TerraLib: An open source GIS library for spatio-temporal databases

GILBERTO CAMARA?, RICARDO CARTAXO SOUZA!, ANTONIO MIGUEL MONTEIRO!,
KARINE REIS FERREIRA!, LUBIA VINHAS!, GILBERTO RIBEIRO DE QUEIROZ!,
MARCELO TiLIO DE CARVALHO2, MARCO ANTONIO CASANOVA?

'DPI/INPE- Image Processing Division, National Institute for Space Research, Brazil

“TECGRAF/PUC-RIO — Computer Graphics Group, Catholic University of Rio de
Janeiro, Brazil

{gilberto, cartaxo, miguel, karine, lubia, gribeiro}@dpi.inpe.br

{tilio, casanoval}@tecgraf.puc-rio.br

Abstract. The GIScience community currently lacks a comprehensive set of open-
source tools for the development of new ideas and rapid prototyping. With this
motivation, this work describes TerraLib, an open-source GIS software library that
extends object-relational DBMS technology to handle spatio-temporal data types. The
library includes: (a) support for different DBMS, including Oracle, PostgreSQL and
MySQL; (b) an Open GIS compliant spatial feature data model; (¢) support for different
temporal models (events, moving objects, cell spaces, modifiable objects); (d) facilities
for spatial, temporal and attribute queries on the database; (e) dynamic modelling in
generalized cell spaces; (e) handling of large image data sets with indexing and efficient
visualization; (e) support for generic GIS programming with iterators over spatio-
temporal data structures; (f) spatial analysis algorithms, such as space-time clustering
tests, regionalization methods, and geographically weighted regression; (i) support for
persistent visualization attributes with the concepts of “themes” and “views”. As a
research tool, TerraLib aims at enabling the collaborative development of GIS
prototypes that include recent advances in GIScience. On a practical side, TerraLib
enables quick development of custom-built applications using spatio-temporal

databases.

Keywords. GIS, Small GIS, Software Libraries.

1 Introduction

GIS software development is undergoing substantial change, caused by the availability
of database management systems (DBMS) that can handle spatio-temporal data types.
This integration enables a transition from the current GIS technology to a new
generation of spatial information appliances, small systems tailored to specific user
needs (Egenhofer 1999). Therefore, an important challenge for the GIS community is
finding ways of taking advantage of spatially-enabled DBMS to build innovative
applications. A second important challenge is incorporating recent advances from
geographical information science into mainstream GIS. A number of important results
have been produced in research areas such as spatio-temporal data models (Erwig and
Schneider 2002) (Hornsby and Egenhofer 2000), geographical ontologies (Fonseca et
al. 2002), spatial statistics and spatial econometrics (Anselin 1999), dynamic modelling
and cellular automata (Couclelis 1997), and environmental modelling (Burrough 1998).
These results have largely been outside of the reach of the GIS user community, for lack

of widely available tools and systems that support them.

One of the possible responses to this challenge would be to establish a co-operative
development network based on open source technology. The geographical information
science community would have much to benefit from the availability of a general open
source GIS library. Similarly to Linux-based solutions, the availability of GIS open
source software would allow researchers to share their results. However, such
developments do not happen by spontaneous growth, and require a core set of
technologies from which further developments would build on. With this motivation,
the authors are developing TerraLib, an open source GIS software library that extends
object-relational DBMS technology to handle spatio-temporal data types. As a research
tool, the library aims at enabling the development of GIS prototypes that include recent
advances in GIScience. On a practical side, it supports quick development of custom-

built applications using spatial databases.

This paper describes the TerraLib library, by examining its major components and
indicating how the library supports the development of GIS tools that incorporate
research results from GIScience. Section 2 presents the requirements and the rationale
for the design decisions for TerraLib. Section 3 describes the the spatio-temporal data
model and the database interface (archival and retrieval). Section 4 indicates how
TerraLib handles large image data sets. Section 5 discusses extensibility issues, with an

emphasis on the use of generic programming tools for development of spatial analysis

functions. Section 6 presents the dynamical modelling capabilities of TerraLib. Section
7 indicates how the library supports large image data handling. Section 8 describes
some geographical applications that have been developed using TerraLib. We conclude
the paper by discussing the most important points raised by the research and indicating

the future directions of the TerraLib project.

2 Requirements and Design Rationale for TerraLib

We have designed TerraLib with a large number of atomic functions and data
structures with low granularity. Such an option is more appropriate for open source
software products, which aim to cater for a broad range of applications. We have
chosen the C++ language because of its flexibility, multi-platform stability, and support
for multi-paradigm programming (Coplien 1999). Especially important is the support
for generic programming with templates available in C++ using the STL library
(Austern 1998). Using C++ simplifies linking with object-relational DBMS such as
ORACLE, PostgreSQL and mySQL. Since TerraLib aims at helping to bridge the gap
between GIScience and GIS applications, a balance between simplicity and expressive
power is inevitable. The design of a TerraLib is also an engineering compromise

between multiple requirements:

e Persistence: The database should be able to store and retrieve not only spatio-
temporal data, but also ancillary data such as semantic information, metadata, and
visualisation status. The need for persistence dictates that the library needs to
provide a database schema, with relations that capture the different components of

spatio-temporal data.

e Support for different DBMS: the library should be able to handle different object-
relational databases management systems transparently. There is a basic class for
storage and retrieval of spatio-temporal objects in object-relational database
management systems, and this class provides a general API which is implemented
for each DBMS.

e Support for temporal applications: TerraLib handles different types of spatio-
temporal applications (including events, mobile objects, evolving regions) and
supports spatio-temporal queries. Each spatial object has a unique and persistent
identifier and a spatial reference system. The descriptive, spatial and temporal
components of geographical objects are stored separately on the database and are
linked by the object id.

e Efficiency in large-scale applications: emerging GIS applications require storage
and retrieval of hundreds of thousands of spatial objects, as well as very large
satellite imagery. TerraLib supports for spatial indexing of both raster and vector
data, including multi-resolution and block segmentation techniques for handling

satellite imagery.

e Extensibility: The functionality available in a GIS library should be extensible by
other programmers, and the introduction of new algorithms and tools should not
affect already-existing code. To achieve this goal, TerraLib uses iterators over
spatial data structures to decouple algorithms from data structures, thus

simplifying extensibility.

e Support for dynamic models: Models of spatial processes, including patterns of
land use and land cover, socioeconomic and demographic characteristics, are
becoming increasing important for geographical applications. In TerraLib, we have
implemented support for dynamic models using cell spaces, which generalize
cellular automata by providing multiple attributes and flexible neighborhood

definitions.

One of the inevitable problems of having a fixed database schema in TerraLib is a loss
of flexibility, since users of the library will have to convert their data to the chosen
schema. However, we have kept the database relations as independent as possible, so
that application programmer may combine them in multiple ways, allowing the
expression of different conceptual models. We consider that the loss of flexibility is

balanced by a broad range of functionality.

The vector spatial data structures are designed to be compatible with the Open GIS
simple feature model and the dimension-extended 9-intersection operators (Clementini
and P. di Felice 1995) are used for spatial queries of vector geometries. In order to
better understand the capabilities provided by TerraLib, we have included in Table 1 a
comparision with similar products: a commercial library (ArcSDE®) and an open
source one (PostGIS). Note that the ArcSDE® is part of a the ArcGIS® family of

products, which provides spatial analysis functions by means of separate products.

TABLE 1 — SELECTED PRODUCT COMPARISON

Requirement ArcSDE PostGIS TerralLib
DBMS supported ORACLE,DB2, PostgreSQL ORACLE,
SQL Server, PostgreSQL,
Informix mySQL
OpenGIS Compatibility Yes Yes Partial
Egenhofer operators Yes Yes Yes
Temporal Support No No Yes
Cell spaces No No Yes
Dynamic modelling No No Yes
Iterators over spatio-temporal No No Yes
data structures
Spatial analysis methods (Yes) No Yes
Support for raster data Yes No Yes
Multi-resolution images Yes No Yes

3 The Architecture of TerraLib

A crucial design decision in any open source project is its software architecture. All
successful open source products such as Linux, PostgreSQL and Apache have a kernel
whose maintenance is the responsibility of a very small team. The kernel has to be
stable and to allow easy extension without internal changes. Contributions from the
community occur at the external layers of the system. As an example, out of more than
400 developers, the top 15 programmers of the Apache web server contribute 88% of
added lines (Mockus, Fielding, and Herbsleb 2002).

However, not all software products have well-defined paradigms as in the case of
operating systems and DBMS. The challenge in GI technology is to combine object-
relational DBMSes that handle spatial data structures with modules that perform
functions such as spatial analysis and dynamic modeling. A typical GI application
consists of three steps: (a) querying the spatial database; (b) manipulating the query

results to generate new objects; (c) visualizing the resulting objects. These three

capabilities (query, manipulation and visualization) should all be part of a generic GI

software library. To respond to these requirements, TerraLib has four main

components, as shown in Figure 1:

kernel: the core of TerraLib is composed of: (a) spatio-temporal data
structures; (b) support for cartographic projections; (c) topological and
directional spatial operators; (d) an API for storage and retrieval of spatio-
temporal objects in object-relational DBMS; (e) classes for controlling
visualization of spatial data. Kernel maintenance and wupgrade is the
responsibility of the project core team (INPE and TECGRAF), as typical for other

free software projects.

drivers: modules that implement the kernel’s generic database API to access
DBMS products such as mySQL and PostgreSQL, and external files in both open
and proprietary formats. Basic maintenance and upgrade is the responsibility of

the project core team, but there is a large scope for external contribution.

functions: algorithms that use the kernel structures. Typical functions include
spatial analysis and query and simulation languages. The functions are designed

to allow external contribution.

interfaces: consist of different interfaces to the TerraLib components, to allow
software development in different environments (C++, Java, COM) and also the

support for Open GIS services such as WMS (Web Map Services) protocol.

Java Interface COM Interface C++ Interface OGIS Services
Functions
-
kernel
Visualization Spatio-Temporal File and DBMS
Controls 7 Data Structures Access
I/O Drivers

2 DBMS
Files

Figure 1 — TerraLib Software Architecture

3.1

The TerraLib Kernel

Some of the key issues involved in the design of the TerraLib kernel include:

3.2

Support for spatio-temporal applications: In order to handle different types of
spatio-temporal applications, TerraLib includes different types of spatio-temporal
data types (events, mobile objects, and evolving regions) and supports spatio-
temporal queries. Each spatial object has a unique and persistent identifier and a
spatial location. The descriptive, spatial and temporal components of geographical

objects are stored separately on the database and are linked by the object’s id.

New types of data structures: Models of spatial processes, including patterns of
land use and land cover, socioeconomic and demographic characteristics, are
becoming increasing important for geographical applications. To support these
models, TerraLib includes cell spaces in a GIS database environment. This allows is
an important improvement over current GIS technology, where most dynamical
models based on cell spaces have a very loose coupling with a GIS. In TerraLib, we
have implemented support for dynamic models using cell spaces, which generalize
cellular automata by providing multiple attributes and flexible neighborhood

definitions (Pedrosa et al. 2002)..

Efficiency in large-scale applications: emerging GIS applications require storage
and retrieval of hundreds of thousands of spatial objects, as well as very large
satellite imagery. TerraLib supports spatial indexing of both raster and vector data,
including multi-resolution and block segmentation techniques for handling satellite

imagery (Vinhas, Souza, and Camara 2003).

The TerraLib Drivers

The interface between the kernel and the various DBMS and file formats is done by the

modules contained in the drivers component of TerralLib. When designing this

component, we considered that the library should be able to handle different object-

relational databases management systems transparently. This has required careful

design of a DBMS interface that handles specific features of each DBMS and allows a

single software interface for different systems such as PostgreSQL and mySQL (Ferreira

et al. 2002).

3.3 The TerraLib Functions

The interface between the kernel and the function components has been designed to
allow maximum extensibility. TerraLib should be extensible by other programmers,
and the introduction of new algorithms and tools should not affect already-existing
code. To achieve extensibility, we have adopted the principles of generic
programming. TerraLib uses iterators over spatial data structures to decouple
algorithms from data structures, thus simplifying extensibility. For example, for
computing a histogram it is not essential to know if the elements are organized as a set
of points, a set of polygons, a grid or an image. All that is needed is the ability to look
into a list of values, and to obtain, for each element of the list, its values and the indexes
of the elements of the list that satisfy a certain property (for example, those that are
closer in space than a specified distance). In a similar way, a large number of spatial
analysis algorithms can be abstracted away from a particular data structure and

described only in terms of their properties. (Vinhas et al. 2002).

3.4 Programming Interfaces

The straightforward way to use TerraLib to develop GIS applications is to embed its
C++ classes into a new system. However, the TerraLib designers have to take into
account the diverse qualifications and preferences of the GIS programming community.
Interfaces for Java and COM programming environments have been designed and are
currently being implemented. An interface for the Open GIS web services specification

is also under development.

4 Spatio-Temporal Data Structures in TerraLib

4.1 Spatial Objects and Layers

TerraLib supports two basic containers for spatial data: spatio-temporal objects and
layers. A spatio-temporal object is an atomic feature whose identity is unique and
persists over time. A layer is a collection of spatio-temporal objects that share the same
geographical projection and the same set of attributes over a temporal period. In an
object-relational DBMS, a layer is represented by a collection of conventional attribute
tables, spatial representation tables and temporal history tables. Retrieval of
information about a spatial object requires accessing its container class (a layer) and

then accessing each of its components. Since a layer contains the temporal evolution of

all its objects, it is an abstract concept, and not simply the representational equivalent

of a “map” or of a “coverage”.

4.2 Spatial Data Types and Relationships

The base class for all spatial data structures in TerraLib is the TeGeometry' class.
Each geometry has a unique identifier. The spatial data structures in TerraLib include:
(a) TePoint2D: a 2D point. (b) TeLine: a vector of 2D coordinates. (c)
TeLinearRing: a closed line whose last point is the same as its first; (d) TeLineSet:
a set of lines. (¢) TePolygon: a polygon is composed of an outer linear ring (its
external boundary) and inner rings (its holes); (f) TePolygonSet: a set of polygons;
(g) TePointsSet: a set of 2D samples; (h) TeTIN: a triangular mesh; (i) TeArc: an arc
composed by a straight line in the plane; (j) TeNode: a 2D point; (k) TeArcSet: a set
of arcs; (I) TeNodeSet: a set of nodes. The raster data structures include: (a)
TeRaster: a multi-dimensional raster data structure (used for images and grids); (b)
TeCell: a single cell, used for building cell spaces (discussed in more detail in section

6). The basic geometrical classes are shown in Figure 2.

A & TeGeometry A A
)T\
TePoint2D Teline TePolvaon
1] 2+)\ 1+
=— Telrc TelinearRing TeRaster —
Telode TeCel
TeCoord2D
Figure 2— Elementary spatial data structures in TerraLib (partial view)

In order to perform elementary topological operations between spatial data
structures, we have implemented the dimension-extended 9-intersection model

(Clementini and P. di Felice 1995). These operators have been endorsed by the

1 Throughout the text, TerraLib classes and functions are indicated with a Te- prefix.

OpenGIS consortium (McKee and Buehler 1996), and have been given the mnemonic
names: Equal, Disjoint, Touch, Inside (Within), Overlap, and

Cross.

4.3 Spatio-Temporal Model and Queries

There are multiple alternatives for the integration of space and time, which differ on
issues such as: (a) the time model considered (point-based or interval-based); (b)
whether the database stores event time or transaction time (or both); (c¢) support for
versions. In TerraLib, we have chosen to define temporal queries to operate over time
intervals, and to store only event time. The library implements three basic types of

spatio-temporal applications:

e FEvents, defined as independent occurrences in space and time, as in the case of
crimes. Each spatial object associated with an event will have a unique spatio-

temporal identifier.

e Dynamical objects, which have a fixed geometry and variable attributes. This is

the case in dynamic models based on cell spaces.

e Moving regions, whose boundaries and locations can vary in time, as well as

their attributes.

We use temporal predicates over time intervals: before, meets, overlaps, finished,
during, starts, and equals (Allen 1983). Recent research indicates that, although it is
feasible to define a small number of spatial predicates over objects and temporal
predicates over intervals, it is extremely difficult to compute a comparable small size of
predicates that can concisely express an elementary set of spatio-temporal relations
(Erwig and Schneider 2002). There are too many predicates that can be considered
different. Therefore, TerraLib implements a generic type of a spatio-temporal object
set, which is used to store the result of a combined spatial, temporal, and attribute
query. When using the type TeSTObjectSet, the application programmer defines
three different restrictions (spatial, temporal, and attribute) and then uses the method
apply to perform the query. The implementation of the apply method takes into
account issues such as optimization and facilities available at each specific DBMS

supported by TerraLib. The outline of the type definition is shown in Figure 3.

type TeSTObjectSet

Functions

setTemporalRel: layer x interval — void
setSpatialRel: layer x restriction x spt_rel — void
setAttributeRel: layer x where_clause — void

apply: — Boolean

Figure 3: Simplified specification of the type “spatio-temporal object set”.

5 Spatial Data Storage and Retrieval

In TerralLib, there is a basic class (TeDatabase) for storage and retrieval of spatio-
temporal objects in object-relational database management systems. This class
provides a general API that enables the user to: (a) establish the connection with the
database server; (b) execute SQL definition and manipulation commands; (c) create the
database schema; (d) define indexes; (e) define referential integrity; (f) execute
temporal, spatial and attribute queries. For each different DBMS, a sub-class of the
TeDatabase class encapsulates the internal differences of each system, taking
advantage of spatial indexing or in-built optimization, if available. As explained earlier,
the TerraLib database schema uses the concept of layers as containers of spatio-
temporal data. Since a layer is an abstract concept, it is represented as a set of
conventional attribute relations, spatial representation relations and temporal history
relations. To illustrate the database schema, we discuss the relations associated to a set
of spatial data structures (points, polygons, cells and rasters), the temporal relations

and the overall metadata information.

The point geometry relation describes a two dimensional coordinate, or it can be
used to represent a three dimensional point, with the object identifier pointing to the
record on the attribute table that contains the 3d information. The polygon geometry
table describes the area representation of all objects associated to a layer. The external
and internal parts of the polygons are stored in different records; the internal parts
(holes) have information about the external boundary that contains them. The cell
geometry relation defines a partition of the plane into regular cells, which is very useful
for dynamic modelling applications. The raster geometry relation stores large images
and digital terrain models. We use a combination of multi-resolution pyramid and a
tiling scheme is the most appropriate strategy for handling large image files. The tiling

scheme is used as a spatial index, such that when retrieving a section of an image, only

the relevant tiles will be retrieved and decompressed. The multi-resolution pyramid is

very useful for visualization of large data sets, to avoid unnecessary data access.

There are four types of temporal predicates supported in TerraLib, each supported

by a different relation (or combination of relations):

(a) Static attributes, which do not change. In this case, the static attribute relation

stores the attributes associated to each object.

(b) Events, considered as independent occurrences over time. Since events are
considered to be independent occurrences, the event relation stores each object
as a unique entry, together the values of its attributes. When dealing with
events, there is a one-to-one relation between an object geometry and its
temporal lifetime. This relation is used, for example, in the case of crime and

epidemiological studies.

(c) Evolving objects, whose geometries are fixed, but whose attributes vary in time.
This information is stored on a specific relation, which contains, for a given
time interval, the object id and its attribute values valid for the interval. This

relation is used, for example, for dynamic models based on cell spaces.

(d) Moving objects, whose geometries and attributes evolve over time. The key
concept here is the notion of the state an object, defined as a unique
combination of a time interval, a geometrical representation and a set of
descriptive attributes. In this case, we have chosen to use two relations to store
the information: the object state relation and the attribute state relation. At a
given time interval, the object’s state relation records the object identification
(which is unique), its geometry, and an index for its attributes. Considering that
the object geometry may vary asynchronously in relation with its attributes,
efficiency considerations dictate the need for a second relation (the attribute

state relation) which stores the attributes of the object at a given time interval.

The overall information for the database schema is stored in four relations: (a) a
list of all layers available in the database; (b) a list of all temporal relations associated to
each layer; (c) a list of all spatial relations associated to each layer; (d) a list of all
spatial reference systems used for the geographical locations. A simplified version of
the database schema is shown in Figure 3. The top part shows the overall information
relations. The bottom part illustrates some of the spatio-temporal relations. The three

linked relations (te_polygon, te_object_state and te_attribute state)

are used in the case of a set of evolving objects. The lowermost three relations cater for

the other cases of temporal events.

te_spatial_representation
€, repres_id: NUMBER

layer_id: NUMBER (FK)
geom_table: WARCHAaR22ES) — —
description: WARCHARZD
geom_type: HUMBER
initial_time: DATE
final_time: DATE
lower_z: HUMBER(Z0, 100
lawwer_y: NUMBER{ZO, 100
upper_x NUMBER(Z0,100
upper_y: HUMBER(Z0,100

te_projection
& projection_id: NUMBER

name: WARCHARZ(2558)
langd: HUMBER(ZO,10)
latd: NUKBER(ZO, 100
off: NUMBER(Z0,10)
offy: NUMBER(Z0,10)
stlat1: NUMBER(Z0,10)
stlat2: HUMBER(20,10)
unit: WARCHARZED)
scale: NUMBER(Z0,100
hemiz: HUMBER
T datum: WARCHARZZ55)
radiuz: HUMBER(ZD, 100
flattening: NUMBERZ0, 107
d:: HUMBER(Z0,100
dy: HUMBER(20,107
dz: HUMBER(Z0,10)

te_layer
& ayer_id: NUMBER(32)

projection_id: NUMBER (F)
name: WVARCHARZ(ZEG)
lawezr_z: HUMBERCZ0,100
lowmeer_y: HUMBERCZ0,100
upper_x: NUMBER(20,100
upper_y: NUMBER(20,100
initial_time: DATE
final_time: DATE

te_temporal_representation
€, table_id: HUMBER

layer_id: NUMBER(2Z) (FK)
attr_table: WARCHARZ(Z5S)
attr_link: WARCHARZ(Z55)
attr_initial_time: “YARCHARZ(Z55)
attr_final_time: WARCHARZ(Z55)
attr_time_unit: NUMBER
attr_table_type: NUMBER
initial_time: DATE

final_time: DATE

te_polygon teabject state te_attribute_state
% geom_id: NUMBER | h obj_state_id: NUMBER @ athr_state_id; HUMEER
object_id: VARCHARZ(258) geom_table: VARCHARZ(ZSS) by o (oot jd: wARCHARZIZSS)
num_caords: NUMBER geom_id: HUMBER (FI) attribute_1: VARCHARZIZSS)
num_holes: NUMBER initial_time: DATE attribute_n: VARCHARZ(255)
parent_id: NUMBER final_time: DATE =l
lowwer_x: NUMBERCZO, 107 attr_state_id: NUMBER (FK)
lowver_y: HUMBERCZO, 107
upper_x HUMBER(Z0,10)
upper_y: HUMBER(Z0,10)
spatial_data: BLOB
ta_static_attributes te_fixed_geom_dynamic_attr te event

& unique_id: NUMBER

object_id: VARCHARZ(ZES)
initial_time: DATE
final_time: DATE
attribute_1: WARCHARZ(Z55)
attribute_n: WARCHARZ(255)

€l object_id: VARCHARZ(255)

attribute_1: VARCHARZ(255)
attribute_n: VARCHAR2(255)

% object_id: VARCHARZ(255)

initial_time: PATE
final_time: PATE
attribute_1: VARCHARZ(255)
attribute_n: CHAR(1E)

Figure 4 — Simplified ER diagram for the TerralLib database schema

6 Generic Programming and Spatial Analysis in TerraLib

One of the important requirements for an open source product is extensibility. The
available functionality should be extensible by other programmers, but the introduction
of new algorithms should not affect already-existing code. To achieve extensibility, we
have adopted the principles of generic programming: “decide which algorithms you
want; parametrize them so they work for a variety of suitable types and data
structures” (Stroustrup 1997). Following the example of the STL library, which is part

of the C++ standard, we use the concept of iterators. Iterators are generalized pointers

that provide glue for connecting algorithms and data structures. For example, for
computing spatial autocorrelation indexes it is not essential if the elements are
organized as a set of points, a set of polygons, a grid or an image. All that is needed is
the ability to look into a list of values, and to obtain, for each element of the list, its
values and the indexes of the elements of the list that satisfy a certain property (for
example, those that are closer in space than a specified distance). In a similar way, a
large number of spatial analysis algorithms can be abstracted away from a particular

data structure and described only in terms of their properties.

In TerraLib, we have applied the generic programming paradigm to GIS in a four-
step process: (a) finding regularities in spatial data handling algorithms; (b)
generalising the regularities in this algorithms into requirements for traversal of data
structures; (c) providing iterators that support these requirements; (d) designing
algorithms that use these iterators. The library provides iterators for all its spatial data
structures. For example, the class TeRaster provides iterators that allow the
sequential traversal of an image. The simplest iterator traverses the entire image. There

are also iterators that traverse the elements of a portion of the image delimited by a

polygon.

7 Dynamic Modelling with Cell Spaces in TerraLib

Cell-spaces have been used in the last two decades for simulation of urban and
environmental models, mostly in connection with cellular automata (CA). Most cell-
space models are linked to a GIS via loose coupling mechanisms, where the GIS is used
for data conversion and graphic display, and the spatial models are run outside of the
GIS database. This structure is best for linking existing programs, but requires
substantial work in data conversion and causes problems of redundancy and
consistency. Modeling tools also lack sufficiently flexible GIS-like spatial analytical
capabilities. As a result, their ability to convey spatial relations is limited. To address
these shortcomings, cell-space models need to be strongly linked to the GIS
architecture. In a tight level of integration, there would be no strict distinction between
model and GIS, and a dynamic model becomes just one of the applications that could
be constructed using the generic functionality of a GIS toolbox (Wesseling et al. 1996).
Furthermore, modeling and GIS could both be made more robust through their linkage

and co-evolution (Parks 1993).

To provide a tight level of integration between models and GIS, we have implemented
in TerraLib a cell space data structure that, together with support for temporal
predicates (as discussed in Section 4) provides the necessary support for the
implementation of dynamic models based on cell spaces. Cell spaces are a convenient
way of managing geographical data in the new generation of spatially-enabled database
management systems (DBMS). Cell spaces can be viewed either as a generalized raster
data structure, where each cell holds more than one attribute value, or as a set of non-
overlapping polygons. Cell spaces have several advantages over single-attribute raster
data structures. Using single-attribute raster structures, describing a complex spatial
phenomenon requires information to be stored in different files; this separation results
in increased complexity in data management and user interface. In a cell space, such
information is kept together in a single structure, with significant benefits in terms of
visualization and interface. The attributes can be presented to the user in the same way
as vector geographical objects and familiar visualization operations can be applied to

these data sets. An example of the use of cell spaces in TerraLib is shown in figue 5.

=

mask_state mask_macro_zone | setl_nfamilies_70_9Y setl_area 70_99 agr_fJ
1076 |am Central 4671095 146, 23645
1077 |am Central 4671095 146, 23645
1078 |am Central £3.9393%6 23501.954167
1079 |am Central 81582006 29565766222
1080 |pa | Cental 12.805476 1287.076729
1081 |pa | Central 1310852 1329 576364
1082 |pa | Central 1310852 1329575364
1083 |pa | Central 11.466334 1163013824 |
Kl B 7

Figure 5 - Use of cell spaces in TerraLib

8 Some Applications of TerraLib

8.1 TerraView

TerraView is a tool for spatial data analysis, which provides the basic functions of data
conversion, visualization, exploratory spatial data analysis, spatial statistical modelling
and spatial and non-spatial queries. This product is being used as general visualization
tool for TerraLib databases, as well as a specialized application for spatial epidemiology
and crime analysis by Brazilian public institutions (the Brazilian National Institutes of
Health and the National Secretariat for Public Security). The user interface for the

TerraView product is shown in Figure 5.

Flle Dlsplay Layer View Theme Apply Window Spatial Help =8 x

Databases |
& BRioSaude mdb

iwers
- [Vvista_Bairros_95_pol
=@ [MTerna_Bairros_95_pol
b Varidvel. IDADE
-l 0.000000 ~ 8.080000
; 8.080000 ™ 8200000
i 9.200000 ™ 10480001
10430000 ~ 1252000
12520000~ 2572000
2- Grafico de Barras
W FCASAS
PALUGA
O [ATema_RJ_TM_543

[B
el SPRAREA |SPRPERIMET |SPRROTULO |SPRNOME [BAIRROMA NASCTOT |OBITNEQ |OBPOSNEQ | TAXATOT |TAXANED [TAXAPOS PRO[&I
1 168803525 75238003 101 101 TAUA 366 2] 0 5.48 5.46 0
2 4255087.5 11419.5215 107 107/ AMCHIETA 1395 17 9 18.64 1219 6.45
3 31882096 401445 034 034/ALTO DA BOAVISTA 125 2] 1 24 16 3
4 339489475 10089.6953 114 119 CURICICA 489 14 B 409 2883 12.27]
5 | 568884.4375 6019.8882 019 019/COSME VELHO 104 0 0 0 o) 0
53 1334460 76962212 118 118/CIDADE DE DEUS 636 12 5} 26.24 17.49 8.75
7 3474193.5 10569.3232 116 116/AMIL 86 4] 127.91 46.51 81.4
8 8731501 16678.2695 1249 129/CAMORIM 37 1 0 27.03 27.03 0
Q | 121Q34F 20 RGN RA0OR 021 O21HI M AITA 1249 2! 0 155 1R A 0 Jj
Al »

Lung: -43:20:34.36 Lat: -22:47:50.42 x:670050.25 y:7477906.64

Figure 6 — User Interface for the TerraView product

8.2 SIGMUN

SIGMUN is a system for handling cadastral applications in metropolitan areas, used by
the cities of Santos, Sdo Sebastiao, Caraguatatuba, Sao José dos Campos, Sdo Bernardo

do Campo, Cachoeiro de Itapemirim, Vitoria, and in 30 cities of the state of Bahia.

8.3 Forest Fires Database (PROARCO)

PROARCO is a program for Environmental and Forest-fire Risk Monitoring over the
Amazon Region, developed by cooperation amongst the Brazilian National Institute for
Space Research, INPE, and the Brazilian Enviromental Agency (IBAMA). This is an
operational system for the Brazilian Amazon and the Brazilian Cerrado on a daily basis
for detection and monitoring of forest fires. The forest fires database has been
developed using TerraLib, supports queries over spatial-temporal objects and is

available on the Internet (www.dpi.inpe.br/proarco/bdqueimadas). The web interface

provides a visualization of forest fires, as well as satellite imagery and land cover and

cadastral information.

Q-0 HRAG L L B
¢ Enderece | @] httpsfwww.dpiinpe.brjproare v Br
Links @] Sprweb-Froarco] Proarco-lbama 8] BD-Queimadas 8] Queindas-Cptec @] Windows &) O Estado de 5, Paulo &] phpMyaAdmin] Babylon &) Google &) Atusliza Dados @ Banco Itatl @] Prodes Digital

5 BT v
t‘, Queimadasl .'lfeg‘etaticn Fires, Acesso a0 banco de dados dos focos de calor do satélite NOAR 12 = GOES 08

Esfa pigina & aiualizads digriamente - Compativel com infernet Exglorer o Neiscapeiloera .

Parametros da Pesquisa o
Data Inicial (> 01-JUNHO-1995)
Formato aaaa-mm-dd

|2003-05-10

Data Final

[zm03-05-28

[~Fesausean | | Recompor | Imagens Satélite | Mapas Tematicos | Tamanho da Tela |

IMosaicn Landsat 1990/Folitico ELICREe: 2 Grafico de queimadas - Microsoft 1... [= (B[]

Mrquiva Editar Exbir Favoritos Ferramer 2

- HISTOGRAMA DOS FOCOS DE CALOR - i
noaa-12

Distrihigsio dos 3586 focos de 2003-05-10

22003-05-28
Bras i I ;1)
B aageailes —
? Boliviallgry
5 Venemslaliy
Peruj

|

(72—

Gréficos e Histogramas

Tipos | Polition |

Procurar Municipio
Home

Estado Brasileiro

Todos ¥

Arguvo Edtar Exbir Favoritos Ferramentas Ajuda

[12 26 |y 55 zg |2002-05-13 [§OxA-
25e ! eza zasi s ans 1 !
12601667 (55292003 6.00 25.00 20:50: 16 12 it i il ik i r P
5 1z 25 |g 55 30 |2002-05-13 [Wora-
255 eza - zasi antatio |
12605000 55505000 |18.00 L8.00 20:50: 16 12 i i i it 2 £
51230 pgre 2003-05-13 [WOkA-
256 zasi antatio I |
|12 6assen 57.111667 |45 00 4z.00 20:50: 16 |z ™ prCSdEt | jeins [pame [©

51209 | 2002-08-10 [mosA-

as7

|Le.656667 |57.110000 24.00

74 Iniciar

20:50:16 e

e | B TenetiSode3.. | B Ly e, | [E HTL-e pT & @) 0955
- - &

Figure 7 — Forest Fire Database (PROARCO system).

8.4 Emergency Action Plan

InfoPAE is an automated system designed to improve the response to emergency
situations for the petroleum industry. The system offers sophisticated action plans, easy
access to vital information and tight control over the resources allocated to face an
emergency. InfoPAE works with local emergency action plans (LEAPs). A LEAP is a
structured collection of actions, similar to a workflow, coupled with information stored
in geographical as well as conventional databases. During an emergency, the team
follows a previously stored LEAP, backed up by its ancillary information. The team
registers the actions taken and documents eventual difficulties. Later on, upper level
management may use the system to generate reports that are useful to detect eventual
problems with the LEAP or to assess the performance of the team. LEAP frameworks
are very useful to expedite designing a large number of emergency plans. Current plans

include implementing InfoPAE at nearly 80 installations throughout 2003.

9 Conclusions

The design and implementation of TerraLib serve an example of the challenges
involved in the bringing together innovative research ideas into a single framework.
Many of the design decisions reached a compromise between conflicting requirements

of functionality and simplicity, as illustrated by the following issues:

(a) Database schema: to be of practical value, a GIS library must have a database
schema, even if this results in a lack of flexibility. By keeping all spatio-temporal
relations independent, we have tried to allow many alternatives for application
implementation, although we recognize that some users might need to adapt their

current model to use TerralLib.

(b) Spatio-temporal predicates: it would be very difficult to design a system that
would support all theoretical possibilities of spatio-temporal predicates. As an
engineering compromise, we settled for a set of temporal relations that are general

enough to support most real-life situations and can be retrieved efficiently.

(c) Cell spaces: the inclusion of cell spaces in a GIS database environment is an
important improvement on the current situation, where most dynamical models

based on cell spaces have a very loose coupling with a GIS.

(d) Generic programming: given that a lot of spatial analysis algorithms can be
applied to different data structures, the concept of generic programming can be of

much benefit for GIS application development.

TerraLib is an evolving product. Version 3.0 has been released on early May 2004,
with an investment of 40 man-years of work. It comprises 95.000 lines of code in C++,
plus 195.000 lines of code of third-party libraries. The software is available at the

website http://www.terralib.org.

Acknowledgments

The development of TerraLib is a joint effort of INPE (National Institute for Space
Research), TeCGraf/PUC-Rio (Computer Graphics Group at the Catholic University in
Rio de Janeiro), PRODABEL (Informatics Corporation for the City of Belo Horizonte)
and IMPA (Institute for Pure and Applied Mathematics). The library core team, apart
from the authors, include Juan Garrido, Lauro Hara at INPE and Paula Frederick,
Marcelo Metello and Luiz Gustavo Magalhdes at PUC-Rio. The TerraLib project is
partially financed by CNPq grant no. 552040/02-9. Gilberto Camara’s research is also
financed by a CNPq grant no. 300557/96-5. The project has also received financial
support from FAPESP (Fundacao de Amparo a Pesquisa no Estado de Sao Paulo).

support from FAPESP (Fundacao de Amparo a Pesquisa no Estado de Sao Paulo).
References

Allen, J.F. 1983. Maintaining Knowledge about Temporal Intervals. Communications
of the ACM 26 (11):832-843.

Anselin, Luc. 1999. Interactive techniques and Exploratory Spatial Data Analysis. In
Geographical Information Systems: principles, techniques, management and
applications, edited by P. Longley, M. Goodchild, D. Maguire and D. Rhind.
Cambridge: Geoinformation International.

Austern, Matt. 1998. Generic Programming and the STL : Using and Extending the
C++ Standard Template Library. Reading, MA: Addison-Wesley.

Burrough, P. 1998. Dynamic Modelling and Geocomputation. In Geocomputation: A
Primer, edited by P. Longley, S. Brooks, R. McDonnell and B. Macmillan. New
York: John Wiley.

Clementini, E., and P. di Felice. 1995. A Comparisonn of Methods for Representing
Topological Relationships. Information Sciences 3:149-178.

Coplien, James. 1999. Multi-Paradigm Design for C++. Reading: Addison-Wesley.

Couclelis, Helen. 1997. From Cellular Automata to Urban Models: New Principles for
Model Development and Implementation. Environment and Planning B:
Planning and Design 24:165-174.

Egenhofer, Max. 1999. Spatial Information Appliances: A Next Generation of
Geographic Information Systems. Artigo apresentado em First Brazilian
Workshop on Geolnformatics, em Campinas, Brazil.

Erwig, Martin, and Markus Schneider. 2002. Spatio-Temporal Predicates. IEEE
Transactions on Knowledge and Data Engineering 14 (4):881-901.

Ferreira, Karine Reis, Gilberto Queiroz, Joao Argemiro Paiva, Ricardo Cartaxo Souza,
and Gilberto Camara. 2002. Arquitetura de Software para Construcao de
Bancos de Dados Geograficos com SGBD Objeto-Relacionais. Artigo
apresentado em XVII Simpdésio Brasileiro de Banco de Dados, em Gramado, RS.

Fonseca, Frederico, Max Egenhofer, Peggy Agouris, and Gilberto Camara. 2002. Using
Ontologies for Integrated Geographic Information Systems. Transactions in
GIS 6 (3):231-257.

Hornsby, Kathleen, and Max Egenhofer. 2000. Identity-Based Change: A Foundation
for Spatio-Temporal Knowledge Representation. International Journal of
Geographical Information Science 14 (3):207-224.

McKee, L., and K. Buehler, eds. 1996. The Open GIS Guide. Wayland, MA: Open GIS
Consortium, Inc.

Mockus, Audris, Roy Fielding, and James Herbsleb. 2002. Two case studies of open
source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology 11 (3).

Parks, B. O. 1993. The Need for Integration. In Environmental Modelling with GIS,
edited by M. J. Goodchild, B. O. Parks and L. T. Steyaert. Oxford: Oxford
University Press.

Pedrosa, Bianca, Gilberto Camara, Frederico Fonseca, and Ricardo Cartaxo Modesto de
Souza. 2002. TerraML - A Cell-Based Modeling Language for an Open-Source
GIS Library. Artigo apresentado em II International Conference on
Geographical Information Science (GIScience 2002), em Boulder, CO.

Stroustrup, Bjarne. 1997. The C++ Programming Language, 3rd ed.: Addison-Wesley
Publishing Company.

Vinhas, Lubia, Gilberto Ribeiro de Queiroz, Karine Ferreira, Gilberto Camara, and Joao
Argemiro Paiva. 2002. Programacio Genérica Aplicada a Algoritmos
Geograficos. Artigo apresentado em IV Simposio Brasileiro de Geoinformaética,
em Caxambu.

Vinhas, Lubia, Ricardo Cartaxo Modesto de Souza, and Gilberto Camara. 2003. Image
Data Handling in Spatial Databases. Artigo apresentado em V Simpdsio
Brasileiro de Geoinformatica, em Campos do Jordao.

Wesseling, C.G, D. Karssenberg, W.P.A Van Deursen, and P.A Burrough. 1996.
Integrating dynamic environmental models in GIS: the development of a
Dynamic Modelling language. Transactions in GIS 1:40-48.

