
TerraML:  a Language to Support Spatial Dynamic Modeling   
 BIANCA PEDROSA

1 
GILBERTO CÂMARA

1 

FREDERICO FONSECA
2 

TIAGO  CARNEIRO
1 

RICARDO CARTAXO MODESTO DE SOUZA
1 

 

1INPE—National Institute for Space Research, Caixa Postal 515, 12201 São José dos Campos, SP, Brazil 
{bianca,tiago,gilberto,cartaxo}@dpi.inpe.br  

2School of Information Sciences and Technology, Pennsylvania State University, 1602, State College, PA, USA 
ffonseca@ist.psu.edu 

 

Abstract. Spatial Dynamic Modeling simulates spatio-temporal processes in which a location on the Earth’s 
surface changes due to some external driving force. This paper introduces TerraML, a dynamic modeling 
language to be used in environmental applications. TerraML supports both discrete and continuous change 
processes and generalized neighborhood to accommodate non-local actions. 

 

1 Introduction 

Cellular models have been used in the last two decades for 
simulation of urban and environmental models, mostly in 
connection with cellular automata (CA) (White and 
Engelen 1997). CA have become popular largely because 
they are tractable, can replicate traditional processes of 
change through diffusion, and also contain enough 
complexity to simulate surprising and novel changes as 
reflected in emergent phenomena (Couclelis 1997). Early 
proposals for the use of CA in spatial modeling tended to 
stress their pedagogic use in demonstrating how global 
patterns emerge from local actions. In the case of most 
actual applications to geographic systems, the strict 
adherence to the basic CA model is inevitably relaxed, and 
the resulting models are inhomogeneous, where the 
inhomogeneities may represent such factors as suitability, 
accessibility, or legal restrictions on land use (White and 
Engelen 1997). Therefore, in most current applications, 
the models that have emerged are best called cell-space 
models rather than CA (Batty 2000). 

Currently, most CA-based spatial models are linked 
to a GIS via loose coupling mechanisms. In this case the 
GIS is used for data conversion and graphic display and 
the spatial models are run in an environment external to 
the GIS. Examples include the models used by Clarke 
(Clarke and Gaydos 1998) for simulation of US 
metropolitan growth, the CLUE land-use model 
(Veldkamp and Fresco 1996) and the DINAMICA 
landscape model (Soares-Filho, Cerqueira, and Pennachin 
2002). This structure allows the use of existing programs 
but requires substantial work in data conversion and 
causes problems of redundancy and consistency due to the 
creation of multiple versions of the same data. Modeling 

tools also lack sufficiently flexible GIS-like spatial 
analytical capabilities; as a result, their ability to convey 
spatial relations is limited. Therefore, the need for a full 
integration between GIS and dynamic models remains 
strong. In a tight level of integration, there would be no 
strict separation between the model and the GIS, and a 
dynamic model becomes just one of the applications that 
could be developed using the generic functionality of a 
GIS toolbox (Wesseling et al. 1996). A strongly-integrated 
GIS and dynamical model architecture would allow non-
specialists, already familiar with GIS interfaces, to 
experiment with models, reducing the overhead for data 
conversion and abstracting part of the complexities in 
model formulation. Furthermore, modeling and GIS could 
both be made more robust through their connection and 
co-evolution (Parks 1993). 

However, given the limitations of the current 
generation of commercial GIS systems, substantial 
investment in the development of tools and functionality is 
required for full integration of cell-spaces and dynamical 
modeling into a GIS architecture. This situation is part of 
a more general problem, in that the GIScience community 
currently lacks a comprehensive set of open-source tools 
for development of new ideas and rapid prototyping. To 
face this challenge, we created an architecture for spatial 
dynamical modeling using cell-spaces, which has been 
implemented as software components as part of  an open 
source GIS library. 

This paper introduces TerraML, a dynamic modeling 
language to be used in environmental applications. 
TerraML supports both discrete and continuous change 
processes, supports different data formats and is fully 
integrated with general-use databases.  The remainder of 



this paper is organized as follows. In section 2 the main 
components of TerraML are explained. In section 3  
TerraML structure is introduced. In section 4 an example 
in TerraML is provided.  In section 5 implementation 
aspects of TerraML are discussed.  Section 6 presents 
conclusions and future work. 

2 Theoretical Foundations for TerraML 

2.1 Hybrid Automata 

One of the more important challenges in the development 
of languages to support dynamical spatial modeling in 
cell-spaces is the need to represent dynamical processes 
with both discrete and continuous components. For that 
purpose, the traditional paradigm of discrete cellular 
automata is no longer sufficient. Therefore, TerraML is 
based on the theory of hybrid automata (Henzinger 1996). 
A hybrid automaton is a dynamical system whose state has 
both a discrete component, which is updated in a sequence 
of steps, and a continuous component, which evolves over 
time. Hybrid automata, which combine discrete transition 
graphs with continuous dynamical systems, can be viewed 
as infinite-state transition system. A hybrid automaton 
consists of the following components: 

• Variables. A finite set X = { x1,..xn} of real-numbered 
variables.  

• Control graph. A finite directed multigraph (V,E). 
The vertices in V are called control modes. The edges 
in E are called control switches. 

• Initial and flow conditions. Initial conditions express 
the starting condition of the automaton. Flow 
conditions express predicates that are executed in each 
control mode. 

• Jump conditions. Jump conditions are used to assign 
discrete changes between vertices of the control graph. 
Each jump condition is assigned to a directed edge. 

To explain the hybrid automata concept, we can use 
as an example a water balancing simulation in the 
hydrology domain. In such a system, rainfall time series 
are used to fill cells with rain water until their infiltration 
capabilities be reached, then a runoff flux occur. In Figure 
1, a control graph illustrates the mechanism by which the 
water balance automaton evolves. The nodes of the graph 
contain flow conditions, which change the variable values. 

The conditions labeling the edges are known as jump 
conditions. Flow conditions are executed until a jump 
condition is met. The automaton has an initial condition 
(soilwater=0). When a time series is informed, the 
soilwater value is calculated. Then, the value is checked to 
see if it has reached the cell infiltration capability. If the 
soilwater value is greater than its infiltration capability, 
the excess is calculated and transported to another cell. 
This trajectory is processed recursively for all simulation 
steps. It is important to note that in a hybrid automata, 
control modes, which are the node names in the graph 
(dry, wet), are introduced in order to accomplish the 
cellular automata discrete nature. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 A water balance hybrid automaton 

 

 

 



 

2.2 Non-Proximal Space Definitions 

The definition of geographical space in a traditional 
cellular automaton is based on the assumption that the 
cellular space is isotropic, and that the neighborhood of 
interest is entirely local. However, the traditional 
neighborhoods used in CA such as the Moore 8-neighbor 
definition have limited usefulness when applied to real-
world problems, since the real-world is effectively 
inhomogeneous. In many situations, action at a distance 
plays a significant rôle in shaping the processes that define 
transitions in the cell-space.  

In fact, one of the more relevant criticisms to the use 
of GIS and CA techniques for modeling geographical 
reality is its over-reliance on proximity conditions. Post-
modern geographers such as David Harvey (Harvey 1989) 
consider that the most important impact on human 
experience is the compression of space and time. Harvey 
considers that, due to space-time compression, flows of 
resources, information, organizational interaction and 
people are essential components of a new definition of 
space. Other researchers follow the same perspective. 
Milton Santos (Santos 1996) and Manuel Castells 
(Castells 2000) talk about “spaces of fixed locations and 
spaces of fluxes”. The concept of “spaces of fixed 
locations” represents spatial arrangements  based on 
contiguous locations, and the concept of “spaces of fluxes” 
indicates spatial arrangements based on networks. 

To take one example of a inhomogenous space, 
consider the process of land use change in the Brazilian 
Amazonia. This process is conditioned by the urban 
occupation on the region, which has increased 
significantly in the last two decades. Any model which 
would aim to project patterns of land use change in 
Amazonia (as TerraML aims) has to consider that 
transportation networks (rivers and roads) play a decisive 
rôle in governing human settlement patterns. As an 
illustration, Figure 2 shows the urban settlements in 
Amazonia, shown as white areas, and the road network, as 
red lines. A realistic model for land use changes in the 
region has to take into account that the roads establish 
preferential directions for human occupation and land use 
changes, which would be impossible to be captured in an 
isotropic neighborhood definition for a CA-based model. 
As shown in Figure 2, the neighborhood definitions in any 
CA that aims at modeling an area such as Amazonia need 
to be based on a flexible definitions of proximity, that 
would capture action-at-a-distance. Aiming at supporting 
action-at-distance in its models, TerraML is based on a 
flexible neighborhood definition, allowing the user to 
define her own proximity matrix, according to the needs of 
the problem at hand. 

 

 

 
Figure 2 – Spaces of fixed location and spaces of fluxes in Amazonia  

 



 

2.3 Representing Time 

Although it has been recognized the importance and need 
of the temporal aspect in many processes in GIScience, the 
representation of time has not gone beyond a limited 
prototype stage (Parent, Spaccapietra, and Zimányi 1999; 
Zipf and Krüger 2001). The reasons for that come (1) from 
the static cartographic paradigm over which GIS had been 
constructed, (2) an emphasis on the short-term and 
implementation-oriented solutions, and (3) the lack of a 
theory of space-time representation (Peuquet 2001). Most 
implementations of temporal aspects in GIS have been 
limited to extending spatial systems to incorporate fragile 
concepts of time, ignoring (1) the semantic of the space-
temporal processes and (2) the underlying aspects of 
change (Hornsby and Egenhofer 1997). 

From the database perspective, there is a broad 
theory, which has started with the snapshot approach and 
continued with concepts such as time-stamping, 
transaction, and valid-time dimensions (Elmasri and 
Navathe 2000). After that time scales were introduced 
with the notion of chronons. A chronon is the minimal 
temporal granularity for a particular application. Most 
temporal database systems consider only the linear flux of 
time, although, in theory, there is the notion of cyclic and 
branching time flows (Worboys 1995). 

The issue of representing time in dynamic models 
goes beyond a matter of extending GIS to incorporate 
temporal database concepts. At the temporal dimension, as 
well as in the model and space dimension, the dichotomy 
between continuous and discrete is a challenging issue. 
Events such as storms and volcanic eruptions are discrete 
in both spatial and temporal domains, while temperature 
and precipitation are spatio-temporal continuous processes 
(Peuquet 2001). Another strong concept in temporal 
systems refers to the updating dynamics, which can be 
synchronous or asynchronous.  In a synchronous temporal 
system all elements is updated simultaneously (Sipper 
1999).  

Control structures are the most critical support 
required in a computational environment for dynamic 
modeling. Iterative control structures work over the entire 
set of cells in a direct fashion applying a set of operations 
to one or more attributes of the cell-space. Our purpose is 

not just to replicate the existing time structures for 
general-use applications, but to go a step forward in 
building an integrated spatio-temporal framework, which 
incorporates processes and focuses on the underlying 
components of change at the conceptual and 
implementation levels. 

3.  TerraML Architecture 

In the architecture of TerraML, a cell-space is defined as a 
generalized raster data structure, where each cell holds 
more than one attribute value. Cell-spaces are a 
convenient way of managing geographic data in the new 
generation of spatially-enabled database management 
systems (DBMS); if required, cells can be handled as 
individual geographic objects, and operations designed for 
objects (such as 9-intersection predicates) can be applied 
to them. The attributes can be presented to the user in the 
same way as vector geographic objects, and familiar 
visualization operations can be applied to these data sets. 

In terms of implementation, the cell space structure can be 
divided into two parts called (1) basic structure and (2) 
extended structure (Figure 1). The basic structure is static 
and defined a priori (compile time) representing the set of 
attributes, which every cell has independently of the 
model. The extended structure is dynamic, i.e., defined 
during the simulation process (run time) to accommodate 
the data provided by a TerraML document. 

The basic structure is essentially spatial. Each cell has its 
spatial reference (cartographic reference), its address in 
the cellular space (indices), and other attributes such as 
the cell state and latency. 

The extended structure contains attributes which 
varies from simulation to simulation.  For that reason, they 
are created and attached to the cell structure via a dynamic 
allocation memory mechanism.  These attributes refer to 
the environmental and socio-economic characteristics of 
the cell and can be temporal or not. Temporal attributes 
are the ones that have multiple occurrences in the cell such 
as the different land uses along the time.  They are 
implemented with a temporal database support for 
handling their multiple versions. 

 



 

Figure 3  The Cell-Space Data Structure in TerraML 

 

4. The TerraML Structure   

A program written in TerraML has a main section called 
Cellular Processor, which is divided in 5 subsections: 
input, output, transition, constraint, and simulation. 
Figure 4 shows the TerraML Simplified Structure, which 
describes (1) the elements present in a TerraML 
document, (2) the order in which they appear, and (3) the 
content and attributes of each element. 

The input section is where the data to be retrieved are 
declared. In TerraML, raster-based maps and images, time 
series, and non-spatial scalar data at global and cellular 
scales are suported. It is necessary to inform the values of 
file names, attributes, and variables in order to make the 
retrieval and binding processes work. 

In the output section the data to be saved are 
declared. These data are generated by the simulation 
program and added to the cell space as attributes. 

Transition is the section where the rules upon which 
the cell states evolve are specifies. In TerraML, discrete 
and continuous transitions are supported. 

In the constraint section, restrictions to limit or force 
a transition are specified.  

The simulation section is the place to specify the 
actions to be processed during the execution of the model. 

First, some cellular space parameters, such as 
neighborhood, initialization attribute and result name, are 
configured. After, the actions to be applied over cell 
attributes, for a determined number of times, are specified.  
These actions include commands such as updating, 
calculating, and setting cell attribute values.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4 the TerraML Simplified Structure 



5. A TerraML example 

Now we present an overview of the TerraML syntax by 
using a simplified example of a deforestation process.   In 
this example, Figure 5, we represent the section names in 
bold.  The cellprocessor section is the main section, and  
it has some attributes for documentation purposes, such as 
the author of the simulation and the name of the model. 

 In the input section,  two images, use99 and road99, 
are retrieved and assigned to the landuse and accessibility 
variables, respectively. In the output section, the variable 
use is declared as temporal.  This variable is directly 
related to the results to be produced by  the simulation 
section. In the transition section, three different 
transitions are specified: a transition from “forest” to 
“deforested” state occur if a cell is close to roads 
(accessibility) or if all its neighbors are in the “deforested” 
state. A transition from “in regeneration” to “regenerated” 

happens after 10 years.  In the constraint section,  there 
are two constraints. The first one is a spatio-temporal 
constraint restricting the deforestation process to 10% of 
its current area (spatial) over 20 years (temporal). The 
second constraint imposes a permanent property to “forest 
reserve”, meaning that a cell in that state cannot be 
changed to another state in any circumstance.  In the 
simulation section, the cellular space is initialized with 
the landuse variable and a “moore’   neighborhood (4 
neighbors) is specified. The model is processed for 20 time 
steps that are equivalent to a 20 year period. The results 
are stored in files called use2000, use 2001, and so on, to 
use2020 according to the value of the attribute name in the 
output section an the values of the attributes init and end 
of the  time control structure.  

 

<cellProcessor author="Bianca" date="3/26/2002" case="Amazon Forest" model="LUCC" > 
 <input> 
  <layer name="use99"  attribute="class"     > landuse  /> 
  <layer name="road99"  attribute="distance"> accessibility /> 
 </input> 
 <output  
   <temporal name=”use”    attribute=”class”    >  
 </output> 
 <transition> 
  <rule  from="forest"    to="deforested"    > <event> condition="acessibility=51" /> /> 
  <rule  from="forest"    to="deforested"    > <event> neighbor="all"   />  /> 
  <rule  from="regeneration" to="regenerated"  > <event> time="after 10"   /> /> 
 </transition> 
      <constraint> 
  <restriction state="deforested"     spatial="+10%" temporal="20 years"/> 
  <restriction state="forest reserve" type="static"   /> 
 </constraint> 
      <simulation> 
  <cellspace   neighborhood="moore" result="use" init="landuse" />  
               <timer init=”2000”  end=”2020”  timeunit=”year” /> 
  <TRANSIT> 
              </timer> 
    </simulation> 
</cellProcessor> 

Figure 5 An example in TerraML showing changes in land use cover  

 

6. Implementation Aspects 

A TerraML program is mapped to the cellular space 
architecture presented in section 3.  The cellular space 
architecture is implemented as software components to be 
provided by a GIS library called TerraLib.   TerraLib is an 
open-source general-purpose GIS library under 
development at the Brazilian National Institute for Space 

Research (INPE). TerraLib provides, in its kernel (Figure 
6), functionality for handling the different types of 
geographic data and facilities for data conversion, 
graphical output, and spatial database management 
(Câmara et al. 2000). Algorithms that use the kernel 
structures, including spatial analysis, query and simulation 



languages, and data conversion procedures are also 
provided.  

TerraLib has been implemented in C++, based on the 
object-oriented paradigm.  This way the cellular space 
architecture is implemented in a hierarchy of classes, 
where each class represents the cellular space main 
components. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 The TerraLib Structure 

In Figure 7, the main class is the cellular space, which is 
composed by a cellular grid, a set of transitions   and 
constraints.  Each cell has a set of attributes and a 
neighborhood.  A cell attribute is an abstract class, which 
means that it can hold any data type.  A cell neighborhood 
refers to the set of cells which influence the cell state. The 
set of cells in a neighborhood can has any configuration, 
be contiguous or not, and has any number of cells.   

7. Conclusions 

In this paper we introduced TerraML, a language to 
support spatial dynamic modeling in environmental 
processes.  TerraML represents an improvement over other 
dynamic modeling languages such as PCRaster (Wesseling 
et al. 1996), MapScript (Pullar 2001),  CALANG (Stocks 
and Wise 2000) and CELLAR (Folino and Spezzano 
2000). First, TerraML supports both discrete and 
continuous change processes. Second, TerraML supports 
non local actions due to its non-proximal neighborhoods.  
Third, TerraML supports different data formats and is 
fully integrated with general-use databases. Fourth,  

The development of TerraML and the open source GIS 
software library is part of an ongoing work. Future efforts 
will focus on a more complete integration of space and 
time into the language, and on introducing restrictions to 
transitions by means of socio-economic variables. 

 
 

 

 

 

Figura 7 The cellular space class hierarchy 
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