends(st1))	  =	  Null	  

	   during(before(st1,t),t)	  =	  Null	  

	   during(after(st1,t),t)	  =	  Null	  

	   after(before(st1,t),t)	  =	  Null	  	  

	   before(after(st1,t),t)	  =	  Null	  

	   difference(st1,boundary(st1))	  =	  ∅	  

	   intersection(st1,boundary(st1))	  =	  {st1}	  

	   within(boundary(st1),g)	  =	  TRUE	  ⇒	  intersection(st1,g)=	  {st1}	  

	   disjoint(boundary(st1),g)	  =	  TRUE	  ⇒	  intersection(st1,g)=	  ∅	  

	   st2	  ∈	  intersection(st1,g)	  ⇒	  difference(st2,g)=	  ∅	  

	   st2	  ∈	  intersection(st1,g)	  ⇒	  boundary(st2)=	  g	  

The SpatioTemporal type provides an abstract interface to the concrete types time 

series, trajectory, and coverage. These concrete types implement the SpatioTemporal 

operations according to their needs. This type is an abstract interface and has no 

instances.  

 Observations and interpolator return the two building elements of a 

SpatioTemporal	  type.	  Begins and ends return its initial and final times. Boundary 

reports its spatial extent. After, before and during return a subset of a 

SpatioTemporal instance, whose temporal range is after, before and during a given 

time. Intersection and difference select subsets of a SpatioTemporal instance, 

whose geometries intersect and do not intersect, respectively, a given geometry. 

4.5 Time Series 

type	   TimeSeries	  [G:Geometry,	  T:Time,	  V:Value]	  inherits	  SpatioTemporal	  	  
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operations:	  	  

	   new:	  	  Period	  x	  Observations[G,T,V]	  x	  Interpolator[G,T,V]	  	  

	   	   	  	   →	  TimeSeries	  	  	  

	   value:	  TimeSeries	  x	  T	  → V	  

	   min,	  max:	   TimeSeries	  →	  V	  

	   less,	  greater,	  equals:	  TimeSeries	  x	  V	  →	  {ts1,…,tsn}	  	  

	   	   	  	   	   	   	   	   	   	   	   	  |	  ts:	  TimeSeries	  	  

axioms:	  

	   ts1,ts2:	  TimeSeries;	  t1,tn:	  Time;	  v:	  Value;	  	  

	   p:	  Period;	  obs:	  Observations;	  interp:	  Interpolator;	  

	   ts1=	  new(p,obs,interp)	  ⇒	  begins(ts1)	  =	  begin(p)	  

	   ts1=	  new(p,obs,interp)	  ⇒	  ends(ts1)	  =	  end(p)	  

	   value(ts1,t1)	  =	  estimate(interpolator(ts1),observations(ts1),t1)	  

	   after(t1,ends(ts1))	  ∨	  before(t1,begins(ts1))	  ⇒	  value(ts1,t1)=Null	  

	   value(after(ts1,t1),t1)	  =	  Null	  

	   value(before(ts1,t1),t1)	  =	  Null	  

	   less(ts1,min(ts1))	  =	  ∅	  

	   greater(ts1,max(ts1))	  =	  ∅	  

	   ts2	  ∈	  equals(ts1,v)	  ⇒	  min(ts2)	  =	  max(ts2)	  =	  v	  

	   ts2	  ∈	  less(ts1,v)	  ⇒	  max(ts2)	  <	  v	  	  

	   ts2	  ∈	  greater(ts1,v)	  ⇒	  min(ts2)	  >	  v	  

	   boundary(ts1)	  =	  reference(observations(ts1))	  

	   positions(observations(ts1))={t1,...,tn}	  ⇒	  begins(ts1)	  ≤	  t1	  

	   positions(observations(ts1))={t1,...,tn}	  ⇒	  ends(ts1)	  ≥ tn	  	  	  

	   TimeSeries is parameterized by Geometry (G), Time (T) and Value (V) types. New 

builds a TimeSeries from a temporal range (Period), an observation set and an 

interpolator. These observations have a fixed geometry (G) and measured values (V) at 

controlled times (T). The interpolator estimates values (V) at times during the temporal 

range of the series. Value uses the interpolator to provide a value at a given time. If this 

given time is outside the temporal range, value returns Null. Min and max return its 

minimum and maximum values. Less, greater and equal select subsets of a time 
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series whose values are, respectively, less than, greater than or equal to a given value. It 

inherits and implements the SpatioTemporal operations. For example, boundary 

returns the fixed geometry of its observations.  

The temperature measures of Figure 2(a) can be represented by an 

Observations[Point,	  Instant,	  Float]	  type. The station location (Point) is fixed 

and the temperature (Float) is measured at controlled times (Instant). We can build a 

TimeSeries[Point,	   Instant,	   Float] from these observations. The egg traps of 

Figure 2(b) map to Observations[Point,	   Period,	   Integer]. The trap location 

(Point) is fixed and the number of eggs (Integer) is measured at controlled times 

(Period). We can capture the variation of the eggs in the egg traps as a 

TimeSeries[Point,	  Period,	  Integer]. 

4.6 Trajectory 

type	   Trajectory	  [V:Value,	  T:Time,	  G:Geometry]	  inherits	  SpatioTemporal	  

operations:	  	  

	   new:	  	  	   Period	  x	  Observations[V,T,G]	  x	  Interpolator[V,T,G]	  	  

	   	   	  	   	   →	  Trajectory	  	  

value:	   Trajectory	  x	  T	  →	  G	  

axioms:	  

	   tj:	  Trajectory;	  t1,tn:	  Time;	  g:	  Geometry;	  

	   p:	  Period;	  obs:	  Observations;	  interp:	  Interpolator;	  

	  	   tj=	  new(p,obs,interp)	  ⇒	  begins(tj)	  =	  begin(p)	  

	   tj=	  new(p,obs,interp)	  ⇒	  ends(tj)	  =	  end(p)	  

	   value(tj,t1)=	  estimate(interpolator(tj),observations(tj),t1)	  

	   after(t1,ends(tj))	  ∨	  before(t1,begins(tj))	  ⇒	  value(tj,t1)=Null	  

	   value(after(tj,t1),t1)	  =	  Null	  

	   value(before(tj,t1),t1)	  =	  Null	  

	   positions(observations(tj))	  =	  {t1,...,tn}	  ⇒	  begins(tj)	  ≤	  t1	  

	   positions(observations(tj))	  =	  {t1,...,tn}	  ⇒	  ends(tj)	  ≥	  tn	  
	   measure(observations(tj),tn)	  =	  g	  ⇒	  within(g,boundary(tj))=TRUE	  	  
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	   Trajectory	  is parameterized by Value (V), Time (T) and Geometry (G) types. New 

constructs a Trajectory from a temporal range, an observation set and an interpolator. 

Trajectory observations have a fixed identity (V) and measured geometries (G) at 

controlled times (T). Value uses the interpolator to provide a geometry at a given time. 

When this given time is out of the Trajectory temporal range, value returns Null. It 

inherits SpatioTemporal operations and implements them according to its needs. For 

example, boundary returns a bounding box that contains all measured geometries of a 

trajectory. 	  

 Each sea elephant of Figure 3(a) is described as an instance of 

Observations[Integer,	  Instant,	  Point]. The animal’s identity (Integer) is fixed 

and its location (Point) is measured at controlled times (Instant). We can capture this 

data as an instance of Trajectory[Integer,	  Instant,	  Point].  

 Each city of Figure 3(b) is described by an Observations[String,	   Period,	  

MultiPolygon], where each observation contains the city’s identity (String) and a  

boundary (MultiPolygon) valid during a period. From these observations, we build an 

instance of a Trajectory[String,	   Period,	   MultiPolygon] which captures the 

variation of a city’s boundary. During the temporal range 2001 and 2012, each city’s 

trajectory has two observations, one valid for period [2001, 2004] and the other for 

period [2005, 2012].  

 We now compare our Trajectory type with previous models such as ISO (2008) 

and Güting et al. (2000). Trajectory allows geometry deformations over time, 

whereas the ISO moving feature model does not (ISO 2008). Therefore, our model can 

cope with applications where entities change their shape, like oil spills and boundary 

changes in cities. The moving point and moving region defined by Güting et al. (2000) 

uses a linear interpolator. As Trajectory is built from an observation set and an 

interpolator, we can choose the most suitable interpolation function.  
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4.7 Coverage and Coverage Series 

type	  	  	  

	   Coverage	  [T:Time,	  G:Geometry,	  V:Value]	  inherits	  SpatioTemporal	  	  

operations:	  	  

	   new:	  	  Geometry	  x	  Observations[T,G,V]	  x	  Interpolator[T,G,V]	  

	   	   	  	   →	  Coverage	  	  

	   value:	  Coverage	  x	  G	  → V	  

min,	  max:	  Coverage	  →	  V	  

	   less,	  greater,	  equals:	  Coverage	  x	  V	  →	  Coverage	  

axioms:	  

cv1,cv2:	  Coverage;	  g:	  Geometry;	  v:	  Value;	  obs:	  Observations;	  	  

interp:	  Interpolator;	  t:	  Time;	  	  

	   cv1=	  new(g,obs,interp)	  ⇒	  boundary(cv1)	  =	  g	  

	   begins(cv1)=	  begin(reference(observations(cv1)))	  	  	  

	   ends(cv1)=	  end(reference(observations(cv1)))	  	  

	   value(cv1,g)	  =	  estimate(interpolator(cv1),observations(cv1),g)	  

	   disjoint(g,boundary(cv1))=TRUE	  ⇒	  value(cv1,g)	  =	  Null	  

	   less(cv1,min(cv1))	  =	  Null	  

	   greater(cv1,max(cv1))	  =	  Null	  

	   equals(cv1,v)=cv2	  ⇒	  min(cv2)=	  max(cv2)=	  v	  

	   less(cv1,v)=cv2	  ⇒	  max(cv2)<v	  	  

	   greater(cv1,v)=cv2	  ⇒	  min(cv2)>v	  

	   less(equals(cv1,v),v)	  =	  Null	  

	   greater(equals(cv1,v),v)	  =	  Null	  

	   cv2	  ∈	  intersection(cv1,g)	  ⇒	  boundary(cv2)=	  g	  	  

	   cv2	  ∈	  difference(cv1,g)	  ⇒	  boundary(cv2)=	  boundary(cv1)	  

	   Coverage is parameterized by Time (T), Geometry (G) and Value (V). New builds a 

Coverage from three elements: (1) a geometry that defines the coverage spatial extent 

or boundary; (2) an observation set that has a fixed time and measured values at 

controlled geometries; and (3) an interpolator. In most cases, the boundary is a 
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Polygon. However, the boundary can be other geometry types. For moving cars in a 

highway, the boundary could be a MultiLineString.   

Value provides a value at a given location, using the interpolator. If the location is 

outside the coverage boundary, value returns Null. Min and max return the minimum 

and maximum values. Less, greater and equal select the coverage observations 

whose values are less than, greater than or equal to a given value. They return a new 

coverage built on such selected observations. Coverage inherits and implements 

SpatioTemporal operations. For example, boundary returns the coverage’s spatial 

extent.  

type	   	   CoverageSeries	   [G:Geometry,	   T:Time,	   CV:Coverage]	   inherits	  

SpatioTemporal	  	  

operations:	  	  

	   new:	   Period	  x	  Observations[G,T,CV]	  x	  Interpolator[G,T,CV]	   	  

	   	   	  	   →	  CoverageSeries	  	  	  	  	  

	   snapshot:	   	   CoverageSeries	  x	  T	  →	  CV	  	  

timeseries:	  	  CoverageSeries	  x	  Point	  →	  TimeSeries	  	  

axioms:	  

cs:	  CoverageSeries;	  c:	  Coverage;	  t1,tn:	  Time;	  l:	  Point;	  	  

obs:	  Observations;	  interp:	  Interpolator;	  p:	  Period;	  	  

cs	  =	  new(p,obs,interp)	  ⇒	  begins(cs)=	  begin(p)	  	  

cs	  =	  new(p,obs,interp)	  ⇒	  ends(cs)=	  end(p)	  	  

	   snapshot(cs,t1)	  =	  estimate(interpolator(cs),observations(cs),t1)	  

	   snapshot(after(cs,t1),t1)	  =	  Null	  	  

	   snapshot(before(cs,t1),t1)	  =	  Null	  

	   after(t1,ends(cs))	  ∨	  before(t1,begins(cs))	  ⇒	  snapshop(cs,t1)=	  Null	  

	   begins(timeseries(cs,l))=	  begins(cs)	  

	   ends(timeseries(cs,l))=	  ends(cs)	  

	   boundary(cs)	  =	  reference(observations(cs))	  

	   measure(observations(cs),t1)=	  c	  ⇒	  boundary(cs)	  =	  boundary(c)	  

	   measure(observations(cs),t1)=	  c	  ⇒	  begins(c)	  =	  begin(t1)	  

	   measure(observations(cs),t1)=	  c	  ⇒	  ends(c)	  =	  end(t1)	  
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	   positions(observations(cs))	  =	  {t1,...,tn}	  ⇒	  begins(cs)	  ≤	  t1	  

	   positions(observations(cs))	  =	  {t1,...,tn}	  ⇒	  ends(cs)	  ≥	  tn	  

 CoverageSeries is an auxiliary type that represents a time-ordered set of 

coverages that have the same boundary. This type is useful in many applications. It is 

parameterized by Geometry (G), Time (T) and Coverage (CV) types. Taking coverages 

as measured units, we construct a CoverageSeries from: (1) a temporal range 

(Period); (2) an observation set that has a fixed boundary (G) and measured coverages 

(CV) at controlled times (T); and (3) an interpolator that estimates coverages at non-

observed times. Snapshot uses the interpolator to provide a coverage at a given time. If 

this given time is out the coverage series temporal range, snapshot returns Null. 

Timeseries returns a time series associated to a given location within the coverage 

series boundary. 

 Consider the hourly observations of air pollutions of Figure 1 obtained by cars 

moving in the city during one day.  We can capture all observations from the same hour 

as an instance of Observations[Period,	  Point,	  Float]. These observations have a 

fixed time (Period) with measured air pollution values (Float) at controlled locations 

(Point). There are 24 instances of Observations,	   each leading to a 

Coverage[Period,	   Point,	   Float]. These coverages can be grouped in a 

CoverageSeries[Polygon,	  Period,	  Coverage], producing an hourly coverage set 

of air pollution in the city in one day. In the rain grids of Figure 4, all observations of 

the same grid are represented as an instance of Observations[Period,	   Point,	  

Float]. These observations have a fixed time (Period) and rain values (Float) at 

controlled cell locations (Point). We encapsulate each instance of Observations as a 

Coverage[Period,	  Point,	  Float]. Then, we group all coverages from 11 January 

2011 as an instance of CoverageSeries[Polygon,	  Period,	  Coverage].   

Our Coverage type is consistent with existing field or coverage definitions 

(Goodchild 1992; Cova et al. 2002; OGC 2006; Liu et al. 2008). Regularly and 

irregularly spaced sample points can be represented by Coverage[Point,	   Value,	  

Polygon] and isolines by Coverage[Line,	  Value,	  Polygon]. We can also specialize 
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Coverage for tessellation structures, such as raster and TIN. OGC coverage with 

spatiotemporal domains can be mapped to our CoverageSeries type.  

4.8 Additional Functions 

The proposed signatures for TimeSeries,	   Trajectory,	   Coverage	   and	  

CoverageSeries	   types provide minimal interfaces. From those functions, a user can 

build more complex ones. In this section, we give some examples.  
min,	  max,	  mean,	  sum,	  mult:	  	   TimeSeries	  x	  Chronon	  →	  TimeSeries	  	  

These operations aggregate time series values considering a given temporal 

resolution (Chronon) and return a new time series.  
distance:	   	   Trajectory	  x	  Trajectory →	  TimeSeries	  

enters,	  exits,	  reaches,	  leaves:	  Trajectory	  x	  Geometry	  →	  {tj1,…,tjn}	  	  

	   	   	   	   	   	   	   	   	   	   	   	  |	  tji	  =	  Trajectory	  	  

speed:	   	   	   	   Trajectory	  →	  TimeSeries	  

direction:	  	   	   Trajectory	  →	  TimeSeries	  

	   Distance computes a time series with the distance between two trajectories. 

Enters, exits, reaches and leaves select subsets of a trajectory that enter, exit, reach 

or leave a given geometry. They are based on the spatial relations between the 

geometries of a trajectory and a given geometry. Speed	   and	   direction	   return the 

velocity and direction variation over time. 	   

min,	  max:	   CoverageSeries	  →	  TimeSeries	  

	   Min and max aggregate values of a coverage series and return a time series. We 

compute each value of the returned time series by taking the minimum and maximum 

value of a coverage at a specific time. 
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4.9 Object 

type	  Object	  [ID:Value,	  TS:TimeSeries,	  TJ:Trajectory]	  	  

operations:	  	  

	   new:	  	  ID	  x	  TS	  x	  TJ	  →	  Object	  

	   id:	  	   Object	  →	  ID	  

timeseries:	  	  Object	  →	  TS	  

trajectory:	  	  Object	  →	  TJ	  

state:	  	  Object	  x	  Time	  →	  (Value,	  Geometry)	   	  

axioms:	  	  

	   o:Object;	  t:Time;	  v:Value;	  g:Geometry;	  	  

	   id(o)	  =	  reference(observations(trajectory(o)))	  

	   intersects(boundary(trajectory(o)),	  boundary(timeseries(o)))=	  TRUE	  

	   begins(trajectory(o))	  =	  begins(timeseries(o))	  

	   ends(trajectory(o))	  =	  ends(timeseries(o))	  

	   state(o,t)	  =	  (value(timeseries(o),t),	  value(trajectory(o),t))	  	  

 An object is an identifiable entity whose spatial and non-spatial properties can 

change. The Object type is parameterized by its identity type (ID), a TimeSeries	  (TS) 

that represents the variation of its non-spatial property and a Trajectory	   (TJ) that 

describes the change of its spatial property. An object can have one or more non-spatial 

properties, but we consider only one in the type definition for simplicity. New constructs 

an Object. Id, timeseries and trajectory access the object parts. State returns the 

state of an object at a given time, that is, the values of its spatial and non-spatial 

properties at that time.  

 Each car of Figure 1 maps to an Object	   [Integer,	   TimeSeries[Polygon,	  

Period,	  Float],	  Trajectory[Integer,	  Instant,	  Point]]. Each car’s identity is 

represented by an Integer, its air pollution measures by a TimeSeries and its location 

change by a Trajectory. Each sea elephant of Figure 3 maps to an Object[Integer,	  

∅,	  Trajectory[Integer,	  Instant,	  Point]], where its identity is represented by 

an Integer and its location variation by a Trajectory. Since the sea elephants do not 

have non-spatial properties, they have no associated time series. Each city of the state of 

Rio de Janeiro in Figure 4 maps to an Object[String,	   TimeSeries[Polygon,	  
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Instant,	  Float],	  Trajectory[String,	  Period,	  Polygon]]. The city name is its 

identity (String), the average rain variation is a TimeSeries and its boundary variation 

is a Trajectory. In this case, the Trajectory	  has a single geometry. 

4.10  Event 

type	  Event	  [ID:Value,	  T:Time,	  G:Geometry]	  	  

operations:	  	  

	   new:	  	  ID	  x	  T	  x	  G	  x	  {obj1,	  obj2,...,	  objn}	  →	  Event	  	  

	   	   	  	   |	  obj:	  Object	  and	  n	  ≥	  0	  	  	  

	   id:	  Event	  →	  ID	  

	   time:	  	  	  	   Event	  →	  T	  

location:	  	  Event	  →	  G	  

objects:	  	   Event	  →	  {obj1,	  obj2,...,	  objn}	  

axioms:	  	  

	   e:Event;	  o:Object;	  t:Time;	  v:Value;	  g:Geometry;	  	  

	   o	  ∈	  objects(e)	  ∧	  time(e)	  =	  t	  ⇒	  state(o,t)	  ≠	  Null	  	  

	   o	  ∈	  objects(e)	  ∧	  location(e)	  =	  g	  	  

	   	   ⇒	  intersects(boundary(trajectory(o)),	  g)	  =	  TRUE	  	  

	   An event is an individual episode with a definite beginning and end which can 

involve one or more objects. Event is parameterized by the types of its identity (ID), 

time (T) and spatial location (G). New constructs an event from an identity, a time of 

occurrence, a geometry that stands for the event’s location, and the objects involved in 

the event. The events of flood, dengue epidemic and animal meeting described in 

section 3.2 can be mapped to instances of Event[Integer,	  Period,	  Polygon]. Each 

instance has the event’s identity (Integer), when it occurred (Period) and the region 

where they happened (Polygon). These events involve objects. The flood event is 

associated to the city of Rio. The dengue epidemic happened in the city of Recife. The 

meeting event involves two sea elephants.  

 Using operations over sets of events, we can answer questions like “how many 

meetings did animal a1 participate and where did they occur?”, “what meetings 

occurred near island x?”, “when and in which districts did dengue epidemics occur in 
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Recife?”, “which are all events that occurred in Rio?” and “what floods have occurred 

in Rio during the last 5 years and what have been their average rains?”.  

 Galton (2004) distinguishes punctual (instantaneous) events from durative ones 

(those that take time). The Event type can be used to represent both instances of 

punctual events (using Instant) and durative ones (using Period). Events associated 

to moving objects, such as those discussed by Hornsby et al. (2007), can also be 

expressed using Event.  

5 Model Validation and Example 

We tested and validated our algebra using a C++ open source geospatial software 

library called TerraLib (Câmara et al. 2008). Each type and its operations were 

implemented as classes and their methods. We also created classes to represent sets, 

such as TimeSeriesSet and ObjectSet, and used R-tree and B-tree for indexing 

geometries and times. 

 This section presents code examples, using the following conventions. The 

statement “Type	   instance(p1,p2,…,pn)” builds instance of a type using a set of 

parameters “p1,p2,…,pn”. This is equivalent to the new constructor. The code 

“Trajectory	  a1_tj(a1_obs,interp)” creates a Trajectory instance “a1_tj” with  

parameters “a1_obs” and “interp”. An operation whose first parameter is the instance 

and the other parameters are “p1,p2,…,pn”  is “instance.operation(p1,p2,…,pn)”. 

This is the same as “operation(instance,p1,p2,…,pn)”. For example, 

“a1_tj.distance(a2_tj)” gives the distance  of “a1_tj” and “a2_tj”. The command 

“for each	  element	  in	  set	  {…}” executes the commands between brackets “{…}” 

for each “element” of a “set”. 

 Figure 7(a) shows the code to create events of “meeting of two animals” that occur 

when “the distance between two sea elephants is less than 2 meters”. We create two 

trajectories “a1_tj” and “a2_tj” from observation sets “a1_obs” and “a2_obs” and 

interpolator “interp”. These are trajectories of sea elephants “a1” and “a2”, read from 

a KML file whose metadata is described by a XML file called “tracks.xml”, as 

described in  Ferreira et al. (2012). Using “distance” between “a1_tj” and “a2_tj”, 
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returns the time series “dist”. The function “less” selects the subsets of “dist” whose 

values are less than 2 meters, yielding the set of  time series “tsSet”. Each time series 

“ts” of “tsSet” leads to an event. From each “ts”, we create an event “ev” with the 

time (“m_per“) and place (“m_region”) of a meeting between sea elephants “a1” and 

“a2”. 

  Figure 7(b) shows the code to create events of “flood” in Rio, using the grids 

described in Figure 4. A ‘flood’ event occurs if “rain is more than 10 mm/hour for more 

than 5 hours”. The coverage series “cs” is built from these grids using function 

“createCS”, based on a metadata file “metadata.xml” and an interpolator “interp”. 

To select the part of “cs” inside Rio, we use the operation “intersection” that returns 

a coverage series “rioCS” whose boundary is the limits of Rio “rioLim”. We use 

operation “max” over “rioCS” to get the time series “rain”. It maps times to maximum 

precipitation values in Rio. Since the rain grids are taken at 15-minute intervals, the 

time series “rain” also contains values at each 15 minutes. Aggregating “rain” by 

adding the precipitation values per hour, using the operation “add” and chronon “Hour”, 

gets a time series “rainPerHour”. Then, we select parts of “rainPerHour” whose 

values are more than 10 mm/hour, using “greater”, getting a new time series set 

“tsSet”. Each flood event “ev” is created from a time series “ts” of “tsSet” whose 

extent is greater than 5 hours. All events are associated to object “rio”. 
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(a) 

 
(b) 

Figure 7. Code to create events of: (a) “meeting of two animals” and (b) “flood“. 
 

 

6 Final Remarks 

This paper presents an algebra for spatiotemporal data types. We capture the inherent 

structure of geospatial observations using three types, time series, trajectory and 

coverage. Based on these types, the algebra allows defining objects and events. The 

proposed data types and functions can model and capture changes in a large range of 

applications, including location-based services, environmental monitoring, public 

health, and natural disasters. 

 A limitation of our model is to consider only two dimensional space. Since OGC 

geometry types can be built using 3-dimensional coordinates (x, y and z), we intend to 

solve this limitation in future works. In its current version, the algebra does have types 

that express relationships between objects and events or between events and events. 

These kinds of relationships, as defined by Worboys et al. (2004) and Galton et al. 
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(2005), can be built on top of our model. We intend to extend our algebra to represent 

these relationships, such as “event e3 is composed of events e1 and e2” and “event e1 

initiates event e2”.   

   We tested the algebra using the TerraLib software library. However, we chose to 

implement it in a general-purpose library that can access spatiotemporal data from 

different sources, including databases, files and web services. The next step is to 

develop an interface with the R software for statistical analysis. This includes a mapping 

from our types to the ones proposed by Pebesma (2011) to handle spatiotemporal data in 

R structures. 
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