
TerraLib: Technology in Support of GIS Innovation

GILBERTO CÂMARA
1, RICARDO CARTAXO MODESTO DE SOUZA

1

BIANCA MARIA PEDROSA
1, LÚBIA VINHAS

1

ANTÔNIO MIGUEL VIEIRA MONTEIRO
1, JOÃO ARGEMIRO PAIVA

1

MARCELO TILIO DE CARVALHO
2, MARCELO GATTASS

2

1 Instituto Nacional de Pesquisas Espaciais - INPE

Av. dos Astronautas, 1758, São José dos Campos (SP), Brazil 12227-001

{gilberto, cartaxo, bianca, lubia, miguel, miro}@dpi.inpe.br
2 Catholic University of Rio de Janeiro

Rua Marquês de São Vicente 225, Rio de Janeiro, Brazil 22.453-900

{gattass, tilio}@tecgraf.puc-rio.br

Abstract. This work describes the development of a new GIS library (called TerraLib), that is
aimed at providing a rich and powerful environment for the development of GIScience research.
The motivation for this proposal is the current lack of either public or commercial GIS libraries
that cater for the diversity of GIS data and algorithms, especially when viewed upon the latest
advances in geographical information science. TerraLib is open source software, allowing a
collaborative environment and its use for the development of multiple GIS tools.

Keywords. GIS, Spatial Analysis, Software Libraries.

1. Introduction

The last 20 years have seen dramatic
developments in GIS technology and
geographical information science. GIS software
is now ubiquitous, and there are systems in
different types and sizes, varying from the
desktop to the corporate user and different
solutions for Internet data access and
distribution. In the vast majority of cases, such
developments have been industry-driven, with
few exceptions (such as the IDRISI and
SPRING systems). Fierce competition and
growing user demand has resulted in a number
of high-quality solutions, which are largely
responsible for the vast increase in the GIS
marketplace.

However, the vast majority of the industry
solutions is aimed at supporting basic needs of
capture, archival and visualisation of spatial
data. Recent technological advances have
concentrated in issues such as user-friendly
interfaces, interoperability across data
repositories and spatial extensions of database
technology. These developments have largely
ignored recent advances in GIScience, which
include research areas such as geostatistics

(Goodvaerts, 1997), global and local spatial
statistics (Getis and Ord, 1998), dynamic
modelling and cellular automata (Couclelis,
1997; White and Engelen, 1997), heuristic
search (Oppenshaw, 1998), environmental
modelling (Burrough, 1998), point pattern
analysis (Bailey and Gattrel, 1995), uncertainty
assessment and modelling (Heuvelink, 1998;
Felgueiras, 1999), spatial econometrics
(Anselin, 1988) and neural networks for spatial
data (Medeiros, 1999).

The authors posit that the geographical
information community would benefit from the
availability of a general, open source GIS
library. This resource would make a positive
impact by allowing researchers and solution
developers access to wider range of tools than
what is currently offered by the commercial
companies. In a similar approach as the GNU
and Linux efforts, such development does not
happen by spontaneous growth: there has to be a
core set of technologies in which further
development can take place. Our proposal for
the development of the TerraLib spatial library
aims precisely at offering the GIS community a
basis for further development.

The work is divided as follows. Section 2
indicates the general principles and of
TerraLib. In Section 3, we present the main
components of the library. In Section 4, we
illustrate the programming environment of
TerraLib, from a simple set of programs.

2. TerraLib Design Rationale

2.1 Generic Software Requirements

What sort of environment should a GIS library
cater for? It should provide, first of all, support
for the basic components of spatial data sets:
data translators, map representation,
geometrical data structures and algorithms. It
also needs to support the establishment of data
models for GIS data, without imposing strong
constraints on their use. It also needs to provide
user interface tools, which may be used for
simple applications.

The need for perform efficient data
translation is the single most important design
consideration in TerraLib. Most users already
have their data in an existing system and will
want to perform analysis and exploration using
techniques not available in their original system.
There should be support for inclusion of tabular
data, which has been assigned a geographical
reference (as a census tract number or a
zipcode).

Map representation and cartographic
projection tools form a basic core of a GIS
library. The library should support a basic core
of cartographic projections and a set of
techniques for reprojection and integration of
spatial data. It should be very easy to add
support for new projections and datum.

Algorithms form a basic core of most
successful research efforts. In many GIS
libraries, the misuse of object-oriented
principles has resulted in classes that contain
both the underlying data structure and the
corresponding set of algorithms. In this case, the
algorithms would be unecessarily linked to a
particular type of data structure. Therefore,
TerraLib algorithms are to designed as
independent entities, which do not belong to a
particular class.

The traditional geometrical data structures
used for geographical data include vector data
structures (points, lines, polygons, triangular
meshes), raster structures (matrices) and
relational structures (tables). Such structures

also need underlying support for indexing
structures such as R-trees.

In the case of data models, one of the
important advances in GIScience in the 90’s has
been the widespread acceptance of a general
conceptual data model for geographical data. In
this model, geographical reality is represented
as either fully definable entities (features) or
smooth, continuous spatial variation (fields).
Although this simple dichotomy has been
subject to objective criticism (Couclelis, 1992;
Burrough and Frank, 1996), it has proven a
useful frame of reference. It has adopted, with
some variations, in the design of the latest
generation of GIS technologies, such as
SPRING (Câmara et al, 1996), Arc/Info-8 and
OpenGIS.

We have designed TerraLib to allow
different alternatives of data models to be
implemented from the same software basis.
Therefore, we emphasized a very loose coupling
between the data model classes (on one side)
and the algorithms and data structures (on the
other side). Altough this de-coupling may lead
to some duplication, it should be useful to be
able to derive different applications based on
TerraLib that might use the data model of
different systems. For example, one developer
may want to integrate TerraLib to existing
systems such as GeoMedia or ARC/INFO-8.
Another may develop OpenGIS-compliant
applications.

2.2 Support for Innovative Research

The preceding discussion was centred in the
support of conventional GIS applications.
However, in order to be useful as a support for
innovative research, TerraLib needs, from its
conceptual base, to consider the needs of
emerging GIS research areas, such as:

• Uncertainty modelling, where each field is
coupled with information about spatial
imprecision, which is propagated in map
algebra operations (Heuvelink, 1998).

• Cellular automata, whose application to
GIS requires that each cell has its own
inherent set of attributes (as distinct from a
single state) which represent its relevant
physical, environmental, social, economic
or institutional characteristics. (Couclelis,
1997; White and Engelen, 1997).

• Dynamic modelling (Burrough, 1998)
requires the support for timers and
interactive procedures.

• Applications such as Spatial Statistics and
Spatial Interaction Models require the use
of spatial proximity matrices for supporting
spatial relations among elements.

2.3 Development Strategy

Since TerraLib was designed to support an
open, collaborative development environment,
some basic principles are in order:

1. The interface for each class should be kept
as minimal as possible. The introduction of
new algorithms and tools should not affect
already-existing code, include keeping
include files intact.

2. The implementation of the geometrical data
structures is kept completely separate from
the programming interface, using the
“pimpl” idiom (Sutter, 2000).

3. There should be a maximal degree of
ortogonality between the components of the
library, and they are designed to be used
independently.

We are not committed to a single
programming style, but use the ideas of multi-
paradigm programming, which advocates the
combination of different techniques such as
object-oriented, algorithmic and generic
programming [Coplien, 1999]. This technique is
particularly suited to the C++ language
[Stroustroup, 1997].

Reuse considerations have also led the
authors to choose C++ as the development
language. We hope to adapt algorithms that
have been developed for SPRING (Câmara et
al, 1996).

3 Software Structure

3.1 Main Components

TerraLib is developed as a multi-tier library,
and its first version includes:

• At the higher level, it provides abstract data
classes to manage and represent
geographical information, based on a
field/object paradigm, viz.: Feature,
Network, Surface, CellArray.

• At the intermediate level, it provides
support for geometrical data structures,
data formats, map representation and
algorithms.

• At its lowest level, it provides spatial
indexing structures for efficient handling of
large data sets.

3.2 Geometrical and Attribute Structures

The data structures include:

• TeCoord2D1: a 2D coordinate.

• TeLine: a vector of 2D coordinates, that
can be associated to a height.

• TeLineSet: a set of lines.

• TePolygon: composed of Lines and of
other Polygons (its children).

• TePolygonSet: a set of polygons.

• TePointSet: a set of 2D samples.

• TeTIN: a triangular mesh.

• TeGrid: a raster data structure (used for
images and grids).

• TeTable: an attribute table used for
linking to relational DBMSs

Each instance of a data structure has a unique
identifier, to enable its linking and storage in a
DBMS. We illustrate some of these geometrical
structures and its relationships in Figure 1.

Figure 1 – P
re

1 Throughout the
functions are indica

TePolygonSet

TePolygon
TeGeometry
olygon and Line vector
presentation

 text, TerraLib classes and
ted with a Te- prefix.

TeLineSet

TeLine

TeCoord2D

As can be seen in the Figure 1, the
TePolygonSet class is a composite of
TePolygon. A TePolygon is a composition
of TeLine and/or other TePolygons (its
children). A TeLineSet is a composition of
TeLines that are a composition of
TeCoord2D.

A basic pattern for use in GIS geometrical
structures is the Composite pattern (Gamma et
al, 1996). As the Composite pattern can be used
in another components of a GIS we propose a
parameterised implementation of it (shown
partially below):

template <class T>
class TeGeomComposite
{

public:

typedef vector<T> Components;
typedef Iterator<T> TeGeomIterator;

// -- Contructors
TeGeomComposite(){}

// -- Destructor
virtual ~TeGeomComposite();

// -- Methods
void Add (const T& component);
int Size();
T& Next() const ;
T* First();
T* Last();

protected:
Components components_;
};

When considering the implementation of
the geometry classes, we should allow for
different alternatives to be tried and tested for
efficiency and convenience. For example, a
TePolygonSet can be represented as a
graphical file or might be integrated into a
relational database, with one polygon per tuple,
in a similar fashion as the Simple Feature
definition of the OpenGIS consortium (Open
GIS, 1999).

To allow for different implementations of
the Polygon class to be defined, we have used
the so-called “pimpl” idiom (Sutter, 2000). This
programming idiom proposes a separation
between a class and its implementation, by
using an opaque pointer to hide the
implementation details.

In the case of Polygons, a special case of
the Composite pattern arises: a Polygon is
composed of Lines and of other Polygons (its
children), as it can be seen below.

class TePolygon
{
public:
 // public members ...
private:
 struct TePolygonImpl *pimpl;
};
// sample implementation
// there could be alternatives
struct TePolygonImpl
{
class TeLine2DSet: public
 TeGeomComposite<TeLine2D> {}
class TeChildSet: public
 TeGeomComposite<TePolygon> {}

 TeLine2DSet lines_;
 TeChildSet children_;
};

Therefore, the implementation of the
geometrical data structures has required a
combination of Design Patterns and Generic
Programming paradigms.

3.3 Algorithms and Iterators

For Terralib algorithms, we have adopted the
principles of generic programming: “decide
which algorithms you want; parametrize them
so they work for a variety of suitable types and
data structures” (Stroustroup, 1997). Following
the example of the STL library, which is now
part of the C++ standard, we propose the use of
the iterator concept, as a basis for . Iterators are
a generalisation of the idea of pointers, and are
used in the STL to separate the containers from
the algorithm [Austern, 1998].

The algorithms are defined in terms of
different types of iterators of spatial data types,
such as: TePolygonIterators,
TeLineIterators, TePointIterators,
and TeTableIterators.

In order to illustrate the concept, we
present the case of a line simplification
algorithm. Such an algorithm can be applied in
the case of a set of lines, as well as in the case
of a set of polygons. We would like to design
such a function as independent entity, which
does not belong to a particular class, as shown
below.

void TeSimplifyLines (
 TeLineIterator begin,
 TeLineIterator end) ;
int
main()
{
 TeLineSet ls;
 TeImportE00(ls, “lines.e00”);
 TeSimplifyLines (ls.FirstLine(),
 ls.LastLine());

 TePolygonSet ps;
 TeImportE00(ps, “polygons.e00”);
 TeSimplifyLines (ps.FirstLine(),
 ps.LastLine());
//....
return 0;
}

The parameters for the SimplifyLines
function are TeLineIterators. The
SimplifyLines algorithm doesn’t need to
assume anything beyond minimal functionality
guaranteed by the TeLineIterator, which
include functions to have access to a
TeLineSet by traversing it in some order.

Note that both LineSet and PolygonSet
classes need to provide method that return
TeLineInterators. The geometric
structures are thus responsible for providing the
Iterators that are meaningful for the use of the
algorithms.

3.4 User Interfaces and Visualisation

Strictly speaking, user interfaces and
visualisation are not an essential part of
TerraLib. Our emphasis is an efficient and
flexible set of data structures and algorithms,
allowing different applications to produce their
own interfaces or the linking of TerraLib
programs to existing environments.

However, in many cases, users may want a
simple visualisation and user interface
environment that allows for rapid prototyping of
ideas and new concepts. For those purposes, we
provide a set of GUI and visualisation classes,
which are based on the Qt public-domain
software library (Troll Tech, 2000).

The TeApplication class provides a simple
interface for visualisation of GIS data. It
provides a method Run() for creating an event
loop, much similar to the operation of the Motif
and MFC toolkits. The method
Show()instructs the user interface to display a
data, which may be a simple geometrical
structure or a more complex layer.

3.5 Support for Innovative Research

The applications described in Section 2.2
have motivated some design decisions:

• In TerraLib, each field of Surface type is
associated with an Uncertainty
information. This field is part of the
representation of the surface and access to
it is available for error propagation
functions.

• A new type of field, a CellArray type, is
introduced to handle multiple attributes for
a single cell, and make it easier to define
transitional rules.

• Support for a Graph geometrical data
structure is included, to allow for both
spatial interaction algorithms and different
alternatives for proximity measures
(O’Sullivan, 1999).

4. Programming in TerraLib

4.1 Hello, GIS World !

We consider that the best description of GIS
library is achieved by showing how it should be
used in practice. Thus, we present a set of
programs, starting from simple examples, which
illustrate the principles and practice of
programming in TerraLib. This description
assumes a familiarity with the basics of GIS
data structures and algorithms, as well as with
the general programming in C++. Let us start by
considering a problem: what is the simplest GIS
program that can be written?

#include <teapplication.h>
#include <tegeometry.h>
#include <tedataconversion.h>
int main ()
{

TeApplication app;
TePolygonSet ps;
TeImportShape (ps, “BR.shp”);
app.Show (ps);
app.Run();

}

 This program reads a file containing a data
set, in “shapefiles” format, and displays it. The
first line of this program creates an instance of
the TeApplication class, which is
responsible for providing a simple interface for
visualisation of GIS data. Since TerraLib is
designed to be standalone, the use of this class
is optional. The visualisation procedures

associated to TerraLib are described in the
“User Interface and Visualisation” section.

The next line indicates a data conversion
procedure (in this case, an ARC/View shapefile
containing the co-ordinates of the counties of
Brazil, or municipios in Portuguese). TerraLib
provides efficient data translation tools for
formats such as SHP, MIF and E00. Note that
we have defined TeImportShape as a
function rather than a method for a
TeGeometry class in keeping with principle 1
(minimal interfaces).

The next line simply indicates the
existence of a method Show(), associated to
the TeApplication class, which requests to
the user interface the display of data. The last
line indicates that the “main loop” of the
TeApplication class is called. This
command creates a window interface.

4.2 Simple Geometrical Algorithms

The next step is to apply some simple
geometrical algorithms. For example, let us
suppose we want to read a data set containing
the counties of Brazil as a set of polygons, and
we would like to generate a Voronoi diagram
from the centroids of these polygons. This is
done as follows:

#include <tegeometry.h>
#include <tedataconvert.h>
#include <tealgorithm.h>
int main ()
{

TePolygonSet ps;
TeImportShape(ps, “Br.shp”);

TePointSet pt;

TeGenerateCentroids
(ps.FirstPoint(),
 ps.LastPoint(),
 pt.FirstPoint());

TePolygonSet voron;
TeVoronoi (

 pt.FirstPoint(),
 pt.LastPoint,
 voron.FirstPoint());

TeExportGBR(voron, “Vor.gbr”);
}

This program creates a TePointSet
from an existing TePolygonSet (read from a
SHP file), and generates a Voronoi diagram
with the TeVoronoi function. The result is

exported to a file in the GEOBR data format.
Note the use of iterators as interfaces to the
algorithms.

4.3 Data Management

In the preceding examples, there is no abstract
modelling of this data set, no control
organisation is in place, and there are no
attributes associated to the geometrical
structures. If we want data management and to
associate attributes to the geometrical structures,
we need to introduce the concept of a
geographical database (or Geodatabase for
short). The Geodatabase class supports archival
of both geometrical and descriptive parts of GIS
data set. Additionally, it uses existing relational
data base technological solutions (such as
MySQL and ODBC) as basis for management
of tables.

#include <teapplication.h>
#include <tegeodatabase.h>
#include <telayer.h>
#include <tegeometry.h>
int main ()
{

TeApplication app;
TeGeoDataBase db;
db.Open (“World”);
TePolygonSet ps;

 TeImport (ps, SHP, “BR.shp”);

TeTable t;
 db.ImportTable(t,“CA”,“Br.dbf”);

TeLayer br;
 db.NewFeature(br, “Br”, ps);
 db.Associate (br, t, “IBGE_ID”);

app.Show (br);
app.Run();

}

The above program requires the
instantiation of a GeoDatabase, which is
responsible for data management and handling
attribute information. In this program, a higher-
level structure (a Layer consisting of
Features) is created from lower-level
structures (a PolygonSet and a Table), in
four steps:

• a geometry is created from existing data;

• a table is created from an external source;

• a new layer is instantiated, from an existing
geometry;

• the attributes and the geometry are
associated, by means of one attribute which
indicates a spatial index.

This procedure allows for the association of
many attribute sets to the same geometry (and
vice-versa).

These examples show that even the
simplest GIS application needs some procedures
for data management and abstract modelling.
Otherwise, the library user is left with a
substantial burden to construct higher-level
structures. They also show the application of
our design rationale in some simple, but
significant examples.

5. Conclusion

This paper outlines the rationale for the
initial version of TerraLib, an open source
software library aimed at offering the GIScience
community a basis for shared development.
This proposal is based on more than 15 years
experience in GIS software development by the
groups of the of Brazil’s National Institute for
Space Research (INPE) and the Catholic
University of Rio de Janeiro. By making a
version of the proposal available for public
discussion, we hope to attract partners for long-
term co-operative partnerships.

Acknowledgements

This work has been partially financed by a joint
NSF/CNPq project on "Interoperabilty on GIS"
(process CNPq 480322/99).

References

ANSELIN, L. 1988. Spatial Econometrics,
Methods And Models. Dordrecht: Kluwer
Academic.

ANSELIN, L. 1998. Interactive techniques and
exploratory spatial data analysis. In: P. Longley,
M. Goodchild, D. Maguire and D. Rhind (eds.),
Geographical Information Systems: principles,
techniques, management and applications, pp.
251–264. New York: Wiley.

AUSTERN, M.H., 1999. Generic Programming
and the STL: Using and Extending the C++
Standard Template Library. Reading, Addison-
Wesley, 1999.

BAILEY,T.; GATTRELL, A., 1995. Spatial Data
Analysis by Example. London, Longman.

BURROUGH, P.; FRANK, A., 1996. (eds)
Geographic Obejcts with Indeterminate
Boundaries. London, Taylor and Francis.

BURROUGH, P, 1998. “Dinamic Modelling and
GIS”. In: Longley, P., Brooks, S., McDonnell,
R., Macmillan, B. (eds), “Geocomputation: A
Primer”. New York, John Wiley & Sons.

CÂMARA, G.; SOUZA, R.C.M.; FREITAS, U.M.;
GARRIDO, J.C.P., 1996 “SPRING: Integrating
Remote Sensing and GIS with Object-Oriented
Data Modelling”. Computers and Graphics,
vol.15 , n.6, pp.13-22.

CÂMARA,G.; SOUZA, R.C.M.; MONTEIRO,
M.V.; PAIVA, J.; GARRIDO, J., 1999. “Handling
Complexity in GIS Interface Design”. In:
Proceedings of the I Brazilian Workshop on
GeoInformatics, Campinas, São Paulo.
www.dpi.inpe.br/geoinfo99.

COPLIEN, J. Multi-Paradigm Design for C++.
Reading, Addison-Wesley, 1999.

COUCLELIS, H., 1992. “People Manipulate
Objects (but Cultivate Fields): Beyond the
Raster-Vector Debate in GIS”. In: Frank, A.;
Campari, I. and Fomentini, U. (eds) Theories
and Methods of Spatio-Temporal Reasoning in
Geographic Space, pp. 65-77. Berlin, Springer.

COUCLELIS, H., 1997, “From cellular automata
to urban models: new principles for model
development and implementation”,
Environment and Planning B: Planning &
Design, 24, 165-174.

DEUTSCH, C.; JOURNEL, A. 1998. GSLIB:
Geostatistical Software Library and User’s
Guide. New York, Oxford Univeristy Press.

FELGUEIRAS, C. 1999. "Modelagem Ambiental
com Tratamento de Incertezas em Sistemas de
Informação Geográfica: O Paradigma
Geoestatístico por Indicação”. PhD Thesis in
Computer Science, INPE (in Portuguese).

GETIS, A., ORD J. K., 1996. "Local spatial
statistics: an overview". In: Spatial Analysis:
Modelling in a GIS Environment. (LONGLEY,P.;
BATTY,M., eds), pp. 261-277. New York, John
Wiley.

GOOVAERTS, P. 1997. Geostatistics for Natural
Resources Evaluation. New York, Oxford
University Press.

HEUVELINK, G. 1998. Error Propagation in
Environmental Modelling with GIS. London,
Taylor and Francis.

LEONDES,C. (ed), 1997. Image Processing and
Pattern Recognition (Neural Network Systems
Techniques and Applications Series, Vol 5).
New York, Academic Press.

http://www.dpi.inpe.br/geoinfo99

LONGLEY, P., 1998. (ed) Geocomputation: A
Primer. New York, John Wiley and Sons, 1998.

MEDEIROS, J.S., 1999. Geographical Databases
and Artificial Neural Networks: Technologies in
Support of Land Management. PhD Thesis in
Geography, University of São Paulo (in
Portuguese).

OPENSHAW, S., 1998. “Building automated
Geographical Analysis and Exploration
Machines”. In: Geocomputation: A primer
(Longley, P. A., Brooks, S. M. and Mcdonnell,
B. (eds)), p. 95-115. Chichester, Macmillan
Wiley.

O'SULLIVAN, D. 1999. Exploring the structure
of space: towards geo-computational theory. In:
Proc. IV International Conference on
GeoComputation. Mary Washington College,
USA.
<www.geovista.psu.edu/geocomp/geocom
p99>.

STROUSTRUP, B. 1997. The C++ Programming
Language. Reading, Addison-Wesley.

SUTTER,H., 2000. Exceptional C++. Reading,
Addison-Wesley.

TROLLTECH, 2000. The Qt Interface Library.
www.trolltech.com.

WHITE, R.; ENGELEN, G., 1997 ‘Cellular
Automata as the Basis of Integrated Dynamic
Regional Modelling’ Environment and Planning
B, Vol.24, pp.235-246.

http://www.trolltech.com/

