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Abstract. Topological relationships between spatial objects represent
important knowledge that users of geographic information systems ex-
pect to retrieve from a spatial database. A difficult task is to assign
precise semantics to user queries involving concepts such as “crosses”,
“is inside”, “is adjacent”. In this paper, we present two methods for de-
scribing topological relationships. The first method is an extension of
the geometric point-set approach by taking the dimension of the inter-
sections into account. This results in a very large number of different
topological relationships for point, line, and area features. In the sec-
ond method, which aims to be more suitable for humans, we propose to
group all possible cases into a few meaningful topological relationships
and we discuss their exclusiveness and completeness with respect to the
point-set approach.

1 Introduction

In the context of geographic information systems (GISs), the spatial relationships
existing between the geographic objects play a central role both at the query
definition level and at the query processing level. In fact, the easiest way for
users to define spatial queries is based on the possibility of expressing spatial
conditions among geographic objects (e.g., adjacency of regions) inside the query
statement.

The need to refer to spatial relationships arises a second time when the
database management system (DBMS) tries to process a spatial query. Obvi-
ously, spatial queries can be easily processed if all the geometric relationships
between the objects of interest are explicitly stored; however, such a choice is
unsatisfactory since it requires a tremendous amount of disk space and, fur-
thermore, it implies the execution of time-consuming maintenance procedures.
It follows that instead of storing all spatial relationships among the objects of
interest it is more convenient to compute them. To that purpose, a deep under-
standing of how to evaluate spatial relationships is needed.



The need for developing a sound mathematical theory of spatial relationships
to overcome the shortcomings of almost all geographic applications was clearly
stated by Abler several years ago [Abl87]. Nevertheless, the exploration/formalization
of spatial relationships is still an open problem, and a multi-disciplinary effort
involving linguists and psychologists besides geographers and computer scientists
is probably the best approach to get good results.

So far there is a good, but still incomplete, understanding of topological rela-
tionships, that is the subset of spatial relationships characterized by the property
of being preserved under topological transformations, such as translation, rota-
tion, and scaling. In the literature, we find several attempts to describe a set of
meaningful topological relationships (see, among others [RFS88, MS89, B*91,
CDD91]), but it is difficult to find a formal definition of them. A good formal
approach can be found in [EF91], that has been extended in [EH92], where the
authors adopt a method to give exact semantics to the binary topological rela-
tionships based on the point-set theory. A drawback of this method is that they
distinguish only between empty or non-empty intersections of boundaries and
interiors of geometric objects, and also the method results in too many differ-
ent relationships to be used by end-users. This will become even worse if the
method of Egenhofer is extended in order to take into account the dimension
of intersections. The list of cases that results from this approach is not directly
related to the user interpretation of topological facts. In [ME92], after a testing
experience with human subjects, the authors conclude that there is a significant
connection between human interpretation of spatial relationships and the Egen-
hofer method. However, a way of grouping relationships is needed in order to
map concepts from a geometric level to a higher (user-oriented) level.

In the present contribution, we take into account the dimension of the result
of the intersection (dimension extended method); furthermore, our objective is
to keep the resulting number of potential topological relationships as small as
possible. To achieve the latter goal, we grouped together the relationships (that
are somehow similar) into a few more general topological relationships: touch, in,
cross, overlap, and disjoint. We called this approach the calculus-based method,
since it uses the constructs of the Object-Calculus introduced in a previous
paper [CD92]. The five relationships are overloaded concepts in the sense that
they may be used for point, line, and area type of features. Further, more detailed
distinctions among topological situations are possible by introducing operators
on the boundary of features. Specifically, it is possible to use directly circular
lines (coming from the boundaries of areas) and end-points (coming from the
boundaries of lines).

The paper is structured as follows. Section 2 contains general definitions for
the Object-Calculus and for the geometric point-set theory approach. Section 3
first recalls the original Egenhofer method and hence it discusses the dimension
extended method. In Section 4, we give the exact semantics to the five basic
topological relationships and several examples of usage of them; then we prove
that the five relationships are mutually exclusive (e.g., it cannot be the case that
two features are involved in an in and overlap relationship with each-other) and



that there are no cases that fall outside them. Furthermore, we prove that a
combination of these terms, together with a boundary operator for line and area
features, is expressive enough to represent all possible cases in the dimension
extended method. A brief description of the implementation is given in Section
5. Section 6 contains a discussion about the possible extensions.

2 General Definitions

The notations P, L, and A are used for point, line, and area features. If it is
necessary to distinguish between two features of the same type, then numbers are
used; e.g. A; and A,. The symbol A is used in situations where it may represent
one of the three feature types.

In [CD92], we proposed the Object-Calculus, which is a formal query lan-
guage suitable for querying geographical databases. In such a calculus, the nota-
tion (A1, 7, Az) means that the features A; and As are involved in the relationship
r; we call this triplet a fact. Facts can be combined through the and (A), or (V)
Boolean operators. Besides stating facts, the Object-Calculus allows the usage
of methods (oprations) inside a query statement. Let m be a method and I a
specific instance of a feature type A, the pair (I,7m) means that the method m
operates on the instance I, and returns a new instance, say I;. We overload the
notation (I,m) to denote also the resulting instance I.

Formal definitions of geometric objects (features) and relationships are based
on the point-set approach, where features are sets and points are elements of
these sets (see [Kel55]) for a general topology reference). The subject of the
relationships are the “simple” points, lines, and areas commonly used in GISs:
the topological space is IR?; all kinds of features are closed sets, that is, each
feature contains all its accumulation points (also called limit points); also all
features are connected, that is, they are not the union of two separated features.
Specifically:

1. area features are only connected areas with no holes;

2. line features are lines with no self intersections and either circular (closed
curves) or with only two end-points;

3. point features may contain only one point.

We consider a function “dim”, which returns the dimension of a point-set.
In case the point-set counsists of multiple parts, then the highest dimension is
returned. Note that this can only be the case for intermediate point-sets as our
features always consist of one part. In the following definition, S is a general
point-set, which may consist of several disconnected parts:

ifS=90

if S contains at least a point and no lines or areas
if S contains at least a line and no areas

if S contains at least an area .

dim(S) =

|



The boundary and the interior of features are used in the Egenhofer method
for describing the topological relationships. The same is true for our approach;
therefore, we give definitions of boundary and interior for the three types of
features that are slightly different from the pure mathematical theory, but lead
to consistent definitions for relationships. The boundary of a feature A is denoted
by OA. It is defined for each of the feature types as follows:

1. OP: we consider the boundary of a point feature to be always empty;

2. OL: the boundary of a line is an empty set in the case of a circular line while
otherwise is the set of the two separate end-points;

3. 0A: the boundary of an area is a circular line consisting of all the accumu-
lation points of the area.

The interior of a feature A is denoted by A°. It is defined as:
A= A-0X .

Note that the interior of a point and of a circular line is equal to the feature
itself.

3 The Dimension Extended Method

Egenhofer [EF91] originally described his method for classifying topological bi-
nary relationships between area features. The classification is based on the inter-
sections of the boundaries and interiors of the two features. These are represented
by the four sets:

S1 =04 N0A;
Sy = 04, N Aj
Sy = A2 NOA,
S4=ATOA§ .

Each of these four sets may be empty (@) or non-empty (—)). This results in
a total of 2* = 16 combinations (Table 1), which may not all result in a valid
topological relationship, because of the properties of area features. As there are
8 impossible cases (proved in [EF91]) and 2 pairs of converse relationships, the
number of different types of relationships is 6: disjoint, in, touch, equal, cover,
and overlap. Figure 1 gives a pictorial representation of these six relationships.
One of the good aspects of this approach is that it gives an exact definition of
the mentioned relationships. Also, it takes into account all possible combinations
of intersections (a form of completeness).

The first extension to the standard approach is to add also point and line
features, resulting in 6 major groups of binary relationships: area/area (as de-
scribed above), line/area, point/area, line/line, point/line, and point/point. This
approach has been described in [dHv092, EH92, ?]. A drawback of the approach
is the large number of different relationships, of which each has its own name. As
it may be hard to remember all these names, the users might become confused.
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Fig. 1. A visualization of the six different relationships in Table 1

Table 1. The range of area/area situations as in the original Egenhofer method

case S1 Ss S3 Sy relationship name
0A, NDA, 0A1 N AS A? NOoA, Ai) n AS

1 0 0 1] 0 A; disjoint As

2 ] ] ] =)

3 ] ] ] ]

4 @ @ —'@ —'@ As in A,

5 ] =) 0 )

6 0 -0 1] =0 Ay in A,

7 ] = ] ]

8 0 = = )

9 =) ] ] ] A; touch A,
10 =) 0 1] =0 As equal As
11 —{ 0 = 0
12 = 0 -0 =0 Ay cover A,
13 = = 0 0
14 =) -0 1] - A, cover A
15 = = = ]

16 ! ] ol =0 A, overlap A,




Another drawback of this method is that it is impossible to distinguish be-
tween certain cases, which are usually regarded as different by users. For example,
two areas that have one point in common, and two areas that have a complete
line in common, do both fall under the same “touch” relationship, because the
intersection of their boundaries (S1) is non-empty and the other intersections
(52,83, and S4) are all empty (case 9 in Table 1).

Table 2. The line/area situations in the dimension extended method

case S Ss S3 Sy possible
OANIOL OANL° A°NOL A°NL°

1 - - - - yes
2 - - - 1 no
3 - - 0 - no
4 - - 0 1 yes
5 - 0 - - yes
6 - 0 - 1 yes
7 - 0 0 - no
8 - 0 0 1 yes
9 - 1 - - yes
10 - 1 - 1 yes
11 - 1 0 - no
12 - 1 0 1 yes
13 0 - - - yes
14 0 - - 1 yes
15 0 - 0 - no
16 0 - 0 1 yes
17 0 0 - - yes
18 0 0 - 1 yes
19 0 0 0 - no
20 0 0 0 1 yes
21 0 1 - - yes
22 0 1 - 1 yes
23 0 1 0 - no
24 0 1 0 1 yes

In the dimension extended method, we take into account the dimension of the
intersection, instead of only distinguishing empty or non-empty intersections. In
order to illustrate this extension, the line/area type of topological relationships
will be elaborated on. In two-dimensional space, the intersection set S can now
be either () (empty), 0D (point), 1D (line), or 2D (area). At first sight, these 4
possibilities might result into 4* = 256 different cases. Fortunately, a lot of cases



are impossible and only the following are possible:

S1 =0ANAL:0,or 0D (2 cases)
S =0ANL°: §,0D, or ID (3 cases)
S3 =A°NOL: §,or 0D (2 cases)
Sy =A°NL°: P,or 1D (2 cases) .

This is due to the fact that the dimension of the intersection cannot be higher
than the lowest dimension of the two operands of the intersection; dim(9A4) = 1,
dim(A°) = 2, dim(dL) = 0, and dém(L°) = 1. Further, the definitions of line
and area features exclude the option that dim(Sy) = 0. Therefore, instead of
256, there are only 2 % 3 % 2 % 2 = 24 possible cases. Table 2 shows that only 17
out of these 24 cases are really possible.

Cases 3, 7, 11, 15, 19, and 23 are impossible because, if the intersection of
the interior of an area with the boundary of a line (S3) results in a point (0D),
then it is impossible that the intersection of the interiors (S4) is empty. Case
2 is impossible because if the intersection of the interiors (S4) results in a line,
then the other sets (51,52, and S3) cannot all be empty. Note that in Table 2,
we did not even bother anymore to give names to all the 17 different topological
relationships. Figure 2 is a visualization of these relationships.

A similar analysis for the other groups of topological relationships results in
a total of 52 real cases (see Table 3).

Table 3. A summary of the analysis for all relationship groups

relationship groups £ possible cases # real cases

area/area 24 9
line/area 24 17
point/area 4 3
line/line 24 18
point/line 4 3
point/point 2 2

Grand total 52

4 The Calculus-based Method

The grand total of 52 relationships is far too much for humans to be used in a
reasonable manner. It is better to have an overloaded set of just a few basic rela-
tionships which the user understands well. The dimension extended method uses
various results of feature intersections (empty, 0D, 1D, and 2D) together with the
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Fig. 2. The 17 different line/arca cases in the dimension extended method

boundary and interior operators to describe the required relationships. It may
be clear that it is not a very user-friendly method, as the user is not (directly)
interested in the intersections of the boundaries and the interiors. Furthermore,
though the concept of boundary may be familiar to users, the concept of interior
may be less well understood because it is based on the mathematical point-set
theory (open/closed sets).

At the query language level, we take into account the considerations above
by making available to the users only boundary operators (for area and line fea-
tures) together with the five topological relationships: touch, in, cross, overlap,
and disjoint. Therefore, in the generic object-calculus fact (A1, 7, A2), 7 may be
one of the five relationships, while A; and Ay may be either features or bound-
aries of features. We refer to the use of such operators and relationships as the
calculus-based method. Formal definitions of these terms will be given in the next
subsection. The definitions are general in the sense that they apply to point, line,



and area features (unless stated otherwise). It is our conjecture that this is the
smallest set of relationships capable of representing all cases of the dimension
extended method under the condition that only the additional boundary opera-
tors for area and line features are available. The set of topological relationships
is close to the normal human use of these concepts and still powerful enough to
represent a wide variety of cases.

Based on the formal definitions of the relationships we will prove that they are
mutually exclusive and they constitute a full covering of all topological situations.
Further, we will give a proof of the fact that all cases of the dimension extended
method can be described. Also, a few examples will show that these relationships
are capable of distinguishing even more cases (which cannot be described with
the dimension extended method).

4.1 Definition of relationships and operators

In the following, an Object-Calculus fact involving a topological relationship is
on the left side of the equivalence sign and its definition in the form of a point-set
expression is given on the right side.

Definition 1. The touch relationship (it applies to area/area, line/line, line/area,
point/area, point/line situations, but not to the point/point sitnation):

<A1, tO?LCh,, )\2) =4 ()\T N )\f = @) A ()\1 N Az 7é @) .
Definition 2. The in relationship (it applies to every situation):
<A1,’[:’IL./A2> -~ (Al Ny = )\1) A (A; N )\; 7é V]) .

Definition 3. The cross relationship (it applies to line/line and line/area situ-
ations):

(A1, cross, Ay) & ditn(A N AS) = (max(dim(A]), dim(A3)) — 1)A
(AN Az £ A1) A AN As 2 A)

Definition 4. The overlap relationship (it applies to area/area and line/line
situations):

(A1, 0verlap, A2) < (dim(A7) = dim(A3) = dim (AT N AS))A
(AN Az 2 A A (AN Az 2 As) .

Definition 5. The disjoint relationship (it applies to every situation):
(A1, disjoint,A2) & A NA =0 .

A relationship r is symmetric if and only if (A1, 7, A2) & (A2, 7, A1) A re-
lationship = is transitive if and only if (Ag,r, A2) A (Ag, 7, A3) = (A1, r, Az). It
comes from the definitions that all relationships are symmetric with the excep-
tion of the in relationship. It can be easily proved that only the in relationship
is transitive.



In order to enhance the use of the above relationships, we define operators
able to extract boundaries from areas and lines. With regard to a non-circular
line, the boundary JL is a set made up of two separate points. Since the 0-
dimensional features that we consider are limited to single points, we need to
have operators able to access each end-point. We call the end-points f (from)
and t (to) respectively, though we do not consider a direction on the line.

Definition 6. The boundary operator b for an area A: The pair (A,b) returns
the circular line 0A.

Definition 7. The boundary operators f, ¢ for a non-circular line L: The pairs
(L, f) and (L,t) return the two separate points belonging to the set JL.

4.2 Examples

An important advantage of this approach is to provide relationship names that
have a reasonably intuitive meaning for users of spatial applications. In the
following, we try to substantiate such a claim through several examples.

The touch relationship

Intuitively, we say that two geometric elements touch each other, if the only
thing they have in common is contained in the union of their boundaries. It may
be verified easily that all cases in Fig.3 are covered by the formal definition of
the touch relationship.

The in relationship

One feature is 2n another one if the former is completely contained in the
latter. The examples of Fig.4 illustrate this relationship.

The cross relationship

We say that two lines cross each other if they meet on an internal point (note
that it could not be a touch because in that case the intersection is only on the
boundaries). Similarly, a line crosses an area if the line is partly inside the areca
and partly outside. See Fig.5 for examples of the ¢ross relationship.

The overlap relationship

Informally, two features overlap each other if the result of their intersection
is a third feature of the same dimension, but different from both of them. It
comes from the definition that this relationship can apply only to homogeneous
cases (area/area and line/line, see Fig.6 for a visualization of these cases).

The disjoint relationship

Two features are disjoint if their intersection is void; this case is quite obvious
to understand: see the examples in Fig.7.

4.3 Mutual exclusiveness and full covering of relationships

In this section, we will prove that the five relationships are mutually exclusive,
that is, it cannot be the case that two different relationships hold between two
features; furthermore, we will prove that they make a full covering of all possible
topological situations, that is, given two features, the relationship between them
must be one of the five.
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Fig. 3. Topological situations illustrating the touch relationship between two ar-
eas (a,b), two lines (¢,d), a line and an area (e h), a point and a line (i), a point and
an area (j)

Theorem 1. Given two geometric entities Ay , As and a relationship r between
them, if (A1,7,X2) holds, then (A1,7;, A2) does not hold for every r; # v, and
there does not exist a topological situation that falls outside the five relationships
of the calculus-based method.

Proof. Every internal node (see Fig.8) in the “topological relationship decision”
tree represents a boolean predicate; if for a certain topological situation, the
predicate evaluates to “true” then the left branch is followed, otherwise the
right branch is followed. This process is repeated until a leaf node is reached
which will indicate to which of the 5 (or 6 if the asymmetric in is counted for
two different relationships) basic relationships this situation belongs. Now, two
different relationships cannot hold between two given features, because there
is only one path to be taken in the topological relationship decision tree. Fur-
thermore, there can be no cases outside the calculus-based method, because (a)



Fig. 4. Topological situations illustrating the in relationship between two areas (a ¢),
two lines (d,e), a line and an area (f-h), a point and a line (i), a point and an area (j),
two points (k)

(d) (e)

Fig. 5. Topological situations illustrating the cross relationship between two lines (a),
a line and an area (b—e)



Fig. 6. Topological situations illustrating the overlap relationship between two ar-
eas (a), two lines (b,c)
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Fig. 7. Topological situations illustrating the disjoint relationship between two ar-
eas (a), a line and an area (b), two points (c)

every internal node has two branches, so for every value of the predicate there
is an appropriate path; and (b) every leaf node has a label that corresponds to
one of the five topological relationships. O

Note that the “topological relationship decision” tree is a general tree that
can be used for all situations: area/area, line/area, point /area, line/line, point/line,
and point/point. From the definition of a point and the predicates it follows that
a point can never "travel down” the decision tree below the second level. At this
level the relationship (either touch, disjoint, or in) is decided on. In order to
evaluate the predicate at the lowest level, one has to take into account the fol-
lowing situations: area/area, line/area, and line/line, because of the use of the
dimension function dim in the predicate.

4.4 The calculus-based method versus the dimension extended
method

Theorem 2. The calculus-based method is expressive enough to represent all
the topological situations of the dimension extended method.

Proof. The proofis based on the principle that if we can provide the equivalents
of each of the basic terms in the dimension extended method, then we can also
specify every case exactly by the logical conjunction (A) of these terms. The
conjunction of the 4 separate terms will usually result in a quite long expression.
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Fig. 8. The topological relationships decision tree

After the proof we will give a few examples showing that the same case can also
be specified with a shorter expression.

Each case of the dimension extended method can be specified by the log-
ical conjunction of four terms expressing conditions on the intersection of the
boundaries and the interiors of the two features; in general:

Ty (0A1 N OXs) ATo(OA NAY) A T5(AS N OA) AT4(AS N AS) . (1)

It is possible to give the equivalences for every term 7; admissible in the
dimension extended method. On the right of each equivalence we have a logic
expression P; making use of the five relationships between features and between
their boundaries. Each equivalence can be easily tested by applying the defini-
tions given for the five relationships. By substituting each T; with the corre-
sponding P;, we obtain an expression Py A P> A P3 A Py that is equivalent to
(1). Therefore, the calculus-based method is able to express each situation of
the dimension extended method. O

In the following, for each term of the dimension extended method, an equivalent
term in the calculus-based method is given:

Area/area

A1 NOA; =0 < ((A1,b), disjoint, (A2,b))
dim(0A1 N0As) =0 < ((A1,b),cross, (As, b))
dim(0A; NOA2) =1 < {(A1,b),overlap, (As, b)) V {(A1,b),in, (A2,0))



A1 NAS =10 < (Ag,in, A1) V {As, touch, A1) V (As, disjoint, A1)

dim(0A; N AS) =1 & ({(Ay,in, A2) A ({(A1,b),disjoint, (A2,b))V
((A1,b),cross, (As, b))V

((A1,0), overlap, (A2,b)))) V (A1, overlap, As)
Af n 8A2 = @ <
dim(A NOAz) =1 ({(Az,in, A1) A ({(Asz, b),disjoint, (A1,b))V
((Aa,b),cross, (A1,b))V

((As,b), overlap, (A1,b)))) V (As, overlap, A1)
< (A1, touch, A2) V (A1, disjoint, Ay)

& (Aq,in, Ar;) (Az,in, A1) V (A1, overlap, As)

ATNAS =10
dim(A; N AS) =2

Line/line
OLy NOLy = 0 & (L1, f). disjoint, (L, f))A
({(Ly,t), disjoint, (Ls, f))A
((L1, f ) disjoint, (La, t))A
({(L1,t),disjoint, (Ls,t))
dim(0L1 NOL2) =0 < ((L1, f), touch, La) V {(L1,t), touch, L)
OLiNLy=10 < (((L1, f),disjoint, La) V (L1, f), touch, La))A
({(Ly, 1), disjoint, Ls) V {(L1,t), touch, L2>)
dim(0L, NL3) =0 < {(L1, f),in, L2} V {(L1,t),in, Ls)
LyNOLy =0 < (((Le, f),disjoint, L1} V ((Lz,f)qtouch,,Lﬁ)/\
({(La2,t),disjoint, L1) V {(La,t), touch, L))
dim(LS N OLs) =0 & {(La, f),in, L1) V (L, t),in, Ly)
LiNnLs=90 < (Ly,disjoint, Ls) V (L1, touch, La)
dim(LYNLS) =0 < (L1,cross, Ly)
dim(LYNLS) =1 < (Ly,overlap, La) V (Ly,in, La) V (La,in, L1 )
Line/area
OANOL =0 < (L, f), dzeyomt (A, D)) AN{(L,t),disjoint, (A, b))
dim(9ANOL) = 0 & {(L. f),in, (A,0))V ({(L. 1), in, (A b))
OANLe =10 < (L, disjoint, ( b)) V (L, touch (A, b))
dim(QANL°) =0 & (L,cross, (A, b))
dim(0ANL°) =1 & (L,overlap, (A,b)) V (L, in, (4,b))
NOL =10 < (L, f),disjoint, A) V ((L, f), z‘ourh JANA
({(L,t), disjoint, A) \/( (L, t), touch, A))
dim(A°NOL) =0 < ((L, f),in, A) V {(L,t),in, A)
AN LS = & (L,T{mrh, A)V (L, d1 {]mmﬂ A)
dim(A°NL°) =1 & (L,cross, A) V {L,in, A)
Point/line
OLNP=1{ & (P, disjoint, L) V {P,in, L)
dim(O0LN P) =0 < (P, touch, L)
L°NnP=0 < (P, disjoint, L) V (P, touch, L)
dim(L° N P) =0 & (P,in, L)

& (Aq,in, A2) V <A1,touch Ag) V (Ay,disjoint, As)



Point/areq

OANP =10 < (P, disjoint, AYV (P, in, A)
dim(0AN P) =0 & (P, touch, A)
A°nNP=10 & (P, disjoint, AY V (P, touch, A)
dim(A°NP)=0 < (P,in, A)

Point/point
lePQIV) <:><P1,di3j0i7bt,P2>

dim(Pl OPQ) =0« <P1,in,P2>

An example may help to understand the proof: let us consider case 5 of Table
2, which is expressed by:

(OANIL = B) A (dim(0AN L) = 0) A (A°NAL =) A (A°NL° = 0);

by making all the substitutions with the equivalences given above, it can be
expressed by:

((L, f),disjoint, (A, b)Y A ((L,t), disjoint, (A, b)}A
(L, cross, (A, b))A

({(L, f),disjoint, Ay V {(L, f), touch, A))A
({(L,t),disjoint, A) V {(L,t), touch, A))

(L, touch, Ay V (L, disjoint, A) .

Of course, this is a long expression, valid in general, but not so practical. An
TTad hoc” expression much more effective for the same case is the following;:

(L, touch, Ay A (L, cross, (A, b)) A (L, f),disjoint, A) A {(L,t),disjoint, A).
Other examples of some situations in Fig.3 are simply expressed by:

(A1, touch, As) A ((A1,b), overlap, (As, b)) (Fig.3.a)
(A1, touch, A2y A ((A1,b), cross, (A2,0))  (Fig.3.b);

and some situations in Fig.4 by:

<(L2, 7:’)7,, L1)> A <(L2, f), 7:71,, L1

)/\( ) in, L)) (Fig.4.d)
(L,in, Ay A (L,overlap, (A, b)) A {(L

) n, A) ((L,t),in, A) (Fig.4.h).

Theorem 2 states that all the cases in the dimension extended method can be
expressed with the calculus-based method. But is the converse true? It is easy to
see that there are some topological situations that are undistinguishable in the
dimension extended method, but that can be represented with the calculus-based
method.

For example, the two situations between the lines L; and Ly in Fig.9.a both
fall in the following case in the dimension extended method:

(OL1 NOLy = 0) A (OL1 N L5 = B) A (dim(L{ N OL2) = 0) A (LN L5 = 0),



while we can make a distinction with the primitives of the calculus-based method:

I. {Ly,touch,La) A (({(L2, f),in, L1) A {(Ls,t),disjoint, L1))V

({(Lg,t),in, L1) A{(Ls, f),disjoint, L1)));
11 <L1,tO’U,Ch,L2> A <(L2./ f),l?’l,, L1> A <(L2./ t),in,L1>.

Another example is depicted in Fig.9.b, where both situations correspond to the
line/area case no. 20 in Table 2. The first situation is a cross, while the second
one is a in; in detail:

L,cross, A) A (L, cross, b)) A

- A (({(
(((L,1),m, (A, b)) A (((L, f) in, A)))); ; N
II. § L1, A) (L,cross, (A, b)) A (((()L, )yin, (A, 0)) A ({(L, t),in, A)))V

(L, t).in. (A D)) A (L, £),in, A)))).

(L. f)eim (AD) A (L) im. AV

<
&S @

(b)

Fig. 9. Comparison between the calculus-based method and the dimension extended
method

This additional expressive power comes with the in relationship and the f
and ¢ operators. In fact, the én relationship allows to say (see Def.2) that the
result of the intersection of the two entities is equal to one of them (not only the
dimension of the result like in the dimension extended method); furthermore,
the f and t operators allow to specify conditions on the single end-point of a line
(in the dimension extended method, the boundary of a line is a unitary concept).

5 Discussion

In conclusion, we proposed a formal way of modeling topological relationships
adopting a calculus-based method, suitable for the definition of an actual query
language towards GISs, and close to the way users think about topological rela-
tionships. We defined the calculus-based method starting from a point-set theory



approach, which is the recent one adopted in the literature (e.g. [EF91]) to model
topological situations.

The cases that are left out during this first presentation of the calculus-based
method are:

1. complex area or line features (that is, in case of an area: a non-connected
boundary, and in case of aline: more than two end-points and self-intersections)
(Fig.10.a-b);

2. distinguishing the number of simple features that can characterize the inter-
section of two features (Fig.10.c-d);

3. ordering of the different parts of crossing lines (Fig.10.e-f);

4. line features crossing above/below each-other; this is left out because it is a
3D problem (we will need a 3D variant of the method) (Fig.10.g).

EVA

(b)

(d)

[$3]

Fig. 10. Extensions left out in our modeling

We plan to extend the calculus-based method to encompass also the cases
above. Another point in our wish list is related to test if the calculus-based
method is really suitable for end-users. This will lead to some experiments on
human subjects to check if the way we grouped topological situations is close
to the way people do the same and, therefore, check the usefulness of our query
language.



The proposed operators b, f, and ¢ (boundary, from, and to respectively)
and the topological relationships have been all implemented as functions (and
operators) in the Postgres [SR86, SRHI0] extendible DBMS environment on a
Sun Sparc. It is implemented in a manner similar to (and compatible with) the
standard geometric extension used in GEO++ [vOV91, Vv0O92]. When using the
topological relationships in the Postgres/GEO++ environment, one should be
aware that due to the Postquel query language, the syntax is a little different from
the Object-Calculus. However, the semantics of the implemented relationships
and methods are exactly the same.
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