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Abstract. It has often been noted that traditional GIScience, with its
focus on data-modelling functions such as the input, storage, retrieval,
organisation, manipulation, and presentation of data, cannot readily
accommodate the process-modelling functions such as explanation, pre-
diction, and simulation which it is increasingly acknowledged should form
an essential element of the GI scientist’s toolkit. Although there are
doubtless many different reasons for this seeming incompatibility, this
paper singles out for consideration the different views of time presup-
posed by the two kinds of function: on the one hand, the ‘frozen’ historical
time required by data modelling, and on the other, the
‘fluid’ experiential time required by process modelling. Whereas the for-
mer places an emphasis on events as discrete completed wholes, the
latter is concerned with on-going continuous processes as they evolve
from moment to moment. In order to reconcile the data-modelling and
process-modelling requirements of GIScience, therefore, a formal theory
of processes and events is developed, within which their fundamental
properties can be made explicit independently of any specific implemen-
tation context, and their relationships systematically investigated.

Keywords: Data modelling · Process modelling · Event · Process ·
Formal theory

1 Introduction

This paper begins (in Sect. 2) with a discussion of the ways in which time
enters GIS, through an examination of the various kinds of functions it has
been thought desirable for a GIS to perform; here I refer to ‘functions’ of a GIS
in the generic sense of the broad kinds of activities that a GIS might enable a
user to undertake, as opposed to specific operations such as overlay, interpola-
tion, and generalisation, which are often referred to as GIS functions. I draw a
broad distinction between two general classes of functions which, following [26],
I call data-modelling functions and process-modelling functions. These two classes
are associated with two distinct ways of viewing time, called ‘historical’ and
‘experiential’ after [14], or, perhaps more vividly, ‘frozen time’ and ‘fluid time’.
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The much-debated question of how data-modelling and process-modelling
functions can be integrated into a single system is thus seen to involve as a
key component the integration of the two corresponding approaches to time.
It appears that while the historical view of time is dominated by events, the
experiential view is dominated by processes, and hence a successful integration
of the two depends on a correct understanding of processes and events, and
how they are related. The main purpose of this paper is, having established the
necessity for this in the context of GIS, to undertake the initial development
and formalisation of a robust and highly general theory of processes and events.
Sect. 3 is devoted to a close analysis of the notions of ‘process’ and ‘event’ and the
concepts needed to handle their interrelationships. The discusssion is informal,
but is backed up by a formal development, outlined in the Appendix. No claims
are made for completeness of the theory: it is unashamedly a first step, which
will require further detailed elaboration before it can fully serve its purpose as
a standard reference benchmark for the proper treatment of time in GIS.

2 GIS Functions, and Two Approaches to Time

What are the functions of a GIS? It is usual to draw a contrast between ‘tra-
ditional GIS functions’ comprising the input, storage, retrieval, organisation,
manipulation, analysis and presentation of data, and a range of more advanced
capabilities such as explanation, simulation and prediction which engage with
the data through some form of theoretical understanding of the real-world sys-
tems and processes that the data represent.1 This contrast has been described in
various different ways, all tending to the same (sometimes rather despairing) con-
clusion that it is high time the data-modelling functions of GIS were integrated
with the process-modelling requirements of at least a substantial proportion of
GIS users. A representative sample of sources in which such statements can be
found is [5–7,12,20,24,26,29,31].

These two sets of functions seem to point to two rather different kinds of sys-
tem. On the one hand, there are those systems, lying somewhere on a continuum
between a digital map and a spatial database, which encompass the descriptive
and representational functions of a GIS, and on the other, there are systems
which encompass the exploratory functions such as prediction and simulation
that are increasingly thought of as natural adjuncts to a GIS. This distinction
has appeared in the literature under a variety of different names, including ‘map-
representation systems’ vs ‘reality-representation systems’ [20], ‘data models’ vs
‘process models’ [26], ‘history models’ vs ‘process models’ [24], and ‘information
systems’ vs ‘modelling systems’ [12].

1 The term ‘analysis’ could perhaps be included with the second set of functions as
well: it is a broad term which covers a range of different activities. However, many
traditional GIS functions such as interpolation, overlay, and generalisation are often
described as ‘analytical’, and many, though not all, of the functions described by
O’Sullivan and Unwin in their book on Geographic Information Analysis [23] belong
with the ‘traditional GIS functions’ rather than the ‘more advanced capabilities’.
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Traditionally, these two kinds of functions — data-modelling functions and
process-modelling functions — have been handled separately, the former by a
general-purpose GIS and the latter by a special-purpose system designed to meet
the specific requirements of a particular application area such as meteorology,
geomorphology, animal ecology, traffic systems, or human population studies.
The significant question is how to get the two systems to “talk to each other”,
so that the results of the calculations performed by the process-modelling system
can be made available to be stored, manipulated, and output in human-friendly
form by the GIS. Many of the authors cited above have asked this question and
explored the ramifications of different ways of answering it; but already 20 years
ago, Raper and Livingstone [26] suggested that the question was outdated, and
that ‘the next step should be the fusion of models and spatial representations
within new object-oriented environments and not the integration of incompatible
systems which force representational compromises’.

Of particular relevance to all this is the role of time in geographical repre-
sentation. Time may, but need not, be involved in spatial data modelling, but
it is almost invariably of central importance in spatial process modelling. It is
significant, however, that while both kinds of modelling may need to work with
time, they work with different kinds of time. What do I mean by this?

Considering the data-modelling functions first, it is generally accepted that
the basic unit of geographical information is a combination of place (where? ),
time (when? ), and theme (what? ): In place p at time t there is X. This is
Peuquet’s Triad Framework [24].2 The basic schema covers a multitude of vari-
ations — for example, p can be a point, a grid square, or a region; t can be an
instant, a ‘standard’ interval such as a calendar month or year, or an ‘arbitrary’
interval; and X can be a value (of a field), an object (which could be a fixed
physical feature, something mobile, a social or political unit, a collective, . . . ),
or a process or event — but in essence a GIS consists of a repository of such
triples together with a set of algorithms for manipulating them in accordance
with the data-modelling functions listed above.

Time is often said to enter this picture in two different ways [28]. There is the
time in which the manipulations referred to above occur, known in the temporal
database community as transaction time; insofar as it is recorded in the database
itself it belongs to the metadata associated with the geographical data, indicat-
ing, for instance, when a particular triple was entered into the repository, or
when it was superseded. This time is concerned with the history of the database
itself, and has nothing to do with the temporal dimension of the geographical
reality being described. Much more significant, for our present purposes, is the
so-called valid time, which is the time referred to by the triples, the time in the
real world at which the state of affairs described by the triple actually obtained.
This time records the history of the geographical reality that the system is being

2 In some more recent treatments, place and time are amalgamated, and the nature of
the theme is made more explicit, as in the geo-atom of Goodchild et al., which takes
the form ⟨x, Z, z(x)⟩, where ‘x defines a point in space-time, Z identifies a property,
and z(x) defines the particular value of the property at that point’ [18].
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used to record, and the presence of a triple (p, t,X) in the repository amounts
to an assertion that there really was X in place p at time t — if this was not
the case, then the repository is in error and stands in need of correction.

Turning now to the process-modelling functions, we find a rather different
picture. Rather than being a repository of facts and data-processing algorithms,
a process-modelling system might be thought of as a repository of theories, that
is, theoretical models of the laws and regularities that are believed to hold sway in
the world. These can be used to generate a picture of the world — which usually
means a picture of the world as it evolves through time. This is ‘spatial process
modelling’, where I am using this term in a generic sense to cover a multitude
of different possible formalisms such as numerical solution of partial differential
equations, cellular automata [4,9,30], GeoAlgebra [29], agent-based models [7],
geographic automata [32], and doubtless many others as yet unthought of.

Spatial process modelling can be used in several different ways, notably:

– Prediction: Starting from known present data X, run the model to predict
future data Y.

– Explanation: Starting from known past data X, run the model to ‘predict’
present data Y, comparing the result with known present data Z. If Y and Z
agree, the model is accepted as providing an explanation for Z, if not, it is
rejected and a new model tried.

– Retrodiction: Starting from hypothetical past data X, run the model to predict
present data Y — if Y agrees with known present data Z, the hypothesis X is
corroborated.

– Planning: Starting from hypothetical near-future data X, run the model to
predict future data Y. If Y agrees with some desired future goal Z, use X as
a plan in order to achieve Z.

It is noteworthy that, throughout these examples, (p, t,X) triples are not being
asserted but hypothesised, put up for consideration as possibilities — the gram-
matical mood here is in effect subjunctive rather than, as in the data-modelling
system, indicative; and this is related to a key distinction between the ways in
which data modelling and process modelling relate to time.

The (valid) time of a data-modelling system is passive, exactly comparable
to space. Here time is “just another” form of space, another coordinate in the
multidimensional presentation of data. Time in such a system is as it were static.
Insofar as processes and events are represented in the system, they are portrayed
as “frozen” in time, inactive, merely more bits of data. In contrast, the time of
a process-modelling system is active. When running a simulation, events and
processes are enacted in symbolic form within the system — this is obvious in
the case of a real-time simulation which we see unfolding before our eyes, but
even in the case where calculations are performed to derive an end result from
data pertaining to some earlier time, simulation is taking place in a more abstract
sense, and we can say that here too processes are being enacted. This is “fluid”
time in the sense of something that flows, in the way that we customarily (albeit
metaphorically) conceive of time as doing, and changes really occur.
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The results produced by running a process model in such a system are by
nature hypothetical. They are not data in the sense of something given from
outside (for example, entered by the user in the belief that they truly represent
the world out there); rather, they are derived within the system. That is why they
can be usefully compared with real data, as in the scenarios envisaged above. But
time is also fluid for a real-time monitoring system, such as a collection of sensors
gathering data about real-world processes to send to a data-modelling system for
analysis. From the point of view of the latter, it is immaterial whether the data
it is given to work with are factual or hypothetical: the same data-processing
techniques can be applied to both — after all, hypothetical data are of little use
if they do not resemble factual data to the extent that they can be considered
as possibly factual.

In process modelling and process monitoring, time is modelled as time, that
is, the temporal sequence in which the represented events are handled compu-
tationally corresponds to the sequence in which they occur in the hypotheti-
cal world that is being modelled or the actual world that is being monitored.
In the case of process modelling, one might say that this is because that world
is in the machine, so its time is the machine’s time. In data modelling, by con-
trast, the time of the world being modelled is captured, not through temporal
sequence in the data processing, but symbolically as values on a coordinate axis,
which may be stored and processed in any order, just like the values on the spa-
tial coordinate axes. In process modelling, the processor itself might be said to
experience the time it is modelling, whereas in data modelling it merely records
it. In [14], I drew a contrast between the ‘experiential’ and ‘historical’ accounts
of the world, and related these to the distinction between processes and events,
processes being concerned with the low-level goings-on that are the immediate
objects of experience, events to more synoptic summaries of salient aggregates of
processes as they are recorded in the memory. This distinction closely matches
that drawn here between “fluid” time and “frozen” time respectively.

The relationship between processes and events is crucial here: the process-
modelling system (or, in a different way, a real-time monitoring system) generates
ongoing processes, and information about these processes has to be passed in
some form to the data-modelling system. But it is, presumably, the responsi-
bility of the latter to extract from this processual flux those hard nuggets of
salience which constitute events, and which from a human perspective represent
information rather than mere data.

Simulation systems and real-time monitoring systems are points of contact
with fluid time: either the time that actually elapses in the real world (and of
course it elapses by virtue of the processes going on in the world — there is no
need, here, to invoke a Newtonian notion of absolute time flowing independently
of anything that happens), or simulated time, which elapses by virtue of the
computations driving the simulation. Our experience of the world is like this,
too: a direct engagement with fluid temporal processes — hence ‘experiential’
as the designation for the latter. On the other hand, our representation and
reasoning about the world displays a strongly event-oriented bias: events, that is
salient discrete “chunks” of happening, which can be labelled as individuals and
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marshalled into networks of cause and effect, form the basic subject-matter of
our temporal discourse, and as such, they, rather than processes, have been the
focus of many important proposals for how time should be handled in GIS, here
conceived primarily as a data-modelling system [21,25,34]. What we most want
from a temporal information system is information about what happens, and that
primarily means information about events. It follows that if a process-modelling
system is to be successfully integrated with an event-oriented data-modelling
system, then we need a robust account of how processes are related to events.

In the remainder of this paper, I shall start to develop a basic theory of
processes and events from an informatic perspective, laying down the fundamen-
tals of a logic of occurrence which underlies the presentation of temporal facts.
Whatever other specialised apparatus is employed by a GIS for recording and
manipulating such facts, I would maintain that it should be founded on a secure
logical bedrock of this kind. Without such a foundation, talk about processes
and events will continue to be subject to confusion as different researchers use
the terms in their own way without any kind of agreed common standards. One
thing that emerges from the work presented below is that even with regard to the
simple logic of occurrence, there are already some formidable difficulties which
must be overcome by carefully distinguishing different varieties of process and
event and how they are related. Either that, or sweep the difficulties under the
carpet and risk tripping over them later to fall flat on one’s face.

3 Towards a Formal Theory of Processes and Events

A trip is an event, whereas travel is a process. [1]

There is little agreement on how to use the terms ‘process’ and ‘event’: Worboys
[33] speaks of an ‘astonishing variety of usage and definition’, and notes that
‘One person’s process is another’s event, and vice versa’. But whereas Worboys,
in that paper, declines to pursue the matter further, I believe that we can and
should strive to achieve a common understanding of the issues at stake here,
which are not just a matter of terminology but strike deeply into the conceptual
foundations of how we represent and reason about the world.

One of the problems is that there seem to be two fundamentally different
meanings of the word ‘process’, and I believe that a good deal of the confusion
surrounding the use of this term is due to the conflation of these two meanings.

On the one hand, the word ‘process’ is used to denote an activity that is not
intrinsically bounded and which can, at a sufficiently coarse temporal scale, be
conceptualised as homogeneous. Processes in this sense include the flowing of a
river, cliff erosion along a stretch of coastline, the year-on-year growth of a tree,
the gradual encroachment of built-up area into the countryside surrounding a
city, the movement of traffic along a street, continental drift, as well as human
activities such as walking, talking, eating, swimming, and travelling. This kind
of process contrasts strongly with the notion of ‘event’, which prototypically
refers to an intrinsically bounded, discrete occurrence which may, at a sufficiently
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coarse temporal scale, be conceptualised as point-like.3 Examples of events in
this sense include the collapse of a particular chunk of cliff, the falling of a tree
(whether through human or natural agency), the construction (or destruction)
of a house, a volcanic eruption or an earthquake, a journey from A to B, and
human actions such as a walk from home to the office, utterance of a sentence,
eating an egg, or swimming a length.

The second use of the word ‘process’ is to denote a structured closed routine
leading to a specified end point. Processes of this kind typically involve human
(or animal) agency, and are often described as ‘the process of Xing a Y ’. Exam-
ples include the processes of making a pot of tea, registering for a conference,
booking a train ticket, constructing a window-frame, building a [bird’s] nest,
and spinning a [spider’s] web. Processes of this kind are typically governed by
a specific procedure which may be specified in advance.4 Each enactment of the
procedure is in fact an event (that is, it is intrinsically bounded and discrete).5
Moreover, this event is composite: that is, it is built up out of sub-events corre-
sponding to the various phases of the procedure. As such, this kind of process
cannot readily be described as homogeneous.

From the above, it is evident that the two kinds of process are radically differ-
ent from one another. Processes of the first kind are homogeneous (unstructured)
and not intrinsically bounded, whereas those of the second kind are structured
and intrinsically bounded. On the other hand, it can hardly be regarded as merely
coincidental that the same word is used to describe both of them. What is the
connection? I shall defer discussion of this until later, but meanwhile, in order
to emphasise that there are two very different kinds of phenomenon here, I shall
reserve the term ‘process’ for the first kind — that is, the open-ended ongoing
process conceptualised as homogeneous — and call the second kind ‘routines’.6

Here I want to pick up my earlier use of the phrase ‘at a sufficiently coarse
temporal scale’. Scale, or granularity, is all important here in enabling us to
arrive at a worthwhile conception of the relationship between processes and
events. One reason for this is that scale is closely related to aspect, which is
concerned with the different points of view from which one and the same thing
can be considered: specifically, in the case of something going on in time (an
occurrent), whether we are concerned with the occurrence as a whole, including
a beginning and end — and in this case, whether we are primarily interested
in the beginning or the end, or perhaps the state resulting once the end has
occurred — or, alternatively, with what is going on from moment to moment,
how the occurrence presents itself at the point of experience or recording.
3 Cf. [10]: ‘An event is an individual episode with a definite beginning and end . . . ’.
4 These are similar to what Aitken and Curtis [3] call Scripts: ‘A Script is a typical
pattern of events that can be expected to re-occur: “dining in a restaurant” and
“brushing one’s teeth” being well known examples’ (the restaurant example comes
from the original exposition of the Script concept by Shank and Abelson [27]).

5 Cf. [33]: ‘[C]omputational processes are rather like computer programs, which when
executed result in occurrents’. Here it is the program execution itself that is described
as an occurrent, not the outputs resulting from it.

6 In [14], these are called ‘open’ and ‘closed’ processes respectively.
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To illustrate this with a simple example, consider a succession of bursts of
machine-gun fire. Taken together as whole, we might describe this as an event,
which begins at the start of the first burst and goes on till the end of the last one.
But putting ourselves in the position of someone experiencing this, either as the
gunner, his intended victims, or an onlooker, it seems natural to describe it as a
process: an ongoing process consisting of one burst after another, with perhaps
no indication of when or whether it is going to end. Each individual burst,
on the other hand, is clearly an event, with a clear-cut beginning and ending,
and the larger-scale process consists of an indefinite number of repetitions of
events of this kind.7 Now turn up the temporal “magnification” to examine the
structure of each burst. What it is, is simply a “chunk” of machine-gun fire; here,
machine-gun fire is a process. In principle it can go on indefinitely in the same
way (hence, unbounded and homogeneous), though in practice any instance of
machine-gun fire will have a beginning and an ending, and if we include these in
our description of it then what we have is, precisely, a “chunk” of that process;
and this is an event. Ignore the beginning and end now, and concentrate on
the process of machine-gun fire: on closer examination (i.e., stepping up the
temporal magnification again), we see that it consists of a sequence of events,
each of which is the firing of an individual cartridge. Each of these firing events
can itself be examined more closely to reveal various lower-level processes and
events which go to make it up.

This way of looking at the relationship between processes and events can be
used to reconcile two rather different views of events that have appeared in the
literature. On the one hand, Yuan [35] regards an event as ‘a spatial and tempo-
ral aggregate of its associated processes’, and states that ‘a process is measured
by its footprints in space and time’. In relation to precipitation, the subject
of her case study, she notes that ‘an event marks the occurrence of precipita-
tion’ whereas ‘a process describes how it rains’. Although her understanding of
‘process’ and ‘event’ are somewhat different from what is proposed here, the
notion that events can be built up (or ‘assembled’, to use Yuan’s word) from
processes represents a point of commonality. Contrasted with this is the notion
of events as marking points of discontinuity in an otherwise smooth course of
history, as expressed, for example, by Langran and Chrisman [21], who portray
events as effectively instantaneous transitions between preceding and succeed-
ing states of affairs. Here there is no indication that events may themselves
comprise extended episodes within which various processes occur. Our example
above, however, shows that these two seemingly very different views of events
are quite compatible, and merely reflect different granularities at which events
can be portrayed.8

7 Note: This must be construed carefully: it is the type of event that is repeated, each
individual event occurs just once.

8 It is instructive in this connection to compare Fig. 2 in [21] with Fig. 1 in [35],
focussing particularly on the role assigned to the term ‘Event’ in the two diagrams.
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This example has highlighted two general temporal operators which can be
used to define event-types in terms of processes or vice versa.9 They are:

– Chunking : For a process P , we define an event-type chunk(P ), each of whose
occurrences consists of P starting, going on for a while, and then stopping. In
an information system, an event of type chunk(P ) might be constructed by
selecting a time-interval [t1, t2], and “filling” it with a “texture” corresponding
to process P , analogous to selecting a spatial region and filling it with some
value such as land-cover type. Note that the boundary is not filled: P is not
active at the endpoints of an interval on which a chunk of P occurs.

– Repetition: For an event-type E, we define a process rep(E), which consists
of an indefinite number of occurrences of E in (sufficiently quick) succession.
(Here ‘sufficiently quick’ will depend on the specific event-type involved, and
the context in which we are considering it — more on this below).

It should be emphasised here that chunks are to be understood as maximal: as
we are using the term, we cannot pick out a day’s worth of the Earth’s rotation
and call this a chunk of rotation.

In the literature, the term ‘process’ has been used to refer both to processes
as we understand them here, and to chunks of process. For example, when Yuan
[35] describes an event as an ‘aggregate of its associated processes’, she must
mean process chunks, but when she speaks of a process as ‘a continuing course of
development’, the word ‘continuing’ seems to rule out the chunk interpretation.

What other temporal operations are there? Up to now I may have given the
impression that any event-type must be specified as a chunk of some process, but
this is not correct. Some events are directly composed of other events, where these
constituent events are not sufficiently homogeneous to be regarded as forming
a process of type rep(E) for any E. As an example, consider an event in which
someone refuels their car: this event consists of a sequence of subevents, namely:
drive into the petrol station; if necessary wait in the queue; draw up alongside
the petrol pump; switch off the engine, get out of the car, unscrew the cap to
the fuel tank; etc., etc. This is, of course, an enactment of a routine, in the sense
introduced above. There is no single process of which this event is a chunk. What
is needed here is a direct event-composition operator, which combines a sequence
of events into a single larger event. It is standard to denote such an operator
‘;’, so the event-type defined as the sequential composition of event-types E1

and E2 is denoted E1;E2. If this operator is stipulated to be associative, then
any expression of the form E1;E2; . . . ;En is unambiguous; but as will be shown
below, such a stipulation may be problematic, in which case we must distinguish
differently-bracketed variants such as E1; (E2;E3) and (E1;E2);E3.
9 It is important to note that the general theory has to handle event-types rather than
specific unique occurrences. In defining what is meant by a chunk of some process,
for example, we are characterising a type of event, not an individual event. There
may be many different individual occurrences which come under this description (or
only one, or none), whereas an individual event is by nature unique. If we say ‘It
happened twice’ or ‘It happened again’, by ‘it’ we can only mean an event-type, of
which we are reporting another occurrence.
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With events it is natural to consider sequential composition, because events
have both beginnings and endings, and therefore one can readily locate the
beginning of one event at or just after the end of another, the two together
thereby forming a candidate for being considered as constituting a larger event.
A process, on the other hand, does not intrinsically have a beginning and an
ending; as soon as a process is considered together with its endpoints, it is being
treated as an event (that is, a chunk of process). For this reason it does not seem
possible to define sequential composition of processes as such. On the other
hand, it is natural to consider the parallel composition of processes: that is, two
processes whose simultaneous operation is regarded as constituting a process in
its own right. An example, on a small scale, would be someone driving a car
while speaking on their mobile phone — in this case two individually permitted
activities become illegal in (parallel) combination — and on a larger scale, the
climate becoming both warmer and wetter.

Parallel composition of events is also possible, although it is conceptually
more complex, since one has to specify whether the events should begin together,
end together, or both — or merely overlap without any coincidence of endpoints.
A range of different possible operators might be suggested here; experience with
different application contexts might single out some as especially useful.

Various forms of sequential and parallel composition are widely encountered
in the literature, forming essential components of algebras or calculi that have
been proposed for different purposes. Examples include the event-composition
operators used in Active Databases [2,17], Dynamic Logic [19], and Artificial
Intelligence [13]. Most such systems only handle events (while sometimes using
the term ‘process’ to denote them, the focus being on routines rather than
processes). As a result, the idea of having operators mapping between states
and processes is more rarely encountered. An exception is in linguistics, where
attempts have been made to formalise the semantic relationships amongst dif-
ferent verbs or verb-phrases, and the expression of such relationships through
the linguistic phenomenon of aspect (notably perfective vs imperfective), as for
example ‘it is raining’ refers to a process but ‘it rained three times yesterday’
refers to three occurrences of the event-type which we here describe as a chunk
of raining. Operators mapping between events and processes or states and vice
versa are discussed by, amongst others, [11,22].

Comparable constructs can be found in GIScience, although it is rare to find
explicit formalisations of them. Yuan [35] has a section on ‘Assembling Events
and Processes’ which includes a rule that is analogous to chunking (to deter-
mine when ‘the rain areas in T1 and T2 belong to the same rainstorm process’),
and a composition rule that builds a precipitation event from overlapping or
sequential chunks of precipitation processes which form an unbroken extent.
Claramunt et al. [8] similarly consider aggregations of process chunks (here
just called processes) to form larger ‘STP composites’. Worboys and Hornsby
[34] discuss the combination of events into ‘temporal sequence aggregations’,
e.g., the sequence of PlaneLanding followed by PlaneTaxiToGate, followed by
Passenger Deplaning, but again, no attempt is made to formalise the proper-
ties of such sequences. Although the necessity for such operations is frequently
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acknowledged, and attempts have been made to systematise their definition and
behaviour, rigorous formalisations such as we present here seem to be lacking.

The example ‘It is raining’ cited above leads us to consider a further possible
operator, since if we regard the English continuous tense (i.e., the form ‘be
. . . ing’) as expressing a process of which the simple form (‘It rained’) reports
an occurrence of a chunk, then it would seem we should be able to apply this
to any event type to yield a process of which each instance of that event type
is a chunk. If we apply this to a routine such as making a pot of tea, we arrive
at the idea that each enactment of this routine (that is someone making a pot
of tea on one occasion) can be considered to be a chunk of a process called
‘making a pot of tea’. In reality, of course, the various stages of making a pot
of tea are very different from each other (boiling the water, putting the tea
in the pot, pouring the boiling water into the pot, etc.) so we cannot really say
there is a single homogeneous activity such that making a pot of tea just involves
engaging in that activity for a certain period of time. We can, however, regard the
continuous tense as supplying a blanket term to cover all the activities involved
at each stage of making a pot of tea, conceptualising them as forming a single
notionally homogeneous activity, unified by the fact of their forming part of the
larger event: the complete event is then indeed a chunk of that activity. It may
be that something like this is at the root of the use of the term ‘process’ to refer
to a closed routine (our second sense above): it refers to the activity involved
in executing such a routine, glossing over the fact that this activity may be
a complex heterogeneous compound of individually homogeneous subprocesses.
This operation, by which a ‘higher-level’ process is created from an event, can
be called dechunking.

The operators suggested so far look as though they should form the basis of a
formal calculus of processes and events, but the matter is not entirely straightfor-
ward. Here I shall discuss some of the issues in an informal way; in the Appendix
can be found partial formalisations which highlight where the problems are.

It seems natural to suppose that the chunk and dechunk operators should
be mutually inverse, so that

– for any event type E, chunk(dechunk(E)) = E, and
– for any process P , dechunk(chunk(P )) = P .

A natural way of defining these two operators is as follows:

– There is an occurrence of event type chunk(P ) on interval [t1, t2] so long as
P is active throughout (t1, t2) but not at the endpoints t1 and t2.

– The process dechunk(E) is active at time t so long as there is an occurrence
of E on some interval [t1, t2] such that t1 < t < t2.

Note the style of these definitions: an event type is defined by providing its
occurrence conditions, that is, necessary and sufficient conditions that an event
of the specified type occurs over a given interval, whereas a process is defined
by providing its activity conditions, that is, necessary and sufficient conditions
that the specified process is active at a given time.
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With these definitions we can only obtain the result that chunk and dechunk
are mutual inverses (Appendix, Theorems 3 and 4) if we postulate that:

1. Distinct occurrences of a given event type cannot overlap. In this case we
shall call the event type discrete.

2. Processes are active on open intervals, i.e., if P is active at time t then there
are times t1 < t < t2 such that P is active throughout (t1, t2).

3. A process cannot persist indefinitely into the future or have persisted indef-
initely far into the past; that is, at any time there are both earlier and later
times at which the process is not active. In this case we shall call the process
locally finite.10

We also have to make a number of assumptions about the temporal ordering; for
most purposes it suffices that the ordering is irreflexive, transitive, linear, and
dense — but in one place we also need to assume that it is continuous.

Some of these principles are questionable, and we can easily find geographical
examples which might lead us to question them. The discreteness principle seems
particularly vulnerable. So long as the event type is sufficiently narrowly defined,
we can enforce discreteness, but very often if we try to broaden the definition
to create a more general event type, overlapping becomes possible. Consider
the event type ‘flight by A’, where A is a particular individual aircraft. Clearly,
distinct occurrences of this event type cannot overlap, since an aircraft cannot
be engaged in two flights simultaneously. But if we broaden the event type to
‘flight by any aircraft’, then over the world there are thousands of individual
occurrences of this event type in progress at any moment. Similarly, if the event
type is ‘rainstorm here’ (where ‘here’ denotes any sufficiently small region), then
overlapping occurrences are ruled out since it is not possible for two rainstorms
to be in progress at the same place at the same time, whereas the broader event
type ‘rainstorm anywhere’ is again one with many temporally overlapping occur-
rences. If for technical reasons we wish to maintain the discreteness principle,
for example in order to preserve the mutually inverse character of the chunk-
ing and dechunking operations relating events to the processes they comprise,
then we will have to outlaw general event types such as ‘flight by an aircraft’ or
‘rainstorm anywhere’.

Likewise one may wish to question the local finiteness principle for processes.
As an example, consider the rotation of the Earth. So long as it has existed, the
Earth has rotated, and no doubt it will continue to rotate for as long as it exists.
It is of course true that there are times in the distant past when the Earth did
not exist, and at these times the Earth’s rotation was not active; and in the (we
hope distant) future there will be times when the Earth no longer exists. Thus
strictly speaking this process is locally (indeed globally) finite; but from the
point of view of a GIS, one would naturally wish to ignore this very long-term
perspective and treat the rotation of the earth as a constant backdrop to the
events and processes one wishes to describe.

10 As distinct from ‘globally finite’, which would mean there is a time before which the
process is never active, and a time after which it is never active.
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Turning now to the sequence and repetition operators, we find that they
too present problems when we try to formalise them. Consider for example how
we might formally specify the conditions of occurrence for an event type of the
form E1;E2 — to be concrete, say, an earthquake followed by a landslide. An
occurrence of this event type must consist of an occurrence of type E1 followed
by an occurrence of type E2. What exactly is meant by ‘followed’ here? How
soon after the earthquake must the landslide occur in order for the two together
to count as ‘an earthquake followed by a landslide’? The strictest requirement
would be that the earthquake must be followed immediately by the landslide;
that is, for times t1, t2, t3, the earthquake occurs on the interval [t1, t2] and the
landslide occurs on the interval [t2, t3]. But we do not normally insist on this,
and indeed it often does not make sense to do so. One of the reasons we may be
interested in events of type E1;E2 is because we are interested in the possibility
of a causal connection between the components. Such causal effects may well
operate with a delay, which may be rather long in some cases. It is not usually
possible to specify a precise upper limit to the length of time that must elapse
between an occurrence of E1 and an occurrence of E2, though one might specify
an imprecise limit and build this into the definition of the compound event type.

There is another difficulty, however. To illustrate this, consider the case:

E1 E2E1 E2

t1 t2 t3 t4

Here two separate occurrences of E1 are closely followed by two occurrences of
E2. How many occurrences of E1;E2 are there? A liberal interpretation might
define the occurrence condition for E1;E2 as follows:

There is an occurrence of E1;E2 on interval [t1, t2] if and only if there
are times t1 < t ≤ t′ < t2 such that there is an occurrence of E1 on [t1, t]
and there is an occurrence of E2 on [t′, t2].

On this liberal interpretation there are four occurrences of E1;E2 in the case
illustrated above, occupying the intervals [t1, t3], [t2, t3], [t1, t4], and [t2, t4], which
means that E1;E2 is not discrete.

If we want to avoid this consequence, we must restrict the occurrence condi-
tion for E1;E2 in some way. If our goal is to secure discreteness then it seems
that the least we can do is the following:

There is an occurrence of E1;E2 on interval [t1, t2] if and only if there
are times t1 < t ≤ t′ < t2 such that E1 has an occurrence on [t1, t] but
no other occurrence starting within [t1, t2], and E2 has an occurrence on
[t′, t2], but no other occurrence ending within [t1, t2].

Under this restricted interpretation, the only occurrence of E1;E2 in the scenario
illustrated above is the one on [t2, t3]. It can be proved (Appendix, Theorem 6)
that thus defined, an event type of form E1;E2 is discrete so long as E1 and
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E2 are. This is a desirable consequence if we wish the chunking and dechunking
operations to be mutually inverse for all event and process types.

There is a disadvantage to this manoeuvre, however. With our first, sim-
ple, definition of E1;E2 we can prove (Appendix, Theorem 5) that sequential
composition is an associative operator, that is, that

E1; (E2;E3) = (E1;E2);E3.

The advantage of this is that it gives us for free, as it were, a definition of three-
fold sequential composition, which we would naturally write as E1;E2;E3. The
restricted definition of E1;E2, on the other hand, is not associative. This is easily
seen from an example such as the following:

E2E2E1

t1

E3

t2

Here, according to the restricted version of sequential composition, there is an
occurrence of E1; (E2;E3) on [t1, t2], but not of (E1;E2);E3. In such a case it is
less clear what we might mean by E1;E2;E3.

Thus we have a broad interpretation of ‘;’ which is associative but not dis-
crete, and a narrow interpretation which is discrete but not associative. It is
natural to ask whether some compromise interpretation can secure both asso-
ciativity and discreteness, but it would appear that as we move from our broad
interpretation in the direction of the narrow interpretation by adding gradually
more stringent conditions, we lose associativity before we gain discreteness.11

It should be noted, however, that overlapping is not always undesirable — we
have already seen that requiring discreteness can restrict the level of generality
of allowable event-type descriptions. Another case where overlapping should be
allowed concerns repetition. What if we form the sequential composition of an
event type with itself? An occurrence of E;E consists of two occurrences of E,
one after the other. If now we have three consecutive occurrences of E, then the
first two constitute one occurrence of E;E and the second and third constitute a
second, overlapping with the first. Of course the three occurrences of E together
also constitute an occurrence of E;E;E. If we allow such composite events, then
we can easily define the repetition process, rep(E) as dechunk(E;E) — or if
we require a minimum of, say, five occurrences of E to count as a process of
repetition, then dechunk(E;E;E;E;E).

In view of these considerations, we should not insist that event types are
discrete, say, or that event composition must be associative (and similarly with
other properties one may wish to enforce in some cases), but rather use dis-
creteness to define a specific subclass of events, which one may invoke as the
occasion demands. Then for example we can state that if E is discrete then so is

11 I have not proved this; it is a conjecture based on experiments with a number of
plausible candidate definitions.
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chunk(dechunk(E)), and that if P is locally finite then dechunk(chunk(P )) =
P . In other words, the main theorems of the formal theory will be conditional in
form. This leaves it open to the user of the theory to decide whether they want
all events to be discrete, say, or only events of a certain type. In general, if an
event type is precisely defined by means of its occurrence condition, then this is
already sufficient to determine whether it is discrete.

A more general moral is this. It seems obviously desirable, for the purposes
of building a robust and reliable computational infrastructure for a temporal
GIS, to give precise generic specifications of the properties and relationships
pertaining to the most basic patterns of temporal phenomena. However, as soon
as we try to do this in a rigorous and comprehensive way, we find the enterprise
to be fraught with difficulties, and it becomes far from clear exactly how these
basic notions should be defined, or what the consequences of defining them in
any particular way may be. For this reason, unpalatable as it may be from the
perspective of GIS developers eager to proceed quickly to a stage where they can
begin working with concrete applications, a good deal of logical or mathematical
“spade work” has to be done before we can deliver a product with the required
degree of reliability. Here we have been able to describe (and, as outlined in the
Appendix, execute) only a small portion of such spade work.

Beyond this, a further requirement is to develop, within the formal framework
outlined here, a way of representing causal relations amongst states, processes
and events. These causal relations would not in themselves constitute an explana-
tory theory, but would provide an interface through which the relationships
determined by means of causal rules within the process-modelling system can be
fed back into the data-modelling system. The basic qualitative causal vocabulary
consists of, in addition to ‘cause’ itself, such terms as ‘perpetuate’, ‘maintain’,
‘allow’, ‘enable’, ‘prevent’ and ‘disable’. In everyday speech these terms may
be used in a variety of ways; for the purpose of a more disciplined treatment
we need to determine exactly what relations we want to refer to, and to select
appropriate vocabulary to describe them. For more on this see [15,16].

4 Conclusion

Following a long-standing tradition in GIScience, this paper began by focussing
on the distinction between two fundamentally different classes of function that
it has been thought desirable for a GIS to accommodate: on the one hand the
data-modelling functions that are concerned with tasks such as the input, stor-
age, retrieval, organisation, manipulation, and presentation of data, and on the
other hand the process-modelling functions such as explanation, simulation and
prediction which, to be successful, must embody a theory of the real-world phe-
nomena which are being modelled.

It was noted that these two kinds of function, and the systems in which they
are implemented, treat time in different ways: for the purposes of data mod-
elling, time is regarded as another static dimension like those of space, providing
another coordinate dimension for indexing thematic elements. This is what I



18 A. Galton

have called ‘frozen’ or ‘historical’ time. By contrast, for the purposes of process
modelling, it is necessary to take seriously the dynamic nature of time, enabling
data to be collected on the fly or generated hypothetically by means of various
kinds of process simulation. This leads to a view of time which I have labelled
‘fluid’ or ‘experiential’ time. While historical time places an emphasis on com-
pleted events, experiential time is more concerned with ongoing processes.

As has previously been acknowledged, the integration of data-modelling func-
tions and process-modelling functions gives rise to considerable difficulties. There
may be many reasons for this, but the one I have focussed on in this paper
is precisely the discrepancy between the divergent approaches to time that
are required by the two kinds of function, exacerbated by the lack of a prin-
cipled theory of temporal phenomena from an informatic perspective. In the
second part of the paper, the foundations for such a theory were laid down: a
clear distinction between events specified by occurrence conditions and processes
specified by activity conditions, as well as operations for deriving events from
processes (chunking), processes from events (dechunking, repetition), and events
from events (sequential composition), thus providing a formal framework within
which processes and events can be accommodated within an information system.

The exposition of the formal theory has not addressed the issue of how it
might be implemented in a working system. While this may be perceived by
some as a weakness, I believe that, on the contrary, it is essential. We are talking
about the fundamental structure of some of our most basic temporal concepts;
any specific implementation must inevitably include many details, concerning
for example the data structures used for representing different elements of the
theory, which might be specified in many different ways compatibly with the
underlying theory and which, being essentially irrelevant to that theory, would
only serve as a distraction and, perhaps, be accorded undue importance. Having
been developed in a clean, implementation-independent way, the theory can
then stand as a benchmark, or reference standard, against which many different
implementations in specific systems may be assessed.

A Notes Towards a Formal Theory of Processes
and Events

All the theorems listed below have been proved, but there is no space here to
include the proofs. These may be obtained from the author on request.

We define a many-sorted first-order language with identity, with sorts P
(Processes), E (Event types), and T (Time instants). We could have introduced
an additional sort for time intervals, but instead we will refer to an interval by
means of a pair of instants, representing its beginning and end points.

The primitive predicates are:

– Active, of type P × T , where Active(P, t) means that P is on-going at t.
– Occurs, of type E × T × T , where Occurs(E, t1, t2) means that an event of
type E occurs on the interval [t1, t2].
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– <, of type T × T , where t1 < t2 means that t1 precedes t2. We assume the
ordering < is irreflexive, transitive, linear, and dense; also, in one place, we
assume that the order is continuous (a second-order property).

The only axioms we assert here are that the start of an event precedes its end
and that processes are active on open intervals:

(AxOcc). Occurs(E, t1, t2) → t1 < t2
(AxAct). Active(P, t) → ∃t1t2(t1 < t < t2 ∧ ∀t′(t1 < t′ < t2 → Active(P, t′)))

We define a number of additional predicates, as follows:

An event-type is discrete if distinct occurrences cannot overlap:

Discrete(E) =def ∀t1t2t3t4(Occurs(E, t1, t2) ∧ Occurs(E, t3, t4)
→ t2 ≤ t3 ∨ t4 ≤ t1 ∨ (t1 = t3 ∧ t2 = t4)))

A process is locally finite if it neither always has been, nor always will be,
active:

LocF in(P ) =def ∀t∃t1t2(t1 < t < t2 ∧ ¬Active(P, t1) ∧ ¬Active(P, t2)).

Subtype: The relation ⊑ ⊂ (E × E) ∪ (P × P) is defined by

E1 ⊑ E2 =def ∀t1t2(Occurs(E1, t1, t2) → Occurs(E2, t1, t2))
P1 ⊑ P2 =def ∀t(Active(P1, t) → Active(P2, t).

Equality for event-types and processes: For X ∈ E ∪ P,

X1 = X2 =def X1 ⊑ X2 ∧ X2 ⊑ X1

Chunking: The function chunk : P → E is defined contextually, via an occur-
rence condition for the event-type chunk(P ), as follows:12

Occurs(chunk(P ), t1, t2) =def t1 < t2 ∧ ∀t(t1 ≤ t ≤ t2
→ (Active(P, t) ↔ t1 < t < t2))

Dechunking: The function dechunk : E → P is defined contextually, via an
activity condition for the process dechunk(E), as follows:13

Active(dechunk(E), t) =def ∃t1t2(t1 < t < t2 ∧ Occurs(E, [t1, t2]))

Using these axioms and definitions we can prove:

Theorem 1. Discrete(chunk(P )).

Theorem 2. Discrete(E) → LocF in(dechunk(E)).
12 The first conjunct of the definiens is required to ensure that chunk(P ) satisfies

AxOcc.
13 The legitimacy of this definition depends on the fact, easily proved, that dechunk(E),

so defined, satisfies AxAct.
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The converse of Theorem 2 does not hold: if E has only two occurrences, which
overlap, then dechunk(E) is locally finite but E is not discrete.

The next two theorems show that for discrete events and locally finite
processes, chunk and dechunk are mutually inverse.

Theorem 3. Discrete(E) → chunk(dechunk(E)) = E.

Theorem 4. LocF in(P ) → dechunk(chunk(P )) = P .

Note that even if P is not locally finite we have dechunk(chunk(P )) ⊑ P , which
holds for any process P .

We define two different flavours of sequential composition operator, which
we call weak and strong. Other definitions are possible.

Weak Sequential Composition:

Occurs(E1;E2, t1, t2) =def

∃t3t4(t1 < t3 ≤ t4 < t2 ∧ Occurs(E1, t1, t3) ∧ Occurs(E2, t4, t2))

The next theorem establishes the associativity of weak sequential composition:

Theorem 5. E1; (E2;E3) = (E1;E2);E3.

As a result of this theorem, we can drop the parentheses and write E1;E2;E3.
As noted in the main text, under Weak Sequential Composition E1;E2 is not
discrete.

Strong Sequential Composition:

Occurs(E1̂;E2, t1, t2) =def ∃t3t4(t1 < t3 ≤ t4 < t2
∧ Occurs(E1, t1, t3) ∧ Occurs(E2, t4, t2)
∧¬∃t, t′((t3 ≤ t < t2 ∧ Occurs(E1, t, t′))

∨ (t1 < t′ ≤ t4 ∧ Occurs(E2, t, t′))))

The next theorem establishes that the strong sequential composition of two
discrete events is discrete.

Theorem 6. Discrete(E1) ∧ Discrete(E2) → Discrete(E1 ;̂E2).

As noted in the main text, the operator ;̂ is not associative.
For repetition, we want to define a process rep(E) which is active during a

period in which E repeatedly occurs. The simplest case is where E occurs twice.
This can be expressed as an occurrence of the event E;E (but not E ;̂E, since
E ;̂E cannot occur). We define:

rep(E) =def dechunk(E;E)

This would mean that two occurrences of E suffice for this process to be active.
Normally we would expect a larger number (think of our bursts of machine-
gun fire). We could arbitrarily decide for some n that we require rep(E) =
dechunk(E;E; · · · ;E), where the right-hand side contains n copies of ‘E’. While
it would clearly not be feasible to fix an n which will always give satisfactory
results, the important thing is that as we increase n we obtain a sequence of
processes each of which is special case of the previous one. This is shown by the
following theorem:
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Theorem 7. dechunk(E;E;E) ⊑ dechunk(E;E).

As well as the indeterminacy as to how many repetitions of E are required
before we say that the process rep(E) is active, there is an indeterminacy as to
how far apart the individual occurrences of E must be in time. Resolution of
both these indeterminacies must depend on the nature of the specific event-type
in question and the context in which it is considered.
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