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Abstract. This paper surveys the work of the qualitative spatial reasoning group at the University
of Leeds. The group has developed a number of logical calculi for representing and reasoning
with qualitative spatial relations over regions. We motivate the use of regions as the primary
spatial entity and show how a rich language can be built up from surprisingly few primitives.
This language can distinguish between convex and a variety of concave shapes and there is also an
extension which handles regions with uncertain boundaries. We also present a variety of reasoning
techniques, both for static and dynamic situations. A number of possible application areas are
briefly mentioned.
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1. Introduction

Qualitative Reasoning (QR) has now become a mature subfield of AT as its tenth
annual international workshop, several books (e.g. (Weld and De Kleer 1990, Falt-
ings and Struss 1992)) and a wealth of conference and journal publications testify.
QR tries to make explicit our everyday commonsense knowledge about the physical
world and also the underlying abstractions used by scientists and engineers when
they create models. Given this kind of knowledge and appropriate reasoning meth-
ods, a computer could make predictions and diagnoses and explain the behaviour of
physical systems in a qualitative manner, even when a precise quantitative descrip-
tion is not available or 1s computationally intractable. Note that a representation is
not normally deemed to be qualitative by the QR community simply because it is
symbolic and utilizes discrete quantity spaces but because the distinctions made in
these discretisations are of particular relevance to high-level descriptions of the sys-
tem or behaviour being modeled. In other words the distinctions are of a conceptual
nature.

Most QR systems have reasoned about scalar quantities, whether they denote
the height of a bouncing ball, the amount of fluid in a tank, the temperature of
some body, or perhaps some more abstract quantity. Although there have been
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spatial aspects to the systems reasoned about, these have rarely been treated with
any sophistication. In particular, the multidimensional nature of space has been
ill addressed until recently, despite some important early forays such as (Hayes
1985a, Forbus, Nielsen and Faltings 1987).

The neglect of this topic within AT may be due to the poverty conjecture promul-
gated by Forbus, Nielsen and Faltings (Weld and De Kleer 1990, page 562): “there
is no purely qualitative, general purpose kinematics”. Of course, qualitative kine-
matics is only a part of qualitative spatial reasoning (QSR), but it is worth noticing
their third (and strongest) reason for putting forward the conjecture — “No total
order: Quantity spaces don’t work in more than one dimension, leaving little hope
for concluding much about combining weak information about spatial properties.”
They point out that transitivity is a vital feature of a qualitative quantity space
but doubt that this can be exploited much in higher dimensions and conclude: “we
suspect the space of representations in higher dimensions is sparse; that for spatial
reasoning almost nothing weaker than numbers will do.” However, there is now a
growing body of research in the QR and, more generally, in the Knowledge Rep-
resentation community and elsewhere that, at least partly, refutes this conjecture.
A rich space of qualitative spatial representations is now being explored, and these
can indeed exploit transitivity.

There are many possible applications of QSR,; we have already mentioned reason-
ing about physical systems, the traditional domain of QR systems. Other workers
are motivated by the necessity of giving a semantics to natural language spatial ex-
pressions, e.g., (Vieu 1991), which tend to be predominantly qualitative rather than
quantitative (consider prepositions such as ‘in’, ‘on’ and ‘through’).! Another large
and growing application area is Geographical Information Systems (GIS): there is a
need for qualitative spatial query languages for example (Clementini, Sharma and
Egenhofer 1994) and for navigation (Schlieder 1993). Other applications include
specifying the syntax and semantics of Visual Programming languages (Gooday
and Cohn 1995, Gooday and Cohn 1996b, Haarslev 1995).

This paper is devoted largely to presenting one particular formalism for QSR,
the RCC? calculus which has been developed at the University of Leeds over the
last few years in a series of papers® including (Randell, Cui and Cohn 1992, Cui,
Cohn and Randell 1992, Cohn, Randell, Cui and Bennett 1993, Cui, Cohn and
Randell 1993, Bennett 1994b, Gotts 1994b, Cohn and Gotts 1996a, Gotts, Gooday
and Cohn 1996, Cohn 1995), and indeed is still the subject of ongoing research.
This current paper is substantially based on material published in (Cohn, Bennett,
Gooday and Gotts 1997) but has been modified so as to be of more relevance to
the geo-sciences. Some of the technical detail given in the earlier paper has also
been removed.

The rest of this paper is organised as follows. First we motivate the development
of spatial representations in which regions are the principal entities, and review
previous work in this area. Then we present the basic topological part of our Re-
gion Connection Calculus (RCC) in some detail (although space precludes a full
exposition). Following this we extend the calculus with an additional ‘convex hull’
primitive to allow a much finer-grained representation than a purely topological rep-
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resentation allows. Then we turn to presenting some basic reasoning techniques.
Up to this point the representation is in a first-order logic but we explain how a
large part of our spatial language can be re-expressed in a zero-order logic to a
computational benefit. We also consider a form of temporal reasoning concern-
ing transitions between qualitative spatial relationships. We then describe possible
applications of RCC to: characterising geographical features, formulating and in-
terpreting queries within a GIS, simulation of spatial processes and specifying the
semantics of a visual programming language. This is followed by a consideration
of the relationship between qualitative and quantitative data and the presentation
of an extension of RCC to handle regions with uncertain boundaries. We conclude
by mentioning some current and future research and summarizing our work.

2. Region-Based Approaches to Spatial Representation

Although the acronym ‘RCC’ was originally derived from the last name initials of
the authors of (Randell, Cui and Cohn 1992), the term ‘Region Connection Calcu-
lus’ is a very apt description of our spatial formalism:* the fundamental approach
of RCC is that extended spatial entities, i.e. regions of space, are taken as primary
rather than the dimensionless points of traditional geometry; and the primitive re-
lation between regions — giving the language the ability to represent the structure
of spatial entities — 1s that of connection.

There are a number of reasons for eschewing a point-based approach to qualitative
spatial representation and indeed simply using the standard tools of mathematical
topology. Firstly, regions give a natural way to represent a kind of indefiniteness
that is germane to qualitative representations. Moreover the space occupied by any
real physical body will always be a region rather a point. Even in natural language,
the word “point” is not usually used to mean a mathematical point: a pencil with a
sharp point still draws a line of finite thickness! Tt also turns out that it is possible
to reconstruct a notion of mathematical point from a primitive notion of region.

The standard mathematical approaches to topology, general (point-set) topology
and algebraic topology, take points as the fundamental, primitive entities and con-
struct extended spatial entities as sets of points with additional structure imposed
on them. However, these approaches generalize the concept of a ‘space’ far be-
yond its intuitive meaning; this is particularly true for point-set topology but even
algebraic topology, which deals with spaces constructed from ‘cells’ equivalent to
the n-dimensional analogues of a (2-dimensional) disc, concerns itself chiefly with
rather abstract reasoning concerning the association of algebraic structures such as
groups and rings with such spaces, rather than the kinds of topological reasoning
required in everyday life, or those which might illuminate the metaphorical use of
topological concepts such as ‘connection’ and ‘boundary’. The case against using
these standard point based mathematical techniques for QSR 1s made in rather
more detail in (Gotts et al. 1996), where it is argued that the distinction between
intuitive and counter-intuitive concepts is not easily captured and that the reason-
able desire (for computational reasons) to avoid higher order logics does not mesh
well with quantifying over sets of points.
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Of course, it might be possible to adapt the conventional mathematical formalisms
for our purposes, and indeed this strategy is sometimes adopted (see, for example
(Egenhofer and Franzosa 1991, Egenhofer and Franzosa 1995, Worboys and Bofakos
1993)). However, because we take the view that much if not all reasoning about
the spaces occupied by physical objects would not, a prior:, seem to require points
to appear in one’s ontology, we do not follow this route but rather prefer to take
regions as primitive and abandon the traditional mathematical approaches.

In fact there 1s a minority tradition in the philosophical and logical literature that
rejects the treatment of space as consisting of an uncountably infinite set of points
and prefers to take spatially extended entities as primitive. Works by logicians and
philosophers who have investigated such alternative approaches (‘mereology’® or
‘calculus of individuals’) include (Whitehead 1929, Lesniewski 1927-1931, Leonard
and Goodman 1940, Tarski 1956, de Laguna 1922) and more recently (Clarke 1981,
Clarke 1985) — Clarke developed the the immediate ‘ancestor’ of RCC — (Simons
1987, Casati and Varzi 1994, Smith 1993). Simons’ book contains a review of much
of the earlier work in this area.

Because RCC is closely based on Clarke’s system, it is worth briefly presenting
the main features of this system. Clarke (1981, 1985) presents an extended account
of a logical axiomatization for a region-based spatial (in fact Clarke’s intended
interpretation was spatio-temporal) calculus; he gives many theorems as well to
illustrate the important features of the theory. The basis of the system is one
primitive dyadic relation C(z,y) read as “z connects with y.”

If one thinks of regions as consisting of sets of points (although we have indicated
above that this is not our preferred interpretation), then in terms of points incident
in regions, C(z,y) holds when at least one point is incident in both z and y. There
are various axioms which characterize the intended meaning of C (for example, two
such axioms state that Cis reflexive and that it is symmetric). In Clarke’s system it
is possible to distinguish regions having the properties of being (topologically) closed
or open. A closed region is one that contains all its boundary points (more correctly
all its limit points), whereas an object is open if it has no boundary points at all.
Many topological relations (for example, regions touching or being a tangential
or non tangential part) are defined in Clarke’s system and many properties are
proved of these relations. Clarke defines many other useful concepts including
quasi-Boolean functions, topological functions (interior and closure), and in his
second paper provides a construction for points in terms of regions following earlier
work by Whitehead (1929). This, however, is faulty; a correction is provided by
(Biacino and Gerla 1991).

2.1. Interval Temporal Logics

In placing our work in context, it is important to mention the work done on interval
temporal logics for two reasons; first, because the region-based approach to spatial
reasoning closely mirrors the interval-based approach to temporal reasoning —
they both take extended entities, rather than points, as primitive; secondly, it is,
of course, possible to use this work directly by reinterpreting an interval calculus
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A<B | A || B | ‘A before B’
B>A ‘B after A’
AmB — A | B . ‘AmeetsB’
BmiA ‘B met-by A’
AoB }A—¢ ‘A overlaps B’
Boi A }#{ ‘B overlapped-by A’
AsB A . ‘Astarted-by B’
BsA b ‘B starts A’
B
AdiB | A | ‘A contains B’
BdA }T{ ‘B during A’
AfiB A | ‘Aended-by B’
BfA | ‘BendsA’
B
| A |
A=B | ' ‘AequasB’
I 1
B

Figure 1. Allen’s thirteen interval-interval relations

as a one-dimensional spatial calculus (though, as we shall see, there are problems
with this technique).

Allen’s interval calculus (Allen 1983) is well known within AT; however, the credit
for inventing such calculi is not due to him; Van Benthem (1983) describes an in-
terval calculus, while (Nicod 1924, chapter 2) is probably the earliest such system.
Allen’s logic defines thirteen Jointly Erhaustive and Pairwise Disjoint (JEPD) re-
lations for convex (one-piece)® temporal intervals (see Fig.1). The fact that the
relations are JEPD means that for any two intervals exactly one of the relations
holds, so they provide an exhaustive qualitative classification of possible interval

y

®

X

Figure 2. Tllustration of the inadequacy of describing two-dimensional relationships in terms of
Allen’s interval relations in each dimension
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relations. Various authors including Mukerjee and Joe (1990) have used Allen’s
system for spatial reasoning, using a copy of the calculus for each dimension and
associating a multi-dimensional object with its projection onto each axis. However,
although attractive in many ways, this has the fundamental limitation that 1t only
works correctly for rectangular objects aligned to fixed axes. Consider the config-
uration in Fig.2: the two rectangles are not so aligned, and although the smaller
one 1s part of the larger one when projected to each axis individually, this is not so
in two dimensions; but this cannot be detected by comparing the one-dimensional
projections.

3. An Introduction to the Region Connection Calculus (RCC)

The original motivation for this work was an essay in Naive Physics (Hayes 1985b,
Hayes 1985a), We were interested in developing a theory for representing and ul-
timately reasoning about spatial entities; the theory should be expressed in a lan-
guage with a clean well-understood semantics. Our desire was principally to create
an epistemologically adequate formal theory (rather than necessarily a cognitively
valid naive theory).

We should make precise exactly what counts as a region. In our intended inter-
pretation the regions may be of arbitrary dimension, but they must all be the same
dimension and must not be of mixed dimension (for example, a region with a lower
dimensional spike missing or sticking out is not intended). Such regions are termed
reqular. Normally, of course our intended interpretation will be 3D, though in many
of the figures in this paper, for ease of drawing, we will assume a 2D world (as is
also usual in GIS applications). We will deal with the question of whether regions
may be open, closed or both below. We also intend regions to really be spatially
extended, i.e. we rule out the possibility of a region being null. Other than these
restrictions, we will allow any kind of regions, in particular they may be multi-piece
regions, have interior holes and tunnels.

Our initial system was reported in (Randell and Cohn 1989), which followed
Clarke’s system closely. However, in (Randell, Cui and Cohn 1992) we presented
a revised theory that deviates from Clarke’s theory in one important respect,
which has far-reaching implications. The change is to the interpretation of C(z, y):
Clarke’s interpretation was that the two regions z and y share at least one point
whereas our new interpretation is that the topological closures of the two regions
share at least one point. Because we consider two regions to be identical if they are
connected to exactly the same set of regions, so we could regard regions as equiv-
alence classes of point-sets whose closures are identical. We also, require regions
to be of uniform dimension and in terms of point-set topology this means that all
the sets in these equivalence classes should have regular closures. From within the
RCC theory it is not possible to distinguish between regions that are open, closed
or neither but have the same closure, and we argue that these distinctions are not
necessary for qualitative spatial reasoning. Such regions occupy the same amount
of space and, moreover,there seems to be no reason to believe that some physical
objects occupy closed regions and others open, so why introduce these distinctions
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as properties of regions? But Clarke’s system has the odd result that if a body
maps to a closed region of space then its complement is open and the two are dis-
connected and not touching! Another peculiarity is that, if a body is broken into
two parts, we must decide how to split the regions so formed: one will have to have
be open (at least along the boundary where the split occurred) whilst the other
must be closed and there seems to be no principled reason for this asymmetry.”
Thus we argue that, from the standpoint of our naive understanding of the world,
the topological structure of Clarke’s system is too rich for our purposes, and in
any case appearing in this formal theory, it poses some deep conceptual problems.
Furthermore, is it necessary to understand sophisticated topological notions such
as interior and closure to create a theory of ‘commonsense’ qualitative space?

It should be noted that the absence of the open/closed distinction from our theory
does not make it incompatible with interpretations in terms of standard topology.
A particularly straightforward model is that the regions of our theory are the (non-
null) elements of the regular open Boolean algebra over the usual topology on R”.
In such an algebra the Boolean product operation is simply set intersection, while
Boolean complement corresponds to the interior of the set complement (hence, by
DeMorgan, the (regular open) Boolean sum of two (open) sets is the interior of the
sum of their closures). Thus all regions are identified with regular open sets.® We
may then say that two regions are connected if the closures of the (regular open)
sets identified with the regions share a point. So, although openness and closure
figure in the model theoretic interpretation of the theory, they are not properties
of regions and indeed have no meaning within the theory itself.

Hard-line critics of point-based theories of space might still argue that giving a
point-set-theoretic semantics for our theory of regions is unsatisfactory. However,
classical topology can be formulated in a purely algebraic framework,where the
point-set interpretation is not essential (McKinsey and Tarski 1944). An alternative
interpretation of C might be given informally by saying the distance between the two
regions is zero. To do this formally would obviously require some (weak) notion of
metric space definable on regions but we have not yet attempted to formally specify
a semantics of this kind.

Insofar as openness and closedness are not properties of our regions, our theory is
simpler than theories such as Clarke’s, and hence, we believe that it will also prove
to be more suitable for computational reasoning. Furthermore, we believe that the
loss of expressive power resulting from our simplification does not restrict the utility
of our theory as a language for commonsense reasoning about spatial information. It
might be argued that without the open/closed distinction, certain important types
of relation between regions cannot be differentiated. For example, Asher and Vieu
(1995) have distinguished ‘strong’ and ‘weak’ contact between regions. In the former
case the regions share a point, whereas in the latter they are disjoint but the closure
of the ‘topological neighbourhood’ of one region is connected to the other. Two
bodies may then said to be ‘joined’ if the regions they occupy are in strong contact
but merely ‘touching’ if their regions are in weak contact. Whilst we acknowledge
that the distinction between bodies being joined and merely touching is important,
we believe that these relations are not essentially spatial and therefore should not
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be embodied in a theory of spatial regions. They should rather be modeled within
a more general theory of relationships among material substances, objects and the
regions they occupy.

To formalize our theory we use a sorted first-order logic based on the logic LLAMA
(Cohn 1987), but the details of the logic need not concern us here. The principal
sorts we will use are Region, NULL, and PhysOb. Notice that with this sort structure
we distinguish the space occupied by a physical object from the physical object
itself, partly because 1t may vary over time which we represent via a function
space(z,t).? The sort NULL is true of regions that are not spatially extended and is
used to model the intersections of disjoint regions or the spatial extent of physical
objects that do not exist at a particular time for example.

In fact, the axiomatic theory we have developed so far deals only with relationships
between entities of sorts Region and NULL. Axiomatization of relations involving
physical objects would be part of the more general theory of material substances
in space, which was mentioned above. So, at present, the sort PhysOb and the
space(z,t) merely serve to indicate how our theory would be incorporated into this
much broader theory.

3.1. Azioms For C

Since our interpretation of C has changed, we need to re-axiomatize it and redefine
many of the relations Clarke defined which we still want to use. The two main
axioms expressing the reflexivity and symmetry of C in fact remain unchanged:

Ve [C(z, z)] (1)
VeVy[Clz,y) — C(y, z)] (2)

Using C(z,y), a basic set of dyadic relations are defined (Randell, Cui and Cohn
1992, section 4). Definitions and intended meanings of those used here are given
in table 1. Unless otherwise specified, the all arguments to the functions and
predicates we define are of sort Region. The relations P, PP, TPP and NTPP
being non-symmetrical support inverses. For the inverses we use the notation @i,
where & € {P, PP, TPP, NTPP}, for example, TPPi. Note that the definition
of overlap (equation (7)) ensures that connection and overlap are different: if two
regions overlap then they share a common region, while this need not be the case
for connecting regions, which need only ‘touch’.

Of the defined relations, those in the set {DC, EC, PO, EQ, TPP, NTPP, TPPi
and NTPPi} (illustrated in Fig.3) are provably JEPD (Jointly Exhaustive and Pair-
wise Disjoint). We refer to this set of eight relations as RCC8. The complete set
of relations described above can be embedded in a relational lattice. This is given
in Fig.4. The symbol T is interpreted as tautology and the symbol L as contra-
diction. The ordering of these relations is one of subsumption with the weakest
(most general) relations connected directly to top and the strongest (most specific)
to bottom. For example, TPP implies PP, and PP implies either TPP or NTPP. A
greatest lower bound of bottom indicates that the relations are mutually disjoint.
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Table 1. Some relations definable in terms of C

Relation interpretation Definition of R(z,y)
(3) DC(z,y) z is disconnected from y -C(z,y)
(4) P(z,y) r is a part of y Vz[C(z, z) = C(z,y)]
(5) PP(z,v) r is a proper part of y P(z,y) A =P(y,z)
(6) EQ(z,y) z is identical with y P(z,y) AP(y, z)
(7) Of(z,y) x overlaps y 3z[P(z, ) A P(z,y)]
(8) DR(z,y) x is discrete from y -0(z,y)
(9) PO(z,y) z partially overlaps y O(z,y) A—=P(z,y) A =P(y, z)
(10) EC(z,y) z is externally connected to y C(z,y) A —O(z,y)
(11) TPP(z,y) = is a tangential proper part of y PP(z,y) A 3z[EC(z, ) A EC(z,y)]
(12) NTPP(z, y) z is a nontangential proper part of y PP(z,y) A =3z[EC(z,z) A EC(z, y)]

For example with TPP and NTPP, and P and DR. This lattice corresponds to a
set of theorems (such as Yay[PP(z,y) ¢ [TPP(z,y) VNTPP(z, y)]]) which we have

verified.

Clarke axiomatized a set of function symbols in terms of C; the topological ones
(interior, exterior, closure) we omit since (as already discussed) we do not wish to
make these distinctions. However, he also defined a set of quasi-Boolean!? functions
which we will also require, though our definitions differ. The Boolean functions
are: sum(z,y), the sum of z and y; compl(z), the complement of z; prod(z, y), the
product (intersection) of z and y; and diff(z, y), the difference of z and y (that is
the part of z that does not overlap y); and the constant, u, the universal region. For
brevity we will often use *, + and — rather than prod, sum and diff. The functions:
compl(z), prod(z, y) and diff(z,y) are partial but are made total in the sorted logic
by specifying sort restrictions and by letting the result sort of the partial functions
be REGION U NULL. The quasi-Boolean functions obey appropriate axioms which
can be found in (Randell, Cui and Cohn 1992) and also in (Cohn, Bennett, Gooday
and Gotts 1997).

As already mentioned, and will be clear from the fact that we have introduced
the sum function, regions may consist of disconnected parts. We can easily define
a predicate to test for one-pieceness:!!

CON(z) =, Yyz[sum(y,z) =z = C(y, )] (13)

@@
ONONGRODECOROIROND),

DC(ab) EC(ab) PO(ab) TPP(ab) TPPi(ab) NTPP(ab) NTPPi(ab) EQ(ab)

Figure 3. Illustrations of eight JEPD relations
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Figure 4. A subsumption lattice of dyadic relations defined in terms of C

Clarke’s theory stipulates that every region has a nontangential part, and thus
an interior (remembering that in Clarke’s theory a topological interpretation is
assumed) and is essential to ensure that the definition of P(z, y) works as intended.
Although RCC does not suffer from this problem we do include the axiom

Ve3y[NTPP(y, )] (14)

The consequences of not having this axiom are explored in (Randell, Cui and Cohn
1992) and further in (Gotts 1996a) where atomic multi-region models are shown
not to exist. Alternatively, if an axiom is included to rule out the model consisting
of a single atomic region, then the formula above need not be an axiom since it
would follow as a theorem.

Clearly, if every region has a non-tangential proper part, then in every model
there will be an infinite number of regions. However, this is not in itself a problem.
In the logical approach to spatial representation, we deal with formal expressions
describing types of spatial situation. We do not represent the structure of these sit-
uations directly. Thus although our theory ensures that space is infinitely divisible,
this does not mean that an implementation of our reasoning system would require
infinite data structures. On the contrary, our representation of complex situations
in terms of a set of high-level qualitative facts will often be very concise.

3.2. Theorems of RCC

In (Randell, Cui and Cohn 1992) we cite a number of important theorems which
distinguish RCC8 from Clarke’s system. First, note that for Clarke, two regions z
and y are identical iff any region connecting with z connects with y and vice-versa
(this is an axiom of extensionality for C), that is
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Veyle = y & Vz[C(z, 2) & C(z,9)]] . (15)

This is a theorem of RCC.?? In the new theory, an additional theorem concerning
identity,

Veyle = y & Vz[0(z,z) & O(z,v)]] , (16)

(extensionality in terms of O) becomes provable, which is not a theorem in Clarke’s
theory: any region z which overlaps a closed region z will also overlap its open
interior (and vice versa), thus making them identical according to this axiom, but
Clarke distinguishes open and closed regions so they cannot be identical, thus pro-
viding a counterexample.

Perhaps the most compelling reason that led us to abandon Clarke’s semantics
for C is the following theorem expressing an everyday intuition about space, that,
given one proper part of a region, then there is another, discrete from the first:

Vay[PP(z,y) — 3z[P(z, y) A —=0(z, 2)]] . (17)

This is provable in the new theory, but not in Clarke’s: the interior of a closed
region is a proper part of it, but there is no remaining proper part, since in Clarke’s
(and our) system the boundary of a region is not a region. A related theorem is
the following:

Vay[PO(z,y) — [Fz[P(z,y) A =O(z, 2)] A Fw[P(w, ) A =O(w, y)]]], (18)

which again is a theorem in the new theory but not in Clarke’s. A counter-example
arises in Clarke’s theory where we have two semi-open spherical regions, z and
y (with identical radii), such that the northern hemisphere of z is open and the
southern hemisphere is closed, and the northern hemisphere of y is closed and the
southern hemisphere open. If # and y are superimposed so that their centers and
equators coincide, then z and y will partially overlap, but no part of x is discrete
from y, and vice-versa.

Another key distinction between our theory and Clarke’s concerns the connec-
tion between a region and its complement. In the new theory, Vz[EC(z, compl(z))]
holds; that is, regions are connected with their complements — which seems a very
intuitive result — while in Clarke, a region is disconnected from its complement:
Va[DC(z, compl(z))].

Some further theorems expressing other interesting and important properties of
RCC can be found in (Randell, Cui and Cohn 1992) as can a discussion about how
to introduce atomic regions into RCC. In the calculus as presented here, they are,
of course, excluded because every region has a non-tangential proper part.

4. Expressing Topological Shape in Terms of C

So far, we have principally concentrated on binary predicates relating pairs of re-
gions. Of course, there are also properties of a single region we would like to express,
all of which, in some sense at least, characterize the shape of the region. Although
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[ /5 &5 = =

Doughnut (or Solid Torus) Torus topologically, asolid block) Cylinder-surface

Block minus block

A doughnut with a
degenerate hole-surround

Double doughnut Loop  Two doughnuts with degenerate holes

Figure 5. It is possible to distinguish all these shapes using C(z,y) alone.

we have only developed topological notions there is still quite a bit that can be said
about the topological shape of a region. For example we have already introduced
the predicate CON(z) which expresses whether a region is one-piece or not. We
can do much more than this however, as (Gotts 1994a, Gotts 1994b, Gotts et al.
1996, Gotts 1996¢) demonstrates. The task set there is to be able to distinguish
a ‘doughnut’ (a solid, one-piece region with a single hole). Tt is shown how (given
certain assumptions about the universe of discourse and the kinds of regions inhab-
iting it) all the shapes depicted in Fig.5 can be distinguished. Here we just give a
brief idea of how the task is accomplished, as it also shows some of the range of
predicates that can be further defined using C alone (and thus could form the basis

of RCCn (for some n > 8)).13

Gotts defines several classes of predicate describing fundamental aspects of the
topology of regions. The separation-number (SEPNUM) of a region is the maxi-
mum number of mutually disconnected parts it can be divided into. The finger-
connectivity (FCON) of a CON region is defined!* in terms of its possible dissec-
tions, Fig.6 illustrates three different finger connectivities. Making use of an easily
definable predicate MAX_P(z,y), asserting that z is a maximal one-piece part of
y, FCON can be defined. Gotts goes on to define a predicate SBNUM(z,y, n) to
count the number of separate boundaries two regions have in common. Using these
definitions a doughnut can be defined as a region with finger connectivity of 2 and
a single boundary with its own complement.'®

Figure 6. Dissection-graphs and dissections: finger-connectivities 1, 2 and 3
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TPP & ITPP NTPP & INTPP  NTPP & ITPP NTPP TPPbutnotFTPP  FTPP

Figure 7. TPPs and ITPPs (left); TPPs and FTPPs (right)

Some of the initial assumptions made by Gotts can be weakened by introducing
further defined predicates, which are interesting in their own right. For example, it
is possible to define the notion of intrinsic TPP, which we term ITPP. Intuitively,
x is an ITPP of y iff it is a PP of y that is not surrounded on all sides by the rest of
y. Formula (11) defines TPP(z,y) extrinsically since it makes reference to a third
region, z, which is predicated to be EC to both z and y. The definition of ITPP
avoids this third region. This has the result that u can have an ITPP but it cannot
have a TPP: if u is 3-dimensional Euclidean space, any region of infinite diameter
is an ITPP of u. ITPP is itself defined in terms of another predicates: FTPP(z,y)
asserts that z is a firmly tangential proper part of y (not just point-tangential),
which in turn is defined using finger connectivity. These predicates are illustrated
in Fig.7.

Fig.8 illustrates another range of topological distinctions between CON regions
that can be made (under certain assumptions) using C. A region, if it is connected,
may or may not also be interior-connected (INCON), meaning that the interior of
the region is all one piece. Tt is relatively easy to express this property (or its
converse) in RCC terms. However, INCON(r) does not rule out all regions with
anomalous boundaries, and in particular does not exclude the region at the right
of Fig.8, nor any of the final three cases illustrated in Fig.5, which do have one-
piece interiors, but which nevertheless have boundaries which are not (respectively)
simple curves or surfaces, having ‘anomalies’ in the form of points which do not
have line-like (or disc-like) neighbourhoods within the boundary. (A region in which
every boundary-point has such a neighbourhood is called locally Fuclidean.)

It appears possible within RCC (Gotts 1994b), using the intrinsic ITPP and a
similarly intrinsic INTPP, to define a predicate (WCON) that will rule out the
INCON but anomalous cases of Fig.8, but it is by no means straightforward,'® and
it is not demonstrated conclusively in (Gotts 1994b) that the definitions do what

|

CON, INCON and WCON CON, not INCON or WCON  CON and INCON, not WCON

Figure 8. Types of CON Region
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is intended. One source of the difficulties arising is the fact that within RCC, since
all regions in a particular model of the axioms are of the same dimensionality as
u, assuming u itself to be of uniform dimensionality (this follows from the fact
that all regions have an NTPP), there is no way to refer directly to the boundary
of a region or to the dimensionality of the shared boundary of two EC regions,
or to any relations between entities of different dimensionalities.!” The distinction
between intrinsic and extrinsic topological properties, which is found in conventional
mathematical topology, 1s of considerable interest. It demonstrates that at least
in some cases, the distinction between properties inherent in an entity and those
dependent on its relation with its environment is a real and fundamental one.

5. Increasing Expressive Power: the Convez Hull Primitive

Although they are of fundamental importance, it is evident that, for many purposes,
purely topological relations are not sufficient to express all significant qualitative
spatial properties. The abstraction of topology treats any 2D region bounded by
a single continuous and non-self-intersecting curve as equivalent to a disc. Thus,
for example, an oval region is topologically equivalent to a long thin wiggly region;
but it is clear that, in geography for example, distinguishing between such ‘discs’
is essential for many useful classification tasks.™® However it would clearly be very
desirable to create more expressive languages for qualitative spatial reasoning but
which still fall short of a fully metric descriptive language. An additional primitive
(or primitives) clearly needs to be introduced since C is not sufficiently expressive to
make such non-topological distinctions. There are many possibilities for the choice
of such primitive.

We introduce the notation RC{p;} to refer to a Region Calculus based on the
primitives p;. Thus the simple RCC theory with just the C relation is denoted
RC{C}. We use B to refer to all the (quasi-)Boolean functions, so that the theory
with C plus the Booleans is RC{C, B}. This notation allows easy reference to further
extensions of the the theory with additional primitives, or indeed to replace C with
an alternative primitive (for example C can be defined in terms of the more powerful
INCH primitive of (Gotts 1996b)).

Apart from C and the Booleans, the primitive to which we have given most
attention is conv, a one-place function such that conv(z) denotes the the convez
hull of region xz. This is the smallest convex region of which z is a part. In Fig.9,
the dashed line bounds the convex hull of an imaginary island, ‘Concavia’. A
region is convex if 1t is equal to its own convex hull, so a convexity predicate is
easily defined by

CONV(z) =,, EQ(z,conv(z)) (19)

The notion of convex hull can itself be defined mathematically in terms of points
and lines as the region resulting from including every point on every line joining
any two points in the region.

If the properties of convexity are to be adequately captured by inference within
the language RC{C, B,conv}, we need to specify the logical properties of the new
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Figure 9. The convex hull of an island

function, conv(z). Since we have no notion of straight lines, the mathematical

definition 1s not directly applicable. Some important properties of conv can be

axiomatized as follows:!®

Va[conv(conv(z)) = conv(z)] (20)
Vz[TP(z, conv(z))] (21)
VaVy[P(z,y) — P(conv(z),conv(y))] (22)
VaVy[P(conv(z) + conv(y), conv(z + y))] (23)
VaVy[conv(z) = conv(y) — C(z,y)] (24)
VzVy[CONV(conv(z) * conv(y))] (25)
VaVy[DC(z,y) — -CONV(z + y)] (26)

Further discussion of the properties of conv can be found in (Cohn, Bennett, Gooday
and Gotts 1997). A complete axiomatisation of convexity is the goal of ongoing
research.?0

-

5.1. Containment Relationships and ‘Insides’

Given our new primitive of the convex hull, we can now start defining some new
relations that exploit this function symbol. Perhaps the most obvious and useful
distinction to make is to distinguish when one region is inside another, that is to say
part of its convex hull but not overlapping the region itself. This notion is easy to
define. We introduce three new predicates to test for a region being inside another

(INSIDE), partly inside another (P-INSIDE) and outside another (OUTSIDE):

INSIDE(z,y) =.; DR(z,y) A P(z,conv(y)) (27)
P-INSIDE(z,y) =., DR(z,y) A PO(z,conv(y)) (28)
OUTSIDE(z,y) =., DR(z,conv(y)) (29)
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OUTSIDE INSIDEi_EC INSIDE OUTSIDEI_EC

OUTSIDE OUTSIDEI_EC P- INSIDE P-INSIDEi_EC INSIDE_INSIDEi_EC
OUTSIDE P-INSIDEi_EC P INSIDE_OUTSIDEI_EC
P INSIDE_INSIDEi_EC INSIDE_P-INSIDEi_EC

Figure 10. Nine of the new JEPD relations exploiting conv.

Each of these relations is asymmetric so they have inverses, denoted INSIDEi,
P-INSIDEi and OUTSIDEi. In terms of the defined relations, the relationships be-
tween the small islands in fig 9 and the larger island of Concavia can be described
by INSIDE(a, concavia), P-INSIDE(b, concavia) and OUTSIDE(c, concavia).

Obviously we have now moved beyond RCC8, but how many JEPD relations
do we now have? It turns out that the above definitions naturally give rise to a
set of twenty-three JEPD relations, which we call RCC23. The RCCS relations of
DC and EC no longer form part of the JEPD set; they are replaced by seventeen
new relations nine of which are illustrated in Fig.10. The other eight are simply
the DC versions of the first eight configurations. These seventeen relations can be
schematically defined by

afy(z,y) Zu oz, y) ABy,z) Ay(z,y) (30)

where a, # € {INSIDE, P-INSIDE, OUTSIDE} and v € {EC, DC}, excepting the case
where o = 3 = INSIDE, and v = DC. This case is ruled out by axiom 24 above.?!
If we ignore the distinction between DC and EC, RCC23 collapses into a set of 15
relations (RCC15) — we shall consider this set later in section 6.4.

Fig.11 depicts an example of how these new relations can be used to advantage
when describing the movement of one region from outside to inside and then over-
lapping another. Region z might, for example, be an oil slick and y an island with
a bay. The slick enters the mouth of the bay and ends up partly covering the beach.
However, labeling the final configuration simply as PO seems a little unsatisfactory:
if z were partially overlapping y on the left-hand side, that is, if it were not within

- @& GRE

(i) (iii) (iv) (v)

Figure 11. One region moving inside another:  (i): OUTSIDE_OUTSIDEi_.DC(z,y),
(ii): P-INSIDE_OUTSIDEI_DC(z, ), (iii): INSIDE_OUTSIDEI.DC(z, y),
(iv): INSIDE_OUTSIDEi_EC(z,y), (v): PO(z,y).
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the convex hull of y, it would still be PO. The obvious solution to this is to define
PO versions of all the configurations in Fig.10. To do this requires the definitions of
INSIDE, P-INSIDE and OUTSIDE to be changed slightly; the details are in (Cohn,
Randell and Cui 1995). With this modification there are now thirty-two base rela-
tions (the original eight, less DC, EC and PO, plus the EC, DC and PO versions of
the allowable combinations of INSIDE, OUTSIDE, P-INSIDE and their inverses).

There are many different reasons why a region may be concave. In particular,
regions might be multi-piece, or they may be missing an NTPP rather than having a
simple depression in their surface; (Casati and Varzi 1994)%? is an excellent treatise
on the different kinds of holes that might exist.

Fig.12 shows some of the different kinds of non convex regions which can be
distinguished using C and conv. The principal distinction we make make is between
one region, x, being geometrically inside another region, y, and being topologically
inside y. In the former case, although z is within the convex hull of y it is not
‘surrounded’ by y — this can be characterised by saying that that there is a one-
piece region which overlaps both z and the complement of conv(y). In the latter
case z is completely surrounded by y and no such region exists. This is a very useful
distinction to make in many practical situations: for example a frog contained in a
jar with its lid on is topologically inside the jar and cannot escape; but, when the
lid is removed, it becomes merely geometrically inside and can hop out. The notion
of being geometrically inside can be further refined to distinguish those geometrical
insides which could contain a liquid — ‘containable’ insides — and those which are
formed by being between components of a multi piece region — ‘scattered’ insides.
Still other possible relationships expressing further refinements could be defined;
for example does one region completely fill an inside of another region or does it
only partly fill it? Again for many domains this may be a very useful distinction
to be able to make easily.

Returning to Fig. 12 we see that in (i) the darker region is geometrically inside
the lighter one; in (ii) it is topologically inside; in (iii) it’s in the scattered inside.
In (iv) a fly in position 3 would be in the containable inside; in position 2 it would
be topologically inside (encased in the stem during the manufacturing process!); in
position 4 it would be in the ‘tunnel inside’ (in the ‘handle’), while in position 1

0) (if) (ii) (V)

Figure 12. Different kinds of inside that can be distinguished by RCC.
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it would be inside the glass in a very weak sense: part of the convex hull but not
any of the more specialized senses. (Cohn et al. 1995) provides definitions which
distinguish all these kinds of inside and more.

5.2.  Further Properties Definable with conv

In this section so far, we have concentrated on defining relationships between two
regions that exploit the conv primitive. Of course, to a certain extent, these give rise
to complementary techniques to describe the shape of one particular region. For
example, if one region is topologically inside another, then the second region must
have an interior void. In (Cohn 1995) we focus explicitly on defining predicates
which characterize the shape of a single two-dimensional region. Techniques are
developed, using C and conv alone, which can, for example, distinguish all the
different shapes in Fig.13. The principal idea is to distinguish the concavities of
a region (which are the maximal one-piece well-connected parts of its inside) and
then define predicates that are true of particular configurations of the concavities.
Adjacent and non adjacent concavities can easily be distinguished for example. A
particularly interesting idea (which turns out to have been long known about in
the vision community (Sklansky 1972)) is to apply the technique recursively: if a
concavity is itself concave, then one describes the shape of its insides (this is how
the first two shapes in Fig.13 are distinguished). Fig.14 illustrates this idea. Tt is
also possible to define when a region is a triangle using C and conv and thus when
a region is an arbitrary polygon.

O WWwh OO &3 e

Figure 13. Qualitative predicates can be defined to distinguish all these shapes.

As we have seen, a surprisingly rich and complex and expressive ontology for
describing qualitative spatial relationships can be logically defined from just two
primitives. It would be easy to define a set of well over a hundred JEPD base

Figure 14. Finer shape descriptions can be obtained by recursively describing the shapes of the
insides of a region.



THE REGION CONNECTION CALCULUS 19

relations from the above predicates described above and many more could easily
be defined such as JUST_INSIDE and JUST_OUTSIDE. In fact, (Davis, Gotts and
Cohn 1997) shows that the constraint language of RCC-8 together with a monadic
CONV(z) predicate (easily definable given conv(z)) yields a decision procedure to
distinguish (in 2D) any two regions which are not related by an affine transforma-
tion. The question arises: when to stop? In (Cohn et al. 1995) we propose some
criteria based on computational and predictive properties of the representation, but
ultimately 1t must be a domain specific question: certain distinctions will only be
useful for certain domains, but for these domains they may be crucial.?? As noted
in the introduction, the significance of qualitative distinctions depends largely on
their relevance to the behaviour being modeled.

6. Reasoning with the RCC Calculus

So far we have not discussed reasoning with the calculus at all. Of course, since
it is expressed in first-order predicate calculus, a wide range of theorem provers
are available and indeed we have used these (for example to check the theorems
expressed?? in the lattice of Fig.4 and those in section 3.2 above). However, gen-
eral lst-order theorem proving is too inefficient to be useful for most purposes.
For certain specific lst-order theories, special purpose decision procedures can be
constructed; but, by reformulating the results of (Grzegorezyk 1951), we can show
that the full RCC theory must be undecidable (Gotts 1996d). Nevertheless, as
we shall see in the remainder of this section, it is possible to formulate decidable
representations, whose vocabulary includes quite expressive sub-languages of RCC.

6.1. Composition Tables

In his temporal calculus Allen introduced the idea of a transitivity table, which
we term a composition table (following (Freksa 1992)). Given a fixed vocabulary
of relations, {R;} (normally this will constitute a JEPD set), such a table enables
one to answer the following question by simple lookup: given R1(z,y) and Rs(y, z),
what are the possible relations (from the set {R;}) that can hold between z and
27?5 This kind of computation is frequently very useful — for example, one can
check the integrity of a database of atomic assertions (involving relations in some
set for which we have a composition table) by testing whether every three relations
are consistent with the table. We call this ‘triangle checking’.?® Fig.2 gives the
composition table for RCC8.27 Where there are multiple entries this means that a
disjunction of relations are possible. We have verified this table by showing that
each disjunction has a possible model in the intended interpretation and by proving
each entry is a theorem of the form VaVyVz[(R1(z, y) A Ra(y, z)) = Ra(z, 2)].
Because of the extreme difficulty of general 1st-order reasoning, even verifying the
composition table for RCC8 using the Otter theorem prover (McCune 1990) was a
hard task requiring introducing various lemmas by hand (Randell, Cohn and Cui
1992). Tt became clear that this approach would not scale up to RCC23 or larger sets
of relations and that more efficient reasoning techniques would be required. Initially,
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Table 2. Composition table for RCC8

R2(b,c)
R1(a,b DC EC PO TPP NTPP TPPi NTPPi EQ
DC no.info DR,PO,PP  [DR,PO,PP |DR,PO,PP DR,PO,PP |DC DC DC
EC prpopPP  |PRPO DR,PO,PP |EC,PO,PP PO,PP DR DC EC
OFE | TPR, TP PO, .PO, E

. . . . DR,PO

PO DR,PO,PPi  |DR,PO,PPi  [no.info PO,PP PO,PP DR,PO,PPi PP PO
DR,PO DR,PO

TPP DC DR DR,PO,PP |PP NTPP TPP,TPi PP TPP
NTPP DC DC DR,PO,PP |NTPP NTPP DR,PO,PP no.info |NTPP
TPPi DR,PO,PPi  |EC,POPPi [PO,PPi PO, TPP,TPi |PO,PP PPi NTPPi TPPi
NTPPi DR,PO,PPi  |PO,PPI PO,PPi PO,PPi o NTPPi NTPPi NTPPi
EQ DC EC PO TPP NTPP TPPi NTPPi EQ

we experimented with a model-building program based on bitmap representations
of possible spatial situations but this was only partly successful and was still fairly
computationally intensive. We needed a more tractable logical representation of
our theory.

6.2. A Zero-Order Encoding of RCC

The idea we pursued was to move from a first-order representation to a zero-order
logic, which then provided a decision procedure (Bennett 1994b). Here we summa-
rize this approach to RCC. Zero-order logic is traditionally known as propositional
logic; however, this is an inappropriate name for our purposes. We will not interpret
the non-logical symbols as propositions (having truth values) but rather as symbols
having sets as their values. If these sets are sets of spatial entities (points or atomic
regions for example), then the non-logical symbols denote spatial regions, and log-
ical connectives correspond to certain functions from regions to regions. Suppose
we then assert that some formula denotes the universal region: this means that
the regions denoted by the ‘propositional’ constants occurring in the formula must
stand in some particular (spatial) relationship, determined by the logical structure
of the formula. The formula can thus be used to represent that relationship.

We say that such a spatial interpretation is faithful to a propositional logic if
entailment among formulas in the zero-order representation mirrors entailment
among the corresponding spatial relations. Such an interpretation can be used
to reason about a certain class of spatial relationships. For example, the classical
formula A — B can be used to represent the relation P(a,b) and the entailment
A= B, B> C [ A — C reflects the fact that P(a,b), P(b,¢) | P(a,c).

It turns out that classical zero-order logic is not sufficiently expressive to encode
the RCCS relations. Happily, this can be achieved in intuitionistic zero-order logic
(an introduction can be found in (Nerode 1990)), which we name Zy. In fact,
the idea of a topological interpretation of this logic was first introduced by Tarski
(1938), who gave a mapping from intuitionistic formulae to open sets in a topological
space, such that all intuitionistic theorems are mapped to the universal set, .
Intuitionistic logic is weaker than classical logic in that certain classical theorems
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Table 8. RCC relations defined in Ig‘

Relation Model Constraint FEntailment Constraints
DC(X,Y) ~X vV ~NY ~X, ~Y

EC(X,Y) ~(X AY) ~X Vv ~Y ~X, ~nY
PO(X,Y) — ~XAY), X=Y, Y=X,~X,~Y
TPP(X,Y) X=Y ~XVY, Y=X,~X,~Y
TPPi(X,Y) Y=X ~YVvX, X=Y,~X,~Y
NTPP(X,Y) ~X VY Y=X,~X,~Y
NTPPi(X,Y) ~Y v X X=Y,~X, ~Y
EQ(X,Y) X&eY ~X,~Y

do not hold. In particular, the law of the excluded middle, p V ~ p does not hold
for all propositions. Under Tarski’s interpretation, p would denote some open set,
P, and ~p, the interior of the complement of P. Disjunction is identified with

set-theoretic union, so that p V ~p denotes the set P U interior(P). Because this
set does not include the boundary of P, it is not equal to the universe.

This semantics associates each formula of Zy with a term involving constants
denoting open sets, the Boolean set-theoretic operators and the interior operator.
We call this a set-term . If regions are considered as open sets, a formula can be
used to represent that spatial relation which holds between regions just in case the
corresponding set-term has the value /. This is a faithful interpretation of Zy, which
means that a standard theorem prover for Zy can be used to reason about spatial
relations represented in this way. However, Zg is still not quite sufficient by itself to
distinguish all the RCCS8 relations. It turns out that we need not only conditions
expressible by asserting that some set-term equals ¢/ but also conditions that require
us to assert that some set-term does not equal if. For example, although the part
relation P(a, b) is straightforwardly represented by the relation A= B, representing
the proper part relation PP(a, b) requires us, in addition, to ensure that the relation
P(b,a) does not hold. Tt turns out that this limitation can be overcome with a
simple extension of 7y, which we term I;, together with an appropriate meta-level
reasoning algorithm. Expressions of Zj are pairs of sets of Z, formulas, (M, &).
One set represents (positive) model constraints; the other (negative) entailment
constraints. For example, PP(p, ¢) may be represented as ({p — q}, {q — p}).?8
The Zj encoding enables all the RCCS relations to be defined as shown in table 3.

Bennett (1994b) explains the Ié" representation in detail and proves the cor-
rectness of the following algorithm to determine the consistency of sets of spatial
relations represented in Zj:

1. For each relation R;(a;, 3;) in the situation description find the corresponding
propositional representation (M;, &;).

2. Construct the overall I;'representation (U, Mi, U, &).

3. For each formula F' € |J; & use an intuitionistic theorem prover to determine

whether the entailment®® |J; M; £ F holds.

4. If any of the entailments determined in the last step does hold, then the situation
is impossible.
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A slightly more complicated algorithm will test entailment rather than consis-
tency. (Bennett 1994b) also presents a method of capturing certain properties
of the conv(z) function in the zero-order representation.

It is worth pointing out that Bennett’s I; representation gives us a true spatial
logic rather than simply a logical theory of space: the logical constants (A,V,=
etc.) all have a spatial interpretation. We have also investigated other possible
spatial logics, in particular modal ones where the necessity operator is interpreted
as an interior operator (Bennett 1995). Another investigation of the use of modal
logics for RCC, interpreting C as the accessibility operator can be found in (Cohn
1993).

6.3. The Complezxity of Reasoning with RCC

We have noted that, since first-order logic is undecidable, the original formula-
tion of RCC as a first-order theory does not provide us with an effective inference
mechanism for the language. However, many highly expressive sub-languages of
RCC can be specified as constraint languages consisting of sets of properties and
relations definable in the RCC theory or one of its extensions. Such a constraint
language provides a fixed vocabulary of spatial predicates which may be chosen
for its computational properties and/or its relevance to a particular domain. The
complexity of reasoning with various spatial constraint languages is the subject of
much current research.3?

The RCCS relations constitute a constraint language which is of fundamental im-
portance. Nebel (1995a) has shown that Bennett’s Z1 reasoning algorithm, when
applied to instances of the RCCS relations, has polynomial complexity in the num-
ber of instances.®' Some other complexity results for reasoning with the RCCS
relations are given in (Grigni, Papadias and Papadimitriou 1995). This paper is
concerned with relational consistency and also with realisability of a set of rela-
tions by a set of simply-connected planar regions. Drawing on results of Kratochvil
(1991) about the recognition of realisable string graphs Grigni et al. (1995) conclude
that testing realisability is NP-hard. Another important result, that the constraint
language of RCC-8 plus a predicate CONV(z) is decidable but “at least as hard as
determining whether a set of comparable size of algebraic constraints over the real
numbers is consistent” has been demonstrated in (Davis et al. 1997).

6.4. Reasoning about Continuous Change

So far we have concerned ourselves only with expressing the static properties of
space rather than with developing a calculus for expressing how configurations
of spatial regions evolve over times. However, such dynamic reasoning is clearly
very important in many situations. In many domains, an assumption is made that
change is continuous. The QR community has exploited this notion repeatedly (see,
for example, (Weld and De Kleer 1990)). In the context of qualitative spatial reason-
ing, assuming continuity means assuming that shape deformations are continuous
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Figure 15. The continuity network for RCC8

in addition to assuming that movement is continuous. Fig.15 indicates possible
state transitions among the RCCS8 relations assuming continuity and fig. 16, which
we call a continuity network indicates continuous transitions among the RCC15
relations.3? Subgraphs of a continuity network turn out to coincide the notion of
conceptual neighbourhoods introduced by Freksa (1992). Galton, in his chapter in
(Stock 1997) and in (Galton 1995b) has made a thorough analysis of continuity
as it applies to RCC8. (Egenhofer and Al-Taha 1992) builds similar (though not
identical) structures for his calculus (there are fewer links in general) using a no-
tion called closest topological distance. In section 7.3 we discuss how these kinds of
structures can be used to build qualitative spatial simulators.

We and others have noticed an interesting relationship between composition tables
and continuity networks. For a variety of calculi, every entry in a composition
table forms a connected subgraph of the continuity network.?® For example, an
entry that included DC and PO would also have to include EC. Freksa (1992)

exploited this to generate a compact composition table for Allen’s system. Freksa’s

OUTSIDE_OUTSIDEi
P-INSIDE_OUTSIDEi OUTSIDE_P-INSIDE|
INSIDE_OUTSIDEi OUTSIDE_INSIDE
INSIDE P-INSIDEi P-INSIDE_INSIDE

INSIDE_INSIDE

TPP
. EQ
I

PO NTPP
TPP
NTPP

Figure 16. The continuity network for RCC15. The unlabelled central node of the vertical plane
is P-INSIDE_P-INSIDEi. PO has links to this and every other node in the vertical plane.
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reduced table gives compositions for sets of relations (conceptual neighbourhoods,
in fact) rather than single relations. We have explored this approach in the context
of Allen’s calculus and the RCC system (Cohn, Gooday and Bennett 1994). By
slightly relaxing Freksa’s conditions for choosing sets of relations upon which to
base the tables, we managed to find compact representations for certain sets of
RCC relations; for example a 6x6 solution (44 per cent reduction in table size)
for RCC8 and 8x8 solution for RCC15 (75 per cent reduction in table size). We
also investigated the construction of neighbourhood graphs from information in
composition tables and have had some success in this venture using a constraint-
based approach.

7. Some Applications of RCC

The main focus of our work has been theoretical: to design logical calculi for
qualitative spatial reasoning. However, we have also worked on applying RCC to
some specific domains. In this section we describe applications of the calculus
to: evaluating queries within a geographical information system (GIS); describing
geographical features; qualitative simulation of physical changes; and specifying the
semantics of a visual programming language.?*

7.1. RCC wn Geographical Information Systems

An obvious application of RCC, to which we have given attention (Cohn, Gotts,
Randell, Cui, Bennett and Gooday 1997, Bennett 1996a), is geographical infor-
mation systems (GIS). In fact, a parallel development of a system very similar
to RCC8 has taken place within this field (Egenhofer and Franzosa 1991, Egen-
hofer 1991, Egenhofer, Clementini and Di Felice 1994, Egenhofer 1994, Egenhofer
and Franzosa 1995, Clementini, Di Felice and Qosterom 1994, Haarslev and Moller
1997) but firmly based on a point-set theoretic approach rather than our logic of
regions approach.

The topological reasoning algorithm based on encoding RCC relations in Z7 (de-
scribed in section 6.2 has been implemented as part of a larger ‘spatial AI’ system
being developed as part of EPSRC project GR/K65041 on ‘Logical Theories and
Decision Procedures for Reasoning about Physical Systems’. The current system
contains a database of geographical information in the form of geometrical polygon
data and also contains qualitative data in the form of topological relations between
named regions. Some of these named regions are identified directly with polygons
in the geometrical database, whereas for others the geometry is not precisely known
but only constrained by the qualitative topological relations. The topological re-
lationships determined by the quantitative geometrical data can also be rapidly
computed and accessed by the topological reasoning mechanism, allowing queries
to be addressed to the combined qualitative and quantitative database. This ca-
pability is (as far as we know) not available in any other system. Work is also
underway to demonstrate the use of topological reasoning in the control of artificial
agents operating in a virtual world constituted by geographical data.
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Prolog GIS qib
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eclisland, seal.
tpptforest, plaind.
de (town, deserti.
PRplain, i=land).
ec(plain, desertd.
PR Ctoun, island.
pdesert, island.
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town, [[5@,55], [3@,16@], [58,35]1], urbani.
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Figure 17. Our current GIS prototype

Fig.17 shows a screen-dump of the current prototype system. Most of the code
is written in (SICStus) Prolog but a Tcl/Tk sub-process is used to create the
GUI. The window at the top left shows a simple cartographical display, whose
geometry is determined by a database giving the coordinates and terrain type of
a number of triangular regions. This data is shown in the bottom left window.
The top right window presents a database of qualitative relations between regions.
In the middle on the right is the Prolog top-level query window. All functions
of the system can be accessed by typing commands and queries at the Prolog
prompt (although common operations are more conveniently accessed via the GUT).
The figure shows the Prolog interpreter being used for querying the qualitative
database. Such queries are answered by means of Bennett’s consistency checking
algorithm which will determine whether a relation given as a query is consistent
with, inconsistent with or a necessary consequence of the database. (The bottom
right window is one of a number of information screens which can be displayed via
the system’s ‘help’ function.)

In developing our GIS prototype, we have become very much aware of the im-
portance of integrating qualitative and quantitative spatial information, if useful
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functionality is to be obtained. This is an area upon which we intend to focus in
future research.

7.2.  Characterisation of Geographical Features

Figure 9 (section 5 above) illustrates the use of the convex-hull concept in distin-
guishing among geographical relationships. We see a large island and three smaller
islands — a, b and ¢. Each island is disconnected with the others, so topologically
the relation between any two islands is the same. However, if we consider the rela-
tion between each of the three small islands and the convex-hull of the large island,
we see that: a is part of this convex-hull; b overlaps the convex-hull; and, ¢ is dis-
connected from the convex hull. Moreover, this qualitative difference is significant
from a geo-physical point of view. The tidal and weather conditions affecting a,
lying within a bay of the larger island, are likely to be different from those affecting
¢ out in the open sea. Given a differentiation of regions into land and sea, the
concept of a ‘bay’ region can be defined quite straightforwardly in terms of convex-
hull together with purely topological concepts. A bay is a maximal®® one-piece sea
region which is part of the convex-hull of a land region.

There is some scope for argument as to whether this really captures the concept of
‘bay’. For instance if we have a long coastline whose curvature over its whole length
is concave, then this always creates a single ‘bay’ according to our definition and no
smaller concavity on this coastline is counted as forming a bay. One might contend
that this rules out many features that ought to be classified as bays. But this kind
of problem does not count against the value of the approach. It shows that either
the concept of ‘bay’ is ambiguous or it requires a more complex definition along the
same lines or it cannot adequately be defined purely in terms of topology, convexity
and the land/sea distinction. In the first case the analysis serves to disambiguate
what is meant by a ‘bay’. The second possibility motivates further investigation
of the classification of different kinds of concavity in terms of convex-hull (as we
discussed in sections 5.1 and 5.2). Similarly the third case motivates inquiry into
what other primitive concepts may be needed to define geographical features.

To further illustrate the power of RCC we consider how the spatial extension
of the geographical feature known as an ‘ox-bow lake’ might be characterised by
means of a predicate definition in the theory RC{C, B,conv}. Fig. 18 depicts the
formation of a typical ox-bow lake. In the first picture, a river is meandering
across its flood plain; in the second picture erosion has caused the river to break
through the meander; in time silting on the slower flowing original segment causes
the separation of the original meander creating an ox-bow lake. Thus an ox-bow is
typically of a crescent like shape with the mouth of the crescent towards the river.

First we define a crescent using the concept of geometric inside. Recall that a
region z is geometrically inside region y if  is part of conv(z) but neither overlaps
y nor is completely surrounded by y (see Fig.12). We say that the maximal region
z satisfying these conditions is the geometrical inside of y and define a function
geoinside(z) to map regions to their geometric insides (in many cases geoinside(z)
will, of course, be the null region). Consider the following definition: x is crescent
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Figure 18. The formation of an ox-bow lake.

shaped iff it is concave and the sum of z and geoinside(z) is convex (i.e. the whole
inside of z is its geometric inside) and its inside is in one piece. This essentially
describes a single convex region but with a single “bite” taken out of it. Since we
will want to refer to the “mouth” of a crescent below, we make Crescent dyadic so
that Crescent(m, z) means that m is the mouth of a crescent, z.

Crescent(m, z) =,, -CONV(z) A CONV(z + geoinside(z)) A (31)
CON(geoinside(z)) A m = geoinside(z)

This is only a first attempt at defining the shape of an ox-bow lake. It is in-
adequate on at least two counts: firstly there might be more than one concavity
because z has small local curvatures around its perimeter; secondly because the
perimeter z could be completely made up of straight line segments. The first prob-
lem 1s not so easy to fix within the present framework: it requires one to abstract
overall shape from minor local boundary changes. This could be achieved either by
adding some shape abstraction operator to the language or perhaps by adding a
primitive which would allow one to compare the sizes of regions.?% If one concavity
was much larger than any of the other concavities then it might identified as the
mouth of the crescent.

It is quite easy to ensure that a region has a completely curved boundary by
means of the following defined predicate:

Curved(z) =.; Vy[(PO(z,y) ACONV(y)) — (32)
(mCONV(y — z) v -CONV(y * z))]

This ensures that for any convex region y partly overlapping z, either the part of
y exterior to z or the part interior to y are concave. Hence, z can have no straight
lines, because a convex region which partly overlaps by crossing a straight boundary
segment would always be divided into two convex parts. This requirement may not
be precisely what is wanted because an ox-bow lake might (up to a given precision
of measurement) be straight along some segment of its boundary.

Assuming we are happy for the present with defining the shape of an ox-bow lake
as a 'Curved Crescent’, we now need to ensure that it is appropriately oriented, i.e.
with the mouth of the crescent towards a river. The characterisation of a river is
itself an interesting problem leading to many further considerations, however, for
the purpose of this example we shall assume that a predicate River(z) has already



28 COHN ET AL

been defined. We can then achieve our goal quite simply by requiring that a convex
region can overlap both the mouth of the lake and the river without overlapping
the lake itself.

OxBowlake(z) =,, Im3Ir3c[Crescent(m,z) A River(r) A CONV(c) A

DR(m, z) A O(c, m) A O(c, r)] (33)

Our work on characterising geographical features is at an early state. We realise
that the analysis given this section leaves many questions unanswered but hope
that 1t illustrates what we believe to be an important potential use of the RCC
calculus.

7.83.  Qualitative Simulation of Spatial Changes

It is not difficult to build a qualitative spatial simulator based on composition ta-
bles and conceptual neighbourhoods as described in (Cui et al. 1992).37 A state
is a conjunction of ground atomic atoms expressed in RCCn. Successor states are
generated by forming the set of neighbouring atoms (using the conceptual neigh-
bourhood diagram) for each atom in the state and forming the crossproduct of all
these sets. Each successor state can then be checked for logical consistency by ‘tri-
angle checking’ using the composition table (see section 6.1 above). Tt is useful to
allow the user to specify domain-dependent inter- and intra-state constraints that
further filter which next states are indeed allowable. The implementation also al-
lows users to specify ‘add’ and ‘delete’ rules to introduce new regions under certain
conditions, with specified relationships to existing regions, or to delete specified re-
gions. Fig.19 illustrates two paths from envisionment generated by the program on
a model of phago- and exco-cytosis (an amoeba eating a food particle and expelling
the waste matter).?® It should be clear that this approach can also be applied to
modelling geographical processes — the regions might correspond to terrain types
or hydrological features.

a a a ) a a a 2
® PRC >\ ® >\® >® >® Ao (©)
! i

0 B

O

Figure 19. Two paths from the amoeba simulation; the amoeba is denoted ‘a’, its nucleus ‘n’,
the food particle, ‘f’; an enzyme, ‘e’, the vacuole in which the food particle is trapped, ‘v’, the

nutrient formed by digestion, ‘nt’ and the waste matter, ‘w’.
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We are now constructing a new qualitative simulation system using Transition
Calculus (Gooday and Galton 1996), an event-based nonmonotonic temporal rea-
soning formalism. This simulator has a much more formal basis than our original
qualitative spatial simulator described in section 7.3 above and has already been
used to model a simple physical system. RCC continuity networks can be directly
represented as event types in Transition Calculus’ high-level modeling language
making it well-suited to our simulation tasks. We intend to encode various conti-
nuity networks and explore a number of simulation problems with the new system.

7.4. Semantics for a Visual Programming Language

Another application we are currently investigating is for the specification of the syn-
tax and semantics of a visual programming language (Gooday and Cohn 1995, Goo-
day and Cohn 1996b). Visual programming languages are an important new weapon
in the software engineer’s armory, but while textual languages have benefited from
work on providing appropriate mathematical semantics, there has been little work
on providing suitable tools for visual languages. One visual language that can be
specified almost entirely using topological concepts is Pictorial Janus (Kahn and
Saraswat 1990) and indeed RCC turns out to be quite suitable for this task.?? Fig.20
illustrates some basic Pictorial Janus elements and a program to append two lists.

A constant consists of a closed contour (the shape is irrelevant) containing a
number or string (what the constant represents) and a single internal port. The
internal port is represented by another closed contour abutting the constant but
wholly inside it and acts as a handle for the entire object. Ports cannot themselves
contain any elements. Functions are represented by closed contours containing a
label and an internal port together with any number of external ports. In this
case we have illustrated a list-constructor function, cons, which normally takes two
arguments and thus requires two external ports. The final part of the figure shows
how the cons function can be used to build up a list.

A Pictorial Janus agent is a closed contour containing rules, a call arrow to
another agent contour, or a label. It may have any number of external ports but

Key: @ Interna port (@ External port @ Overlapping internal and external ports

Label

Constant Function Function and arguments

Figure 20. Some basic Pictorial Janus concepts and an append agent (containing two rules).
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no internal ports. A rule is defined in exactly the same way as an agent but with
the additional requirement that it must be contained within an agent. Agents may
communicate via channels: directed curves linking two ports (an arrow is used
to indicate directionality). Finally, links are undirected curves joining two ports.
There is not space to fully specify Pictorial Janus here, but as a simple example we
will give the definitions for internal and external ports that are defined in terms of
ports, to show how RCC can be exploited in this domain:

Iport(port, z) =, Port(port) A TPP(port, z) (34)
Eport(port, z) =,., Port(port) A EC(port, w) (35)

Using RCC we have successfully captured the full syntax of Pictorial Janus and
are now working on completing our description of the procedural semantics. It is
intended that these RCC descriptions will be used in conjunction with our spatial
simulator to model the execution of Pictorial Janus programs.

Another application we have investigated is the application of RCC to help with
the problem of integrating two different databases. In this case we are using a
spatial metaphor: we think of a database class as a region, and the prototypical
members as another region which is always a PP of the complete class.*® The
question addressed in this work is how can we obtain a measure of the reliability
of the merge of two data-types? For example, supposing firm A takes over firm
B and they merge their employee databases. They may have different definitions
of employee. We use a spatial metaphor to develop a ranking to rate the relative
goodness of fit in such cases. The final ranking we developed is a refinement of the
run of our qualitative simulator. Further details can be found in (Lehmann and

Cohn 1994).

8. Spatial Regions with Uncertain Boundaries

Much work in qualitative spatial reasoning is based exclusively on crisp regions
and lines. But many domains, particularly GIS, have objects with indeterminate
boundaries, such as clouds, urban areas, areas of a certain soil or vegetation type,
marshlands, habitats and so on. The question is whether RCC theory as developed
so far can be used or extended to model these kinds of entities.*! In a series of papers
(Cohn and Gotts 1996a, Cohn and Gotts 1994b, Cohn and Gotts 1994a, Gotts and
Cohn 1995, Cohn and Gotts 1996b) we have tackled this problem*? from two sides:
firstly we have added a further primitive and developed an axiomatisation and a
series of definitions to help model such indeterminate spatial entities; secondly, we
have applied the egg-yolk calculus, mentioned above, to represent such regions.

8.1. A Primitive for Reasoning about Indeterminacy

We need to say at least some of the same sorts of things about vague regions as about
crisp ones, with precise boundaries: that one contains another (southern England
contains London, even if both are thought of as vague regions), that two overlap
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(the Sahara desert and West Africa), or that two are disjoint (the Sahara and Gobi
deserts). In these cases, the two vague regions represent the space occupied by
distinct entities, and we are interested in defining a vague area corresponding to
the space occupied by either, by both, or by one but not the other. We may also
want to say that one vague region is a crisper version of another. For example,
we might have an initial (vague) idea of the extent of a mineral deposit, then
receive information reducing the imprecision in our knowledge. Here, the vagueness
of the vague region is a matter of our ignorance: the entity concerned actually
occupies a fairly well-defined region — though perhaps any entity’s limits will be
imprecise to some degree. In other cases, vagueness appears intrinsic: consider an
informal geographical term like ‘southern England’. The uncertainty about whether
particular places (north of London but south of Birmingham) are included cannot
be resolved definitively: it is a matter of interpretational context. A contrasting
example is the region occupied by a cloud of gas from an industrial accident. Here
we have two sources of intrinsic vagueness: the concentration of the gas is likely
to fall off gradually as we move out of the cloud; and its extent will also vary over
time, so any temporal vagueness (for example, if we are asked about the cloud’s
extent at ‘around noon’) will result in increased spatial vagueness. In these cases of
intrinsic vagueness, there is a degree of arbitrariness about any particular choice of
an exact boundary, and often, none is required. But ¢f we decide to define a more
precise version (either completely precise, or less vague but still imprecise), our
choice of version is by no means wholly arbitrary: we can distinguish more and less
reasonable choices of more precise description. Distinguishing ignorance-based from
intrinsic vagueness is important, but many of the same problems of representation
and reasoning arise for both.

This then motivates introducing an additional primitive: a binary predicate X <
Y %3 read as “X is crisper than Y”, which is axiomatized to be asymmetric and
transitive and hence irreflexive. Various useful predicates can easily be defined in
terms of X < Y. For example, Crisp(X), which is true when no region is crisper
than X, MA(X,Y), which is true when X and Y are mutually approximate; that is,
they have a common crisping, and X << Y which is true when X is crisper than Y
and is itself crisp.

Crisp(X) =,, ~3Y[Y < X] (36)
MA(X,Y) =, 3Z[7Z < X AZ < Y] (37)
X <Y =,; X <Y ACrisp(X). (38)

Further axioms postulate the existence of a complete crisping of any region, and
also of alternative ways to crisp and decrisp a region (for if this were not so, then
one could hardly claim that indeterminacy existed about the region). Another
possible axiom asserts the denseness of crisping: if X < Y, then there must be
another region crisper than Y but less crisp than X. An interesting parallel can be
drawn between this theory and the axiom-sets for mereology (theory of part-whole
relations) discussed by (Simons 1987); we will return to this below.

The question arises: how many JEPD relations are there between non crisp re-
gions? For the sake of simplicity, we consider a calculus for spatial regions with
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Figure 21. The RCC5 continuity network.

indeterminate boundaries based on the fairly coarse-grained relation set which we
call RCC5, consisting of the relations DR, PO, PP, PPi and EQ.** Fig.21 depicts
the RCC5 relations and their continuity network. Consider two non-crisp regions.
Depending on the initial configurations, there may be different possible RCC5 re-
lations between complete crispings of the two regions. We make the assumption
that any set of complete crisping relations will be a conceptual neighbourhood (a
connected subgraph of the continuity network). Although there are twenty-three
such conceptual neighbourhoods for RCC5, (see Fig.21) it is possible to argue that
only thirteen*® of these can form a set representing the possible complete crispings
a pair of vague regions. However, in the next section we suggest that more than
thirteen distinctions are, in fact, possible.

8.2. The Fgg-Yolk Theory

We have already mentioned the egg-yolk theory above when discussing the appli-
cation of RCC theory to database integration. Fig.22 depicts this representation.
The egg is the maximal extent of a vague region and the yolk is its minimal extent,
while the white i1s the area of indeterminacy. Note that since RCC allows non con-
nected regions, so yolks (and indeed eggs themselves) could be multi-piece. Fig.23
shows the forty-six possible relations between two non-crisp regions (assuming that
RCOCS5 calculus is used to relate eggs and yolks and that yolks are never null).*®

Egg

Figure 22. The egg/yolk interpretation
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Figure 2. Clustering the forty six relations into thirteen groups.
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These forty six relations can be naturally clustered into thirteen groups as shown
in Fig.24; this may be achieved either by considering the equivalence classes of
configurations that have the same set of relationships between their complete crisp-
ings or by grouping together all configurations which may be transformed into each
other by crisping.

At first glance, there is an apparent problem with the egg-yolk approach: the
most obvious interpretation is that it replaces the precise dichotomy assumed in
the basic RCC theory, where space is divided into what is in a region and what
is outside a region, by an equally precise trichotomy of yolk, white and outside.
This appears contrary to a key intuition about vagueness: that not only is there
a doubtful zone around the edges of a vague region but that this zone itself has
no precise boundaries. Gotts and Cohn (1995) suggest a way of using the egg-yolk
formalism that is consistent with this.

We link the OCregions of Section 8.1 (and the corresponding theory), with ordered
pairs of RCC5 regions, the first of the pair being a part, but not necessarily a proper
part, of the second. If it zs a PP, then the pair is an egg-yolk pair in the sense of
(Lehmann and Cohn 1994), and the OCregion is NonCrisp. If not, the OCregion is
Crisp. We now link the CR predicate of OCregion theory with the egg-yolk approach.
We define a function ey to map an OCregion to an egg-yolk pair, and two functions
eggof and yolkof, to map such egg-yolk pairs to the RCC) region comprising its
egg and yolk, respectively. We will normally write ey(X) as X for notational
convenience. We have the following axiom for egg-yolk pairs:

VX P(yolkof (X ), eggof (X)) . (39)
We then assert the following additional axiom concerning CR:

VX, Y[ X <Y =
[[PP(eggof(X), eggof(Y)) A P(yolkof(Y), yolkof (X))] V (40)
[P(eggof(X), eggof(Y)) A PP(yolkof(Y), yolkof(X))]]] -

This axiom links CR to the predefined RCC) relations by an implication, not an
equivalence: we do not specify that if the specified RCC relations hold between
eggof(X), yolkof(X), eggof(Y) and yolkof(Y), the CR relation holds between X
and Y, but these relations must hold for the CR relation to do so. We leave un-
defined what additional conditions, if any, must be met. This gives us the kind of
indefiniteness in the extent of vagueness, or higher-order vagueness, that intuition
demands. Consider the vague region “beside Nick’s desk.” This can be regarded
in OCregion theory as a NonCrisp region. There are some precisely defined regions,
such as a cube 10cm on a side, bcm from the right-hand end of Nick’s desk, and
50cm from the floor, that are undoubtedly contained within any reasonable com-
plete crisping of this NonCrisp region. Others, such as a cube 50m on a side centred
at the front, top right-hand corner of the desk, contain any such reasonable crisping.
These two could correspond to the yolk and egg of an egg-yolk pair constituting the
NonCrisp region “beside Nick’s desk,” forming a very conservative inner and outer
boundary on its possible range of indefiniteness. However, some OCregions (Crisp
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and NonCrisp) lying between this pair would not make a reasonable crisping of this
region: consider a volume including the ‘yolk’ of the pair, plus a layer one centime-
ter deep at the very top of the white. This meets all the conditions for a crisping of
the specified OCregion, but is an absurd interpretation of “beside Nick’s desk.” In
general, we need not precisely specify the limits of acceptability. For specific appli-
cations, we could add further conditions on acceptable crispings (such as preserving
particular topological features or relative proportions in different dimensions), and
perhaps assert that (for that application) these conditions are sufficient.

Configuration 1 in Fig.23, given the interpretation of OCregion region theory in
terms of egg-yolk pairs of RCC5 regions outlined here, clearly shows a pair of
NonCrisp regions such that any pair of complete crispings of the two must be DR .
Taking the left egg-yolk pair as representing NonCrisp region X, and the right one
NonCrisp region Y':

YV, W[V << X AW << Y] — DR(eggof(V), eggof (W))] (41)

Similarly, configuration 2 represents a pair of NonCrisp regions such that, for any
complete crisping of either, we can choose a complete crisping of the other that is
DR from it, and there are also some complete crisping pairs of the two that are
PO. (Cohn and Gotts 1994b) shows how each of the forty-six configurations can
be distinguished in terms of the possible results of replacing one or both of the
egg-yolk pairs with a single region-boundary lying within the white of the egg, a
complete crisping of the vague region represented by the egg-yolk.

This way of interpreting OCregion theory explains why we found so many parallels
with Simons’ mereology. Under the egg-yolk interpretation, an OCregion amounts
to a three-way division of u into yolk, white, and non-egg. If we consider a set of all
such divisions where no part of space is in the yolk of one division and the non-egg
of another, we have a mereological system with all the possible precise boundaries
as atoms. Crisping expands yolk and/or non-egg at the expense of the white. One
OCregion being a crisping of another is like one individual being a proper part of
another because the white of the first is a proper part of the white of the second.
We have a plausible candidate for the VCC (Vaguest Common Crisping) of two
MA OCregions: the VCC ’s yolk could be the sum of the yolks of its two blurrings,
its egg the prod of the two blurrings’ eggs (which, if the two are MA | must exist
as a region). Similarly, the yolk of the CCB (Crispest Common Blurring) of any
two OCregions might be defined as the prod of their yolks; its egg as the sum of
their eggs.

The implications of these identifications remain to be explored. However, the
egg-yolk model of the OCregion axioms does appear to provide a straightforward
way to define OCregion extensions of the compl, sum, prod and diff functions defined
within RCC. Moreover, egg-yolk theory gives us a way to reason with vague regions
using the existing mechanism of the RCC calculus.
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9. Final Comments

Work is still continuing on RCC and related formalisms, both at Leeds and else-
where. We are still working on the formal semantics of RCC (Gotts 1996a).*” RCC,
as presented here, does not have sufficient existential axioms. In (Bennett 1996b)
some progress 1s made towards addressing this deficiency and Pratt and Schoop
(1997) present a system which is closely related to RCC and shown to be complete
with respect to a Euclidean planar model.

There is still further work to do with the axiomatization of conv and indeed in
investigating other primitives that would enhance the expressiveness of RCC. We
also hope to work further on our approaches to reasoning about indeterminate
boundaries. The work on using zero-order logics seems promising, but there is still
further work to do on the larger RCC calculi and in formally relating the zero and
first-order representations. We are also looking to various applications to drive our
work forward.

Although we have mentioned quite a lot of related work, QSR is a growing field
and there is not space to do it justice here. Hernadndez (1994) provides a slightly
dated review in a final chapter; also see the survey in (Cohn 1996). The proceedings
of COSIT (such as (Frank and Campari 1993, Frank and Kuhn 1995)) contain
many related papers. A spatial reasoning web site including a pointer to an online
interactive bibliography can be found at:

http://www.cs.albany.edu/~amit/spatsites.html

In summary, we have presented a logical calculus for qualitative reasoning about
spatial regions, with both a first-order and propositional sub-variant. The system
has remarkably few primitives, which is desirable not only from a theoretical view-
point, but also from an implementational one: one need only implement these few
primitives to interface to a perceptual component. RCC provides a rich vocabulary
of qualitative shape descriptions and has extensions to handle uncertainty. We have
provided some special-purpose reasoning techniques (composition tables and con-
ceptual neighbourhoods) that can be exploited in a qualitative spatial simulator.

We have also sketched some possible application areas for RCC.
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Notes

. Less formal investigations of the semantics of natural language spatial expressions have been

conducted by a number of researchers — see e.g. Herskovits’ chapter in (Stock 1997).

2. This name is recent and is not used in many of our earlier papers.

These and other papers can be obtained via the World Wide Web from:
http://www.scs.leeds.ac.uk/spacenet/publications.html.

The acronym RCC and both possible interpretations are due to Antony Galton.

‘Mereology’ is a term (first used by Lesniewski) to describe the formal theory of part, whole
and related concepts.

. Ladkin (1986) has investigated temporal non convex interval logics. The spatial logic we

present below will also allow non-convex spatial entities.

7. This problem has already been noted in a temporal context (Galton 1990).

8. Alternatively, non empty regular closed sets of connected T3-spaces have been proved to be

10.
11.

12.

13.

14.
.To be employed in their full generality, the predicates SEPNUM(z,n), FCON(z,n) and

15

16.

17.

models for the RCC axiom set (Gotts 1996a).
The argument sorts for space are Region and Period, respectively, while the result sort is
Spatial LU NULL. Period is a sort denoting temporal intervals.

Quasi, because the lack of a null region means the functions do not form a Boolean algebra.

For notational convenience we will sometimes write z = y rather than EQ(z, y); technically
the latter is preferable, since EQ is a relation defined in terms of C rather than true logical
equality. However, for readability’s sake we will ignore this distinction here.

It follows from our definition of the sum function as z = sum(y, z) + Yw[C(w,z) + (C(w,y) V
C(w, z))] — consider the case where y = z.

An interesting question arises: what is so special about RCC8? One answer might be that
it is essentially the system that arises (in 1D) if one takes Allen’s calculus and ignores the
before/after ordering: the thirteen relations collapse to eight, which mirror those of RCCS.
However, note that Allen’s calculus assumes that all intervals are one piece and further re-
lationships would exist if this were not the case (Ladkin 1986). The 4-intersection model
of Egenhofer and Franzosa (1991) also gives rise to exactly eight analogous relations under
certain assumptions (such as zero co-dimension). In fact (Dornheim 1995) shows that the
interpretation of the RCC8 relations is slightly more general.

The corresponding definition in (Gotts 1994b) is faulty.

SBNUM(z,y,n) require the introduction of natural numbers into the system; however, if we
only want to use instances of these predicates in cases where n is some given fixed number (as
is the case in defining a doughnut) they can always be cashed out, in terms of their (recursive)
definitions, to yield complex predicates not containing numbers. Thus the numbers can be
regarded as meta-level syntax used to refer to denumerable sequences of predicates. This could
be indicated by writing SEPNUMy, (z), FCONy (z) and SBNUMy (z,y).

Note, however, that this task becomes almost trivial once the conv(z) primitive is introduced
in Section 5.

In cases where reasoning about dimensionality becomes important, the RCC system is not
very powerful. To remedy this we have proposed a new primitive INCH(z,y), whose intended
interpretation is that spatial entity = includes a chunk of y, where the included chunk is of
the same dimension as z. The two entities may be of differing (though uniform) dimension.
Thus if z is line crossing a 2D region y, then INCH(z,y) is true, but not vice versa. It is easy
to define C(z,y) in terms of INCH, but not vice versa, so the previous RCC system can be
defined as a sub theory. An initial exposition of this theory can be found in (Gotts 1996b).
Interestingly, a similar proposal was subsequently made independently by (Galton 1996).
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18. As mentioned above when outlining how to define a doughnut, it is possible to describe some
non-convex regions using C alone, but it is impossible to describe the holes themselves as
regions. Moreover, not all kinds of concave shapes can be distinguished using C alone (for
example, depressions in a surface cannot be distinguished). Casati and Varzi (1994) distinguish
between hole-realism in which holes are first class objects and hole-adverbialism in which
reference to holes is just a "facon-de-parler” and all one really says is that an object is holed
(in such and such a way). This is all RC{C, 5} can do. RC{C, 5, conv} can take a hole-realist
position.

19.1t should be noted that these axioms are not all independent. It is quite easy to prove that
axiom 20 is a consequence of axiom 25 and that axiom 22 is entailed by axiom 23; and it is
probable that there are further dependencies.

20. One possible line of attack would be to introduce an alternative primitive, “region y is between
regions z and z” (see Tarski’s axiomatisation of geometry which uses a point based betweenness
primitive (Tarski 1959)) and define conv in terms of this primitive. Linking this primitive to
Tarski’s point based betweenness relation may provide a way to verify the completeness of the
axiomatization.

21.1In fact if we were allow regions which are neither finite nor co-finite (having a finite complement)
this axiom does not hold, so we get 18 possible refinements of DR.

22.See also their chapter in (Stock 1997) and (Varzi 1996b, Varzi 1996a).

23.In his chapter of (Stock 1997), Frank discusses the general question of ontologies from a con-
sumer’s viewpoint.

24.0f course, this lattice allows certain kinds of reasoning involving subsumption and disjointness
of relations to be performed efficiently as noted in (Randell and Cohn 1992).

25.Use of the composition table can easily be generalised to handle the case where Ry and Ry
are disjunctions of relations taken from the set {R;} — we just look up the compositions for
all possible pairwise combinations of the disjuncts involved in Ry and Ry. (Bennett 1994a)
discusses various other uses and aspects of composition tables.

26.An interesting question is raised here: under what circumstances is this local consistency
checking procedure complete for determining the overall consistency of a set of ground facts,
whose relations are constrained by some axiomatic theory? It can be shown that, if a set
of RCC8 relations is consistent wrt the RCC8 composition table, then there is a topological
model of the set of facts. However, (Grigni et al. 1995) observe that if we constrain regions to
be planar and bounded by Jordan curves, an RCC relation set may have no such model, even
though it is consistent with the composition table. We have explored question of completeness
of composition tables in (Bennett, Isli and Cohn 1997).

27.Our table coincides with that of (Egenhofer 1991), who built an eight relation calculus, which,
although based on point set topology, has many similarities to RCC8.

28. Actually, in representing RCC relations in this way it is important to add for each region r an
additional entailment constraint ~ r which ensures that the region is non-null (see (Bennett
1994b)).

29.This explains the term entailment constraint.

30. Complexity of reasoning about spatial relations is currently far less understood than the (at
least superficially) similar domain of temporal relations. Allen’s set of thirteen (JEPD) qualita-
tive relations between temporal intervals (Allen 1981, Allen 1983, Allen 1984) and the algebra
generated from these relations have been quite extensively explored. The NP-hardness of rea-
soning about arbitrary disjunctions of the temporal intervals was demonstrated by Vilain and
Kautz (1986). Ladkin has investigated the model theory of the relations and their represen-
tation within the framework of relation algebra (Ladkin 1987, Ladkin and Maddux 1994). A
maximal tractable sub-algebra over the Allen relations has been identified by Nebel (1995b).

31. A maximal tractable subsets of disjunctive combinations of the RCC8 relations is identified in

(Renz and Nebel 1997).
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32.Note that the assumptions about what is continuous behaviour are quite sophisticated here:
imagine two regions, one that is two piece and has one component that is an NTPP of the other
region and a second component which is DC from the other regions; thus the two regions are
PO. If the component which was an NTPP disappeared (a puddle drying in the sun?), then
there would be an instantaneous transition from PO to DC! However, we argue that becoming
NULL is discontinuous.

33.Exceptions to this are pointed out and considered in (Bennett 1994a).

34. We have also done some work on real time event recognition from image sequences, by means
of qualitative event descriptions; our initial work in this area is reported in (Fernyhough, Cohn
and Hogg 1996, Fernyhough 1997, Fernyhough, Cohn and Hogg 1997).

35.Here ‘maximal’ can be stated in qualitative terms by saying that the region is not a proper-part
of another sea region which is also part of the convex-hull of the land region.

36.E.g. one might add an order of magnitude representation such as that in (Raiman 1986) or
(Mavrovouniotis and Stephanopoulos 1988).

37.A newer, more principled implementation based on the transition calculus is described in
(Gooday and Cohn 1996a).

38.Fig.19 reveals a subtle difficulty with our analysis of state transition. In the first transition
on the second row the food particle crosses the boundary and touches the enzyme all in one
step but in fact since the crossing of the boundary happens instantaneously it must precede
the coming together of enzyme and food. The distinction between instantaneous and durative
changes has been examined by Galton (1995a). One should also realise that because the
modelling is done in RCC8 without using conv, the model is not a very accurate representation
of reality.

39.Haarslev (1996) has also presented a spatial calculus for similar purposes.

40. We termed this representation the the ‘egg-yolk’ calculus, for obvious reasons, and will meet it
again when describing an extension to RCC to handle regions with indeterminate boundaries
below.

41. We are sceptical about the merits of ‘fuzzy’ approaches to indeterminacy, believing that their
use of real number indices of degrees of membership and truth are both counterintuitive and
logically problematic. We have no space to argue this controversial viewpoint here; see (Elkan
1994) and responses for arguments on both sides.

42.Note that we have addressed only the question of modelling indeterminate boundaries rather
than indeterminate position.

43. We will use upper-case italic letters for variables ranging over OCregions. These are optionally
crisp regions, which may be crisp or not.

44.The case of RCC8 is addressed in (Cohn and Gotts 1996b).

45.Each cluster of Fig.24 represents one of these conceptual neighbourhoods.

46. Clementini and Di Felice (1994) have also produced a very similar analysis based on Egenhofer’s
9-intersection method, though they omit two of the forty six relations, which they do not believe
are possible in their domain. They apply their calculus of regions with broad boundaries to
a number of situations (Clementini and Di Felice 1997) including reasoning about discrete
spaces, convex hulls and minimum bounding rectangles.

47. Asher and Vieu (1995) have provided a formal semantics for Clarke’s system.
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