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Introduction 

The value of GIS in environmental modelling 
efforts is widely acknowledged. Links between 
environmental models and GIS are becoming 
common and interest in merging the technologies is 
growing (e.g. the proceedings of three international 
conferences Goodchild et al 1993; Goodchild et al 
1996; NCGIA 1996). There is now general 
agreement that there are several different 
model/GIS coupling strategies ranging from simple, 
operator-initiated exchange of files and special 
interface programs which manage the file format 
conversions to a level at which the model becomes 
one of the analytical functions inside the GIS or the 
GIS is an option in the file management and output 
components of the model. As Nyerges noted: 

The compatibility of data models for the GIS 
and the analytic model determine how easy or 
difficult it is to couple the two. { . .] Since the 

~p~~tw~tl1¢feality bei~) 
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data models provide the key to the coupling, an 
interface which supports data model translation 
or conversion plays a key role in the coupling 
effort. 

(Nyerges 1992: 538) 

There are a number of different conceptual 
frameworks for the data integration that must take 
place if GIS and environmental models are to 
become fully integrated. Generally, these 
frameworks call for sophisticated interface programs 
which can handle all of the issues related to the 
conversion of different file formats (e.g. Breunig 
and Perkhoff 1992). Others have suggested that the 
solution lies in defining unified data modelling 
1anguages that can manipulate and integrate data 
from many different formats (e.g. Smith et al199S). 
Whatever integration approach is used, the linkage 
will produce meaningful model results only if the 
relationship between the real world as it is 
represented by both the model and the geographic 
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database is understood and accounted for. One of 
the most difficult aspects of this relationship is the 
need to force continuous real world phenomena into 
the discrete environment of the computer. 

The problem of continuity 
Since physically-based environmental models 
depend upon physical principles, the mathematics of 
these models is often in the form of differential 
equations. These equations implicitly recognize the 
continuity of space and the constantly changing 
values of the independent variables. Discrete 
representations for both continuous equations and 
the continuity of space have been devised and are 
widely used. Finite difference numerical solutions to 
differential equations discretize time and space into 
small units. These stepped algebraic solutions for the 
governing differential equations are calculated for 
each time and space unit and a final solution is 
achieved by 'integrating' (generally through simple 
addition) the results across tge entire study area and 
time period. Finite element solutions divide the 
study area into units which are homogeneous in 
ways that allow some terms of the governing 
equations to be simplified. Analytical solutions can 
then be determined for each element and the total 
solution is determined through simultaneous 
solution of a set of equations. Alternatively, some of 
the global climate models achieve discretization by 
spectral analysis. In this case, instead of discretizing 
space, the response spectrum itself is dissected into a 
set of ordinary differential equations for which 
solutions can be found (Bourke 1988). 

Just as the equations themselves in these 
mathematical models are continuous, so are most of 
the phenomena being described. Air temperature, 
soil infiltration rate, solar radiation, and many other 
natural phenomena are continuous physical fields. A 
physical field is traditionally defined as an entity 
which is distributed over space and whose properties 
are functions ofspace co-ordinates and, in the case of 
dynamic fields, of time: 

z = f(x,y) or z =f(x,y,t) 

Scalar fields are characterized by a function of 
position and, possibly, time, whose value at each 
point is a scalar, while the value at any location in a 
vector field is a vector (e.g. wind fields where the 
value at a location has both magnitude and 
direction). Since we cannot measure continuous,. 

phenomena everywhere, it is necessary to develop 
techniques for gathering information about fields by 
collecting data at a finite number of points. And in 
turn, we need techniques for representing continuity 
with this finite collection of data. 

A few environmental variables, particularly 
those in the biological sciences which deal with 
individuals such as trees or animals, are not 
continuous in the strict sense. Conceptually, such 
phenomena can be converted to fields by taking the 
limit of the value of the phenomenon (in this case 
the count or the frequency) divided by the area as the 
area tends to zero, 'stopping short in the usual way 
before molecular lumpiness manifests itself' 
(Shercliff 1977: 11-12). This process results in a 
continuous density surface. Models using such 
variables may calculate the rate of change of the 
density. In the urban environment, Angel and 
Hyman (1976) used this continuous 
conceptualization of discrete phenomena to develop 
a continuous model of transportation systems. 
However, since molecular lumpiness sets in at the 
scale of the phenomenon itself (i.e. the individual 
being counted), the measurement (count) must be 
made over a defined area, otherwise the 
phenomenon would yield a binary presence/absence 
value only. Density estimation cannot be taken to or 
even near this binary limit. Thus the value ofdensity 
is dependent upon the unit over which it is measured 
(e.g. 100 over each 10 km2 versus 10 over each km2) 

and all density measurements have an implied scale. 
Since the value of such a field changes as the area 
over which observation occurs changes, density fields 
are not true physical fields and cannot be modelled 
in an entirely similar fashion. 

Continuity, of course, also exists in time. Like 
space, time is difficult to discretize. It is common in 
many different areas of mathematical modelling to 
discretize time as either a series of instantaneous 
snapshots, such as daily noon temperature, or as a 
series of averages over a time slice, such as average 
monthly temperature. Since C8ntinuity through time 
can be as important as continuity through space, 
many researchers are working on new temporal data 
models for computation (e.g. Langran 1992; Newell 
et al 1992; Kemp and Groom 1994). 

Finally, continuity arises in measurement. 
Many phenomena in the natural environment are 
measured on continuous scales. Temperature, solar 
radiation, and precipitation can be measured to as 



--

many decimal places as the measuring instrument 
allows. However, many continuous phenomena, 
such as soil, vegetation, and geology, are often 
measured using discrete scales of measurement. Thus 
we often have a measurement incompatibility within 
spatially compatible data sets. 

Continuity in many dimensions is a 
fundamental characteristic of all natural systems. It 
must be scrupulously and explicitly addressed 
whenever the natural environment is transformed 
into a digital representation. We continue with a 
more detailed consideration of continuity in the 
spatial dimension. 

Working with spatial continuity 
Working with continuous phenomena has always 
been a challenge for the sciences. Until calculus, the 
mathematics of continuity, was developed 
concurrently by Newton and Leibniz, many 
problems in classical physics defied solution. Outside 
physics, the dichotomy berween discrete and 
continuous concepts of the world have. challenged 
researchers in many fields, including mathematics, 
logic, semantics, geography, and GIS. 

Couclelis (1992) provides a broad perspective 
on the continuous/discrete dichotomy by comparing 
the object versus field debate in GIS to the 
opposition berween the atom and the plenum 
ontologies in the philosophy of physics. She notes 
that there are traditionally rwo different ways to view 
the world: one sees the world as a collection of 
discrete, well-defined objects (the discrete or object 
view) while the other sees the world as a set of 
attributes distributed through space (the continuous 
or field view). In this second view, there is some 
'thing' everywhere since a value for any attribute can 
be determined at any place. She concludes that: 

the geographic world is best compatible with the 
field perspective. As the supporters ofthe plenum 
ontology in physics havepointed out, quantitative 
descriptions can only deal with relations between 
properties, not between things and it is properties, 
not things, that mathematical fields are about. 
Also, a field-based framework is much better 
suited to modelling change, and therefore time, 
because it is much easier both for our minds and 
for ourformal tools to deal with volatile variables 
than with volatile objects. 

(Couclelis 1992: 73) 

In GIS, much debate has been generated over 
the value and representativeness of the 'field' 
(= raster) model versus the 'object' (= vector) model. 
Many GIS companies currently market their 
products as 'integrated', i.e. capable of displaying 
both raster and vector data and in some cases 
translating berween them. Like many of his private 
sector colleagues, Sinton, at the time chief of 
systems engineering for a large GIS company, was 
willing to announce publicly in 1992 that 'the great 
debate about geographic data models that 
consumed so much energy in the early days of the 
GIS industry has become moot as the industry has 
matured' (Sinton 1992: 4). Unfortunately, Sinton, 
and others who have called the debate off, has 
missed the most important issue. The problem is 
more fundamental than simply the development of 
algorithms to convert raster images to vector 
representations of them and vice versa. At the heart 
of this debate should be the issue of how well these 
models represent the reality they are intended to 
portray. 

In the context of digital spatial information, 
Peuquet was one of the first to examine 
comprehensively the different concepts used to deal 
with representations of spatial phenomena in 
several fields ofstudy (Peuquet 1988). She proposes 
a dual conceptual model which can be used to 
represent geographic data. In this model, entities in 
reality are seen as either locations or objects. 
Location entities have attributes, some of which 
may point to objects (e.g. the county in which the 
location occurs) and object entities have locations as 
one of their attributes. By equating rasters to the 
locational perspective and vectors to the object 
perspective, Peuquet attempts to bring raster and 
vector together within the same model. Harvey 
(1969), on the other hand, stresses that working 
with locations and objects requires rwo different 
languages. He notes, for example, that the concept 
of similarity produces entirely different results when 
considering similar objects. than when considering 
similar locations. He concludes that: 'Deriving 
"individuals" in one language ... from "individuals" 
in another language requires an adequate 
translation procedure. Simply mixing up rwo vety 
different languages will only yield garbled results' 
(Harvey 1969: 216). No matter what the 
philosophy, in order to do mathematics on 
continuous phenomena in the computer, we must 



have a means by which continuity can be 
discretized. 

The field of semantics may provide some 
direction for resolving this dichotomy. In some of 
the earlier work on designing computing systems 
for artificial intelligence, the concept of mass nouns 
caused considerable discussion (Bunt 1985). Mass 
nouns describe quantities which are not defined as 
discrete objects (i.e. jewellery, money, time, 
furniture, water) and are in a sense conceptually 
continuous. The opposite to mass nouns are count 
nouns which are used to refer to individual elements 
(i.e. necklace, dollar, hour, table, water drop). Mass 
nouns cannot be handled through traditional 
logical formalisms since while set theory does 
support the concept of a member of a set, it does 
not support the concept of a part of a whole (e.g. a 
portion of the whole quantity of water). Thus as 
Bunt suggests: 'This means that we have to face two 
problems. One is the design of a representational 
formalism for continuous notions, the second is the 
"interfacing" of this formalism with a set-based 
formalism for representing "discrete" notions' 
(Bunt 1985: 38). According to Bunt, this 'interface 
problem' can be resolved in one of several ways: 

• 	 embedding a 'continuous' representational 
formalism within a set-based one; 

• 	 a combination of the 'continuous' and the 
'discrete' representational formalism; 

• 	 having two alternative representations of the 
same or loosely-related knowledge, and the 
possibility of relating and transforming the one 
into the other. 

The latter solution is the one most commonly 
employed in GIS. Bunt concludes that: 

To satisfy ali these inteiface requirements, there 
really seems to be only one possibility: we must 
have one general representational formalism 
that can accommodate alternative views, 
allowing both 'continuous' and 'discrete' 
representations and meaningful mixtures ofthe 
two. 

(Bunt 1985: 39) 

Thus, given all these arguments, it seems clear 
that the simple concepts of raster and vector may be 
incomplete for working with representations of 
continuous phenomena. There is more to 
representing reality than just breaking it into pieces 
that can be fit into the computer. 

-

Levels of abstraction for modelling reality 

It is useful to consider the distinct stages of 
increasing abstraction involved in the building and 
implementation of a model of a natural process. For 
mathematical modelling, Bekey (1985) identified 
three levels in his hierarchy ofrepresentations: (1) the 
reference model, which is purely conceptual since it is 
a perfect model exactly equivalent to the process 
being modelled; (2) the mathematical model, which 
formally expresses the process variables and the 
relationships between them; and (3) the computer 
implementation of the model. Similarly, in terms of 
the representation of space, Peuquet (1988) 
recognizes three similar levels ofabstraction: (1) the 
conceptual representation; (2) the fonctionally­
oriented representation; and (3) the implementational 
format. Within the field of database management, 
the last two levels are referred to as ddta models and 
data structures respectively. 

When considering the discretization of space 
for computer representation it is necessary to 
recognize these different kinds of abstractions and 
to understand the differences and relationships 
between them. Based on these distinctions, the 
following set of abstractions for process modelling 
of spatially-distributed phenomena are used here: 

• 	 Geographic models (a term proposed by Grelot 
1985) are those conceptual models used by 
various environmental modellers as they evolve 
an understanding of the phenomenon being 
studied and extract its salient features from the 
background of nature's infinite complexity. For 
example, this might be visualizing terrain as a 
continuous surface which can be measured 
everywhere or regarding sdils as highly variable 
continuous phenomena with specific, 
measurable physical characteristics. Models at 
this level cannot be completely specified though 
they can be described in a number of ways 
(e.g. size of smallest unit considered or the scale 
at which characteristics can be measured). 

• 	 Spatial ddta models are formally defined sets of 
entities and relationships used to discretize the 
complexity of geographic reality (Goodchild 
1992). The entities in these models can be 
measured and the models completely specified. 
These models provide a vehicle for 
interpretation of spatial data and a forrnallink 
between the geographic models and the data 



structures. Spatial data models are the method 
by which we discretize the complex natural and 
man-made environment so that it can 
examined within the computer. 

• 	 Data structures describe details of specific 
implementations of spatial data models. 

The link between specific geographic models 
of fields and various spatial data models which can 
be used to represent them is of vital importance to 
environmental modellers. We now turn to a 
consideration of spatial data models for fields. 

Representing fields 

Since they are continuous, physical fields are 
particularly distinguished by their extremely high 
degree of spatial autocorrelation. Thus, while we 
cannot measure the value of a continuous 
phenomenon everywhere, we know that locations 
near those we can measure will have very similar 
values. Knowledge of spatial autocorrelation, 
however, gives us little information about how 
rapidly and erratically the values change between 
locations at which we know the value. In order to 
represent and manipulate fields for mathematical 
modelling, we must have some way of linking the 
continuous variation of the field as it is observed in 
nature to the individual numbers or letters stored in 
the computer as representations of the value of the 
field at certain locations. In a few special cases, 
values and variation in space can be represented by 
an equation such as: 

[2] 

where x,y are horizontal Cartesian co-ordinates and 
z is the value of the phenomena at any (x,y) 

location. However, since surfaces in reality are 
rarely this smooth, the linkage between continuous 
reality and its representation in the computer is 
achieved by: 

1 	 dividing continuous space into discrete 
locations for which discrete values can be 
measured and recorded; and 

2 establishing a set of rules for interpolating 
unknown values between these locations. 

The first of these steps is known as 
discretization. The second step is accomplished 
through the use of spatial data models. 

Discretization of space 

AI; discussed earlier, the discretization of space is an 
essential step in numerical methods used to solve 
complex equations in the computer. Finite elements 
and the cells used in finite difference solutions 
require boundaries to be drawn on the continuity of 
the phenomena being modelled. This drawing of 
boundaries is not a simple task. AI; Couclelis (1992) 
points out, the continuum of the natural world may 
contain things like hills, valleys, and clouds: 

but these are not 'objects' to pick up and move 
about: they are salient features, breaks in a 
plenum that is otherwise continuous, not by the 
mathematical criterion of infinite sub­
divisibility, but because ofthe indefinite number 
of different ways one could draw boundaries 
around these features. 

(Couclelis 1992: 72-3) 

In the geographic sphere, and subsequently in 
the spatial analysis tradition which influenced the 
original development of GIS, it is clearly necessary 
to partition space so that regions and elements can 
be described in an analytical manner. During the 
quantitative revolution in geography, the focus 
turned to the discovery of geometric structures in 
the human and natural landscapes and the related 
mathematical techniques that could be used to 
explain spatial distributions. AI; the original tool for 
understanding these spatial structures, maps have 
provided a means for expressing them. From maps, 
the line work and shading created by cartographers 
can be reduced to the basic spatial primitives of 
point, line, and area. Tobler (1990,) calls this the 
cartographic paradigm of geographic phenomena. 
Within the map model of. geographic reality, 
continuous phenomena are given structure in the 
point/line/area model. These concepts certainly do 
provide powerful analytical tools. The landmark 
work by Getis and Boots (1978), Models ofSpatial 
Processes: An Approach to the Study ofPoint, Line, and 
Area Patterns, provides an excellent early summary 
of the value of this approach, while much of the 
more recent work on error modelling (e.g. 
Goodchild and Gopal 1989; Caspary and Scheuring 
1992; Monckton 1994) and spatial statistics and 
analysis (e.g. Arbia 1989; Haining 1990; 
Fotheringham and Rogerson 1994) also 
demonstrates the usefulness of such spatial 
structure. 

ED 




The point/line/area model for geographic 
investigation has not been, of course, the only 
approach. In fact. as Golledge notes, there are 'many 
geographies and many possible worlds' (Golledge 
1982: 21). However, while it may. be argued that 
this map-based definition of spatial primitives is too 
limiting given our current technologies (Grelot 
1985; Goodchild 1988), it has become the basis of 
much of the current jargon in GIS. 

Spatial data models 

There are two general classes of data models used to 
represent fields (Goodchild 1992). One class 
explicitly assigns a value everywhere in space by 
using a simple function to estimate the character of 
the spatial variation. Fields represented by functions 
are modelled by the use of constant or linearly­
varying piecewise functions. Polygons partition the 
entire area into irregularly~shaped constant-valued 
contiguous regions while cellgrids partition the area 
into rectangular constant valued regions. Values do 
not change within each region but may change 
abruptly at region boundaries. Triangulated Irregular 
Networks (TINs) also completely partition the area 
but the regions are triangular and within each 
region values are assumed to vary linearly between 
the known values at the nodes. These piecewise 
models produce values that are only representative 
of the value of the true surface, there is no 
assumption of exact measurement for any specific 
location (with the general exception ofTIN nodes). 

The other group of field data models samples 
the field precisely at selected locations and provides 
no information about the values between these 
locations. Values between sampled locations must 
be interpolated. Sampling the surface at locations 
determined by the nodes of a rectangular grid 
produces a pointgrid. In this case, no knowledge of 
the phenomenon is assumed in the design of the 
sampling procedure, although the grid spacing may 
(should!) be determined by the rate of variability of 
the phenomenon. For data models composed of 
irregular points, the selection of locations to sample 
may be based upon rules that adapt to prior 
knowledge of the field (e.g. denser sampling in areas 
of more rugged terrain) or that are independent and 
often irrelevant to the phenomenon (e.g. weather 
data collected at airports). In contour models, 
sampling locations are controlled by the value of the 
phenomenon, locations are recorded wherever the 
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surface has one of the selected contour values. The 
result is a set of non-intersecting lines of constant 
value. For any of these sampled field data models. 
assumptions that may be made about the form of 
the surface between sampled points and techniques 
to interpolate specific values vary depending on the 
specific data model and the method used to select 
sample points. 

It is also important to note that similarly­
structured data models can be used to represent 
phenomena which are discontinuous in two 
dimensions. Cities and well sites can be represented 
as irregular points while road and river networks 
and contours all consist oflinear features (although 
intersection is not allowed for contours). Therefore, 
to conceptually distinguish data models used for 
discrete objects from those used to represent 
continuous phenomena, we must recognize a field 
sub-class of spatial data models. Any of the six field 
data models described can be used to represent any 
field. The specific model chosen will depend on the 
sampling scheme used, the functionality of the 
software available to the data gatherer and modeller, 
and, possibly, the proposed analysis. 

A strategy for modelling with data about 
fields 

For environmental modellers, designing and coding 
a mathematical model is an entirely different task 
from accessing and manipulating spatial data in a 
GIS. On the one hand, modellers can use well­
known and well-structured algebraic and computer 
languages, following widely-accepted and proven 
rules for substitution and solution. On the other 
hand, when manipulating spatial data for use in the 
models, the modellers have only the idiosyncratic 
language of a specific GIS to work with. The 
procedures they must follow to get at the spatial 
data are not codified in any common language. 
There are no widely-accepted common rules and 
defaults to guide the way in which spatial data are 
used in environmental models. Thus, while 
modellers can use a common symbolic language to 
express the development of their mathematics and 
thus prove the validity of their approach, there is no 
simple way to express the transformations and 
manipulations that are necessary to incorporate the 
spatial data into the model. The consequence of this 
is that it is very difficult to assess the validity of the 



data incorporated into models which have been 
based on spatial data and, as a result, it is difficult to 
evaluate the validity of the model results. Wilson 
(1996) provides a good discussion of this problem in 
the context of land-surface and sub-surface models. 

Common strategies and techniques for 
handling spatial data about continuous phenomena 
in all its forms are needed. A common strategy for 
handling data about fields in mathematical models 
would provide a framework in which many issues 
related to the representation of continuous 
phenomena can be addressed. An awareness of the 
basic assumptions which are embodied in each field 
data model and a means for expressing exceptions to 
these assumptions can be provided for. Specifically 
this strategy should: 

• 	 allow expression and manipulation of variables 
and data about continuous phenamena in 
common symbolic languages. In other words, 
the strategy should be capable of being 
incorporated into computer language 
implementations of environmental models. This 
is in direct contrast to the natural language-like 
structure ofTomlin's (1990) original map algebra 
and is more amenable to the scientific 
environment; 

• 	 eliminate the necessity to consider the form of 
the spatial discretization (the data model) 
whenever possible. While it is desirable and 
possible to achieve this objective for most 
operations, it is necessary to provide for input of 
additional information for some operations; 

• 	 provide a syntax for incorporating primitive 
operations appropriate for environmental 
modelling with fields but which are not yet 
available in GIS or common programming 
languages. These include operations to perform 
discrete versions of , differentiation' and 
'integration' on variables representing fields and 
the incorporation of the concept ofvector fields; 

• 	 guide and enable the rapid development of 
direct linkages between environmental models 
and any GIS. 

The remainder of this paper establishes the 
fundamentals of this proposed strategy for handling 
spatially continuous data in environmental 
modelling projects. 

The field data type and field variables 

In order to manipulate data about spatially 
continuous phenomena, we begin by specifYing the 
field tMta type to be used in addition to the traditional 
data types (e.g. float, integer, character, and so on). 
Variables declared as field data types are field 
variables. Field variables are the logical or functional 
representation of the concept of fields. These 
variables are spatially continuous and represent 
values of the field during a single slice or instant of 
time. Within the computer, field variables are stored 
as a set of values corresponding to each spatial 
element, the basic geometric components of spatial 
data models (e.g. point, cell (pixel), line). Spatial 
elements are the individual entities which are 
referenced and manipulated by the computer. Each 
of these elements is located in space and assigned one 
or more specific values. 

Like other types of variables, fields are 
represented with symbols. For any field variable, it 
must be possible to determine a value at any location 
and these values may differ from location to location 
within the same field variable. By considering the 
operations performed on field variables, we can 
determine th!! critical.propenies which must be 
specified if we are to remove the modeller from 
unnecessary involvement with the discretization. 

Since the manner in which fields are 
represented within the computer is fundamental in 
determining how mathematical operations can be 
performed, field variables must have associated 
propenies describing the data model used and other 
critical characteristics related to resolution, 
tempotality, and sampling scheme, each of which is 
defined as follows: 

Resolution. The concept of resolution is used in 
place of the oft-misused term scale. While scale is 
properly used and defined in canography where it 
describes the relationship between distances on the 
map and distances on the earth, the difficulty of 
measuring the scale of a TIN or of an irregularly 
distributed set of points illustrates how the concept 
is unworkable for digital data. Resolution is defined 
here as the minimum distance over which variation 
is recorded. It describes the density of information 
contained in the field variable and provides critical 
parameters necessary for its manipulation. 
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Temporality. While time, like space, is continuous, 
given the current state of the technology, temporal 
characteristics are limited to one of three temporal 
data models: 
• 	 a single static view of the phenomenon, in 

which case temporal changes are not considered; 
• 	 a time series of periodic averages - analogous to 

piecewise spatial models; 
• 	 equally spaced instantaneous values - analogous 

to sampled spatial models. 

Sampling scheme. The sampling scheme is 
particularly important for understanding how 
irregular point data models represent particular 
fields. While all irregular point data models will be 
structured similarly, if we wish to determine the 
value at a location berween points in the data set, we 
need to know if the point values are representative 
of their neighbourhoods or if they are the extreme 
values of the surface. Given this information, the 
selection of an interpolation method based on, for 
example, Thiessen polygons in the first case and 
triangulation in the second might be made 
automatically. 

Other properties. The concepts of spatial equality 
and spatial nesting are used to compare the specific 
spatial discretizations of different representations of 
fields. In spatially equivalent field variables, the 
geography of all spatial elements correspond exactly 
and completely. Such a condition is found in 
co-registered cellgrids of equal dimensions, i.e. if A 
and B are spatially equivalent cellgrids, they have 
the same cell dimensions, origin, orientation, and 
projection. Spatially equivalent polygons are 
unlikely to occur in environmental data sets since 
boundary locations are generally determined by the 
phenomenon observed. However, when a field 
variable is derived from another by simple 
substitution of a set of classes for a set of numeric 
values, the resulting variable will be spatially 
equivalent to the original. For reasons described 
below, spatial equivalence is essential for most 
mathematical operations on field variables. 

Spatial nesting indicates that one spatial 
variable nests spatially within another. The 
definition varies slightly for piecewise and sampled 
models (Figure 1). For piecewise spatial models, ifA 
spatially nests within B: 
• 	 each element in A falls completely within one 

element in B; and 

-


• 	 the set of lines which form the boundaries of B 
is a sub-set of the set of lines which form the 
boundaries of A. 

For sampled models, spatial nesting means 
simply that the spatial elements of A are a sub-set 
of the set of spatial elements of B; again A is nested 
in B. 

Mathematics with field variables 

Since digital computers are discrete machines, they 
are incapable of adding rwo continuous fields to 
produce a third continuous field. All fields must be 
reduced to simple finite numbers before 
mathematical manipulation can proceed. This is the 
function of spatial data models of continuous 
phenomena. However, there is an additional 
complication. In order to manipulate rwo fields 
simultaneously (as in addition or multiplication), 
the locations for which there are simple finite 
numbers representing the value of the field must 
correspond. To add field A to field B, one must add 
the value ofA to the value of B at the same location. 
Different spatial data models express location in 
ways which are generally incompatible. This implies 
that in order to perform mathematical operations 
on data iR various spatial data models, we must first 
convert all models to spatially equivalent ones, or at 
least to extract estimates of values for locations in 
one field variable for which we have data in the 

Figure 1. Spatial nesting in piecewise and sampled 
data models. 
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other field variable. This condition can be expressed 
most directly in the '=' or assignment operation of 
traditional algebra. 

Assignment is the most fundamental of all 
mathematical operations. By definition, all 
mathematical equations require assignment. In 
standard programming languages, assignment 
statements such as (A = B) or (A := B) or (A <= B) 
replace the value of the left-hand variable with the 
value of the right-hand variable. If the type of the 
two variables is not the same, a conversion is 
performed to restate the value of the right-hand 
variable in the data type required by the left-hand 
variable. A similar convention must hold here. 

As with simple scalar variables, the conceptual 
version of the assignment operation for fields is 
simple. If B is the temperature field and A B, then 
A is a copy of the temperature field. Every location 
has the same value in A as it does in B. But there are 
a number of different ways to represent fields in the 
computer. If A is declared as a spatial data model 
different than B, then it is entirely possible that a 
value which must be specified at a given location in 
A is not precisely specified at the same location in B 
(Figure 2). Thus assignment, the simple, 
fundamental mathematical operation, becomes a 
complex spatial operation when fields are involved. 
It requires the conversion of one spatial data model 
to another. Since each model provides a different 
representation of reality, it is important to confront 
these differences directly during the operation. 
However, it is this author's contention that it is 
possible to codify these differences in such a way 

FIgure 2. Determining values in one spatial data 
model from another. It is not possible directly to 
equate individual values in one spatial data model 
to those in another. For example, how can values 
at locations in this grid of points (A) be directly 
determined from this set of irregular points (B)? 
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that the decisions regarding how to convert one 
model to another can be handled automatically, 
without input from the modeller but without 
compromising the relationship between the data 
model and reality. In the next section we discuss 
issues which determine how these conversions 
should be accomplished and layout a scheme for 
organizing and selecting appropriate procedures. 

From data models through reality and 
back 
Selection of appropriate techniques for converting 
field data models to other field data models requires 
consideration of several issues. Most important is 
the consideration of how each model represents 
reality. Earlier, the six models were reviewed and the 
ways in which they model continuity by taking 
advantage of spatial autocorrelation were described. 
The models differ in the assumptions that must be 
made to derive the continuous surface from the 
discrete representation but each provides some link 
with reality. In order to convert models, we must 
exploit each model's link with reality as data is 
extracted from one model and placed in another. 
This process may be conceptualized in two stages. 
First we mast derive a continuous surface from the 
original discrete spatial data model, then we must 
use an appropriate technique to sample the 
continuous surface to produce the target model. 

The derivation ofa continuous sutface from a 
discrete representation involves spatial interpolation. 
Goodchild has defined spatial interpolation as the 
task of computing a complete continuous surface 
from a set of sample points (Goodchild 1992), 
though Tobler (1988) suggests that it also includes 
computation using any other spatial data model 
used to represent continuous phenomena. Here 
spatial interpolation is defined as a set of rules for 
obtaining a complete field from a spatial data model. 
Many different approaches and algorithms for 
interpolation and the resulting conversion between 
different spatial data models exist. Excellent reviews 
of spatial interpolation methods can be found in 
Lam (1983), Burrough (1986) and Myers (1994). 

Sampling may be similarly defined as a set of 
rules for obtaining a spatial data model from a 
complete field. Together, these two processes, spatial 
interpolation and sampling, may be regarded as 
resampling (Tobler 1988). By splitting resampling 



into these two stages, passing through a best guess of 
reality, we ensure that the link with reality is 
maintained and that the final representation is as 
close to it as possible. 

The next section discusses how each spatial 
data model may be converted so that mathematics 
can be performed on data stored in different 
representations. This demonstrates a fundamental 
principle - no common model is assumed for the 
representation of fields. Each field may be 
represented in a different manner, the choice of 
which model being dependent upon many things, 
including the phenomenon being represented. Thus 
we make an important fundamental step away from 
the cellgrid confines of map algebra and the raster­
based field model. 

Converting spatial data models 

Based on a detailed review of the procedures used to 
interpolate and sample spatial data models (Kemp 
1993), it is possible to summarize the procedures to 
convert spatial data models in a pair of conversion 
matrices, shown and discussed below as Tables 1 and 
2. While organized this way for the purpose of 
conceptual clarity, the procedures outlined in these 
matrices could be implemented as a specific set of 
decision rules and operations within any computer 
programming language. The reader is directed to 
the original publication for complete details of the 
conversion procedures generalized here. 

Table 1. Summary of spatial data model conversions 
for numerical data. 

oreal Wf:lightlng areal wi:!li:jbtfng point sample 

'ng point interpolate 
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Pointgricl point interpolate pcililt 1fttetpolate poiR! ipterpolate 
& average & average 

"""Bulaii' interpolate point interpolate point ,interpolate 
points / average & average 
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Table 1 lists conversion procedures for 
numerical data. Thus, for example, if source data 
on rainfall amounts are stored in a Thiessen 
polygon data model and we wish to use these values 
in a differential equation which has been solved 
using finite elements (Le. a cellgrid model), it is 
necessary to use an area-weighed procedure to 
rearrange the region boundaries from the original 
representation of a continuous surface to produce a 
new representation of one. Likewise, if the rainfall 
were stored as a set of irregular points, to convert to 
the cellgrid model it is necessary first to perform an 
interpolation routine which estimates the rainfall 
amounts at points between those for which data is 
stored in the source model. Assuming that the 
locations of the interpolated points have been 
appropriately chosen for the target model (i.e. in a 
density greater than one per cel!), the interpolated 
values falling within each individual cell can then 
be averaged to produce a representative value for 
each cell. 

Note that TINs and contours cannot be used 
as predefined target models since the structure is 
determined by the phenomenon represented. Thus, 
it would be inappropriate to convert a cellgrid of 
soil moisture to a TIN whose structure is 
determined by elevation as the critical points in the 
elevation TIN which determine where the facets 
should lie would not match those of the soil 
moisture field. However, the conversions for TINs 
and contour models listed in Table 1 may be 
performed to reduce data volume or for 
visualization purposes. They are included here for 
completeness but they have been separated from 

point sample 

point interpolate aooor remave~ lhread contours 
nodes & triangulale 

pornt in!erpolate select nodes remove or 
& triangulate aoocontours 

point interpOlate select nodes contOur 
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poinl interpolate Sl7led nodes contour 
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the main table columns to indicate that they will 
not be used for mathematical manipulations. 

Table 2 outlines the conversion procedures 
for categorical data. This type of data presents 
many limitations when used in mathematical 
applications. During conversion procedures, 
resulting data values are limited to the small, finite 
set of discrete classes in the source data, no new 
values can be created in a conversion operation. 
Thus, if a source data set has four classes of 
vegetation types, the target data set will also have at 
most four vegetation types. Mathematical 
transformations of source values such as those 
produced by interpolation procedures cannot be 
performed. Thus conversion ofa vegetation cellgrid 
to a vegetation polygon data model requires first 
the repositioning of the region boundaries and then 
the use of rules to determine which vegetation class 
will be assigned to the new region. Such rules 
might be: 

• 	 the source class covering the largest portion of 
the targer region becomes the new value; or 

• 	 an order of precedence which determines which 
class is assigned first if it occurs anywhere 
within a target region. 

The blocky nature of the constant piecewise 
models is the only possible representation of fields 
measured on categorical scales since the data are 
discrete and cannot be continuous across 
boundaries. Thus, conversions involving categorical 
data about continuous phenomena are restricted to 
a sub-set of four spatial data models since 
categorical data cannot be stored in the surface 
models TINs and contour models. Point models 
may be used to store categorical data, though any 
conversion of this data requires the initil1l 

Table 2. Summary of 
spatial data model con­
versions for categorical 
data. 

Pointgrid 

Irregular 
points 

construction of piecewise models as a 
representation of the continuous surface. 
Therefore, conversion from a data model of 
irregular points representing soil types found at 
sample sites to a cellgrid requires first that the soil 
types be spread outward towards other points so 
that Thiessen polygons are formed, this being the 
only logical means to create the continuous 
representation of reality. Conversion would then 
proceed by either partitioning the space into a new 
piecewise model and applying rules such as those 
described above, or simply by observing the 
polygon values of points at new locations for target 
point models. 

Clearly these tables are only an initial 
formulation of the conversion tables. Within each 
table cell there are many different possible 
algorithms. Which specific algorithm is chosen will 
depend upon the selection available to the modeller 
through the GIS or supplementary programs and 
upon the characteristics of the specific field 
variable. Fortunately, much of this decision work 
can be performed by an intelligent interface capable 
of comparing algorithm capabilities to the 
resolution and other properties specified in the 
declaration of the field variable. However, since the 
reality represented by the six field data models 
cannot be completely expressed, the specification of 
field variables should permit the definition of 
alternate procedures which override defaults 
provided in the program itself 

Arithmetic with field variables 

Unary arithmetic operators operate on a single 
value to create a derivative value. These operators 
include negation, absolute value, log, roots, and 
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exponentiation. Exponentiation may also be seen as 
a special case of multiplication operating on a single 
value. As these operators use only one variable, 
their application to fields represented by digital 
data models is straightfOrward. 

Binary arithmetic operators combine two 
numbers through the simple operations of 
addition, subtraction, multiplication, and division. 
If one variable is scalar and one a field, the result of 
the operation is to increase or decrease field values 
uniformly according to the specified operation. 
Adding and subtracting 0 and multiplying and 
dividing by 1 create identical fields. Multiplying by 
o creates a null field, one in which the value 
everywhere is O. Division by 0, ofcourse, cannot be 
performed. If both variables are fields, these 
arithmetic operations can be visualized as 
combining the values of the variables for each 
location in space such that: 

WATER_'I'ABLE_ELEV = 
S~R?ACE E~EV WATER_DEPTH [3] 

If A and C are spatially equivalent field 
variables and b is a scalar, the equations: 

C A + b [4a] 

C A - b [4b] 

C A / b [4c] 

C A * b [4d] 

perform the specified operation on each value in 
the data set comprising the right-hand variable and 
place the result in the data set comprising the left­
hand variable. 

If all three variables, A, B, and c, are field 
variables, the equations are: 

C A + B [5a] 

C A - B [5b] 

C A / B [5c] 

C A * B [5d] 

If all three field variables are spatially 
equivalent, then the arithmetic is performed 
directly on the values in each spatial element and 
the result is placed in the corresponding element of 
the left-hand variable. Difficulties arise when the 
field variables are not spatially equivalent. In this 

-


case, conversion must be performed so that: 

1 the operation on the right-hand side can be 
performed; and 

2 the answer can be placed in the left-hand 
variable. 

The question now is which conversion should 
be performed first. Consider the following case. We 
wish to develop a proxy variable for monthly 
precipitation. The only data available is a contour 
map of total annual precipitation and scattered 
weather station records detailing the percent of 
total annual precipitation that falls in each month. 
The target model is a cellgrid. Hence we have a 
contour model which must be multiplied by an 
irregular point model to create a cellgrid. Do we 
convert the contour model to irregular points, 
multiply and then convert the result to the cellgrid, 
or do we convert both the contour model and the 
irregular points to the target model before the 
multiplication? Clearly a set of priority rules is 
needed. 

It is possible to develop a set of rules for 
conversion. Since the most convenient structure for 
most mathematical and spatial operations is the 
grid, a simple rule might be that all variables are 
converted into grids before calculation is 
performed. However, this may lead to an 
unnecessary loss of information, particularly if the 
target variable is not a grid. Figure 3 shows a wide 
range ofsuch combination operations and indicates 
the model to which variables should be converted 
before the arithmetic operation is carried out. For 
example, in the top right of the figure, the icons 
illustrate the combination of a TIN with a medium 
dense cellgrid to produce a coarse grid. This might 
be the case where elevation (TIN) is being 
combined with rainfall (denser cellgrid). The result 
might be, say, an elevation-rain fill index in a coarse 
cellgrid to be used later in a global modelling 
exercise. For this first stage, it would be best to do 
the calculation using the denser of the cellgrids as 
the computational model. In the figure, where 
there are two checks shown for one operation, 
either of the checked data models might be used as 
the computational model. 

From such an analysis, a set of rules can be 
devised. The decisions upon which many of these 
rules are based depend upon the relative size or 
spacing of the spatial elements. This concept is 



••••• 

•••••• • •••• 

•••••• 

............ ..;............... + ...­...... .:......... 

...... .--.­
...... a_.·.••.••• + ••- • 
:::::: ..... . 
: : : : :.,. 1-_••w. ~~ •••• ;':..~~.,. + .~•.•..' I.. .,/ 

::;.:: "'_. / e. 

...... 1.. ••••:...... [W._ ......••...... +~.•••••...... .:........... 

= 

~EE 

= 

...... 
=g~...... 

..... . ....... 

~ .. " ;~- .+ •.}~w. • ......• t.:y.: • 

........... 
+ ••t 5r:t-.<:--- •• .. r·· ••~ .. ... ­

'...... 

tQj 
......
...... 

+ .................. 

Figure 3. Combining 
spatial data models . 
This sketch illustrates 
some of the many 
different combinations 
of spatial data models 
which may be required 
in a mathematical 
operation. Icons 
represent different 
spatial data models and 
structures. Icons marked 
with checks indicate the 
preferred computational 
models for each 
operation. Where two 
checks are indicated for 
a single operation, 
either model might be 
used . 

tQj +~g~g
......•..... 
1...-. • 

I'"'........•..•.\ .= .. ~ .. '~ ~ 

expressed here as demity which is defined as the 
number ofspatial elements per unit area. 

The following is an example of such a set of 
priority rules, listed in decreasing order of priority; 

1 If both sources are spatially equivalent, use that 
model; 

2 If each source is either a TIN or a contour 
model, use the target; 

3 If all variables are spatially nested grids, use the 
densest grid; 

4 If the target is spatially identical to one source, 
use the target structure: 

5 If one source is a TIN or contour, and the other 
is a grid, use the grid; 

6 If all are of approximately the same density, use 
the target: 

7 If only one is points, use points, unless the 
points are very sparse; 

8 Use the densest structure. If there is a tie, use 
the target. 

While there is opportunity for experi­
mentation to devise the perfect set of priority rules, 
it should be clear that implementation of any such 
set of rules can be accomplished without input from 
the modeller. 



Once field variables have been specified and 
conversion procedures established, it is possible to 
implement easily all traditional mathematical 
computer operations and to consider several new 
functions specific to continuous data. Perhaps the 
most readily apparent of such functions is 
integration. Integration is clearly defined for 
continuous functions and therefore is easy to 
conceive of for continuous phenomena. 
Implementation of an integration function for 
discrete representations of fields is relatively 
straightforward once the properties of the field 
variable are specified. Similarly, differentiation (i.e. 
calculation of slope from elevation data) and 
smoothing can be conceptualized for fields and 
implemented for specific field data models. Part 2 of 
this paper explores the implementation of field 
variables in detail. 

Conclusions 

The value of GIS for environmental modelling 
projects is clear. For most current environmental 
modelling projects, GIS is seen as a convenient and 
well-structured database for handling the large 
quantities of spatial data needed. Traditional GIS 
tools such as overlay and buffering are important 
for developing derivative data sets that serve as 
proxies for unavailable variables. A!; better spatial 
analysis methods become incorporated into GIS 
and programming languages, GIS will also become 
an important tool in model building, validation, 
and operation. However, there are significant 
incompatibilities preventing true integration. GIS 
manages static and discrete data while 
environmental models deal with dynamic and 
continuous phenomena. GIS databases contain 
information on location, spatial distribution, and 
spatial relationships while environmental models 
work on a basic currency of mass and energy 
transfer. In order to fully integrate the two we need 
to add dynamics and continuity to our 
understanding of spatial data and spatial 
interaction and functionality to the environmental 
models. It is hoped that implementation of field 
variable types as introduced here will lead to full 
integration of GIS and spatial analysis with 
environmental modelling. 
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The original printing of this paper comained one 
typographical error in Figure 3 so that the tones in the 
key did not match the tones in the diagram. This 
figure should read as follows: 

Figure 3. Results of survey of as customer satisfaction in 1994. 

'F:e,as m~"AI<",r~ Tor 

K K Kemo. 

as a ora 
environmental process rroce!s. 

sootoi 
9-34 

The original priming of this paper conrained one 
typographical error in equation (3). This equation 
should read as follows: 

o:'cas a framework for 
environmertoi process mace's. Parr 
Spedying field oy K K Kerna. 
1[3): 235-46 

The original priming of this paper comained a series 
of typographical errors in the equations reproduced 

on pp. 237-40 and p. 244. These equations (with 
page numbers and positions in paremheses) should 
read as follows: 

(10 lines up from borrom of right-hand column of 
p.237) 

3, .lx, 

(14 lines up from bottom of right-hand column of 
p.238) 

(18 and 23 lines down from top of right-hand 
column of p. 239 respectively) 

(spa: pa~aIT!e=ers); 
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(4, 21, and 24 lines down from top ofleft-hand 
column of p. 240 respectively) 

ce:~ne ... 2..:ke narne: (para7ieters) f· 

Qe::'Y'~e ~;ode~ 

(spacie.l_Trlocie2: pararneters) ,. 

: para,i'Tiet:ers); 

(20-1 and 12-18 lines up from bottom of right­
hand column of p. 240 respectively) 
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,~ crve:-2.ay sc=~S) 

(the example that was originally printed in the left­
hand column of p. 244) 

defines the computational structure, its parameters 
are input as a null data set 

:~:::e (:-:10:'_,-~~S i ; 

:_e~c C:"O:'~:l_:Q~,-::=?::-:-,ode_ (ce~=-Q:-~6: 

DO, 20S,}1 

these statemenTS may be within the mathematical 
modetr code or the information may be included as 
metadata with each data set 

de=-=-::e 
{equation(s) for calculating growth 

from several parameters}; 
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conversion ofall spatial models to the 
computational model is enforced before calculation 
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