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1. Introduction 

TerraLib Modeling Language (TerraML) is a spatial dynamic modeling language to 

simulate dynamic processes in environmental applications. TerraML provides an 

interface (front-end) from which the end-user can access software components provided 

by an open-source GIS library called TerraLib (back-end).  We decided to implement 

dynamic models as software components with the objectives of incorporating new 

functionalities via a flexible and interoperable way, and achieving a tightly coupled 

integration between the dynamic model and the geographic data. In TerraML we 

represent space as a cellular model, and represent time as a linear flow divided into 

discrete intervals. The dynamic model is described by  transitions and constraints, where 

the transition concept corresponds to similar concepts on finite state machines and active 

databases theories. 

2. TerraML Schema 

TerraML is based on XML (eXtensible Markup Language), which is a meta-language, 

i.e., a language to create other markup1 languages. [1]  Figure 1 shows the TerraML 

Simplified Schema using the XML graphic notation [2].   A program written in TerraML 

has a main section called Cellular Processor, which is divided in 5 subsections: input, 

                                                   
1 In a markup  language (tag-set) each element is delimited by starting  (< > ) and ending (</ > ) tags. 



output, transition, constraint, and simulation. The input section is where data to be 

retrieved are declared. In the output section, the cellular space is configured. 

Transition is the section where the user specifies a set of rules upon which the cell 

states evolve. The constraint section contains restrictions that limit, avoid, or force 

the occurrence of a transition. Finally, the simulation section contains actions to be 

processed during model execution.  

 

Figure 1 – The TerraML Schema 

In Figure 2, we present an overview of the language by using a simplified example of a 

deforestation process. In this example, two images, use99 and road99, are retrieved and 

assigned to the landuse and accessibility variables, respectively.  The cellular 

space is initialized with the landuse variable and a von Neumann neighborhood [3] is 

specified. Three different transitions can happen in this simulation. Transitions from 

“forest” to “deforested” state occur if a cell is close to roads (accessibility) or if all 



its neighbors are in the “deforested” state. A transition from “in regeneration” to 

“regenerated” happens after 10 years. Constraints are preconditions to limit, avoid, or 

force the occurrence of a transition in its spatial, temporal, or both contexts. In this 

example, constraints restricting the deforestation process to 10% over 20 years and fixing 

the preserved cells are also specified.   The simulation is processed for 20 time-steps that 

are equivalent to 20 years. The results are stored and displayed on the screen one by one 

in a sequence giving an animation effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – An example in TerraML showing changes in land use cover 

 

<cellProcessor author="Bianca" date="3/26/2002" case="Amazon Forest" model="LUCC" > 
 <input> 
  <layer name="use99" attribute="class">landuse</layer> 
  <layer name="road99" attribute="distance">acessibility</layer> 
 </input> 
 <output  
  <cellspace neighborhood="0,3,6" name="use"  init="landuse" />  
      </output> 
 <transition> 
  <rule  from="forest" to="deforested"> 
   <event>condition="accessibility=51"</event> 
  </rule> 
  <rule  from="forest" to="deforested"> 
   <event>neighbor="all"</event> 
  </rule> 
  <rule  from="in regeneration" to="regenerated"> 
   <event>time="after 10"</event> 
  </rule> 
 </transition> 
      </constraint> 
  <restriction state="deforested"     spatial="+10%" temporal="20 years"/> 
  <restriction state="forest reserve" type="static"/> 
 </constraint> 
      <simulation> 
  <timer init=”2000”  end=”2020”  timeunit=”year” /> 
  <TRANSIT> 
  <SAVE> 
  <SHOW> 
  </timer> 
    </simulation> 
</cellProcessor> 



3. TerraML Data Structures 

A TerraML program is mapped to a cell space, which is a generalized raster data 

structure where each cell holds more than one attribute value. Cell-spaces are extensions 

of cellular automata (CA) [4] to support non local actions [3].  In cell spaces each cell can 

be handled as an individual geographic object to which traditional visualization 

operations can then be applied.  

In terms of implementation, the cell space structure can be divided in two parts called (1) 

basic structure and (2) extended structure (Figure 3). The basic structure is defined a 

priori and contains attributes that are common to all types of simulation models: the 

georeferenced location for each cell, its location in cellular space, its state and latency. 

The extended structure is dynamic, i.e., defined during the simulation process (run time) 

to accommodate the data provided by the user in a TerraML program.   

 

Figure 3 - The Cell Data Structure 



The extended structure contains the attributes specified in the input and output sections, 

which varies from program to program.  For that reason, they are created and attached to 

the cell structure via dynamic memory allocation [5].  These attributes refer to the 

environmental and socio-economic characteristics of the cell and can be temporal or not. 

Temporal attributes are the ones that have multiple occurrences in the cell such as the 

different land uses in the simulation period.  They are implemented with a database 

temporal support for handling their multiple versions.  
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Figure 4 – Structure of a transition rule extended from [6]  

Another important data structure present in TerraML is the transition (Figure 4).  We 

decided to model changes using the transition concept found on finite state machines [6] 

and in active databases [7] theories, which assume that a transition  (1) has a source and a 

target state, (2) is triggered by an event, and (3) can be associated to actions. Events can 

be expressed by means of relational conditions, neighborhood configurations, or 

mathematical operations. Actions are performed in order to manipulate cell attributes or 

to invoke an operation or any other application-dependent action [7]. This structure for 

transitions can be easily adapted to support continuous behavior, according to the hybrid 

automata theory. “A hybrid automaton is a formal model for a dynamical system with 



discrete and continuous components” [8]. 

4. TerraLib 

TerraLib is an open-source general-purpose GIS application development library 

under development at the Brazilian National Institute for Space Research (INPE). 

TerraLib provides, in its kernel (Figure 5), functionality for handling the different types 

of geographic data and facilities for data conversion, graphical output, and spatial 

database management [9]. 
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Figure 5 The TerraLib Structure 

Algorithms that use the kernel structures, including spatial analysis, query and simulation 

languages, and data conversion procedures are also provided. In TerraLib, data structures 

and algorithms are independent following the computational trend of multi-paradigm 

software development [5, 10, 11]. 

TerraLib aims to enable the development of a new generation of GIS applications, based 

on the technological advances on spatial databases [9]. The basic idea behind TerraLib is 

that the current and expected advances in database technology will enable, in the next 



few years, the complete integration of spatial data types in data base management 

systems (DBMS). 

5. Conclusions and Future Work 

 The advantages of TerraML over other dynamic modeling languages such as 

PCRaster[12], MapScript[13], CALANG [14] and CELLAR [15] are: 

• TerraML supports different data formats and is fully integrated with 

general-use databases because of its integration with TerraLib. 

• TerraML is an XML-based language, which is a global standard capable 

of generating human-readable and interoperable documents [1]. 

• TerraML implements an integrated spatio-temporal framework, which 

incorporates processes and focuses on the underlying components of 

change at the conceptual and implementation levels. 

• TerraML combines emerging and well-consolidate computational 

technologies, such as finite state machines, hybrid automata, cellular 

computing [16], components, and event programming in a multi-paradigm 

software development approach. 

The development of TerraML and the open source GIS software library is part of an 

ongoing work. Future efforts will focus on a more complete integration of space and time 

into the language, on modeling continuous behavior, and on proposing mechanisms to 

manage multiple scales in both spatial and temporal dimensions.  
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