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Abstract 

Modeling interactions between social and natural systems is a hard task. It involves 

collecting data, building up a conceptual approach, implementing, calibrating, 

simulating, validating, and possibly repeating these steps again and again. There are 

different conceptual approaches proposed in the literature to tackle this problem. 

However, for complex problems it is better to combine different approaches, giving 

rise to a need for flexible and extensible frameworks for modeling nature-society 

interactions. In this paper we present TerraME, an open source toolbox that supports 

multi-paradigm and multi-scale modeling of coupled human-environmental 

systems. It enables models that combine agent-based, cellular automata, system 

dynamics, and discrete event simulation paradigms. TerraME has a GIS interface for 

managing real-world geospatial data and uses Lua, an expressive scripting language. 
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1 Introduction 

Planners and policy makers need models that capture how human actions act on 

natural systems (Turner et al., 1995). These models represent coupled nature-society 

systems in different ways. Their capacity to capture the impact of human actions in 

nature depends on the spatial and temporal scales used. It also hinges on the chosen 

hypotheses about human behavior and environmental response. Despite the 

challenges involved in building them, these models have an important role. They 

bring forth unstated assumptions hidden in policy proposals, helping us to 

understand the possible results of different choices (Moran, 2010). 

 In this paper, we use the term paradigm to mean a worldview intrinsic to a 

scientific theory. Models of nature-society interactions use different paradigms, 

including cellular automata, agent-based models, map algebra, and system dynamics 

(White and Engelen, 1997; Parker et al., 2003; Karssenberg and De Jong, 2005; 

Batty, 2012). In many cases using a single paradigm is not enough. For complex 

problems, it is better to combine different methods to learn more about how human 

societies interact with nature (Rindfuss et al., 2004). 

 Most designers of nature-society modeling tools choose a paradigm and build 

a toolbox that supports it. Supporting a single paradigm has many advantages. Most 

paradigms have a lot of documentation and user communities, which helps potential 

adopters. However, designer choices may also limit a software’s ability to grow. Tool 

designers have to choose a programming environment, user interfaces, data types and 

their relations, algorithms, data handling, and storage. A design suited for one 

paradigm may not be adequate to support others. Although multi-paradigm 

modeling tools can in theory combine different ways of modeling, building such 

tools is a hard task. This begs the question: “What kinds of software architecture are 

better suited for multi-paradigm modeling of nature-society interactions?” In what 

follows, we refer to this challenge as the multi-paradigm model design problem. 

 This paper presents a possible response to this question. We were inspired by 

how Bjarne Stroustrup built C++ (Stroustrup, 1994). He designed C++ in a bottom-

up, modular fashion, allowing object-oriented, generic programming, and procedural 

programming styles. The flexibility of C++ has no doubt contributed to its 
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widespread use. Following these ideas, our proposed solution for the multi-paradigm 

model design problem stems from three conjectures. First, the tool should provide a 

collection of data types and functions needed by different paradigms. This leads to a 

bottom-up design based on building blocks that are combined by the modeller. The 

second conjecture is that nature-society interactions happen in geographical space. 

Unlike human and capital resources, that are mobile, natural resources are fixed. 

When dealing with environmental problems, we have to capture geographical 

features such as soil, climate, vegetation, and biodiversity in a spatially explicit way. 

Thus, models for nature-society interactions need a spatial component that 

represents natural landscapes and the results of human interactions with them. 

Third, nature-society interactions occur at different scales. Many problems need to be 

expressed as multi-scale models where matter, energy, and information flow 

between different scales.  The toolkit should allow the user to break a complex model 

into simpler sub-models. Each sub-model is a micro-world with its own temporal 

and spatial resolution and behaviour. Sub-models can then be nested and combined 

in different ways. Thus, our proposed architecture puts together a set of data types 

with methods to build and connect geospatial micro-worlds. 

 Based on these conjectures, we have designed and implemented the TerraME 

toolbox. It has building blocks for model development, allowing the user to specify 

the spatial, temporal, and behavioral parts of a model independently. Its components 

are expressive, enabling different approaches to be combined. TerraME’s main aim is 

flexibility. It does not enforce a unique modeling paradigm, but provides the tools 

needed by the modeller. TerraME is an open source software distributed under the 

GNU LGPL license and is available at www.terrame.org. 

 In the next section, we consider the challenges for designing software to 

model nature-society interactions, pointing out the choices we made. We describe 

the general architecture of TerraME in section 3. Section 4 has examples that show 

the main features of TerraME. We finish the paper by reflecting on the contributions 

and the limits of our proposed solution to the multi-paradigm model design 

problem.  



 

 

5 

2 Design choices for nature-society interaction modeling toolboxes 

In this section, we discuss four decisions faced by designers of modeling tools that 

support nature-society interactions. In each case, we point out the choices we made 

in TerraME.  

• Choosing which modeling paradigms to support. 

• Selecting the model interface. 

• Defining how the model interfaces with databases and GIS. 

• Providing tools for verification, calibration, and validation. 

2.1 Choice of modeling paradigms 

Nature-society modeling paradigms include Cellular Automata (von Neumann, 

1966), System Dynamics (Forrester, 1961), Agent Based-Systems (Wooldridge and 

Jennings, 1995), Map Algebra (Tomlin, 1990), and Discrete Event System 

Specification (Zeigler et al., 2005). Cellular automata (CA) are finite machines 

organized in a lattice connected by neighborhood relations. CAs can produce 

complex patterns from simple rules. In the system dynamics view, the world consists 

of stocks of energy, information, or matter. Model rules are differential equations 

defining flows that transport energy, information or matter between stocks. Agent-

based models represent autonomous individuals that interact with themselves, the 

environment, and other agents. Map algebra uses raster maps to allocate properties in 

space and provides functions over maps to convey change. In the discrete event 

formalism, an event is an individual temporal episode. Instead of having functions 

that compute the next step of the simulation, an event-based model has a set of 

events and conditions when they occur.  

 Most existing modeling tools are centered on a paradigm, although they may 

support others. Examples of agent-based modeling tools are NetLogo (Tisue and 

Wilensky, 2004) and RePast (North et al., 2006). System modeling tools include 

STELLA (Roberts et al., 1983), Vensim (Eberlein and Peterson, 1992), and Simile 

(Muetzelfeldt and Massheder, 2003). PCRaster is a map algebra toolbox with 

extensions for dynamic modeling (Karssenberg et al., 2001; Karssenberg et al., 2009; 



 

 

6 

Wesseling et al., 1996). JDEVS is an event-based modeling software (Filippi and 

Bisgambiglia, 2004). Focusing in a paradigm favors knowledge reuse. Users familiar 

with one modeling paradigm will be comfortable when facing a new toolbox based 

on similar ideas. If one knows STELLA, learning Vensim and Simile is 

straightforward. Models developed in NetLogo can be ported to RePast without 

excessive work (Crooks and Castle, 2012). Designers can also extend an existing tool 

to support other paradigms than their original choice.  

  The alternative is to build a multi-paradigm modeling tool in a bottom-up 

way. This is what we did in TerraME since we hold that nature-society relations are 

inherently complex. As expressed by Mike Batty: “in modeling, the quest for 

parsimony, simplicity, and homogeneity is increasingly being confronted by the need 

for plausibility, richness, and heterogeneity” (Batty, 2012). A multi-paradigm toolbox 

allows modellers to combine different paradigms when solving a problem. However, 

such tools are harder to learn since there are many concepts to be grasped. Flexibility 

comes at a price. We recognize that not all users will be willing to make it, although 

we believe the effort is worthwhile. 

2.2 Selecting the model interface 

Modeling toolboxes need to provide analytical power to express complex problems. 

Nearly all tools use a programming language with additional high-level statements. 

Some tools also provide icon-based graphical programming, like the system dynamics 

tools STELLA and Simile. Visual interfaces are appealing and enable decision-makers 

to quickly grasp model behavior. However, it is not easy to express spatial variation 

using icons. Thus, most spatially-based tools use a programming language as their 

main interface.  

 In TerraME, we chose a programming language interface. To support rapid 

model implementation we chose Lua, an open-source interpreted language with 

extensible semantics (Ierusalimschy et al., 1996). The modeller uses a clear and 

expressive language that calls demanding operations in C++, hidden from him. This 

provides a good trade-off between source code directness and computational 

efficiency. 
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2.3 Interfaces with databases and GIS 

Nature-society models need to work with geospatial data for real-world applications. 

Many tools use flat files to store model input and output. However, databases are 

more suitable than flat files to store these datasets because they provide consistency, 

durability, and sharing (Gray, 1981). Using a database also helps the user to organize 

data. The modeller relies on the same database to do exploratory analysis, run the 

simulation, and examine the results. Most recent GIS (geographical information 

systems) have interfaces to databases to provide spatial data access and storage. By 

linking with a GIS, modeling tools inherit its capacity for data handling. Among the 

toolboxes that provide integration with a GIS are NetLogo, RePast, Simile, and 

PCRaster. 

 In TerraME, we chose the TerraLib open source geospatial library (Câmara et 

al., 2008) to serve as its GIS and database interface. TerraLib supports open source 

database management systems such as MySQL and PostgreSQL and its vector data 

model is compatible with OGC (Open Geospatial Consortium) standards. The 

library has functions to read data in different formats and convert them into regular 

or irregular cellular spaces. It also ensures persistent storage and retrieval of modeling 

data. It also has tools for viewing data such as TerraView (Câmara et al., 2008). The 

downside is that adopters of TerraME will also have to use the TerraLib support for 

geospatial databases. Considering the growing acceptance of open source GIS tools 

(Steiniger and Bocher, 2009), we believe this is a manageable risk. 

2.4 Tools for verification, calibration and validation 

The model building steps include conception, structuring, calibration, verification, 

and validation (Jakeman et al., 2006). Toolboxes should provide services and tools to 

support its users in all these stages. Faulty results are hard to spot when shown as 

numbers. Users find and fix conceptual and implementation mistakes more 

efficiently if real-time visualization interfaces are available during simulations. In 

TerraME, as in similar tools, we provide a real-time visualization interface of 

simulation outputs.  
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 Nature-society models need to be calibrated with spatially explicit data. There 

is a considerable body of recent research concerning data assimilation and calibration 

(Beven and Binley, 1992; Janssen and Heuberger, 1995; Lin and Beck, 2012). 

Stochastic data assimilation methods allow models to update their initial conditions 

as new input data becomes available. Applications such as PCRaster have developed 

sophisticated calibration tools that can be used in hydrology, crop growth, and air 

pollution (Karssenberg et al., 2009; Verstegen et al., 2012). In TerraME, we chose 

calibration tools that use aggregated values and spatial explicit model validation 

methods, such as those proposed by Costanza (1989) and Pontius Jr and Millones 

(2011). 

3 TerraME: Terra Modeling Environment 

3.1 System conception and architecture 

The TerraME architecture is shown in Figure 1. Its lowest tier uses the TerraLib C++ 

library (Câmara et al., 2008). The second tier provides support for modeling in C++ 

including agent-based, cell-space, systems-oriented and event-based paradigms. The 

third tier is the interface between TerraME and Lua. It adds data types and functions 

for model simulation and evaluation to Lua. Other mathematical and statistical 

libraries can have their APIs exported to the Lua interpreter. The next tier is the Lua 

interpreter, which takes model source code as input and executes the simulation. The 

last tier consists of end user models. The top of Figure 1 shows four examples of 

models that can be implemented using TerraME.  
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Figure 1: TerraME architecture 

 TerraME considers that a model has spatial, temporal, and behavioral 

dimensions. The spatial dimension deals with the geographical area under study and 

the spatial resolution used for data sampling. The behavioral dimension refers to the 

rules (for example, agent behavior) and to the indirect techniques (for example, 

statistical methods) that represent change. The temporal dimension includes the 

period considered by the model and the frequency when change occurs. To define a 

model, the user sets up instances of TerraME’s spatial, behavioral, and temporal 

types, which are described below.  

3.2 Spatial types 

TerraME provides four spatial types: Cell, CellularSpace, Neighborhood, and 

Trajectory. A cell is a spatial location which has persistent and runtime attributes. 

Persistent attributes are stored in geospatial databases, while runtime values exist 

only during the simulation. A cellular space is a set of cells representing a 

geographical area divided in regular or irregular partitions. Cellular spaces can be 

saved and recovered from TerraLib databases. Each entity of a geospatial database 

(cell, pixel, point, line, or polygon) is loaded as a cell in TerraME. Figure 2 shows a 

database with three different layers: (1) a set of roads represented as lines, (2) 

Brazilian states within Amazonia represented as polygons, and (3) 25x25km cells 

composing a sparse grid representing protected areas in Amazonia. Each of them can 

be read into a cellular space. 
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Figure 2: Squared cells representing a cellular space for Brazilian 
Amazonia. 

 The third spatial type is Neighborhood, a topological representation of 

proximity relations. A neighborhood is a set of pairs (c, w), where c is a neighbor cell 

and w is the weight of the relation. Neighborhoods connect cells inside the same 

cellular space or between spaces. Each cell can have more than one neighborhood. 

TerraME has functions to create simple neighborhoods such as Moore and von 

Neumann. Complex spatial relations use a generalized proximity matrix (GPM). A 

GPM is a directed graph whose weights express relations between geographic objects 

(Aguiar, 2006) that can be loaded from a TerraLib database during simulations. 

TerraME does not work with vector geometries explicitly as most operations over 

such geometries are computationally intensive tasks. This is a limitation, but it has 

the advantage of not computing spatial operations repeatedly during simulations, 

which reduces computational cost. Figure 3 shows different types of neighborhoods. 

Upper tiles show Moore neighborhoods. The lower ones depict neighbors built from 

roads using a GPM. 
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 TerraME supports any algorithm that uses a Euclidean representation of space. 

During simulations, it is possible to compute raster-based operations using the (x, y) 

positions of cells. Neighborhood relations from exogenous vector-based data, such as 

connectivity to markets through roads, can change by loading GPMs registered for 

different simulation times. Once relations are already stored in files, loading them in 

different executions of the model reduces simulation time because they do not need 

to be computed repeatedly. 

 

Figure 3: Different types of neighborhoods. 

 The fourth spatial type, Trajectory, allows the user to define how to go 

through a cellular space. A trajectory is an iterator that selects a subset of a cellular 

space and defines an order for traversing this subspace. Defining trajectories is 

especially useful for allocating change in space. For example, consider a land change 

model where the user is interested in modelling the transition from forest to 

agriculture. The modeller can define a trajectory by selecting all cells representing 

forest and ordering them by their potential for change. Cells with higher potential 

can then be traversed first.  

3.3 Behavioral types 

To describe model behavior, TerraME has two types: Agent and Automaton. Agents 

are uniquely identifiable individuals situated in space. They can represent actors, 

institutions, or even whole systems. Each agent has a state, can move over cellular 

spaces, and can communicate with other agents. TerraME provides functionalities to 

agents such as synchronous and asynchronous messages, connections to cells and 
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other agents, and life span. For model development, agents can be grouped in a 

Society. A society is a collection of agents with the same set of properties and 

temporal resolution. Societies can be created from scratch or retrieved from 

geospatial databases during the simulation. An agent is related to a society as a cell is 

to a cellular space. 

 An automaton is a spatial process that has independent states at each location. 

While an agent acts globally in the cellular space, the automaton acts locally. A single 

agent with a unique internal state can control several cells. An automaton has many 

instances that share the same set of states and attributes, but change independently 

from each other. At a given time, each instance of an automaton can be in a different 

state and have different attribute values. 

 TerraME supports both agents and automata because of the different needs of 

nature-society modeling. Societal models need agents that can move freely in space 

and interact with other agents. By contrast, many natural models (such as 

hydrological ones) need local variations of global laws. The physical laws are the 

same, but the local behavior is constrained by natural variations. Thus, the automaton 

type is better suited for modeling natural processes. 

3.4 Temporal types 

Once spatial structures and behavioral rules are described, it is necessary to define 

temporal structures. TerraME has two temporal types: Event and Timer. An event is a 

time instant when the simulation engine executes operations. A timer is a clock that 

registers a continuous simulation time. It manages an event queue ordered according 

to their priorities and timestamps. Figure 4 shows how event scheduling works in 

TerraME. It contains a timer with a queue of four events. As each event is removed 

from the head of the queue, the timer’s clock is updated with its timestamp. After 

that, the event’s action is executed and the event may be deleted or requeued 

according to its result. 
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Figure 4: Timer and event, the temporal types of TerraME. 

3.5 The Environment type 

In TerraME, the Environment type allows the user to set up multi-scale models. An 

Environment represents a micro-world containing data and commands to be 

executed. It includes the spatial, behavioral, and temporal parts of a model. 

Environments can be nested, supporting multi-scale models. Thus, combining 

different environments, users can build complex models. 

 When developing multi-scale models, the user first defines one environment 

for each model. Then, the internals of each environment are set by defining 

appropriate instances of TerraME’s types. Breaking up a multi-scale model in 

different and independent environments favors interdisciplinary research. Each 

environment may use a different combination of disciplinary knowledge. Figure 5 

shows one environment that covers the whole Amazon region with 50x50km2 cells. 

It has two nested environments, one modeling the Pará state at 10x10km2 and the 

other modeling the Amapá state at 5x5km2. 
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Figure 5: Environments with cellular spaces of different 

resolutions. 

3.6 Calibration and high performance tools 

TerraME provides a genetic algorithm for model calibration. It optimizes model 

parameters to find the best adjustment, using goodness of fit metrics to avoid local 

minima. It can calibrate several parameters simultaneously, even when the model is 

stochastic and the error function is noisy (Fraga et al., 2010). Currently, we are using 

the goodness-of-fit measure proposed by Costanza (1989). Future versions of 

TerraME will include other goodness-of-fit metrics and optimization methods to 

improve calibration. We have also built a high performance layer to use multiple 

cores in shared memory architectures. High performance services can be used during 

model calibration to explore larger search spaces (Silva et al., 2011). A version for 

distributed memory architectures is currently under development. 
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4 Examples of dynamic models in TerraME 

This section shows case studies that explore the functions of TerraME. We focus 

mainly on the toolbox instead of showing details of each model. 

4.1 A simple land change model  

The first example is a land change model whose spatial support is a cellular space of 

25x25 km2 cells representing the Brazilian Amazonia rain forest (shown in Figure 6). 

This model is a simplified version of the model developed by (Aguiar, 2006). 

 

Figure 6: Brazilian Amazonia database. The attribute percentage of deforestation 
is used to colour the map, with green representing the cells with forest and red 

the percentage of deforestation. 

 The first part of the model (shown in Figure 7) describes the spatial entities. 

An object of type CellularSpace is created to read data from the Amazonia database. It 

requires a database location, the name of the theme within the database, and the 

attributes to be read. The “amazonia” CellularSpace connects to a Microsoft Access 

database and loads the attributes “percent_defor” (percentage of deforestation, from 

zero to one), “distance_urban” (distance to urban centers), “inv_distance_market” 
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(inverse of the square of distance to markets), and “protection_area” (percentage of 

protected areas in the cell). These attributes are read for all cells. The last line defines a 

Moore neighborhood for each cell. 

amazonia	
  =	
  CellularSpace	
  {	
  
	
  	
  	
  	
  database	
  =	
  "C:\\amazonia.mdb",	
  
	
  	
  	
  	
  theme	
  =	
  "dinamica",	
  
	
  	
  	
  	
  select	
  =	
  {"percent_defor",	
  "distance_urban",	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  "inv_distance_market",	
  "protection_area"}	
  
}	
  

	
  
amazonia:createNeighborhood{strategy	
  =	
  "moore"} 

Figure 7: Defining a CellularSpace. 

 Once the attributes are read into the cellular space, we define a function called 

calculatePotential() to estimate the deforestation potential of each cell, as shown in 

Figure 8. It takes a cellular space as argument and uses the second order functions 

forEachCell() and forEachNeighbor(). A second order function takes an object and 

another function as arguments and applies this function to every element of the 

given object. We use forEachCell() to traverse a cellular space, applying a function to 

all cells. Inside this function, we call forEachNeighbor() to traverse the neighborhood 

of each cell. In this example, forEachNeighbor() is used to sum the deforestation of all 

neighbors of a cell. The expected deforestation for each cell is a weighted sum of the 

average deforestation of its neighbors, its distance to urban centers, its connection to 

markets, and its percentage of protected areas. Each cell will get a new attribute called 

potential that represents its deforestation potential, computed as the difference 

between the expected deforestation and the current deforestation. The function 

returns the total potential for change, calculated as the sum of each individual 

potential. 
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calculatePotential	
  =	
  function(cellular_space)	
  
	
  	
  	
  	
  total_potential	
  =	
  0	
  

	
  
	
  	
  	
  	
  forEachCell(cellular_space,	
  function(cell)	
  
	
  	
  	
  	
  	
  	
  	
  	
  cell.potential	
  =	
  0	
  
	
  	
  	
  	
  	
  	
  	
  	
  sum_neighbors	
  	
  =	
  0	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  cell.percent_defor	
  >	
  0.9999	
  then	
  return	
  end	
  
	
  	
  	
  	
  	
  	
  	
  	
  forEachNeighbor(cell,	
  function(cell,	
  neighbor)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  sum_neighbors	
  =	
  sum_neighbors	
  +	
  neighbor.percent_defor	
  
	
  	
  	
  	
  	
  	
  	
  	
  end)	
  
	
  	
  	
  	
  	
  	
  	
  	
  expected	
  =	
  -­‐	
  0.15	
  *	
  math.log10(cell.distance_urban)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +	
  0.73	
  *	
  sum_neigh	
  /	
  cell:getNeighborhood():size()	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +	
  0.05	
  *	
  cell.inv_distance_market	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  0.07	
  *	
  cell.protection_area	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +	
  0.77	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  expected	
  >	
  cell.percent_defor	
  then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cell.potential	
  =	
  expected	
  -­‐	
  cell.percent_defor	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  total_potential	
  =	
  total_potential	
  +	
  cell.potential	
  
	
  	
  	
  	
  	
  	
  	
  	
  end	
  
	
  	
  	
  	
  end)	
  
	
  	
  	
  	
  return	
  total_potential	
  
end 

Figure 8: Land change potential procedure. 

 After calculating the potential of each cell, the model allocates 30,000 km2 of 

deforestation in the Brazilian Amazonia over a 50-year time span. To do this, it uses 

the algorithm presented in Figure 9, which takes a cellular space and its total 

potential for change as inputs. It defines a trajectory to traverse the cells that have a 

positive deforestation potential, running from higher to lower potential values. To 

select the cells with positive potential for change, it uses the parameter filter. By 

taking the attribute “potential” as reference, the parameter sort arranges the cells 

from higher to lower potential values. The deforestation area of each cell is then 

allocated as a function of its potential for change. There is an extra check to avoid the 

percent of deforestation of a cell going over 100%. Deforestation takes place until at 

least 99.9% of the initial demand has been allocated. 
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deforest	
  =	
  function(cellular_space,	
  total_potential)	
  
	
  	
  	
  	
  trajectory	
  =	
  Trajectory	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  target	
  =	
  cellular_space,	
  
	
  	
  	
  	
  	
  	
  	
  	
  filter	
  =	
  function(cell)	
  return	
  cell.potential	
  >	
  0	
  end,	
  
	
  	
  	
  	
  	
  	
  	
  	
  sort	
  =	
  compareByAttribute("potential",	
  ">")	
  
	
  	
  	
  	
  }	
  	
  	
  	
  
	
  	
  	
  	
  total_demand	
  =	
  30000	
  
	
  	
  	
  	
  	
  
	
  	
  	
  	
  while	
  total_demand	
  >	
  30	
  do	
  
	
  	
  	
  	
  	
  	
  	
  	
  forEachCell(trajectory,	
  function(cell)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  newarea=	
  (cell.potential/total_potential)	
  *	
  total_demand	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cell.percent_defor=	
  cell.percent_defor	
  +	
  newarea	
  /	
  10000	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  excess	
  =	
  0	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  cell.percent_defor	
  >=	
  1	
  then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  total_potential	
  =	
  total_potential	
  -­‐	
  cell.potential	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cell.potential	
  =	
  0	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  excess	
  =	
  (cell.percent_defor	
  -­‐	
  1)	
  *	
  10000	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cell.percent_defor	
  =	
  1	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  end	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  total_demand	
  =	
  total_demand	
  -­‐	
  (newarea	
  -­‐	
  excess)	
  
	
  	
  	
  	
  	
  	
  	
  	
  end)	
  
	
  	
  	
  	
  end	
  
end	
  

Figure 9: Land change allocation procedure. 

 To wrap up the model, we define its temporal component, composed by a 

timer with a single event, as shown in Figure 10. The event calls calculatePotential() 

to compute the potential and then deforest() to allocate deforestation. The simulation 

starts in 2000 and runs until 2050. Figure 11 shows three parameters of the model 

and the evolution of deforestation along a simulation. 

t	
  =	
  Timer	
  {	
  	
  
	
  	
  	
  	
  Event	
  {time	
  =	
  2000,	
  action	
  =	
  function(event)	
  
	
  	
  	
  	
  	
  	
  	
  	
  total_potential	
  =	
  calculatePotential(amazonia)	
  
	
  	
  	
  	
  	
  	
  	
  	
  deforest(amazonia,	
  total_potential)	
  
	
  	
  	
  	
  end}	
  
}	
  
t:execute(2050) 

Figure 10: A Timer with a single Event to simulate deforestation. 
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Figure 11: Amazonia deforestation model. (a) Distance to cities; (b) Distance to 

roads; (c) Percentage of protected areas; (d) Deforestation in the first, 15th, 35th, 

and 50th year. 

4.2 A multi-scale continent-ocean-atmosphere model 

The second example simulates a water cycle involving atmosphere, continent, and 

ocean, as follows: 

• Water in the continent flows by gravity into the ocean; 

• The height of the ocean is kept the same among its cells; 

• Water in the ocean evaporates to the atmosphere; 

• Water vapour in the atmosphere goes to higher altitudes by convection; 

• High concentrations of water vapor turn into rain, moving water from the 

atmosphere to the continent. 

 The model has three cellular spaces. The atmosphere has a spatial overlay with 

continent and ocean, while some cells in the border of the continent touch other cells 

in the ocean. Figure 12 shows the layers and the water flows. 
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Figure 12: Atmosphere-continent-ocean database and water flows. 

 The first step to implement this model is to define three cellular spaces 

(ocean, athmosphere, and continent). Figure 13 shows the source code for reading the 

continent cellular space from a database. The continent has three attributes: height, 

quantity of water, and infiltration capacity. The other cellular spaces are created in a 

similar way. 

continent	
  =	
  CellularSpace	
  {	
  
	
  	
  	
  	
  database	
  =	
  "C:\\bd_sergipe.mdb",	
  
	
  	
  	
  	
  layer	
  =	
  "sergipe_100x100_mod_con",	
  
	
  	
  	
  	
  select	
  =	
  {"height",	
  "qty_water",	
  "infiltration_capacity"}	
  
} 

Figure 13: A cellular space representing the continent. 

 The next step defines the neighborhoods. In the continent, the neighborhood 

of a cell depends on its height and that of its adjacent cells. Only cells with a lower 

height belong to a cell’s neighborhood. This strategy sets up a local drainage direction 

for each cell to simulate the water flow by gravity. Figure 14 shows the code to create 

the continent’s neighborhood using a filter over a 3x3 neighborhood. In the end of 

this procedure, cells where all 3x3 neighbors are higher will have no neighbors. Such 

cells correspond to depression areas. 

 



 

 

21 

continent:createNeighborhood{	
  
	
  	
  	
  	
  strategy	
  =	
  "3x3",	
  
	
  	
  	
  	
  filter	
  =	
  function(cell,	
  neighbor)	
  
	
  	
  	
  	
  	
  	
  	
  	
  return	
  cell.height	
  >	
  neighbor.height	
  	
  
	
  	
  	
  	
  end} 

Figure 14: Creating a local drainage direction neighborhood. 

 We also need to set connections between cellular spaces to simulate 

evaporation, precipitation, and discharge. Figure 15 shows how to connect the 

atmosphere to the continent using createNeighborhood(). The argument target 

indicates that a connection will be created between cellular spaces, from the one that 

calls the function to its target. The geometric matching between the cellular spaces is 

defined by the argument strategy. The strategy “coord” connects two cellular spaces 

whose spatial positions are the same. Other connections in the model are created 

similarly. As we have more than one neighborhood associated to each cell, we need 

to give a name to the new neighborhood. In this case, the name is 

“atmosphere_continent”. 

atmosphere:createNeighborhood{	
  
	
  	
  	
  	
  strategy	
  =	
  "coord",	
  
	
  	
  	
  	
  target	
  =	
  continent,	
  
	
  	
  	
  	
  name	
  =	
  "atmosphere_continent"	
  
} 

Figure 15: Coupling the atmosphere with the continent. 

 After describing the spatial entities and connecting them, we now set the 

water flows. For the sake of simplicity, we show only the continent’s behavior, as the 

other cellular spaces use similar strategies. Water flows downstream (runoff) and also 

permeates the continent (infiltration). We express these two processes separately in 

the model.  

 In the runoff calculation, water in the higher cells flows to the lower ones. 

Recall the continent’s neighborhood is a local drainage. Using the neighborhood, we 

divide the water flow from a cell to its neighbors, as shown in Figure 16. To compute 

the water flows, we need to keep two copies of each cell. One contains the water that 

will flow out of the cell. The other will receive water from upstream neighbors, 
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which will be kept for the next iteration. For this purpose, TerraME has two versions 

of the attributes of a cellular space in memory. One stores past values of each cell’s 

attributes, while the other stores the current (updated) values. This helps to simulate 

processes that occur in parallel in space. Past attributes are read only, as changes take 

place in the current time. Before updating the cells, it is necessary to synchronize() 

the cellular space. This updates the past values with the current attributes, so we can 

start another simulation step. 

continent_water_balance	
  =	
  function()	
  
	
  	
  	
  	
  continent:synchronize()	
  
	
  	
  	
  	
  forEachCell(continent,	
  function(cell)	
  
	
  	
  	
  	
  	
  	
  	
  	
  cell.qty_water	
  =	
  0	
  
	
  	
  	
  	
  end)	
  

	
  
	
  	
  	
  	
  forEachCell(continent,	
  function(cell)	
  
	
  	
  	
  	
  	
  	
  	
  	
  qty_neigh	
  =	
  cell:getNeighborhood():size()	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  qty_neigh	
  >	
  0	
  then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  runoff	
  =	
  cell.past.qty_water	
  /	
  qty_neigh	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  forEachNeighbor(cell,	
  function(cell,	
  neighbor)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  neighbor.qty_water	
  =	
  neighbor.qty_water	
  +	
  runoff	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  end)	
  
	
  	
  	
  	
  	
  	
  	
  	
  else	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cell.qty_water	
  =	
  cell.past.qty_water	
  
	
  	
  	
  	
  	
  	
  	
  	
  end	
  
	
  	
  	
  	
  end)	
  
end 

Figure 16: Continent water runoff balance. 

 Water infiltration to the continent is a continuous process that needs to be 

discretized within the simulation. It is described as an event-driven function that 

computes a numerical integration algorithm using the built-in function integrate(), 

as shown in Figure 17. When the simulation triggers the event to execute water 

infiltration, the integration is computed for each cell using the period between the 

current time and the last time the event was executed. The main parameter of 

integrate() is the equation to be integrated. In this example, the numerical integration 

uses an infiltration() function that states the water in a cell will be reduced by 0.03 

units per unit of time. The other arguments are the integration method (“euler”), an 

initial value, the triggering event, and the integration step. 
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continent_water_infiltration	
  =	
  function(event)	
  
	
  	
  	
  	
  forEachCell(continent,	
  function(cell)	
  
	
  	
  	
  	
  	
  	
  	
  	
  cell.qty_water	
  =	
  integrate{	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  equation	
  =	
  infiltration,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  method	
  =	
  "euler",	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  initial	
  =	
  cell.qty_water,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  event	
  =	
  event,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  step	
  =	
  0.001	
  
	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  end)	
  
end	
  
	
  
infiltration	
  =	
  function(t)	
  
	
  	
  	
  	
  return	
  -­‐0.03	
  *	
  t	
  
end 

Figure 17: Continent water infiltration. 

 After creating the behavior within the continent, we define temporal entities. 

Figure 18 shows the timer that controls the continent’s simulation. It has two events, 

which may have priorities to define their execution order. Lower values denote 

higher priority, with zero being the default value. The first event simulates water 

balance flows in the continent, while the second simulates the water infiltration. This 

timer and the cellular space representing the continent are then joined to make up an 

Environment. Using similar procedures as those that set up the continent 

environment, we can create the ocean environment and the atmosphere 

environment. 

continent_timer	
  =	
  Timer	
  {	
  
	
  	
  	
  	
  Event	
  {time	
  =	
  1,	
  action	
  =	
  continent_water_balance,	
  priority	
  =	
  5},	
  
	
  	
  	
  	
  Event	
  {time	
  =	
  1,	
  action	
  =	
  continent_water_infiltration},	
  
}	
  
continent_environment	
  =	
  Environment	
  {	
  
	
  	
  	
  	
  continent,	
  
	
  	
  	
  	
  continent_timer	
  
} 

Figure 18: A Timer and Environment for the continent. 

 The next step describes how water moves between cellular spaces: discharge 

(continent to ocean), rain (atmosphere to continent), and evaporation (ocean to 
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atmosphere). Figure 19 describes the source code for the water discharge. As water 

arrives in the lower cells on the border of the continent, the model sends water from 

the continent to the ocean. In this case, functions getNeighborhood() and 

forEachNeighbor() use the name of the neighborhood that connects the continent to 

the ocean as their argument. 

execute_discharge	
  =	
  function()	
  
	
  	
  	
  	
  forEachCell(continent,	
  function(cell)	
  
	
  	
  	
  	
  	
  	
  	
  	
  qty_neighbors	
  =	
  cell:getNeighborhood("continent_ocean"):size()	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  qty_neighbors	
  ==	
  0	
  then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  return	
  
	
  	
  	
  	
  	
  	
  	
  	
  end	
  
	
  	
  	
  	
  	
  	
  	
  	
  qty_water	
  =	
  cell.qty_water	
  /	
  qty_neighbors	
  
	
  	
  	
  	
  	
  	
  	
  	
  cell.qty_water	
  =	
  0	
  
	
  	
  	
  	
  	
  	
  	
  	
  forEachNeighbor(cell,	
   "continent_ocean",	
   function(cell,	
  
neighbor)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  neighbor.qty_water	
  =	
  neighbor.qty_water	
  +	
  qty_water	
  
	
  	
  	
  	
  	
  	
  	
  	
  end)	
  
	
  	
  	
  	
  end)	
  
end 

Figure 19: Source code for water discharge. 

 The three environments (ocean, continent, and atmosphere) are enclosed in a 

global one, as shown in Figure 20. The global environment also has a timer that 

triggers events to distribute the initial flow of water, make it rain, and execute 

evaporation and discharge. The event that executes rain has a parameter period to 

indicate that it will execute three times less frequently than the other events. To 

change the amount of rain along the simulation, one could change function 

execute_rain() or reduce its periodicity. Finally, we set the global environment to be 

executed until time 2000. During the simulation, the global environment 

synchronizes the timers so that all events occur in the correct order. Figure 21 shows 

the flow of water in each cellular space at the end of a simulation. It is possible to see 

the emergence of global patterns of water from the local rules defined by the model. 
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world	
  =	
  Environment	
  {	
  
	
  	
  	
  	
  atmosphere_environment,	
  
	
  	
  	
  	
  continent_environment,	
  
	
  	
  	
  	
  ocean_environment,	
  
	
  	
  	
  	
  Timer	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  Event	
   {time	
   =	
   1,	
   action	
   =	
   input_initial_water,	
   priority	
   =	
   -­‐
10},	
  
	
  	
  	
  	
  	
  	
  	
  	
  Event	
  {time	
  =	
  3,	
  action	
  =	
  execute_rain,	
  period	
  =	
  3},	
  
	
  	
  	
  	
  	
  	
  	
  	
  Event	
  {time	
  =	
  1,	
  action	
  =	
  execute_sun,	
  priority	
  =	
  1},	
  
	
  	
  	
  	
  	
  	
  	
  	
  Event	
  {time	
  =	
  1,	
  action	
  =	
  execute_discharge,	
  priority	
  =	
  1}	
  
	
  	
  	
  	
  }	
  
}	
  
world:execute(2000) 

Figure 20: The world environment. 

 

Figure 21: Results of the water cycle simulation: (a) continent, (b) ocean, (c) 

atmosphere. 

4.3 A simple predator-prey model 

The last example describes a predator-prey model using an agent-based approach. In 

this model, preys and predators are represented as individuals that live in a cellular 

space. The type Agent encapsulates the attributes and behaviour of autonomous 

individuals. A prey has two properties, energy and name, and a function, execute(). 

Energy represents its current fitness, starting with 50 quanta, while name 
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distinguishes preys from predators. The function execute() has a single parameter 

representing the prey itself. It describes the actions executed by the prey at each time 

step. In the beginning, the prey loses one quantum of energy to move from its 

current cell to a random neighbour. Then it checks its energy. When it has 60 or more 

quanta of energy, the prey reproduces asexually, creating a descendant in the same 

cell. When its energy is equal or less than zero, the prey dies. Finally, if there is grass 

in the cell, the prey feeds on it, converting the cell’s cover from grass to soil to 

increasing its own energy by five quanta. Figure 22 represents the prey agent.  

prey	
  =	
  Agent	
  {	
  
	
  	
  	
  	
  energy	
  =	
  40,	
  	
  
	
  	
  	
  	
  name	
  =	
  "prey",	
  	
  
	
  	
  	
  	
  execute	
  =	
  function(self)	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  self.energy	
  =	
  self.energy	
  -­‐	
  1	
  
	
  	
  	
  	
  	
  	
  	
  	
  self:move(self:getCell():getNeighborhood():sample())	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  self.energy	
  >=	
  60	
  then	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  self.energy	
  =	
  self.energy	
  /	
  2	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  self:reproduce()	
  
	
  	
  	
  	
  	
  	
  	
  	
  elseif	
  self.energy	
  <=	
  0	
  then	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  self:die()	
  
	
  	
  	
  	
  	
  	
  	
  	
  end	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  self:getCell().cover	
  ==	
  "grass"	
  then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  self:getCell().cover	
  =	
  "soil"	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  self.energy	
  =	
  self.energy	
  +	
  5	
  
	
  	
  	
  	
  	
  	
  	
  	
  end	
  
	
  	
  	
  	
  end	
  
} 

Figure 22: Describing a prey as an agent. 

 A predator is described similarly. It loses energy, moves, reproduces, and dies 

in the same way as a prey. The difference is that it looks for preys in the cell it 

belongs. We use forEachAgent() to go through a collection of agents, applying a 

function to each one. In this example, we use forEachAgent() to represent how 

predators feed on preys. A predator looks for a prey in the same cell it is located. If 

there is a prey, the predator kills and eats it, increasing its energy by half of the prey’s 

energy. At each time step, the predator stops searching for other preys after finding 

the first one. 
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predator	
  =	
  Agent	
  {	
  
	
  	
  	
  	
  energy	
  =	
  40,	
  	
  
	
  	
  	
  	
  name	
  =	
  "predator",	
  	
  
	
  	
  	
  	
  execute	
  =	
  function(self)	
  
	
  	
  	
  	
  	
  	
  	
  	
  -­‐-­‐	
  ...	
  Lose	
  energy,	
  move,	
  reproduce,	
  and	
  die	
  as	
  a	
  prey	
  
	
  	
  	
  	
  	
  	
  	
  	
  forEachAgent(self:getCell(),	
  function(agent)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  agent.name	
  ==	
  "prey"	
  then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  self.energy	
  =	
  self.energy	
  +	
  agent.energy	
  /	
  2	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  agent:die()	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  return	
  false	
  -­‐-­‐	
  Found	
  a	
  prey,	
  stop	
  forEachAgent	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  end	
  
	
  	
  	
  	
  	
  	
  	
  	
  end)	
  
	
  	
  	
  	
  end	
  
} 

Figure 23: Describing a predator as an agent. 

 The second part of this model creates one society of predators, one of preys 

and a cellular space where they will be located.  The agents defined previously are 

used as prototypes that will be cloned to create both societies. In the example, both 

societies have 200 agents cloned from their respective prototypes. The model also  

creates an environment composed by the cellular space and the societies. To put 

agents in the cellular space, we call the function createPlacement() using a random 

strategy. A timer defines cycles of preys, predators, and grass regrowth (Figure 24).  

 The initial distribution of agents and the result of one simulation are shown in 

Figure 25. Green cells are filled with grass. Black asterisks represent preys, while red 

asterisks represent predators. In the beginning, all of the cells are green since the 

cellular space is filled with grass. As the simulation proceeds, preys feed grass, which 

changes the colour of cells to white. The number of agents within each society also 

changes, as they feed, reproduce, and die. 
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preys	
  	
  	
  	
  	
  =	
  Society	
  {instance	
  =	
  prey,	
  	
  	
  	
  	
  quantity	
  =	
  200}	
  
predators	
  =	
  Society	
  {instance	
  =	
  predator,	
  quantity	
  =	
  200}	
  
	
  
cs	
  =	
  CellularSpace	
  {xdim	
  =	
  100,	
  ydim	
  =	
  100}	
  
cs:createNeighborhood()	
  
	
  
env	
  =	
  Environment	
  {cs,	
  preys,	
  predators}	
  
env:createPlacement{strategy	
  =	
  "random"}	
  
	
  
timer	
  =	
  Timer	
  {	
  
	
  	
  	
  	
  Event	
  {action	
  =	
  grass_regrowth},	
  
	
  	
  	
  	
  Event	
  {action	
  =	
  preys},	
  
	
  	
  	
  	
  Event	
  {action	
  =	
  predators}	
  
}	
  
	
  
timer:execute(40) 

Figure 24: Societies and other objects for the predator-prey model. 

 

Figure 25: Simulation of a predator-prey model (left, initial condition; right, 
final state).  
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5 Discussion and Final Remarks 

In this section, we consider the lessons learned when designing TerraME. We start by 

recalling our conjectures: a toolkit for modeling nature-society interactions needs to 

provide a set of data types with methods to build and connect geospatial micro-

worlds. Thus, the lowermost level of TerraME has two data types: Cell and Agent. 

Cells represent the spatial partitions, with attributes that capture the variations of the 

natural and the human-built worlds. Agent represents autonomous individuals that 

can change the landscape. Two containers come right above both types. A set of cells 

representing a geographic area of interest with a given resolution and extent makes 

up a CellularSpace. A set of agents that have the same set of attributes and basic 

behaviour compose a Society. Both sets can have their entities loaded directly from a 

geospatial database, which simplifies dealing with real-world data. Some simulation 

toolkits have added interfaces to geospatial databases as an extension from their 

original concepts. By contrast, manipulating geospatial data is native in TerraME.  

 Another innovation in TerraME is the idea of environment. An environment 

represents a micro-world with one or more cellular spaces and one or more societies. 

Inside an environment, there is temporal coherence between its events. Using the 

idea of environments, models can be composed of sub-models with different spatial 

and temporal resolution and behaviour. This bottom-up logic allows for considerable 

flexibility. Simple models can be built using a single cellular space or a single society, 

without the need to define environments. Complex models will use environments to 

implement micro-worlds separately and couple them. 

 TerraME’s flexibility comes at a price, however. To understand why, consider 

some of the alternative toolkits. If the user’s problem can be expressed as sets of 

operations over maps, then map algebra toolkits such as PCRaster (Karssenberg et al., 

2001) provide higher-level operations. Instead of iterating over every cell of a map as 

TerraME does, map algebra functions take a map (or a cellular space) as an atomic 

unit. Single statements in map algebra need a considerable number of lines in 

TerraME. Nevertheless, if the problem requires combining agents with maps, it is 

probably easier to express such models in TerraME than in a map algebra toolkit.  
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 We recognize that prospective users will pay a price for the flexibility 

provided by TerraME. The learning curve will be steeper than that of a single-

paradigm model. Also, there are no previous examples of similar tools that the user is 

likely to be familiar with. All of this may place a barrier for first-time users of 

TerraME. Nevertheless, we consider that there is space for a multi-paradigm 

modeling tool. Some problems will be too complex to fit in a single paradigm. Also, 

users that want to combine different approaches can benefit for having these 

concepts supported in a single tool.  

 When comparing nature-society modeling tools, it is useful to consider the 

lessons learned from programming languages in general. It is unlikely that a single 

programming language will fit the needs of all software developers. There is room for 

scripting, object-oriented, functional and multi-paradigm languages. The same view 

applies to modeling. The community will benefit for multiple solutions. We believe 

that TerraME is a new approach to nature-society modeling, which will find its niche 

alongside existing and mature tools. 
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