
TerraML: a Language to Support Spatial Dynamic Modeling
 BIANCA PEDROSA

1
GILBERTO CÂMARA

1

FREDERICO FONSECA
2

TIAGO CARNEIRO
1

RICARDO CARTAXO MODESTO DE SOUZA
1

1INPE—National Institute for Space Research, Caixa Postal 515, 12201 São José dos Campos, SP, Brazil
{bianca,tiago,gilberto,cartaxo}@dpi.inpe.br

2School of Information Sciences and Technology, Pennsylvania State University, 1602, State College, PA, USA
ffonseca@ist.psu.edu

Abstract. Spatial Dynamic Modeling simulates spatio-temporal processes in which a location on the Earth’s
surface changes due to some external driving force. This paper introduces TerraML, a dynamic modeling
language to be used in environmental applications. TerraML supports both discrete and continuous change
processes and generalized neighborhood to accommodate non-local actions.

1 Introduction

Cellular models have been used in the last two decades for
simulation of urban and environmental models, mostly in
connection with cellular automata (CA) (White and
Engelen 1997). CA have become popular largely because
they are tractable, can replicate traditional processes of
change through diffusion, and also contain enough
complexity to simulate surprising and novel changes as
reflected in emergent phenomena (Couclelis 1997). Early
proposals for the use of CA in spatial modeling tended to
stress their pedagogic use in demonstrating how global
patterns emerge from local actions. In the case of most
actual applications to geographic systems, the strict
adherence to the basic CA model is inevitably relaxed, and
the resulting models are inhomogeneous, where the
inhomogeneities may represent such factors as suitability,
accessibility, or legal restrictions on land use (White and
Engelen 1997). Therefore, in most current applications,
the models that have emerged are best called cell-space
models rather than CA (Batty 2000).

Currently, most CA-based spatial models are linked
to a GIS via loose coupling mechanisms. In this case the
GIS is used for data conversion and graphic display and
the spatial models are run in an environment external to
the GIS. Examples include the models used by Clarke
(Clarke and Gaydos 1998) for simulation of US
metropolitan growth, the CLUE land-use model
(Veldkamp and Fresco 1996) and the DINAMICA
landscape model (Soares-Filho, Cerqueira, and Pennachin
2002). This structure allows the use of existing programs
but requires substantial work in data conversion and
causes problems of redundancy and consistency due to the
creation of multiple versions of the same data. Modeling

tools also lack sufficiently flexible GIS-like spatial
analytical capabilities; as a result, their ability to convey
spatial relations is limited. Therefore, the need for a full
integration between GIS and dynamic models remains
strong. In a tight level of integration, there would be no
strict separation between the model and the GIS, and a
dynamic model becomes just one of the applications that
could be developed using the generic functionality of a
GIS toolbox (Wesseling et al. 1996). A strongly-integrated
GIS and dynamical model architecture would allow non-
specialists, already familiar with GIS interfaces, to
experiment with models, reducing the overhead for data
conversion and abstracting part of the complexities in
model formulation. Furthermore, modeling and GIS could
both be made more robust through their connection and
co-evolution (Parks 1993).

However, given the limitations of the current
generation of commercial GIS systems, substantial
investment in the development of tools and functionality is
required for full integration of cell-spaces and dynamical
modeling into a GIS architecture. This situation is part of
a more general problem, in that the GIScience community
currently lacks a comprehensive set of open-source tools
for development of new ideas and rapid prototyping. To
face this challenge, we created an architecture for spatial
dynamical modeling using cell-spaces, which has been
implemented as software components as part of an open
source GIS library.

This paper introduces TerraML, a dynamic modeling
language to be used in environmental applications.
TerraML supports both discrete and continuous change
processes, supports different data formats and is fully
integrated with general-use databases. The remainder of

this paper is organized as follows. In section 2 the main
components of TerraML are explained. In section 3
TerraML structure is introduced. In section 4 an example
in TerraML is provided. In section 5 implementation
aspects of TerraML are discussed. Section 6 presents
conclusions and future work.

2 Theoretical Foundations for TerraML

2.1 Hybrid Automata

One of the more important challenges in the development
of languages to support dynamical spatial modeling in
cell-spaces is the need to represent dynamical processes
with both discrete and continuous components. For that
purpose, the traditional paradigm of discrete cellular
automata is no longer sufficient. Therefore, TerraML is
based on the theory of hybrid automata (Henzinger 1996).
A hybrid automaton is a dynamical system whose state has
both a discrete component, which is updated in a sequence
of steps, and a continuous component, which evolves over
time. Hybrid automata, which combine discrete transition
graphs with continuous dynamical systems, can be viewed
as infinite-state transition system. A hybrid automaton
consists of the following components:

• Variables. A finite set X = { x1,..xn} of real-numbered
variables.

• Control graph. A finite directed multigraph (V,E).
The vertices in V are called control modes. The edges
in E are called control switches.

• Initial and flow conditions. Initial conditions express
the starting condition of the automaton. Flow
conditions express predicates that are executed in each
control mode.

• Jump conditions. Jump conditions are used to assign
discrete changes between vertices of the control graph.
Each jump condition is assigned to a directed edge.

To explain the hybrid automata concept, we can use
as an example a water balancing simulation in the
hydrology domain. In such a system, rainfall time series
are used to fill cells with rain water until their infiltration
capabilities be reached, then a runoff flux occur. In Figure
1, a control graph illustrates the mechanism by which the
water balance automaton evolves. The nodes of the graph
contain flow conditions, which change the variable values.

The conditions labeling the edges are known as jump
conditions. Flow conditions are executed until a jump
condition is met. The automaton has an initial condition
(soilwater=0). When a time series is informed, the
soilwater value is calculated. Then, the value is checked to
see if it has reached the cell infiltration capability. If the
soilwater value is greater than its infiltration capability,
the excess is calculated and transported to another cell.
This trajectory is processed recursively for all simulation
steps. It is important to note that in a hybrid automata,
control modes, which are the node names in the graph
(dry, wet), are introduced in order to accomplish the
cellular automata discrete nature.

Figure 1 A water balance hybrid automaton

2.2 Non-Proximal Space Definitions

The definition of geographical space in a traditional
cellular automaton is based on the assumption that the
cellular space is isotropic, and that the neighborhood of
interest is entirely local. However, the traditional
neighborhoods used in CA such as the Moore 8-neighbor
definition have limited usefulness when applied to real-
world problems, since the real-world is effectively
inhomogeneous. In many situations, action at a distance
plays a significant rôle in shaping the processes that define
transitions in the cell-space.

In fact, one of the more relevant criticisms to the use
of GIS and CA techniques for modeling geographical
reality is its over-reliance on proximity conditions. Post-
modern geographers such as David Harvey (Harvey 1989)
consider that the most important impact on human
experience is the compression of space and time. Harvey
considers that, due to space-time compression, flows of
resources, information, organizational interaction and
people are essential components of a new definition of
space. Other researchers follow the same perspective.
Milton Santos (Santos 1996) and Manuel Castells
(Castells 2000) talk about “spaces of fixed locations and
spaces of fluxes”. The concept of “spaces of fixed
locations” represents spatial arrangements based on
contiguous locations, and the concept of “spaces of fluxes”
indicates spatial arrangements based on networks.

To take one example of a inhomogenous space,
consider the process of land use change in the Brazilian
Amazonia. This process is conditioned by the urban
occupation on the region, which has increased
significantly in the last two decades. Any model which
would aim to project patterns of land use change in
Amazonia (as TerraML aims) has to consider that
transportation networks (rivers and roads) play a decisive
rôle in governing human settlement patterns. As an
illustration, Figure 2 shows the urban settlements in
Amazonia, shown as white areas, and the road network, as
red lines. A realistic model for land use changes in the
region has to take into account that the roads establish
preferential directions for human occupation and land use
changes, which would be impossible to be captured in an
isotropic neighborhood definition for a CA-based model.
As shown in Figure 2, the neighborhood definitions in any
CA that aims at modeling an area such as Amazonia need
to be based on a flexible definitions of proximity, that
would capture action-at-a-distance. Aiming at supporting
action-at-distance in its models, TerraML is based on a
flexible neighborhood definition, allowing the user to
define her own proximity matrix, according to the needs of
the problem at hand.

Figure 2 – Spaces of fixed location and spaces of fluxes in Amazonia

2.3 Representing Time

Although it has been recognized the importance and need
of the temporal aspect in many processes in GIScience, the
representation of time has not gone beyond a limited
prototype stage (Parent, Spaccapietra, and Zimányi 1999;
Zipf and Krüger 2001). The reasons for that come (1) from
the static cartographic paradigm over which GIS had been
constructed, (2) an emphasis on the short-term and
implementation-oriented solutions, and (3) the lack of a
theory of space-time representation (Peuquet 2001). Most
implementations of temporal aspects in GIS have been
limited to extending spatial systems to incorporate fragile
concepts of time, ignoring (1) the semantic of the space-
temporal processes and (2) the underlying aspects of
change (Hornsby and Egenhofer 1997).

From the database perspective, there is a broad
theory, which has started with the snapshot approach and
continued with concepts such as time-stamping,
transaction, and valid-time dimensions (Elmasri and
Navathe 2000). After that time scales were introduced
with the notion of chronons. A chronon is the minimal
temporal granularity for a particular application. Most
temporal database systems consider only the linear flux of
time, although, in theory, there is the notion of cyclic and
branching time flows (Worboys 1995).

The issue of representing time in dynamic models
goes beyond a matter of extending GIS to incorporate
temporal database concepts. At the temporal dimension, as
well as in the model and space dimension, the dichotomy
between continuous and discrete is a challenging issue.
Events such as storms and volcanic eruptions are discrete
in both spatial and temporal domains, while temperature
and precipitation are spatio-temporal continuous processes
(Peuquet 2001). Another strong concept in temporal
systems refers to the updating dynamics, which can be
synchronous or asynchronous. In a synchronous temporal
system all elements is updated simultaneously (Sipper
1999).

Control structures are the most critical support
required in a computational environment for dynamic
modeling. Iterative control structures work over the entire
set of cells in a direct fashion applying a set of operations
to one or more attributes of the cell-space. Our purpose is

not just to replicate the existing time structures for
general-use applications, but to go a step forward in
building an integrated spatio-temporal framework, which
incorporates processes and focuses on the underlying
components of change at the conceptual and
implementation levels.

3. TerraML Architecture

In the architecture of TerraML, a cell-space is defined as a
generalized raster data structure, where each cell holds
more than one attribute value. Cell-spaces are a
convenient way of managing geographic data in the new
generation of spatially-enabled database management
systems (DBMS); if required, cells can be handled as
individual geographic objects, and operations designed for
objects (such as 9-intersection predicates) can be applied
to them. The attributes can be presented to the user in the
same way as vector geographic objects, and familiar
visualization operations can be applied to these data sets.

In terms of implementation, the cell space structure can be
divided into two parts called (1) basic structure and (2)
extended structure (Figure 1). The basic structure is static
and defined a priori (compile time) representing the set of
attributes, which every cell has independently of the
model. The extended structure is dynamic, i.e., defined
during the simulation process (run time) to accommodate
the data provided by a TerraML document.

The basic structure is essentially spatial. Each cell has its
spatial reference (cartographic reference), its address in
the cellular space (indices), and other attributes such as
the cell state and latency.

The extended structure contains attributes which
varies from simulation to simulation. For that reason, they
are created and attached to the cell structure via a dynamic
allocation memory mechanism. These attributes refer to
the environmental and socio-economic characteristics of
the cell and can be temporal or not. Temporal attributes
are the ones that have multiple occurrences in the cell such
as the different land uses along the time. They are
implemented with a temporal database support for
handling their multiple versions.

Figure 3 The Cell-Space Data Structure in TerraML

4. The TerraML Structure

A program written in TerraML has a main section called
Cellular Processor, which is divided in 5 subsections:
input, output, transition, constraint, and simulation.
Figure 4 shows the TerraML Simplified Structure, which
describes (1) the elements present in a TerraML
document, (2) the order in which they appear, and (3) the
content and attributes of each element.

The input section is where the data to be retrieved are
declared. In TerraML, raster-based maps and images, time
series, and non-spatial scalar data at global and cellular
scales are suported. It is necessary to inform the values of
file names, attributes, and variables in order to make the
retrieval and binding processes work.

In the output section the data to be saved are
declared. These data are generated by the simulation
program and added to the cell space as attributes.

Transition is the section where the rules upon which
the cell states evolve are specifies. In TerraML, discrete
and continuous transitions are supported.

In the constraint section, restrictions to limit or force
a transition are specified.

The simulation section is the place to specify the
actions to be processed during the execution of the model.

First, some cellular space parameters, such as
neighborhood, initialization attribute and result name, are
configured. After, the actions to be applied over cell
attributes, for a determined number of times, are specified.
These actions include commands such as updating,
calculating, and setting cell attribute values.

Figure 4 the TerraML Simplified Structure

5. A TerraML example

Now we present an overview of the TerraML syntax by
using a simplified example of a deforestation process. In
this example, Figure 5, we represent the section names in
bold. The cellprocessor section is the main section, and
it has some attributes for documentation purposes, such as
the author of the simulation and the name of the model.

 In the input section, two images, use99 and road99,
are retrieved and assigned to the landuse and accessibility
variables, respectively. In the output section, the variable
use is declared as temporal. This variable is directly
related to the results to be produced by the simulation
section. In the transition section, three different
transitions are specified: a transition from “forest” to
“deforested” state occur if a cell is close to roads
(accessibility) or if all its neighbors are in the “deforested”
state. A transition from “in regeneration” to “regenerated”

happens after 10 years. In the constraint section, there
are two constraints. The first one is a spatio-temporal
constraint restricting the deforestation process to 10% of
its current area (spatial) over 20 years (temporal). The
second constraint imposes a permanent property to “forest
reserve”, meaning that a cell in that state cannot be
changed to another state in any circumstance. In the
simulation section, the cellular space is initialized with
the landuse variable and a “moore’ neighborhood (4
neighbors) is specified. The model is processed for 20 time
steps that are equivalent to a 20 year period. The results
are stored in files called use2000, use 2001, and so on, to
use2020 according to the value of the attribute name in the
output section an the values of the attributes init and end
of the time control structure.

<cellProcessor author="Bianca" date="3/26/2002" case="Amazon Forest" model="LUCC" >
 <input>
 <layer name="use99" attribute="class" > landuse />
 <layer name="road99" attribute="distance"> accessibility />
 </input>
 <output
 <temporal name=”use” attribute=”class” >
 </output>
 <transition>
 <rule from="forest" to="deforested" > <event> condition="acessibility=51" /> />
 <rule from="forest" to="deforested" > <event> neighbor="all" /> />
 <rule from="regeneration" to="regenerated" > <event> time="after 10" /> />
 </transition>
 <constraint>
 <restriction state="deforested" spatial="+10%" temporal="20 years"/>
 <restriction state="forest reserve" type="static" />
 </constraint>
 <simulation>
 <cellspace neighborhood="moore" result="use" init="landuse" />
 <timer init=”2000” end=”2020” timeunit=”year” />
 <TRANSIT>
 </timer>
 </simulation>
</cellProcessor>

Figure 5 An example in TerraML showing changes in land use cover

6. Implementation Aspects

A TerraML program is mapped to the cellular space
architecture presented in section 3. The cellular space
architecture is implemented as software components to be
provided by a GIS library called TerraLib. TerraLib is an
open-source general-purpose GIS library under
development at the Brazilian National Institute for Space

Research (INPE). TerraLib provides, in its kernel (Figure
6), functionality for handling the different types of
geographic data and facilities for data conversion,
graphical output, and spatial database management
(Câmara et al. 2000). Algorithms that use the kernel
structures, including spatial analysis, query and simulation

languages, and data conversion procedures are also
provided.

TerraLib has been implemented in C++, based on the
object-oriented paradigm. This way the cellular space
architecture is implemented in a hierarchy of classes,
where each class represents the cellular space main
components.

Figure 6 The TerraLib Structure

In Figure 7, the main class is the cellular space, which is
composed by a cellular grid, a set of transitions and
constraints. Each cell has a set of attributes and a
neighborhood. A cell attribute is an abstract class, which
means that it can hold any data type. A cell neighborhood
refers to the set of cells which influence the cell state. The
set of cells in a neighborhood can has any configuration,
be contiguous or not, and has any number of cells.

7. Conclusions

In this paper we introduced TerraML, a language to
support spatial dynamic modeling in environmental
processes. TerraML represents an improvement over other
dynamic modeling languages such as PCRaster (Wesseling
et al. 1996), MapScript (Pullar 2001), CALANG (Stocks
and Wise 2000) and CELLAR (Folino and Spezzano
2000). First, TerraML supports both discrete and
continuous change processes. Second, TerraML supports
non local actions due to its non-proximal neighborhoods.
Third, TerraML supports different data formats and is
fully integrated with general-use databases. Fourth,

The development of TerraML and the open source GIS
software library is part of an ongoing work. Future efforts
will focus on a more complete integration of space and
time into the language, and on introducing restrictions to
transitions by means of socio-economic variables.

Figura 7 The cellular space class hierarchy

Dynamic Modelling

Q
ue

ry
 a

nd
 S

im
ul

at
io

n
la

ng
ua

ge
s

Spatial access

methods

Algo
rit

m
hs

Data C
onversi

on

Geographic

Data Types

S
patial A

nalysis

Dat
ab

as
e

Sup
or

t

Visualization

TerraLib

CellularGrid ConstraintsSet

C el lul arSpace

1

1

1

1
1

1

1

1

CellAtr ibute

Constraint

1

0. .*

1

0. .*

TransitionsSet

1

1

1

1

CellNeighbourhood

AtributesSet

1 0..*1 0..*

C ell sSet

Transitions

0..*0.. * 0..*0.. *

force or avoid

1

0..*

1

0..*

C ell1

1

1

1

1

1

1

1

1
1. .*

1
1. .*

CellState

1

0..*

change

1 21 2

References

Batty, M. 2000. GeoComputation Using Cellular
Automata. In GeoComputation, edited by S.
Openshaw and R. J. Abrahart: Taylor&Francis.

Câmara, G., R.C.M. Souza, B. M. Pedrosa, L. Vinhas,
A.M.V. Monteiro, J.A. Paiva, M.T. Carvalho, and
M. Gatass. 2000. TerraLib: Technology in Support
of GIS Inovation. Paper read at GeoInfo 2000 - II
Workshop Brasileiro de Geoinformação, June, 2000,
at São Paulo(ed), 2000.

Castells, Manuel. 2000. The Information Age:
Economy, Society, and Culture. Oxford: Blackwell.

Clarke, K. C. , and L. Gaydos. 1998. Loose-Coupling a
Cellular Automaton and GIS: Long Term urban
growth prediction for San Francisco and
Washington/Baltimore. International Journal of
Geographical Information Science 12 (7):699-714.

Couclelis, Helen. 1997. From Cellular Automata to
Urban Models: New Principles for Model
Development and Implementation. Environment and
Planning B: Planning and Design 24:165-174.

Elmasri, R, and S. B. Navathe. 2000. Fundamentals of
Database Systems. Edited by A. Wesley. 3rd ed.
USA.

Folino, G., and G. Spezzano. 2000. CELLAR: A High
Level Cellular Programming Language with
Regions. Paper read at Proceedings of 8th
Euromicro Workshop on Parallel and Distributed
Processing, at Rhodes, Greece.IEEE (ed), 2000.

Harvey, D. 1989. The Condition of Postmodernity.
London: Basil Blackwell.

Henzinger, T. A. 1996. The Theory of Hybrid
Automata. Paper read at Proceedings of the 11th
Symposium on Logic in Computer Science
(LICS'96).IEEE (ed), 1996.

Hornsby, Kathleen, and Max J. Egenhofer. 1997.
Qualitative Representation of Change. Paper read at
Spatial Information Theory: A Theoretical Basis for
GIS, Proceedings of the International Conference
COSIT ‘97, at Berlim.A. F. S. Hirtle (ed), Lecture
Notes in Computer Science (Springer-Verlag), 1997.

Parent, C., S. Spaccapietra, and E. Zimányi. 1999.
Spatio-Temporal Conceptual Models: Data
Strucutres + Space + Time. Paper read at ACM
GIS'99, at Kansas City, MO USA.ACM (ed), 1999.

Parks, B. O. 1993. The Need for Integration. In
Environmental Modelling with GIS, edited by M. J.
Goodchild, B. O. Parks and L. T. Steyaert. Oxford:
Oxford University Press.

Peuquet, D. 2001. Making Space for Time: Issues in
Space-Time Data Representation. GeoInformatica 5
(1):11-32.

Pullar, D. 2001. MapScript: A Map Algebra
Programming Language Incorporating
Neighborhood Analysis. GeoInformatica 5 (2):145-
163.

Santos, Milton. 1996. A Natureza do Espaço (The
Nature of Space). São Paulo: Hucitec.

Sipper, M. 1999. The emergence of Cellular
Computing. IEEE Computer 32 (7):18-26.

Soares-Filho, B. S., G. C. Cerqueira, and C. L.
Pennachin. 2002. DINAMICA: A New Model to
Simulate and Study Landscape Dynamics.
Ecological Modelling (in press).

Stocks, C. E., and S. Wise. 2000. The role of GIS in
Environmental Modelling. Geographical and
Environmental Modelling 4:219-235.

Veldkamp, A., and L.O. Fresco. 1996. CLUE-CR: an
integrated multi-scale model to simulatie land use
change scenarios in Costa Rica. Ecological
Modelling 91:231-248.

Wesseling, C.G, D. Karssenberg, W.P.A Van Deursen,
and P.A Burrough. 1996. Integrating dynamic
environmental models in GIS: the development of a
Dynamic Modelling language. Transactions in GIS
1:40-48.

White, R., and G. Engelen. 1997. Cellular Automata as
the Basis of Integrated Dynamic Regional
Modelling. Environment and Planning B: Planning
and Design 24:165-174.

Worboys, Michael F. 1995. GIS - A Computing
Perspective. Bristol, PA: Taylor & Francis Inc.

Zipf, Alexander, and Sven Krüger. 2001. TGML -
Extending GML by Temporal Constructs - A
proposal for a SpatioTemporal Framework in XML.
Paper read at Procedings of the ACM GIS 2001.
The Ninth ACM International Symposium on
Advances in Geographic Information Systems, at
Atlanta, USA(ed), 2001.

