
One Step up the Abstraction Ladder:
Combining Algebras - From Functional Pieces to a Whole

Andrew U. Frank

Department of Geoinformation
Technical University Vienna

Gusshausstr. 27-29, A-1040 Vienna, Austria
frank@geoinfo,tuwien.ac.at

Abstract. A fundamental scientific question today is how to construct complex
systems from simple parts. Science today seems mostly to analyze limited
pieces of the puzzle; the combination of these pieces to form a whole is left for
later or others. The lack of efficient methods to deal with the combination
problem is likely the main reason. How to combine individual results is a
dominant question in cognitive science or geography, where phenomena are
studied from individuals and at different scales, but the results cannot be
brought together. This paper proposes to use parameterized algebras much the
same way that we use functional abstraction (procedures in programming
languages) to create abstract building blocks which can be combined later.
Algebras group operations (which are functional abstractions) and can be com-
bined to construct more complex algebras. Algebras operate therefore at a
higher level of abstraction. A table shows the parallels between procedural
abstraction and the abstraction by parameterized algebras. This paper shows
how algebras can be combined to form more complex pieces and compares the
steps to the combination of procedures in programming. The novel contribution
is to parameterize algebras and make them thus ready for reuse. The method is
first explained with the familiar construction of vector space and then applied to
a larger example, namely the description of geometric operations for GIS, as
proposed in the current draft standard document ISO 15046 Part 7: Spatial
Schema. It is shown how operations can be grouped, reused, and combined, and
useful larger systems built from the pieces. The paper compares the method to
combine algebras – which are independent of an implementation – with the
current use of object-orientation in programming languages (and in the UML
notation often used for specification). The widely used ‘structural’ (or subset)
polymorphism is justified by implementation considerations, but not appro-
priate for theory development and abstract specifications for standardization.
Parametric polymorphism used for algebras avoids the contravariance of
function types (which its semantically confusing consequences). Algebraic
methods relate cleanly to the mathematical category theory and the method
translates directly to modern functional programming or Java.

Keywords. Spatial Algebras, Spatial Data Models, Category Theory,
Parameterization of Algebras

C. Freksa, D.M. Mark (Eds.): COSIT’99, LNCS 1661, pp. 95-108, 1999
 Springer-Verlag Berlin Heidelberg 1999

1 Introduction

A fundamental scientific question today is how to construct complex systems from
simple parts. Science is – at least in the form typically reported in the Geographic
Information Systems literature – very good at analyzing individual pieces of the
puzzle. The combination of these pieces to form a whole is left as “a simple exercise
for the reader” – and everybody knows from experience, that these simple exercises
are not easy at all. The simple functions in a large system – and GIS are large systems
– are all relatively easy to define (with some fudging at the seams) and formalization
methods are often available. When the pieces are put together, unexpected inter-
actions occur, questions become posed which do not have an answer within the
previously studied limited context of the individual pieces and we see that the pieces
do not fit together. This applies to software engineering and standardization as much
as to other areas of science; it is a dominant question in cognitive science, where
phenomena are studied individually and at different scales; we seem to know a lot of
individual details, but we have difficulties to fit these pieces together. It is an
important question in geography, where different disciplinary approaches are used but
all the results must be brought together applied to the same geographic location.

Functional abstraction is widely used. Named functions are crucial in mathematics
and procedures are the building blocks of all programs. Procedures draw their power
from their parameterization, which allows to formulate general rules which can be
used in different circumstances. A function square x can be used in various contexts
with different values for x. The same concept can be applied at a higher level of
abstraction. Algebras consist of several functions that can be named and have param-
eters. The parameters do not stand for concrete values as in procedures, but – a step
more abstract – for types. They can be combined and the type parameters duly
replaced by the actual parameters, much the same way as in the application of
functions. Table 1 demonstrates the parallels between the two concepts.

Table 1. Comparison of procedural and algebraic abstraction.

Procedural Abstraction Algebraic Abstraction

object operation (procedure,
function, method)

Algebra (abstract data types)

components a sequence of operations several operations operating
on the same sorts

applied to values sorts (types)

use call instantiation

formal
parameters

formal parameters for values formal parameters for sorts

actual
parameters

values representable data types

combination call of procedure within
another abstraction

use as a sub-algebra within
another algebra

96 A.U. Frank

Category theory [2, 3, 14, 23] abstracts from individual values to sets of values
(types, domains). Algebras group operations which are applied to the same data types.
Axioms in the algebra define the properties (behavior) of these operations. Algebras
are naturally parameterized in the types of the arguments the operations in the algebra
take. An algebra can be compared to a procedural abstraction: it has a name, a set of
parameters, which stand for types, and a set of operations on these types. Param-
eterized algebras can be reused and combined through instantiation. Algebras are
instantiated, when for each carrier a concrete data type is provided and actual
implementation given for the operations; this is comparable to the call of a procedure
or function (Table 1).

Terminology here is extremely confusing, as the different disciplinary traditions of
algebra, category theory, theoretical computer science, programming languages
(functional, object-oriented) use conflicting terminology. Glossing over justified
differences, I decided to continue to use the best-known terms (mostly with a pro-
gramming languages background). The notion operation will be used for function or
method. Type will be used for what is otherwise called sort, set of values, or carrier.

Functions can be used to build more complex functions, where the parameters are
replaced by the parameters from the encompassing functions, which will be even-
tually replaced by actual values when the program is executed. The same applies to
algebras, where several (sub)algebras are instantiated and combined to form a larger
algebra, which is ultimately instantiated with representable data types. The semantics
of an individual algebra is given by the axioms for the operations and carried forward
to the combined algebra.

This technique is generally usable; it can be applied to cognitive science problems
or geography, where small (descriptive) models can be constructed as algebras, which
are later combined. It can be used in software engineering and specification writing.
After an introduction of the concept of algebra in Section 2, the method will be
described with the construction of vector space from two different algebras in
Section 3. Section 4 will then apply the method to structure the current proposal for a
standardization of the geometric operations used for GIS and CAD. Section 5 briefly
sketches the application to a problem from cognitive science, namely the definitions
of relative spatial reference systems in natural languages. Section 6 discusses gener-
alization and polymorphism and Section 7 presents conclusions.

2 Algebra

Algebras capture the coordinated behavior of operations that are applied to the same
object. Numbers are numbers not because one can add them, but because the oper-
ations of addition, subtraction, comparison, etc. work in a specific pattern (in algebra
called ‘structure’). We have advocated the uses of multi-sorted algebras for the
specification of GIS at least since 1986 [10, 11]. A recent paper has presented a
family of geometric data models based on the theory of many sorted algebra [18].
Algebras should be built for maximal reuse, maximal cohesion, and minimal inter-
dependence. These are the same requirements – now on a structurally higher level –
demanded for procedures and object classes in programming [24].

An algebra consists of three parts: a type and a set of operations, the behavior of
which are defined with axioms. The most familiar example of an algebra is numbers,

97One Step up the Abstraction Ladder: Combining Algebras

for example, the algebra of integers (technically an Abelian Group). The operations
are addition (+) and subtraction (-). There is a particular number zero (0), which has
special properties. The notation is widely used in the literature [13, 25]; it follows in
particular [8], small changes stress the similarity with the syntax of procedures in
languages like Pascal. After the keyword Algebra follows the name of the algebra and
the type parameters in parenthesis. The operations and constants are listed after the
keyword Operations. For each operation the name of the operation followed by ‘::’
and the list of argument types and the return type (the signature) is given. After the
keyword Axioms, the axioms describing the behavior of the operations are listed (‘—’
indicates a comment, e.g., a name of an axiom). It is possible to abbreviate this format
and give only the algebra name with the type parameters and then a list of operations
included – this short format will be used in the examples given later in the paper. The
following example for the familiar algebra of natural numbers should help to under-
stand the syntax of the full format:

Algebra AbelianGroup (number)
Operations: +, - :: number -> number -> number

 Negate::number -> number
 0 :: number

Axioms: a + b = b + a -- commutative law
(a+b)+c= a+(b+c)= a+b+c -- associative law
0 + a = a + 0 = a -- existence of identity
a + (negate a) = 0 -- existence of inverse
a – b = a + (negate b) -- definition of subtraction

Algebras can be used to describe other behavior than numbers, for example, the
properties of a stack. In such cases, more than one type is used and the algebra is
called multi-sorted or heterogeneous [5].

Algebra Stack (stack of a, a)
Operations: push :: a -> stack of a -> stack of a -- constructor

empty :: stack of a -- constructor
pop :: stack of a -> stack of a -- observer
top :: stack of a -> a -- observer

Axioms: top (push a s) = a
pop (push a s) = s
top (empty) = error
pop (empty) = error

An algebra does not describe what the objects are, only how they behave. Algebras
give specifications and do not determine the implementation. Many different objects
can behave according to the same rules; within an algebra, one cannot differentiate
between them. The current object-oriented debate, which is linked to the imple-
mentation of programming languages, equates objects with operations and data
representation. The definition of operations (which forms an algebra) is merged with a
description of a representation of the types. This forsakes the parameterization of the
algebra (the free parameter is immediately bound to a particular representation) and
destroys the potential for reuse of the algebra for other representations.

98 A.U. Frank

2.1 Type Parameters

The type names in an algebra should be read similar to the parameter names in a
function: they are ‘formals’ standing for data types, the same way that a formal
parameter stands for a later supplied concrete value. The definitions above do not
state how the numbers in the algebra of Abelian Groups should be represented: binary
numbers are as useful as numbers formed from Arabic or Roman numerals. The
power of the algebraic abstraction is exactly this abstraction from a concrete real-
ization (implementation).

The type names are only valid within the algebra and have no meaning outside the
scope of the algebra description; this is similar to the use of parameter names in
procedure descriptions in programming: the a in f (x, a, b) = … and in g (x, b, a) = …
are not related. Parameter names are often selected to suggest an interpretation, but
this is just a hint for the reader, not a formal property. When algebras are combined,
the parameters are replaced; much the same way that parameters are replaced with the
actual values when a function is called.

Types can be parameterized: The stack constructed before is a stack of integers, of
plates, of books, depending on what is pushed on it. This dependency between carriers
is expressed as a parameterization of the type. The example uses a parameterized
type, stack of a, where the type stack relates to another type a. This is similar to the
template notion in C++ [22], which is not fully integrated into the language and
therefore difficult to use. Using the pushout construction from category theory, the
combination of algebras is mathematically well defined [8]. The type inference rules
for multiple parameters were presented by [16].

2.2 Operations

Without loss of generality but immense gain in notational clarity, operations are
restricted to (pure) functions [1]. Functions have input parameters, which are not
changed, and a single result (which can be a composition of several values); proce-
dures that change the parameters can be rewritten to conform to this format. Special
named constants (e.g., zero) are understood as functions without input and thus a
constant result. In this categorical framework everything is a function.

The list of the types of the input parameters followed by the type of the result is
called the signature of the operation. Operation names are assumed to be unique
within the context of discussion (which avoids the notationally confusing problem of
renaming operations).

Operations can be separated in constructors, observers, and derived operations.
Derived operations serve as a convenience and are just abbreviations for combi-
nations of other operations in the algebra. For example, the operation subtraction (-)
can be defined in terms of negate: a – b = a + (negate b). Constructors are the
operations that are used to construct all the values in the carrier; their result is always
an object of the (primary) carrier of the algebra. Observers take objects from the
primary carrier and relate them to other (probably already defined) carriers. The
observers must be sufficient to differentiate between all values in the carrier.

99One Step up the Abstraction Ladder: Combining Algebras

2.3 Axioms

Axioms describe the properties of the operations (the behavior of the operations).
Axioms written in a categorical (point-free) fashion describe operations independent
of actual values (typically the function composition operation (.) and some constant
functions (e.g., id, the function that does nothing: f (x) = x) from category theory are
used.

negate . negate = id

Variables standing for variables in axioms are automatically prefixed with an ‘for
all’ quantor and have the types described by the signatures. Axioms often state the
existence of a value for which a property is asserted; such axioms are called non-
constructive. If the axioms are written in a restricted equational logic [8], it is often
possible to translate the axioms to program code and execute them.

If a formal language is used to describe the axioms, the existence of a definition for
operations and the consistent use of types can be checked. If the language is exe-
cutable, then the defined semantics may be compared with the intended one while
observing the result of operations. It is difficult to determine if a set of axioms is
sufficient; for practical purposes, an axiom system, which describes each constructor
application in terms of observers, is usually sufficient. In the algebra of stack, two
observers are applied to two constructors, for a total of four axioms.

3 Combination of Algebras to Form New Algebras

To demonstrate the concept of combination of algebras, it is applied twice: once to
extend a given algebra with new operations and second, combining two algebras to
construct the algebra of the vector space, as explained in most text books of a course
in algebra. The underlying theory can be found in [8, 19].

3.1 Extension of an Algebra

The algebra for Abelian (commutative) groups is extended with multiplication:

Algebra Fields (num)
Use AbelianGroup (num) -- the parameter ‘number’ in the definition is replaced

with ‘num’
Operations: *, / reciproc, 1
Axioms: a * b = b * a --commutativity for multiplication

a * (b * c) = (a * b) * c = a * b * c --associativity for multiplication
a * 1 = 1 * a = a --unity for multiplication
a * (reciproc a) = 1 --existence of multiplicative inverse
a * (b + c) = a * b + a * c --distributive laws
(b + c) * a = b * a + c * a
a/b = a * (reciproc b) --derivation of division

100 A.U. Frank

3.2 Combination of Two Algebras to Form Vector Space

A vector space is constructed from an Abelian group of vectors, i.e., a set of objects,
for which a commutative addition (the regular vector addition) and a zero element
(the null vector) are defined. This Abelian group of vectors is combined with a field
of numbers, called scalars, in a new operation scalar multiplication (*$), which has a
signature of num->vec->vec (and is therefore different from regular multiplication,
where all types are the same: a -> a -> a). The following definitions come straight
from a standard text on vectors [21].

Algebra VectorSpace (vec, scalar)
Use AbelianGroup (vec), Fields (num)
Operations: *$:: num -> vec -> vec
Axioms: for all a, b, c... elem scalar, x, y, z… elem of vec

a *$ (x + y) = (a *$ x)+ (a *$ y)
(a + b) *$ x = (a *$ x)+ (b *$ x)
a *$ (b*$ x) = (a * b) *$ x
l *$ x = x

In this algebra, additional operations can be defined: e.g., the inner (dot) product of
two vectors, vectorProduct. These have interesting geometric interpretations, which
allow the derivation of other operations, e.g., a test for orthogonality: orthogonal a b
= (dotProd a b) ==0 (Comment on notation: ‘=’ stands for definitional equal,
whereas ‘==’ is used to describe a logical test for equality).

3.3 ‘Use’ Interpreted as Substitution

The ‘use clause’ in the definition of an extended or combination algebra definition
means that the original definition can be substituted, as in high school algebra
(“substituting equals for equals”), including operation signatures and axioms, with the
formal parameters replaced by the actual parameters given. This is correct because the
functions do not have side effects. As we have demanded that operation names are
unique, no renaming of operations is necessary.

4 Case Study: The Specification of Geometric Operations

Writing specifications for the geometric operations in GIS or CAD systems is noto-
riously difficult. Formalization of geometry is a mathematically very complex
problem requiring contributions from several fields of mathematics (topology,
algebra, etc.) that are difficult to combine. Therefore it presents a realistic, large pro-
blem to apply the method. Current efforts in the Open GIS Consortium [7] to write
specifications for a wide variety of GIS operations and the pending proposal for an
ISO standard to extend SQL with operations on geometric objects demonstrates the
magnitude of the problem. The ISO draft document for geometric operations runs for
nearly 100 pages. The effects of the operations are described in natural language,
open to interpretation. Implementation will be difficult and differences in inter-
pretation will hinder interoperability.

101One Step up the Abstraction Ladder: Combining Algebras

The tools currently available for standard design and writing are not sufficient: the
formalization of the signatures of the operations using STEP/EXPRESS [15] or the
comparable UML methods [6] cover only a small set of the normative content of a
standard. An axiomatic method could be used to define behavior of operations [12],
but it has not been demonstrated how algebras could be combined to construct large
systems with multiple subsets, defined for different applications.

The standard should define useful subsets that can be implemented. From an
application point of view, subsets must be possible in three different directions:

1. Embedding space dimension: application to geometry expressed with points in
two-dimensional space and points in three-dimensional space should be covered.

2. Object dimension: applications which contain objects of 0, 1, 2 or 3 dimensions.
3. Interpolation type: applications that use only linear interpolation, or other, that use

more complex methods for objects of one or two dimensions (choices not dealt
with in standard document).

There are subtle dependencies between these choices.

• The object dimension must be smaller (or equal) to the dimension of the
embedding space.

• Interpolation methods are available for objects of a dimension smaller than the
dimension of the embedding space (objects with codimension 1: codimension =
dimension of embedding space minus dimension of object)

For this purpose programming languages provide no support, and tools like UML use
a diagrammatic language. The combination of algebras has the power to cover such
cases within an easy formalism that has a clean mathematical interpretation.

4.1 Geometric Operations in GIS as Algebras

The “packages” from the standard document are quickly translated to algebras. Each
package becomes an algebra, operations signatures are expressed using the sorts in the
algebra (axioms given in the standard could be preserved). Unlike programming
languages, all operations are written as functions with all parameters listed. The
parameters are all ‘read-only’ and only the result parameter (the last in the list) is
produced. Some of the major packages, which consist of several sets of “stereotypes”,
have been subdivided to gain flexibility for combinations (to save space, only
operation names in accordance with the proposed ISO standard are given and the
signatures are left out).

Algebra GeometricObjects (geomObj, directPos, length, int)
Operations: isSimple, isClosed, equal, intersect, union, intersection, difference,

symmDifference, distance, dimension
Algebra Boundaries (geomObjDimN, geomObjDim(N-1))

Operation: boundary
Algebra Distances (geomObjM, geomObjN, lengthValue)

Operation: distance
Algebra Points (point, directPos, vector)

Operations: position, point, bearing
Algebra Curves (curve, directPos, vector, length)

102 A.U. Frank

Operations: startPoint, endPoint, tangent, parameterization, curveLength,
curvePointToPointLength

Algebra Segments (segment, directPos)
Operation: segment

Algebra CurveConstructors (curve, segment)
Operation: curveMake

Algebra Surfaces (surface, lengthValue, areaValue, directPos)
Operations: perimeter, area

Algebra Patches (patch, directPos)
Operation: segment

Algebra SurfaceConstructors (surface, patch)
Operation: curveMake

Algebra Solids (solid, volumeValue, areaValue)
Operations: volume, area

Support:
Algebra VecSpace (Vector, length)

Operations: dotProd, orthogonal, …
Algebra Vec2 (Vec2, length)

Operations: vec2, unit1, unit2,x2, y2
Algebra Vec3 (Vec3, length)

Operations: vec3, unit1, unit2, unit3, x3, y3, z3
Algebra DirecPos (directPos, Vector)

Operations: Vector, directPos

4.2 Useful Combinations

The minimal implementations must either contain the vector algebra for two-dimen-
sional or three-dimensional space. This can be expressed as two algebras, consisting
of a number of the support classes:

Algebra Space2D (vec, length, directPos)
Subalgebras: Vec2 (vec, length), VecSpace (vec, directPos), DirectPos (directPos, vec)
Algebra Space3D (vec, length, DirectPos)
Subalgebras: Vec3 (vec, length), VecSpace (vec, directPos), DirectPos (directPos, vec)

Note: The statement that for the vector in these algebras the operations of the
algebra Vec2s or Vec3s must be available dictates, for example, that an operation
vecProd:: vec -> vec -> vec is possible in Space3D but not in Space2D.

Further algebras can be added, as their operations are required for the application
area. A complete system to deal with Graphs, consisting of straight lines embedded in
three-dimensional space is, for example:

Algebra GraphIn3D (geomObj1, geomObj0, segment, directPos, vec, lengthValue)
Subalgebras: VecSpace3D (vec, length, directPos), Graph (geomObj1,

geomObj0, segment, directPos, vec, lengthValue)

Whereas a graph with curved lines between nodes in 2D requires segments and is
described as:

Algebra Graph (geomObj1, geomObj0, segment, directPos, Vector, lengthValue)
Subalgebras: VecSpace2D (vec, length, directPos), Graph (geomObj1,

geomObj0, segment, directPos, vec, lengthValue),
CurveConstructor (geomObj1, segment), Curves (segment,
directPos, vec, length), Segments (segment, directPos)

103One Step up the Abstraction Ladder: Combining Algebras

5 Case: Modeling Cognizant Agents

The example sketched here briefly considers modeling agents observing distance and
directions in a simple world of point-like objects and translates their observations on a
continuous scale into discrete expression of relative position in the ‘world’ around
them (outputs like “from Peter’s perspective, the ball is in front of the chair’). The
focus of the study [9] was in the formalization of the relative spatial expressions in
natural language and the corresponding reference frames [17]. In particular, formal
definitions for deictic, absolute, relative, etc. reference frames were attempted, for
which no unequivocal definitions can be found in the literature.

Coding such models in any language requires a few pages of code and the over-
view of the relations between the procedures is quickly lost. Insight into the inter-
action between the modules is important for the assessment of the cognitive adequacy
of the proposed formalization. With combination of algebras, the interaction of the
modules can be expressed in a few lines. (The following description is directly
extracted from code which demonstrates the system).

In a first step, an algebra for rotation and translation in two-dimensional space and
an algebra to discretize continuous values to a qualitative scale were defined. These
were then combined to a model, which allowed comparing the expected error between
different types of qualitative direction description.

Algebra Translation and Rotation (obj, angle, vec)
Use VecSpace (vec)

Operations: orientation, rotate, rotateTo, translate, translateTo, translateRotate,
translateRotateTo

Algebra Discretize (quantitativeVal, qualitativeVal)
Operations: discretize, undiscretize

The world is modeled as a database where named objects with position in space
can be placed. The agent is a special kind of object, which can observe its own orien-
tation, see the other objects in the world to build its own set of knowledge, and
describe this knowledge from different perspectives:

Algebra World (world of obj, obj, id, value)
Operations: putObj, getObj, thatHas, observer

Algebra Named (obj, name)
Operations: putName, getName

Algebra Positioned (obj, vec) Uses VecSpace
Operations: putAt, isAt

Algebra Agent (agent, world, name, text)
Operations: putOwnOrientation, see, describeWorld, egocentric,

absoluteAllocentric, intrinsic

These algebras can be combined to a complex world in which multiple agents exist
and can observe:

Algebra WorldwithAgents (world of things, things, id, name, vec, text)
Union things = furniture | agent a thing is either a piece of furniture or an agent

Use world (world of things, things, id, name), Agent (agent, world of things, name, text),
Position (things, vec), Named (things, name)

104 A.U. Frank

6 Generalization and Polymorphism

The cleanliness of the combination of algebras is due to the concentration on the
intention and complete abstraction from implementation. In particular, generalization
of operations which can be applied to many types of objects is achieved through
parameterization. This is different from the current object-oriented debate, which is
mostly based on properties of current object-oriented languages and has introduced
the concept of sub-type and inheritance. These concepts are more linked to imple-
mentation and are not appropriate for the specification and the design.

The UML notation uses ‘structural’ generalization, which defines types and sub-
types for these types. For example, Point is a subtype of GeometricObject. The sub-
type is said to inherit the operations from the supertype, i.e., an operation ‘distance’
which is applicable to GeometricObject is, by inheritance, applicable to Point. The
problem with this subtype relation are the contravariant relations between the
parameters and the result type. An operation op1 :: a -> b can be used for a type a’ (a’
being a subtype of a) yielding a result of b’ (b’ being a supertype, not a subtype, of b).
For details of this formal consequence of subtyping see [1]. Different methods to
contain this ‘contravariance’ are used in current object-oriented languages; UML
requires repeated definitions. They are necessary whenever implementation (data
representation) dominates. Java separates representation oriented classes (with single
inheritance, which is structural) from behavior oriented ‘interfaces’.

Algebraic combination uses parametric polymorphism. The use of an operation for
different types is defined by the type parameters which are instantiated for the type
parameters listed in their definition. Parametric polymorphism in a functional pro-
gramming language are natural transformations [4] and avoid the contravariance
problem.

7 Conclusions

Procedural abstraction, the naming of methods to perform some action, is a powerful
abstraction method, not only used in programming but throughout science. The same
concept of encapsulation can be applied to conceptually related sets of methods to be
performed on some objects, yielding the mathematical concept of algebra. The
semantics of the operations in an algebra are given with axioms. Algebras can be
parameterized similarly to the parameters of procedures, and algebras can be reused
and combined to form more complex systems. Combination of parameterized algebras
uses a simple substitution semantics: the combined algebra contains all the operations
and axioms of the constituting algebras, with the formal parameters duly replaced
with the actual ones.

Algebras capture the structure of the behavior of a set of related operations. Often
results of scientific research are expressed in ‘laws’ which relate operations. Param-
eterized algebras permit to combine such results. It can be applied in science to
combine the individual results of separate research efforts. It is a crucial method for
multi-disciplinary sciences, like cognitive science, where results of individual disci-
plinary contributions must be integrated. It is useful for sciences like geography,
where phenomena are studied at various scales, as it provides a framework in which

105One Step up the Abstraction Ladder: Combining Algebras

different effects can be brought together. As the concept is simple, it can be used in
informal arguments as well as in a formal description.

This notion captures very closely the notion of object-orientation seen from a
specification point of view. The current confusion with object-orientation and in
particular inheritance of operations is based on the implementation (data structure
centered) viewpoint present in commercial programming languages. The algebraic
position has become possible through research in parameterization of algebras [8, 19]
and research in parameterized type inference systems [16]. Only lately the pro-
gramming languages have become available, which demonstrates the practical usa-
bility of the concept for software engineering [20]. Parameterization is a much less
confusing concept than the often-discussed inheritance based on subtyping.

Acknowledgements

Werner Kuhn’s comments contributed to focus the presentation. Funding from the
European Commission under the ESPRIT program for the projects GIPSIE and
COMMUTER supported some of the work.

References

1. Abadi, M. and L. Cardelli, A Theory of Objects. Monographs in Computer Science.
Springer-Verlag, New York (1996).

2. Asperti, A. and G. Longo, Categories, Types and Structures - An Introduction to Category
Theory for the Working Computer Scientist. The MIT Press, Cambridge, MA (1991).

3. Barr, M. and C. Wells, Category Theory for Computing Science. Prentice Hall, London
(1990).

4. Bird, R. and O. de Moore, Algebra of Programming. Prentice Hall, London (1997)
5. Birkhoff, G. and J.D. Lipson, Heterogeneous Algebras. Journal of Combinatorial Theory

(1970) 8: 115-133.
6. Booch, G., J. Rumbaugh, and I. Jacobson, Unified Modeling Language Semantics and

Notation Guide 1.0. Rational Software Corporation, San Jose, CA (1997).
7. Buehler, K. and L. McKee (eds), The OpenGIS Guide - An Introduction to Interoperable

Geoprocessing. The OGIS Project Technical Committee of the Open GIS Consortium,
Wayland, MA (1996).

8. Ehrich, H.-D., M. Gogolla, and U.W. Lipeck, Algebraische Spezifikation abstrakter
Datentypen. Leitfäden und Monographien der Informatik, H.-J. Appelrath, et al. (eds). B.G.
Teubner, Stuttgart (1989).

9. Frank, A.U., Formal Models for Cognition - Taxonomy of Spatial Location Description and
Frames of Reference. In Spatial Cognition - An Interdisciplinary Approach to Representing
and Processing Spatial Knowledge, C. Freksa, C. Habel, and K.F. Wender (eds). Springer-
Verlag, Berlin (1998) 293-312.

10. Frank, A.U. and W. Kuhn. Cell Graph: A Provable Correct Method for the Storage of
Geometry. In Second International Symposium on Spatial Data Handling, Seattle, WA,
1986, 411-436.

11. Frank, A.U. and W. Kuhn, A Specification Language for Interoperable GIS. In
Interoperating Geographic Information Systems, M.F. Goodchild, et al. (eds). Kluwer,
Norwell, MA (1998).

106 A.U. Frank

12. Frank, A.U. and W. Kuhn, Specifying Open GIS with Functional Languages. In Advances
in Spatial Databases (4th Int. Symposium on Large Spatial Databases, SSD'95, in Portland,
USA), M.J. Egenhofer and J.R. Herring, (eds). 1995, Springer-Verlag, 184-195.

13. Guttag, J.V. and J.J. Horning, Larch: Languages and Tools for Formal Specification.
Springer-Verlag (1993).

14. Herring, J., M.J. Egenhofer, and A.U. Frank. Using Category Theory to Model GIS
Applications. In 4th International Symposium on Spatial Data Handling, SDH'90, Zurich,
Switzerland, 1990, 820-829.

15. ISO, The EXPRESS Language Reference Manual, ISO TC 184, Technical Report ISO/DIS
10303-11 (1992).

16. Jones, M.P., Qualified Types: Theory and Practice. Ph.D. Thesis, Programming Research
Group, Oxford University. Cambridge University Press (1994).

17. Levinson, S.C., Frames of Reference and Molyneux's Question: Crosslinguistic Evidence.
In Language and Space, P. Bloom, et al. (eds), MIT Press, Cambridge, MA. (1996) 109-
170.

18. Lin, F.-T., Many Sorted Algebraic Data Models for GIS. IJGIS (1998) 12(8) 765-788.
19. Loeckx, J., H.-D. Ehrich, and M. Wolf, Specification of Abstract Data Types. Wiley,

Teubner (1996).
20. Peterson, J., et al., Report on the functional programming language Haskell, Version 1.3. In

http://haskell.cs.yale.edu/haskell-report/haskell-report.html - Research Report YALEU/-
DCS/RR-1106. Yale University (1996).

21. Reinhardt, F. and H. Soeder, dtv-Atlas zur Mathematik: Grundlagen, Algebra und
Geometrie (Band 1). dtv, Muenchen (1991).

22. Stroustrup, B., The C++ Programming Language. 2nd edn. Addison-Wesley, Reading, MA
(1991).

23. Walters, R.F.C., Categories and Computer Science. Cambridge Computer Science Texts,
Vol. 1. Carslaw Publications, Cambridge, UK (1991).

24. Wirth, N., Algorithms + Data Structures = Programs. Prentice Hall, Englewood Cliffs, NJ
(1976).

25. Yeh, R.T.-Y. and P.A.B. Ng, Modern Software Engineering: Foundations and Current
Perspectives. Van Nostrand Reinhold, New York (1990).

107One Step up the Abstraction Ladder: Combining Algebras

