
This is a post-print version of the paper that was accepted in “Enviromental Modelling
and Software”, 2013 (DOI: 10.1016/j.envsoft.2013.03.002).

TerraME: an extensible toolbox for modelling nature-

society interactions

Tiago Garcia de Senna Carneiro1, Pedro Ribeiro de Andrade2,

Gilberto Câmara3, Antônio Miguel Vieira Monteiro3, Rodrigo Reis Pereira1

1Earth System Simulation Laboratory (TerraLAB), Federal University of Ouro Preto

(UFOP), Campus Universitário, Morro do Cruzeiro, Ouro Preto, MG, 35900-000,

Brazil

2Earth System Science Center (CCST), National Institute for Space Research (INPE),

Av. dos Astronautas, 1758, São José dos Campos, SP, 12227-001, Brazil

3Image Processing Division (DPI), National Institute for Space Research (INPE),

Av. dos Astronautas, 1758, São José dos Campos, SP, 12227-001, Brazil

Abstract

Modeling interactions between social and natural systems is a hard task. It involves

collecting data, building up a conceptual approach, implementing, calibrating,

simulating, validating, and possibly repeating these steps again and again. There are

different conceptual approaches proposed in the literature to tackle this problem.

However, for complex problems it is better to combine different approaches, giving

rise to a need for flexible and extensible frameworks for modeling nature-society

interactions. In this paper we present TerraME, an open source toolbox that supports

multi-paradigm and multi-scale modeling of coupled human-environmental

systems. It enables models that combine agent-based, cellular automata, system

dynamics, and discrete event simulation paradigms. TerraME has a GIS interface for

managing real-world geospatial data and uses Lua, an expressive scripting language.

1 Corresponding author. Tel: +55 (31) 3559-1692; fax: +55 (31) 3559-1660.

E-mail addresses: tiago@iceb.ufop.br, pedro.andrade@inpe.br, gilberto.camara@inpe.br,
miguel@dpi.inpe.br, rreisp@gmail.com.

2

Keywords

Nature-society models, multi-scale modeling, environmental modeling, discrete

event simulation, cellular automata, multi-agent systems.

Software availability

Name: TerraME

Developer:

Federal University of Ouro Preto (UFOP), Brazil

National Institute for Space Research (INPE), Brazil

Contact: tiago@iceb.ufop.br, pedro.andrade@inpe.br

Programming language: Lua

Optional additional software: MySQL and TerraView

License: GNU LGPL (open source)

Website: http://www.terrame.org

3

1 Introduction

Planners and policy makers need models that capture how human actions act on

natural systems (Turner et al., 1995). These models represent coupled nature-society

systems in different ways. Their capacity to capture the impact of human actions in

nature depends on the spatial and temporal scales used. It also hinges on the chosen

hypotheses about human behavior and environmental response. Despite the

challenges involved in building them, these models have an important role. They

bring forth unstated assumptions hidden in policy proposals, helping us to

understand the possible results of different choices (Moran, 2010).

 In this paper, we use the term paradigm to mean a worldview intrinsic to a

scientific theory. Models of nature-society interactions use different paradigms,

including cellular automata, agent-based models, map algebra, and system dynamics

(White and Engelen, 1997; Parker et al., 2003; Karssenberg and De Jong, 2005;

Batty, 2012). In many cases using a single paradigm is not enough. For complex

problems, it is better to combine different methods to learn more about how human

societies interact with nature (Rindfuss et al., 2004).

 Most designers of nature-society modeling tools choose a paradigm and build

a toolbox that supports it. Supporting a single paradigm has many advantages. Most

paradigms have a lot of documentation and user communities, which helps potential

adopters. However, designer choices may also limit a software’s ability to grow. Tool

designers have to choose a programming environment, user interfaces, data types and

their relations, algorithms, data handling, and storage. A design suited for one

paradigm may not be adequate to support others. Although multi-paradigm

modeling tools can in theory combine different ways of modeling, building such

tools is a hard task. This begs the question: “What kinds of software architecture are

better suited for multi-paradigm modeling of nature-society interactions?” In what

follows, we refer to this challenge as the multi-paradigm model design problem.

 This paper presents a possible response to this question. We were inspired by

how Bjarne Stroustrup built C++ (Stroustrup, 1994). He designed C++ in a bottom-

up, modular fashion, allowing object-oriented, generic programming, and procedural

programming styles. The flexibility of C++ has no doubt contributed to its

4

widespread use. Following these ideas, our proposed solution for the multi-paradigm

model design problem stems from three conjectures. First, the tool should provide a

collection of data types and functions needed by different paradigms. This leads to a

bottom-up design based on building blocks that are combined by the modeller. The

second conjecture is that nature-society interactions happen in geographical space.

Unlike human and capital resources, that are mobile, natural resources are fixed.

When dealing with environmental problems, we have to capture geographical

features such as soil, climate, vegetation, and biodiversity in a spatially explicit way.

Thus, models for nature-society interactions need a spatial component that

represents natural landscapes and the results of human interactions with them.

Third, nature-society interactions occur at different scales. Many problems need to be

expressed as multi-scale models where matter, energy, and information flow

between different scales. The toolkit should allow the user to break a complex model

into simpler sub-models. Each sub-model is a micro-world with its own temporal

and spatial resolution and behaviour. Sub-models can then be nested and combined

in different ways. Thus, our proposed architecture puts together a set of data types

with methods to build and connect geospatial micro-worlds.

 Based on these conjectures, we have designed and implemented the TerraME

toolbox. It has building blocks for model development, allowing the user to specify

the spatial, temporal, and behavioral parts of a model independently. Its components

are expressive, enabling different approaches to be combined. TerraME’s main aim is

flexibility. It does not enforce a unique modeling paradigm, but provides the tools

needed by the modeller. TerraME is an open source software distributed under the

GNU LGPL license and is available at www.terrame.org.

 In the next section, we consider the challenges for designing software to

model nature-society interactions, pointing out the choices we made. We describe

the general architecture of TerraME in section 3. Section 4 has examples that show

the main features of TerraME. We finish the paper by reflecting on the contributions

and the limits of our proposed solution to the multi-paradigm model design

problem.

5

2 Design choices for nature-society interaction modeling toolboxes

In this section, we discuss four decisions faced by designers of modeling tools that

support nature-society interactions. In each case, we point out the choices we made

in TerraME.

• Choosing which modeling paradigms to support.

• Selecting the model interface.

• Defining how the model interfaces with databases and GIS.

• Providing tools for verification, calibration, and validation.

2.1 Choice of modeling paradigms

Nature-society modeling paradigms include Cellular Automata (von Neumann,

1966), System Dynamics (Forrester, 1961), Agent Based-Systems (Wooldridge and

Jennings, 1995), Map Algebra (Tomlin, 1990), and Discrete Event System

Specification (Zeigler et al., 2005). Cellular automata (CA) are finite machines

organized in a lattice connected by neighborhood relations. CAs can produce

complex patterns from simple rules. In the system dynamics view, the world consists

of stocks of energy, information, or matter. Model rules are differential equations

defining flows that transport energy, information or matter between stocks. Agent-

based models represent autonomous individuals that interact with themselves, the

environment, and other agents. Map algebra uses raster maps to allocate properties in

space and provides functions over maps to convey change. In the discrete event

formalism, an event is an individual temporal episode. Instead of having functions

that compute the next step of the simulation, an event-based model has a set of

events and conditions when they occur.

 Most existing modeling tools are centered on a paradigm, although they may

support others. Examples of agent-based modeling tools are NetLogo (Tisue and

Wilensky, 2004) and RePast (North et al., 2006). System modeling tools include

STELLA (Roberts et al., 1983), Vensim (Eberlein and Peterson, 1992), and Simile

(Muetzelfeldt and Massheder, 2003). PCRaster is a map algebra toolbox with

extensions for dynamic modeling (Karssenberg et al., 2001; Karssenberg et al., 2009;

6

Wesseling et al., 1996). JDEVS is an event-based modeling software (Filippi and

Bisgambiglia, 2004). Focusing in a paradigm favors knowledge reuse. Users familiar

with one modeling paradigm will be comfortable when facing a new toolbox based

on similar ideas. If one knows STELLA, learning Vensim and Simile is

straightforward. Models developed in NetLogo can be ported to RePast without

excessive work (Crooks and Castle, 2012). Designers can also extend an existing tool

to support other paradigms than their original choice.

 The alternative is to build a multi-paradigm modeling tool in a bottom-up

way. This is what we did in TerraME since we hold that nature-society relations are

inherently complex. As expressed by Mike Batty: “in modeling, the quest for

parsimony, simplicity, and homogeneity is increasingly being confronted by the need

for plausibility, richness, and heterogeneity” (Batty, 2012). A multi-paradigm toolbox

allows modellers to combine different paradigms when solving a problem. However,

such tools are harder to learn since there are many concepts to be grasped. Flexibility

comes at a price. We recognize that not all users will be willing to make it, although

we believe the effort is worthwhile.

2.2 Selecting the model interface

Modeling toolboxes need to provide analytical power to express complex problems.

Nearly all tools use a programming language with additional high-level statements.

Some tools also provide icon-based graphical programming, like the system dynamics

tools STELLA and Simile. Visual interfaces are appealing and enable decision-makers

to quickly grasp model behavior. However, it is not easy to express spatial variation

using icons. Thus, most spatially-based tools use a programming language as their

main interface.

 In TerraME, we chose a programming language interface. To support rapid

model implementation we chose Lua, an open-source interpreted language with

extensible semantics (Ierusalimschy et al., 1996). The modeller uses a clear and

expressive language that calls demanding operations in C++, hidden from him. This

provides a good trade-off between source code directness and computational

efficiency.

7

2.3 Interfaces with databases and GIS

Nature-society models need to work with geospatial data for real-world applications.

Many tools use flat files to store model input and output. However, databases are

more suitable than flat files to store these datasets because they provide consistency,

durability, and sharing (Gray, 1981). Using a database also helps the user to organize

data. The modeller relies on the same database to do exploratory analysis, run the

simulation, and examine the results. Most recent GIS (geographical information

systems) have interfaces to databases to provide spatial data access and storage. By

linking with a GIS, modeling tools inherit its capacity for data handling. Among the

toolboxes that provide integration with a GIS are NetLogo, RePast, Simile, and

PCRaster.

 In TerraME, we chose the TerraLib open source geospatial library (Câmara et

al., 2008) to serve as its GIS and database interface. TerraLib supports open source

database management systems such as MySQL and PostgreSQL and its vector data

model is compatible with OGC (Open Geospatial Consortium) standards. The

library has functions to read data in different formats and convert them into regular

or irregular cellular spaces. It also ensures persistent storage and retrieval of modeling

data. It also has tools for viewing data such as TerraView (Câmara et al., 2008). The

downside is that adopters of TerraME will also have to use the TerraLib support for

geospatial databases. Considering the growing acceptance of open source GIS tools

(Steiniger and Bocher, 2009), we believe this is a manageable risk.

2.4 Tools for verification, calibration and validation

The model building steps include conception, structuring, calibration, verification,

and validation (Jakeman et al., 2006). Toolboxes should provide services and tools to

support its users in all these stages. Faulty results are hard to spot when shown as

numbers. Users find and fix conceptual and implementation mistakes more

efficiently if real-time visualization interfaces are available during simulations. In

TerraME, as in similar tools, we provide a real-time visualization interface of

simulation outputs.

8

 Nature-society models need to be calibrated with spatially explicit data. There

is a considerable body of recent research concerning data assimilation and calibration

(Beven and Binley, 1992; Janssen and Heuberger, 1995; Lin and Beck, 2012).

Stochastic data assimilation methods allow models to update their initial conditions

as new input data becomes available. Applications such as PCRaster have developed

sophisticated calibration tools that can be used in hydrology, crop growth, and air

pollution (Karssenberg et al., 2009; Verstegen et al., 2012). In TerraME, we chose

calibration tools that use aggregated values and spatial explicit model validation

methods, such as those proposed by Costanza (1989) and Pontius Jr and Millones

(2011).

3 TerraME: Terra Modeling Environment

3.1 System conception and architecture

The TerraME architecture is shown in Figure 1. Its lowest tier uses the TerraLib C++

library (Câmara et al., 2008). The second tier provides support for modeling in C++

including agent-based, cell-space, systems-oriented and event-based paradigms. The

third tier is the interface between TerraME and Lua. It adds data types and functions

for model simulation and evaluation to Lua. Other mathematical and statistical

libraries can have their APIs exported to the Lua interpreter. The next tier is the Lua

interpreter, which takes model source code as input and executes the simulation. The

last tier consists of end user models. The top of Figure 1 shows four examples of

models that can be implemented using TerraME.

9

Figure 1: TerraME architecture

 TerraME considers that a model has spatial, temporal, and behavioral

dimensions. The spatial dimension deals with the geographical area under study and

the spatial resolution used for data sampling. The behavioral dimension refers to the

rules (for example, agent behavior) and to the indirect techniques (for example,

statistical methods) that represent change. The temporal dimension includes the

period considered by the model and the frequency when change occurs. To define a

model, the user sets up instances of TerraME’s spatial, behavioral, and temporal

types, which are described below.

3.2 Spatial types

TerraME provides four spatial types: Cell, CellularSpace, Neighborhood, and

Trajectory. A cell is a spatial location which has persistent and runtime attributes.

Persistent attributes are stored in geospatial databases, while runtime values exist

only during the simulation. A cellular space is a set of cells representing a

geographical area divided in regular or irregular partitions. Cellular spaces can be

saved and recovered from TerraLib databases. Each entity of a geospatial database

(cell, pixel, point, line, or polygon) is loaded as a cell in TerraME. Figure 2 shows a

database with three different layers: (1) a set of roads represented as lines, (2)

Brazilian states within Amazonia represented as polygons, and (3) 25x25km cells

composing a sparse grid representing protected areas in Amazonia. Each of them can

be read into a cellular space.

10

Figure 2: Squared cells representing a cellular space for Brazilian
Amazonia.

 The third spatial type is Neighborhood, a topological representation of

proximity relations. A neighborhood is a set of pairs (c, w), where c is a neighbor cell

and w is the weight of the relation. Neighborhoods connect cells inside the same

cellular space or between spaces. Each cell can have more than one neighborhood.

TerraME has functions to create simple neighborhoods such as Moore and von

Neumann. Complex spatial relations use a generalized proximity matrix (GPM). A

GPM is a directed graph whose weights express relations between geographic objects

(Aguiar, 2006) that can be loaded from a TerraLib database during simulations.

TerraME does not work with vector geometries explicitly as most operations over

such geometries are computationally intensive tasks. This is a limitation, but it has

the advantage of not computing spatial operations repeatedly during simulations,

which reduces computational cost. Figure 3 shows different types of neighborhoods.

Upper tiles show Moore neighborhoods. The lower ones depict neighbors built from

roads using a GPM.

11

 TerraME supports any algorithm that uses a Euclidean representation of space.

During simulations, it is possible to compute raster-based operations using the (x, y)

positions of cells. Neighborhood relations from exogenous vector-based data, such as

connectivity to markets through roads, can change by loading GPMs registered for

different simulation times. Once relations are already stored in files, loading them in

different executions of the model reduces simulation time because they do not need

to be computed repeatedly.

Figure 3: Different types of neighborhoods.

 The fourth spatial type, Trajectory, allows the user to define how to go

through a cellular space. A trajectory is an iterator that selects a subset of a cellular

space and defines an order for traversing this subspace. Defining trajectories is

especially useful for allocating change in space. For example, consider a land change

model where the user is interested in modelling the transition from forest to

agriculture. The modeller can define a trajectory by selecting all cells representing

forest and ordering them by their potential for change. Cells with higher potential

can then be traversed first.

3.3 Behavioral types

To describe model behavior, TerraME has two types: Agent and Automaton. Agents

are uniquely identifiable individuals situated in space. They can represent actors,

institutions, or even whole systems. Each agent has a state, can move over cellular

spaces, and can communicate with other agents. TerraME provides functionalities to

agents such as synchronous and asynchronous messages, connections to cells and

12

other agents, and life span. For model development, agents can be grouped in a

Society. A society is a collection of agents with the same set of properties and

temporal resolution. Societies can be created from scratch or retrieved from

geospatial databases during the simulation. An agent is related to a society as a cell is

to a cellular space.

 An automaton is a spatial process that has independent states at each location.

While an agent acts globally in the cellular space, the automaton acts locally. A single

agent with a unique internal state can control several cells. An automaton has many

instances that share the same set of states and attributes, but change independently

from each other. At a given time, each instance of an automaton can be in a different

state and have different attribute values.

 TerraME supports both agents and automata because of the different needs of

nature-society modeling. Societal models need agents that can move freely in space

and interact with other agents. By contrast, many natural models (such as

hydrological ones) need local variations of global laws. The physical laws are the

same, but the local behavior is constrained by natural variations. Thus, the automaton

type is better suited for modeling natural processes.

3.4 Temporal types

Once spatial structures and behavioral rules are described, it is necessary to define

temporal structures. TerraME has two temporal types: Event and Timer. An event is a

time instant when the simulation engine executes operations. A timer is a clock that

registers a continuous simulation time. It manages an event queue ordered according

to their priorities and timestamps. Figure 4 shows how event scheduling works in

TerraME. It contains a timer with a queue of four events. As each event is removed

from the head of the queue, the timer’s clock is updated with its timestamp. After

that, the event’s action is executed and the event may be deleted or requeued

according to its result.

13

Figure 4: Timer and event, the temporal types of TerraME.

3.5 The Environment type

In TerraME, the Environment type allows the user to set up multi-scale models. An

Environment represents a micro-world containing data and commands to be

executed. It includes the spatial, behavioral, and temporal parts of a model.

Environments can be nested, supporting multi-scale models. Thus, combining

different environments, users can build complex models.

 When developing multi-scale models, the user first defines one environment

for each model. Then, the internals of each environment are set by defining

appropriate instances of TerraME’s types. Breaking up a multi-scale model in

different and independent environments favors interdisciplinary research. Each

environment may use a different combination of disciplinary knowledge. Figure 5

shows one environment that covers the whole Amazon region with 50x50km2 cells.

It has two nested environments, one modeling the Pará state at 10x10km2 and the

other modeling the Amapá state at 5x5km2.

14

Figure 5: Environments with cellular spaces of different

resolutions.

3.6 Calibration and high performance tools

TerraME provides a genetic algorithm for model calibration. It optimizes model

parameters to find the best adjustment, using goodness of fit metrics to avoid local

minima. It can calibrate several parameters simultaneously, even when the model is

stochastic and the error function is noisy (Fraga et al., 2010). Currently, we are using

the goodness-of-fit measure proposed by Costanza (1989). Future versions of

TerraME will include other goodness-of-fit metrics and optimization methods to

improve calibration. We have also built a high performance layer to use multiple

cores in shared memory architectures. High performance services can be used during

model calibration to explore larger search spaces (Silva et al., 2011). A version for

distributed memory architectures is currently under development.

15

4 Examples of dynamic models in TerraME

This section shows case studies that explore the functions of TerraME. We focus

mainly on the toolbox instead of showing details of each model.

4.1 A simple land change model

The first example is a land change model whose spatial support is a cellular space of

25x25 km2 cells representing the Brazilian Amazonia rain forest (shown in Figure 6).

This model is a simplified version of the model developed by (Aguiar, 2006).

Figure 6: Brazilian Amazonia database. The attribute percentage of deforestation
is used to colour the map, with green representing the cells with forest and red

the percentage of deforestation.

 The first part of the model (shown in Figure 7) describes the spatial entities.

An object of type CellularSpace is created to read data from the Amazonia database. It

requires a database location, the name of the theme within the database, and the

attributes to be read. The “amazonia” CellularSpace connects to a Microsoft Access

database and loads the attributes “percent_defor” (percentage of deforestation, from

zero to one), “distance_urban” (distance to urban centers), “inv_distance_market”

16

(inverse of the square of distance to markets), and “protection_area” (percentage of

protected areas in the cell). These attributes are read for all cells. The last line defines a

Moore neighborhood for each cell.

amazonia	
 =	
 CellularSpace	
 {	

	
 	
 	
 	
 database	
 =	
 "C:\\amazonia.mdb",	

	
 	
 	
 	
 theme	
 =	
 "dinamica",	

	
 	
 	
 	
 select	
 =	
 {"percent_defor",	
 "distance_urban",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "inv_distance_market",	
 "protection_area"}	

}	

	

amazonia:createNeighborhood{strategy	
 =	
 "moore"}

Figure 7: Defining a CellularSpace.

 Once the attributes are read into the cellular space, we define a function called

calculatePotential() to estimate the deforestation potential of each cell, as shown in

Figure 8. It takes a cellular space as argument and uses the second order functions

forEachCell() and forEachNeighbor(). A second order function takes an object and

another function as arguments and applies this function to every element of the

given object. We use forEachCell() to traverse a cellular space, applying a function to

all cells. Inside this function, we call forEachNeighbor() to traverse the neighborhood

of each cell. In this example, forEachNeighbor() is used to sum the deforestation of all

neighbors of a cell. The expected deforestation for each cell is a weighted sum of the

average deforestation of its neighbors, its distance to urban centers, its connection to

markets, and its percentage of protected areas. Each cell will get a new attribute called

potential that represents its deforestation potential, computed as the difference

between the expected deforestation and the current deforestation. The function

returns the total potential for change, calculated as the sum of each individual

potential.

17

calculatePotential	
 =	
 function(cellular_space)	

	
 	
 	
 	
 total_potential	
 =	
 0	

	

	
 	
 	
 	
 forEachCell(cellular_space,	
 function(cell)	

	
 	
 	
 	
 	
 	
 	
 	
 cell.potential	
 =	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 sum_neighbors	
 	
 =	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 cell.percent_defor	
 >	
 0.9999	
 then	
 return	
 end	

	
 	
 	
 	
 	
 	
 	
 	
 forEachNeighbor(cell,	
 function(cell,	
 neighbor)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 sum_neighbors	
 =	
 sum_neighbors	
 +	
 neighbor.percent_defor	

	
 	
 	
 	
 	
 	
 	
 	
 end)	

	
 	
 	
 	
 	
 	
 	
 	
 expected	
 =	
 -­‐	
 0.15	
 *	
 math.log10(cell.distance_urban)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 0.73	
 *	
 sum_neigh	
 /	
 cell:getNeighborhood():size()	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 0.05	
 *	
 cell.inv_distance_market	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐	
 0.07	
 *	
 cell.protection_area	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 0.77	

	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 expected	
 >	
 cell.percent_defor	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 cell.potential	
 =	
 expected	
 -­‐	
 cell.percent_defor	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 total_potential	
 =	
 total_potential	
 +	
 cell.potential	

	
 	
 	
 	
 	
 	
 	
 	
 end	

	
 	
 	
 	
 end)	

	
 	
 	
 	
 return	
 total_potential	

end

Figure 8: Land change potential procedure.

 After calculating the potential of each cell, the model allocates 30,000 km2 of

deforestation in the Brazilian Amazonia over a 50-year time span. To do this, it uses

the algorithm presented in Figure 9, which takes a cellular space and its total

potential for change as inputs. It defines a trajectory to traverse the cells that have a

positive deforestation potential, running from higher to lower potential values. To

select the cells with positive potential for change, it uses the parameter filter. By

taking the attribute “potential” as reference, the parameter sort arranges the cells

from higher to lower potential values. The deforestation area of each cell is then

allocated as a function of its potential for change. There is an extra check to avoid the

percent of deforestation of a cell going over 100%. Deforestation takes place until at

least 99.9% of the initial demand has been allocated.

18

deforest	
 =	
 function(cellular_space,	
 total_potential)	

	
 	
 	
 	
 trajectory	
 =	
 Trajectory	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 target	
 =	
 cellular_space,	

	
 	
 	
 	
 	
 	
 	
 	
 filter	
 =	
 function(cell)	
 return	
 cell.potential	
 >	
 0	
 end,	

	
 	
 	
 	
 	
 	
 	
 	
 sort	
 =	
 compareByAttribute("potential",	
 ">")	

	
 	
 	
 	
 }	
 	
 	
 	

	
 	
 	
 	
 total_demand	
 =	
 30000	

	
 	
 	
 	
 	

	
 	
 	
 	
 while	
 total_demand	
 >	
 30	
 do	

	
 	
 	
 	
 	
 	
 	
 	
 forEachCell(trajectory,	
 function(cell)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 newarea=	
 (cell.potential/total_potential)	
 *	
 total_demand	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 cell.percent_defor=	
 cell.percent_defor	
 +	
 newarea	
 /	
 10000	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 excess	
 =	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 cell.percent_defor	
 >=	
 1	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 total_potential	
 =	
 total_potential	
 -­‐	
 cell.potential	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 cell.potential	
 =	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 excess	
 =	
 (cell.percent_defor	
 -­‐	
 1)	
 *	
 10000	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 cell.percent_defor	
 =	
 1	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 total_demand	
 =	
 total_demand	
 -­‐	
 (newarea	
 -­‐	
 excess)	

	
 	
 	
 	
 	
 	
 	
 	
 end)	

	
 	
 	
 	
 end	

end	

Figure 9: Land change allocation procedure.

 To wrap up the model, we define its temporal component, composed by a

timer with a single event, as shown in Figure 10. The event calls calculatePotential()

to compute the potential and then deforest() to allocate deforestation. The simulation

starts in 2000 and runs until 2050. Figure 11 shows three parameters of the model

and the evolution of deforestation along a simulation.

t	
 =	
 Timer	
 {	
 	

	
 	
 	
 	
 Event	
 {time	
 =	
 2000,	
 action	
 =	
 function(event)	

	
 	
 	
 	
 	
 	
 	
 	
 total_potential	
 =	
 calculatePotential(amazonia)	

	
 	
 	
 	
 	
 	
 	
 	
 deforest(amazonia,	
 total_potential)	

	
 	
 	
 	
 end}	

}	

t:execute(2050)

Figure 10: A Timer with a single Event to simulate deforestation.

19

Figure 11: Amazonia deforestation model. (a) Distance to cities; (b) Distance to

roads; (c) Percentage of protected areas; (d) Deforestation in the first, 15th, 35th,

and 50th year.

4.2 A multi-scale continent-ocean-atmosphere model

The second example simulates a water cycle involving atmosphere, continent, and

ocean, as follows:

• Water in the continent flows by gravity into the ocean;

• The height of the ocean is kept the same among its cells;

• Water in the ocean evaporates to the atmosphere;

• Water vapour in the atmosphere goes to higher altitudes by convection;

• High concentrations of water vapor turn into rain, moving water from the

atmosphere to the continent.

 The model has three cellular spaces. The atmosphere has a spatial overlay with

continent and ocean, while some cells in the border of the continent touch other cells

in the ocean. Figure 12 shows the layers and the water flows.

20

Figure 12: Atmosphere-continent-ocean database and water flows.

 The first step to implement this model is to define three cellular spaces

(ocean, athmosphere, and continent). Figure 13 shows the source code for reading the

continent cellular space from a database. The continent has three attributes: height,

quantity of water, and infiltration capacity. The other cellular spaces are created in a

similar way.

continent	
 =	
 CellularSpace	
 {	

	
 	
 	
 	
 database	
 =	
 "C:\\bd_sergipe.mdb",	

	
 	
 	
 	
 layer	
 =	
 "sergipe_100x100_mod_con",	

	
 	
 	
 	
 select	
 =	
 {"height",	
 "qty_water",	
 "infiltration_capacity"}	

}

Figure 13: A cellular space representing the continent.

 The next step defines the neighborhoods. In the continent, the neighborhood

of a cell depends on its height and that of its adjacent cells. Only cells with a lower

height belong to a cell’s neighborhood. This strategy sets up a local drainage direction

for each cell to simulate the water flow by gravity. Figure 14 shows the code to create

the continent’s neighborhood using a filter over a 3x3 neighborhood. In the end of

this procedure, cells where all 3x3 neighbors are higher will have no neighbors. Such

cells correspond to depression areas.

21

continent:createNeighborhood{	

	
 	
 	
 	
 strategy	
 =	
 "3x3",	

	
 	
 	
 	
 filter	
 =	
 function(cell,	
 neighbor)	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 cell.height	
 >	
 neighbor.height	
 	

	
 	
 	
 	
 end}

Figure 14: Creating a local drainage direction neighborhood.

 We also need to set connections between cellular spaces to simulate

evaporation, precipitation, and discharge. Figure 15 shows how to connect the

atmosphere to the continent using createNeighborhood(). The argument target

indicates that a connection will be created between cellular spaces, from the one that

calls the function to its target. The geometric matching between the cellular spaces is

defined by the argument strategy. The strategy “coord” connects two cellular spaces

whose spatial positions are the same. Other connections in the model are created

similarly. As we have more than one neighborhood associated to each cell, we need

to give a name to the new neighborhood. In this case, the name is

“atmosphere_continent”.

atmosphere:createNeighborhood{	

	
 	
 	
 	
 strategy	
 =	
 "coord",	

	
 	
 	
 	
 target	
 =	
 continent,	

	
 	
 	
 	
 name	
 =	
 "atmosphere_continent"	

}

Figure 15: Coupling the atmosphere with the continent.

 After describing the spatial entities and connecting them, we now set the

water flows. For the sake of simplicity, we show only the continent’s behavior, as the

other cellular spaces use similar strategies. Water flows downstream (runoff) and also

permeates the continent (infiltration). We express these two processes separately in

the model.

 In the runoff calculation, water in the higher cells flows to the lower ones.

Recall the continent’s neighborhood is a local drainage. Using the neighborhood, we

divide the water flow from a cell to its neighbors, as shown in Figure 16. To compute

the water flows, we need to keep two copies of each cell. One contains the water that

will flow out of the cell. The other will receive water from upstream neighbors,

22

which will be kept for the next iteration. For this purpose, TerraME has two versions

of the attributes of a cellular space in memory. One stores past values of each cell’s

attributes, while the other stores the current (updated) values. This helps to simulate

processes that occur in parallel in space. Past attributes are read only, as changes take

place in the current time. Before updating the cells, it is necessary to synchronize()

the cellular space. This updates the past values with the current attributes, so we can

start another simulation step.

continent_water_balance	
 =	
 function()	

	
 	
 	
 	
 continent:synchronize()	

	
 	
 	
 	
 forEachCell(continent,	
 function(cell)	

	
 	
 	
 	
 	
 	
 	
 	
 cell.qty_water	
 =	
 0	

	
 	
 	
 	
 end)	

	

	
 	
 	
 	
 forEachCell(continent,	
 function(cell)	

	
 	
 	
 	
 	
 	
 	
 	
 qty_neigh	
 =	
 cell:getNeighborhood():size()	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 qty_neigh	
 >	
 0	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 runoff	
 =	
 cell.past.qty_water	
 /	
 qty_neigh	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 forEachNeighbor(cell,	
 function(cell,	
 neighbor)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 neighbor.qty_water	
 =	
 neighbor.qty_water	
 +	
 runoff	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end)	

	
 	
 	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 cell.qty_water	
 =	
 cell.past.qty_water	

	
 	
 	
 	
 	
 	
 	
 	
 end	

	
 	
 	
 	
 end)	

end

Figure 16: Continent water runoff balance.

 Water infiltration to the continent is a continuous process that needs to be

discretized within the simulation. It is described as an event-driven function that

computes a numerical integration algorithm using the built-in function integrate(),

as shown in Figure 17. When the simulation triggers the event to execute water

infiltration, the integration is computed for each cell using the period between the

current time and the last time the event was executed. The main parameter of

integrate() is the equation to be integrated. In this example, the numerical integration

uses an infiltration() function that states the water in a cell will be reduced by 0.03

units per unit of time. The other arguments are the integration method (“euler”), an

initial value, the triggering event, and the integration step.

23

continent_water_infiltration	
 =	
 function(event)	

	
 	
 	
 	
 forEachCell(continent,	
 function(cell)	

	
 	
 	
 	
 	
 	
 	
 	
 cell.qty_water	
 =	
 integrate{	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 equation	
 =	
 infiltration,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 method	
 =	
 "euler",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 initial	
 =	
 cell.qty_water,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 event	
 =	
 event,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 step	
 =	
 0.001	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 end)	

end	

	

infiltration	
 =	
 function(t)	

	
 	
 	
 	
 return	
 -­‐0.03	
 *	
 t	

end

Figure 17: Continent water infiltration.

 After creating the behavior within the continent, we define temporal entities.

Figure 18 shows the timer that controls the continent’s simulation. It has two events,

which may have priorities to define their execution order. Lower values denote

higher priority, with zero being the default value. The first event simulates water

balance flows in the continent, while the second simulates the water infiltration. This

timer and the cellular space representing the continent are then joined to make up an

Environment. Using similar procedures as those that set up the continent

environment, we can create the ocean environment and the atmosphere

environment.

continent_timer	
 =	
 Timer	
 {	

	
 	
 	
 	
 Event	
 {time	
 =	
 1,	
 action	
 =	
 continent_water_balance,	
 priority	
 =	
 5},	

	
 	
 	
 	
 Event	
 {time	
 =	
 1,	
 action	
 =	
 continent_water_infiltration},	

}	

continent_environment	
 =	
 Environment	
 {	

	
 	
 	
 	
 continent,	

	
 	
 	
 	
 continent_timer	

}

Figure 18: A Timer and Environment for the continent.

 The next step describes how water moves between cellular spaces: discharge

(continent to ocean), rain (atmosphere to continent), and evaporation (ocean to

24

atmosphere). Figure 19 describes the source code for the water discharge. As water

arrives in the lower cells on the border of the continent, the model sends water from

the continent to the ocean. In this case, functions getNeighborhood() and

forEachNeighbor() use the name of the neighborhood that connects the continent to

the ocean as their argument.

execute_discharge	
 =	
 function()	

	
 	
 	
 	
 forEachCell(continent,	
 function(cell)	

	
 	
 	
 	
 	
 	
 	
 	
 qty_neighbors	
 =	
 cell:getNeighborhood("continent_ocean"):size()	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 qty_neighbors	
 ==	
 0	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	

	
 	
 	
 	
 	
 	
 	
 	
 end	

	
 	
 	
 	
 	
 	
 	
 	
 qty_water	
 =	
 cell.qty_water	
 /	
 qty_neighbors	

	
 	
 	
 	
 	
 	
 	
 	
 cell.qty_water	
 =	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 forEachNeighbor(cell,	
 "continent_ocean",	
 function(cell,	

neighbor)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 neighbor.qty_water	
 =	
 neighbor.qty_water	
 +	
 qty_water	

	
 	
 	
 	
 	
 	
 	
 	
 end)	

	
 	
 	
 	
 end)	

end

Figure 19: Source code for water discharge.

 The three environments (ocean, continent, and atmosphere) are enclosed in a

global one, as shown in Figure 20. The global environment also has a timer that

triggers events to distribute the initial flow of water, make it rain, and execute

evaporation and discharge. The event that executes rain has a parameter period to

indicate that it will execute three times less frequently than the other events. To

change the amount of rain along the simulation, one could change function

execute_rain() or reduce its periodicity. Finally, we set the global environment to be

executed until time 2000. During the simulation, the global environment

synchronizes the timers so that all events occur in the correct order. Figure 21 shows

the flow of water in each cellular space at the end of a simulation. It is possible to see

the emergence of global patterns of water from the local rules defined by the model.

25

world	
 =	
 Environment	
 {	

	
 	
 	
 	
 atmosphere_environment,	

	
 	
 	
 	
 continent_environment,	

	
 	
 	
 	
 ocean_environment,	

	
 	
 	
 	
 Timer	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 Event	
 {time	
 =	
 1,	
 action	
 =	
 input_initial_water,	
 priority	
 =	
 -­‐
10},	

	
 	
 	
 	
 	
 	
 	
 	
 Event	
 {time	
 =	
 3,	
 action	
 =	
 execute_rain,	
 period	
 =	
 3},	

	
 	
 	
 	
 	
 	
 	
 	
 Event	
 {time	
 =	
 1,	
 action	
 =	
 execute_sun,	
 priority	
 =	
 1},	

	
 	
 	
 	
 	
 	
 	
 	
 Event	
 {time	
 =	
 1,	
 action	
 =	
 execute_discharge,	
 priority	
 =	
 1}	

	
 	
 	
 	
 }	

}	

world:execute(2000)

Figure 20: The world environment.

Figure 21: Results of the water cycle simulation: (a) continent, (b) ocean, (c)

atmosphere.

4.3 A simple predator-prey model

The last example describes a predator-prey model using an agent-based approach. In

this model, preys and predators are represented as individuals that live in a cellular

space. The type Agent encapsulates the attributes and behaviour of autonomous

individuals. A prey has two properties, energy and name, and a function, execute().

Energy represents its current fitness, starting with 50 quanta, while name

26

distinguishes preys from predators. The function execute() has a single parameter

representing the prey itself. It describes the actions executed by the prey at each time

step. In the beginning, the prey loses one quantum of energy to move from its

current cell to a random neighbour. Then it checks its energy. When it has 60 or more

quanta of energy, the prey reproduces asexually, creating a descendant in the same

cell. When its energy is equal or less than zero, the prey dies. Finally, if there is grass

in the cell, the prey feeds on it, converting the cell’s cover from grass to soil to

increasing its own energy by five quanta. Figure 22 represents the prey agent.

prey	
 =	
 Agent	
 {	

	
 	
 	
 	
 energy	
 =	
 40,	
 	

	
 	
 	
 	
 name	
 =	
 "prey",	
 	

	
 	
 	
 	
 execute	
 =	
 function(self)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 self.energy	
 =	
 self.energy	
 -­‐	
 1	

	
 	
 	
 	
 	
 	
 	
 	
 self:move(self:getCell():getNeighborhood():sample())	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 self.energy	
 >=	
 60	
 then	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 self.energy	
 =	
 self.energy	
 /	
 2	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 self:reproduce()	

	
 	
 	
 	
 	
 	
 	
 	
 elseif	
 self.energy	
 <=	
 0	
 then	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 self:die()	

	
 	
 	
 	
 	
 	
 	
 	
 end	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 self:getCell().cover	
 ==	
 "grass"	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 self:getCell().cover	
 =	
 "soil"	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 self.energy	
 =	
 self.energy	
 +	
 5	

	
 	
 	
 	
 	
 	
 	
 	
 end	

	
 	
 	
 	
 end	

}

Figure 22: Describing a prey as an agent.

 A predator is described similarly. It loses energy, moves, reproduces, and dies

in the same way as a prey. The difference is that it looks for preys in the cell it

belongs. We use forEachAgent() to go through a collection of agents, applying a

function to each one. In this example, we use forEachAgent() to represent how

predators feed on preys. A predator looks for a prey in the same cell it is located. If

there is a prey, the predator kills and eats it, increasing its energy by half of the prey’s

energy. At each time step, the predator stops searching for other preys after finding

the first one.

27

predator	
 =	
 Agent	
 {	

	
 	
 	
 	
 energy	
 =	
 40,	
 	

	
 	
 	
 	
 name	
 =	
 "predator",	
 	

	
 	
 	
 	
 execute	
 =	
 function(self)	

	
 	
 	
 	
 	
 	
 	
 	
 -­‐-­‐	
 ...	
 Lose	
 energy,	
 move,	
 reproduce,	
 and	
 die	
 as	
 a	
 prey	

	
 	
 	
 	
 	
 	
 	
 	
 forEachAgent(self:getCell(),	
 function(agent)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 agent.name	
 ==	
 "prey"	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 self.energy	
 =	
 self.energy	
 +	
 agent.energy	
 /	
 2	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 agent:die()	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 false	
 -­‐-­‐	
 Found	
 a	
 prey,	
 stop	
 forEachAgent	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end	

	
 	
 	
 	
 	
 	
 	
 	
 end)	

	
 	
 	
 	
 end	

}

Figure 23: Describing a predator as an agent.

 The second part of this model creates one society of predators, one of preys

and a cellular space where they will be located. The agents defined previously are

used as prototypes that will be cloned to create both societies. In the example, both

societies have 200 agents cloned from their respective prototypes. The model also

creates an environment composed by the cellular space and the societies. To put

agents in the cellular space, we call the function createPlacement() using a random

strategy. A timer defines cycles of preys, predators, and grass regrowth (Figure 24).

 The initial distribution of agents and the result of one simulation are shown in

Figure 25. Green cells are filled with grass. Black asterisks represent preys, while red

asterisks represent predators. In the beginning, all of the cells are green since the

cellular space is filled with grass. As the simulation proceeds, preys feed grass, which

changes the colour of cells to white. The number of agents within each society also

changes, as they feed, reproduce, and die.

28

preys	
 	
 	
 	
 	
 =	
 Society	
 {instance	
 =	
 prey,	
 	
 	
 	
 	
 quantity	
 =	
 200}	

predators	
 =	
 Society	
 {instance	
 =	
 predator,	
 quantity	
 =	
 200}	

	

cs	
 =	
 CellularSpace	
 {xdim	
 =	
 100,	
 ydim	
 =	
 100}	

cs:createNeighborhood()	

	

env	
 =	
 Environment	
 {cs,	
 preys,	
 predators}	

env:createPlacement{strategy	
 =	
 "random"}	

	

timer	
 =	
 Timer	
 {	

	
 	
 	
 	
 Event	
 {action	
 =	
 grass_regrowth},	

	
 	
 	
 	
 Event	
 {action	
 =	
 preys},	

	
 	
 	
 	
 Event	
 {action	
 =	
 predators}	

}	

	

timer:execute(40)

Figure 24: Societies and other objects for the predator-prey model.

Figure 25: Simulation of a predator-prey model (left, initial condition; right,
final state).

29

5 Discussion and Final Remarks

In this section, we consider the lessons learned when designing TerraME. We start by

recalling our conjectures: a toolkit for modeling nature-society interactions needs to

provide a set of data types with methods to build and connect geospatial micro-

worlds. Thus, the lowermost level of TerraME has two data types: Cell and Agent.

Cells represent the spatial partitions, with attributes that capture the variations of the

natural and the human-built worlds. Agent represents autonomous individuals that

can change the landscape. Two containers come right above both types. A set of cells

representing a geographic area of interest with a given resolution and extent makes

up a CellularSpace. A set of agents that have the same set of attributes and basic

behaviour compose a Society. Both sets can have their entities loaded directly from a

geospatial database, which simplifies dealing with real-world data. Some simulation

toolkits have added interfaces to geospatial databases as an extension from their

original concepts. By contrast, manipulating geospatial data is native in TerraME.

 Another innovation in TerraME is the idea of environment. An environment

represents a micro-world with one or more cellular spaces and one or more societies.

Inside an environment, there is temporal coherence between its events. Using the

idea of environments, models can be composed of sub-models with different spatial

and temporal resolution and behaviour. This bottom-up logic allows for considerable

flexibility. Simple models can be built using a single cellular space or a single society,

without the need to define environments. Complex models will use environments to

implement micro-worlds separately and couple them.

 TerraME’s flexibility comes at a price, however. To understand why, consider

some of the alternative toolkits. If the user’s problem can be expressed as sets of

operations over maps, then map algebra toolkits such as PCRaster (Karssenberg et al.,

2001) provide higher-level operations. Instead of iterating over every cell of a map as

TerraME does, map algebra functions take a map (or a cellular space) as an atomic

unit. Single statements in map algebra need a considerable number of lines in

TerraME. Nevertheless, if the problem requires combining agents with maps, it is

probably easier to express such models in TerraME than in a map algebra toolkit.

30

 We recognize that prospective users will pay a price for the flexibility

provided by TerraME. The learning curve will be steeper than that of a single-

paradigm model. Also, there are no previous examples of similar tools that the user is

likely to be familiar with. All of this may place a barrier for first-time users of

TerraME. Nevertheless, we consider that there is space for a multi-paradigm

modeling tool. Some problems will be too complex to fit in a single paradigm. Also,

users that want to combine different approaches can benefit for having these

concepts supported in a single tool.

 When comparing nature-society modeling tools, it is useful to consider the

lessons learned from programming languages in general. It is unlikely that a single

programming language will fit the needs of all software developers. There is room for

scripting, object-oriented, functional and multi-paradigm languages. The same view

applies to modeling. The community will benefit for multiple solutions. We believe

that TerraME is a new approach to nature-society modeling, which will find its niche

alongside existing and mature tools.

31

References

Aguiar, A.P.D., 2006. Modeling Land Use Change in the Brazilian Amazon: Exploring
Intra-Regional Heterogeneity, PhD Thesis, Remote Sensing Program. INPE: Sao Jose
dos Campos.

Batty, M., 2012. A generic framework for computational spatial modelling, In:
Heppenstall, A., Crooks, A., See, L., Batty, M. (Eds.), Agent-based models of
geographical systems. Springer: Dordrecht, NL, pp. 19-50.

Beven, K., Binley, A., 1992. The future of distributed models: model calibration and
uncertainty prediction. Hydrological Processes 6(3) 279-298.

Câmara, G., Vinhas, L., Ferreira, K., Queiroz, G., Souza, R.C.M., Monteiro, A.M.,
Carvalho, M.T., Casanova, M.A., Freitas, U.M., 2008. TerraLib: An open-source GIS
library for large-scale environmental and socio-economic applications, In: Hall, B.,
Leahy, M. (Eds.), Open Source Approaches to Spatial Data Handling. Springer: Berlin,
pp. 247-270.

Costanza, R., 1989. Model Goodness of Fit - a Multiple Resolution Procedure.
Ecological Modelling 47(3-4) 199-215.

Crooks, A., Castle, C., 2012. The Integration of Agent-Based Modelling and
Geographical Information for Geospatial Simulation, In: Heppenstall, A., Crooks, A.,
See, L., Batty, M. (Eds.), Agent-Based Models of Geographical Systems. Springer-
Verlag: Heidelberg.

Eberlein, R.L., Peterson, D.W., 1992. Understanding models with Vensim (TM).
European journal of operational research 59(1) 216-219.

Filippi, J., Bisgambiglia, P., 2004. JDEVS: an implementation of a DEVS based formal
framework for environmental modelling. Environmental Modelling and Software
19(3) 261-274.

Forrester, J.W., 1961. Industrial dynamics. MIT Press Cambridge, MA.

Fraga, L., Carneiro, T., Lana, R., Guimarães, F., 2010. Calibração em Modelagem
Ambiental na Plataforma TerraME usando Algoritmos Genéticos (Enviromental
Modelling Calibration using TerraME using Genetic Algorithms), 42 Brazilian
Symposium on Operations Research: Bento Gonçalves, Brazil.

Gray, J., 1981. The transaction concept: virtues and limitations, 7th International
Conference on Very Large Data Bases (VLDB). IEEE Computer Society: Cannes,
France, pp. 144-154.

Henzinger, T.A., 1996. The Theory of Hybrid Automata, IEEE Symposium on Logic
in Computer Science (LICS'96). IEEE: New Brunswick, NJ , USA, pp. 278 - 292

32

Ierusalimschy, R., Figueiredo, L.H., Celes, W., 1996. Lua - an extensible extension
language. Software: Practice & Experience 26(6) 635-652.

Jakeman, A.J., Letcher, R., Norton, J., 2006. Ten iterative steps in development and
evaluation of environmental models. Environmental Modelling & Software 21(5)
602-614.

Janssen, P.H.M., Heuberger, P.S.C., 1995. Calibration of process-oriented models.
Ecological Modelling 83(1–2) 55-66.

Karssenberg, D., Burrough, P.A., Sluiter, R., de Jong, K., 2001. The PCRaster software
and course materials for teaching numerical modelling in the environmental sciences.
Transactions in GIS 5 99-110.

Karssenberg, D. and K. De Jong (2005). "Dynamic environmental modelling in GIS:
1. Modelling in three spatial dimensions." International Journal of Geographical
Information Science 19(5): 559-579.

Karssenberg, D., Schmitz, O., Salamon, P., De Jong, K., Bierkens, M.F.P., 2009. A
software framework for construction of process-based stochastic spatio-temporal
models and data assimilation. Environmental Modelling & Software 25 489-502.

Lin, Z., Beck, M.B., 2012. Accounting for structural error and uncertainty in a model:
An approach based on model parameters as stochastic processes. Environmental
Modelling and Software 27-28 97-111.

Moran, E. F. (2010). Environmental social science : human-environment interactions
and sustainability. Malden, Mass., Wiley-Blackwell.

Muetzelfeldt, R.I., Massheder, J., 2003. The Simile visual modelling environment.
European Journal of Agronomy 18 345-358.

North, M.J., Collier, N.T., Vos, J.R., 2006. Experiences Creating Three
Implementations of the Repast Agent Modeling Toolkit. ACM Transactions on
Modeling and Computer Simulation 16(1) 1-25.

Parker, D. C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., Deadman, P., 2003.
"Multi-agent systems for the simulation of land-use and land-cover change: a
review." Annals of the Association of American Geographers 93(2): 314-337.

Pontius Jr, R.G., Millones, M., 2011. Death to Kappa: birth of quantity disagreement
and allocation disagreement for accuracy assessment. International Journal of Remote
Sensing 32(15) 4407-4429.

Rindfuss, R.R., Walsh, S.J., Turner, B.L., Fox, J., Mishra, V., 2004. Developing a
science of land change: Challenges and methodological issues. Proceedings of the
National Academy of Sciences 101(39) 13976-13981.

33

Roberts, N., Anderson, D., Deal, R., Garet, M., Shaffer, W., 1983. Introduction to
Computer Simulation: A System Dynamics Modeling Approach. Addison-Wesley.,
Reading, MA.

Silva, S., Lima, J., Carneiro, T., 2011. Parallel Calibration of Spatial Dynamic Models
in TerraME, IADIS - International Conference on Applied Computing Rio de Janeiro,
Brazil,, pp. 451-456.

Steiniger, S., Bocher, E., 2009. An Overview on Current Free and Open Source
Desktop

GIS Developments. International Journal of Geographic Information Science 23(10)
1345-1370.

Stroustrup, B., 1994. Design and Evolution of C++. Addison-Wesley, New York.

Tisue, S., Wilensky, U., 2004. NetLogo: A Simple Environment for Modeling
Complexity, Boston: International Conference on Complex System.

Tomlin, C.D., 1990. Geographic Information Systems and Cartographic Modeling.
Prentice-Hall, Englewood Cliffs, NJ.

Turner, B., Skole, D., Sanderson, S., Fischer, G., Fresco, L., Leemans, R., 1995. Land-
Use and Land-Cover Change (LUCC): Science/Research Plan, HDP Report No. 7.
IGBP Secretariat: Stockholm.

Verstegen, J.A., Karssenberg, D., Van der Hilst, F., Faaij, A., 2012. Spatio-temporal
uncertainty in Spatial Decision Support Systems: A case study of changing land
availability for bioenergy crops in Mozambique. Computers, Environment and Urban
Systems 36(1) 30-42.

von Neumann, J., 1966. Theory of Self-Reproducing Automata. Edited and
completed by A.W. Burks., Illinois.

Wesseling, C.G., Karssenberg, D., Van Deursen, W.P.A., Burrough, P.A., 1996.
Integrating dynamic environmental models in GIS: the development of a Dynamic
Modelling language. Transactions in GIS 1 40-48.

White, R. and G. Engelen (1997). "Cellular automata as the basis of integrated
dynamic regional modelling." Environment and Planning B: Planning and Design 24:
235-246.

Wooldridge, M.J., Jennings, N.R., 1995. Intelligent agents: Theory and practice.
Knowledge Engineering Review 10(2).

Zeigler, B.P., Kim, T.G., Praehofer, H., 2005. Theory of modeling and simulation.
Academic Press, Inc., Orlando, FL, USA.

34

