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Abstract

Two formalisms for binary topological spatial relations are compared for their expressive power.
The 4-intersection considers the two objects’ interiors and boundaries and analyzes the
intersections of these four object parts for their content (i.e., emptiness and non-emptiness). The
9-intersection adds to the 4-intersection the intersections with the two objects’ complements. The
major results are (1) for objects with co-dimension 0, the 4-intersection and the 9-intersection with
the content invariant provide the same results; and (2) for objects with co-dimension > 0, the 9-
intersection with the content invariant provides more details than the 4-intersection. These additional
details are crucial to determine when two objects are equal. It is also demonstrated that the
additional details can provide crucial information when specifying the semantics of spatial relations
in GIS query languages.
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Introduction

During the last three years, the formal description of spatial relations has received unprecedented
attention in the GIS arena. The focus of many investigations was on a particular formalism to
represent topological relations (Egenhofer and Franzosa 1991; Herring 1991; Pigot 1991;
Hadzilacos and Tryfona 1992; Hazelton et al. 1992; Clementini et al. 1993; Cui et al. 1993;
Wazinski 1993). Complementary activities in the area of cardinal directions (Peuquet and Ci-Xiang
1987; Frank 1992; Freksa 1992; Papadias and Sellis 1992; Jungert 1992) exist, however, unlike the
studies of topological relations, formalizations of cardinal directions are based on a diversity of
models. This paper focuses on the two primary models used for binary topological relations, the 4-
intersection and the 9-intersection, which is an extension of the 4-intersection.

The initial model for binary topological relations, developed for two 2-dimensional objects
embedded in IR2 , compared the boundaries and interiors of the two objects and classified the
relations by whether the intersections of these four parts were empty or not (Egenhofer 1989;
Egenhofer and Herring 1990; Egenhofer and Franzosa 1991). This model is called the 4-
intersection. An extension of the 4-intersection includes also the intersections with the exteriors,
and allows for the identification of more detailed relations, particularly if one or both objects are
embedded in higher-dimensional spaces, such as the topological relation between a line and an areal
object or the topological relation between two lines in IR2  (Egenhofer and Herring 1991). This
model is called the 9-intersection.

The need for the more extensive 9-intersection has been questioned by several researchers who have
tried to model line-region and line-line relations in IR2  just with the 4-intersection (Svensson and
Zhexue 1991; Hadzilacos and Tryfona 1992; Hazelton et al. 1992; Clementini et al. 1993). This
paper demonstrates that the 4-intersection and 9-intersection reveal the same results only if both
objects are n-dimensional and embedded in IRn  such that different between the dimensions of the
embedding space and the objects is 0. These objects are said to have co-dimension 0. For all other
configurations with co-dimension > 0, such as the relations between a line and a region in IR2  or
the relations between two lines in IR2 , it is shown that the 9-intersection distinguishes among
topological relations that would be considered the same using the 4-intersection model.

The remainder of this paper is structured as follows: The next section briefly reviews the
4-intersection and the 9-intersection models for topological relations. Then the consequences of
using the 4-intersection or 9-intersection are elaborated for line-region and line-line relations in
IR2 . A discussion of using alternatives to the boundary/interior 4-intersections completes the
comparison of different models for binary topological relations. The conclusions provide a concise
summary of the results and their importance.

Models for Topological Relations

4-Intersection

Binary topological relations between two objects, A and B, are defined in terms of the four
intersections of A’s boundary (∂A) and interior ( A°) with the boundary (∂B) and interior ( B°) of
B  (Egenhofer and Franzosa 1991). This model is concisely represented by a
2¥2-matrix, called the 4-intersection.
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¡4( A, B) =
A°«B° A°«∂B
∂A « B° ∂A « ∂B

Ê 

Ë 
Á ˆ 

¯ (1)

Topological invariants of these four intersections, i.e., properties that are preserved under
topological transformations, are used to categorize topological relations. Examples of topological
invariants, applicable to the 4-intersection, are the content (i.e., emptiness or non-emptiness) of a set,
the dimension, and the number of separations (Franzosa and Egenhofer 1992). The content
invariant is the most general criterion as other invariants can be considered refinements of non-
empty intersections. By considering the values empty (∅ ) and non-empty (ÿ∅ ) for the four
intersections, one can distinguish 24 = 16 binary topological relations. Eight of these sixteen
relations can be realized for homogeneously 2-dimensional objects with connected boundaries,
called regions, if the objects are embedded in IR2  (Egenhofer and Herring 1990) (Figure 1).
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Figure 1: Examples of the eight topological relations between two regions in IR2 .

Also eight topological relations can be found between two lines in IR1  (Pullar and Egenhofer 1988)
(Figure 2). The latter set of relations corresponds to Allen's interval relations (Allen 1983) if the
order of IR1  is disregarded. With the exception of overlap, the two sets of 4-intersections for
region-region relations in IR2  and line-line relations in IR1  are identical. The difference is due to
the fact that regions have connected boundaries, while lines have disconnected boundaries;
therefore, for a region whose boundary intersects with the other region’s interior and exterior, its
boundary must also intersect with the other region’s boundary. This conclusion cannot be drawn
for two lines because their boundaries are disconnected.
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Figure 2: Examples of the eight topological relations between two lines in IR1 .
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9-Intersection

The 4-intersection model is extended by considering the location of each interior and boundary with
respect to the other object’s exterior; therefore, the binary topological relation between two objects,
A and B, in IR2  is based upon the intersection of A’s interior ( A°), boundary (∂A), and exterior
( A- ) with B’s interior ( B°), boundary (∂B), and exterior ( B- ). The nine intersections between the
six object parts describe a topological relation and can be concisely represented by a 3¥3-matrix
¡9 , called the 9-intersection.

¡9(A, B) =

A°«B° A°«∂B A°«B-

∂A « B° ∂A « ∂B ∂A « B-

A- « B° A- « ∂B A- « B-

Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ 
˜ 

(2)

In analogy to the 4-intersection, each intersection will be characterized by a value empty (∅ ) or
non-empty (ÿ∅ ), which allows one to distinguish 29 = 512  different configurations. Only a small
subset of them can be realized between two object in IR2 .

The relations that can be realized depend on particular topological properties of the objects involved
and their relationship to the embedding space. For example, the boundary of a spatial region in IR2

is a Jordan Curve (separating the interior from the exterior). On the other hand, the boundary of a
simple line consists of two nodes, and unlike a region’s boundary in IR2 , a line’s boundary in IR2

does not separate the interior from the exterior. These topological properties of the objects have to
be considered when investigating which empty/non-empty 9-intersection can be realized. For this
goal, we formalized for each combination of regions and lines embedded in IR2  a set of properties
as conditions for binary topological relations, that must hold between the parts of the two objects
(Egenhofer and Herring 1991). These properties can be expressed as consistency constraints in
terms of the 9-intersection, such that by successively eliminating from the set of 512 relations those
relations that violate a consistency constraint, one retains the candidates for those
9-intersections that can be realized for the particular spatial data model (Egenhofer and Sharma
1993). The existence of these relations is then proven by finding geometric interpretations for the
corresponding 9-intersections.

Existing 9-Intersections Between Two Regions in IR 2: With the 9-intersection, the same set of
region-region relations can be found as for the 4-intersection (Egenhofer and Franzosa 1991). No
additional relations due to the consideration of exterior-intersections are possible.

Existing 9-Intersections Between Two Lines in IR 2: As expected, the 9-intersection reveals the
same number of line-line relations in IR1  as the 4-intersection; however, in IR2 , the 9-intersection
identifies another 25 relations for relations between two simple lines (i.e., lines with exactly two end
points) (Egenhofer 1993) . Another 21 relations are found if the lines can be branched so that they
have more than two end points (Egenhofer and Herring 1991).

Existing 9-Intersections Between A Line and a Region in IR 2: With the
9-intersection, 19 topological relations between a simple line and a region in IR2  can be found
(Mark and Egenhofer 1992), and a 20th configuration if the line is branched (Egenhofer and
Herring 1991).
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Need for 9-Intersection

Since the realization of existing topological relations in both models is based on particular
topological properties of the objects and the relationship to the embedding space, the following
generalizations can be made:

• If the two objects are simply connected, their boundaries form Jordan Curves (or the
corresponding configurations in higher-dimensional spaces), and the objects have co-dimension
0, then the same eight topological relations can be realized as between two regions in IR2 . For
example, the same relations as between two regions in IR2  also exist between two volumes.

• If the two objects are simply connected, each boundary forms a separation, and the objects have
co-dimension 0, then the same eight topological relations can be realized as between two lines in
IR1 .

If the co-dimension constraint is relaxed such that one or both objects can be embedded in a higher-
dimensional space, due to the greater degree of freedom, the objects may take additional
configurations that are not represented by one of the relations between objects with co-dimension 0.
For example, if two lines cross, they have non-empty interior-interior intersections, while the other
three intersections are empty. Such a 4-intersection cannot be realized for two lines in IR1 . On the
other hand, some 4-intersections may have ambiguous geometric interpretations. From a practical
point of view, there are certainly situations in which one would like to distinguish between them
when querying a geographic database. Therefore, in general, a different model is necessary to
account also for relations involving n-dimensional objects that are embedded in IRm , m > n . Our
focus is on m = 2 and its topological relations with objects of dimension n  = 1—topological
relations with points (n = 0) are trivial.

To analyze the differences between the two methods, the conceptual neighborhoods of each set of
relations will be used. Conceptual neighborhoods organize a set of relations in a diagram such that
similar relations are close to each other. The computational tool to identify conceptual
neighborhoods is the topology distance (Egenhofer and Al-Taha 1992)  which calculates the
differences between two empty/non-empty 9-intersections. Pairs of relations with the least number
of non-zero differences are considered to be conceptual neighbors. Conceptual neighborhoods are
represented as a graph in which the relations are nodes and the conceptual neighbors are edges
between the nodes.

Line-Region Relations

If one removes for each of these nineteen 9-intersections the entries of the exterior intersections,
what remains is a 4-intersection based on boundary/interior intersections. A straightforward
inspection reveals that only six of the 19 line-region relations are uniquely characterized by the 4-
intersection. These relations are all located along the edge of the conceptual neighborhood diagram
shown in Figure 3 (A1, B1, C1, C5, D5, and E5). The remaining thirteen cases can be grouped into
five distinct groups, each having a characteristic 4-intersection: A2, A3, and A5, called the A-band;
and the B-, C-, D-, and E-band with B2-B3, C2-C4, D2-D4, and E3-E4, respectively. The
distinguishing factor among the configurations in each group is whether the interior or boundary of
the line intersects the exterior of the region. Since the intersections with the exterior are not
considered, the 4-intersection is the same for all configurations in any band.
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Figure 3: The conceptual neighborhoods of topological line-region relations in IR2 . Groups of
relations with the same 4-intersection are shaded.

In the data model the interior, boundary, and exterior are distinct topological entities. Hence each
configuration, in any group in Figure 4, is topologically distinct from the other configurations in the
same group. That is, there is no topological transformation that converts one configuration to
another. The 4-intersection, however, cannot distinguish between them and thus it is insufficient.
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Figure 4: The five groups of line-region relations. Relations in each group have the same 4-
intersection, but distinct 9-intersections.

The importance of the additional information available in the 9-intersection becomes more obvious
when one investigates the meaning of certain spatial predicates. Spatial predicates are commonly
used as selection criteria in GIS queries and in order to process such queries, the semantics of the
terms have to be formalized. If one considers the line and the region to be a road and a park,
respectively, then one may consider the meaning of the spatial predicate enters as “the line has to
have parts inside and outside of the region.” Based on the 9-intersection, the six configurations
with non-empty interior-interior, interior-boundary, and interior-exterior intersections qualify for
this constraint—A3, A5, B3, and C3, C4, C5. Therefore, such a definition of enters splits the shaded
bands (A, B, and C), i.e., the configurations that cannot be distinguished by the 4-intersection.
Based solely on the 4-intersection, this distinction would not have been possible, because the set of
relations with non-empty interior-interior and interior-boundary intersections includes three
configurations with non-empty interior-exterior intersections; therefore, using the
4-intersection or the 9-intersection as the underlying model to process such a query, one may get
considerably different results, some of which would contradict the definition of the term enters.

The question remains open whether the 4-intersection would be sufficient if one had particular
knowledge about the objects’ geometric properties such as whether the lines are straight or possibly
curved, and whether the regions are convex or possibly concave. First, the knowledge of only one
such geometric property does not influence the existence of topological relations. For example, if
one fixes the shape of the line to be straight then the region can be deformed, where necessary, to a
concave object so that all 19 relations can be realized. Likewise, if the region were fixed to be
convex, one could bend the line so that all 19 relations can be realized. The case is, however,
different if both objects are constrained. Among the 19 line-region relations, only 11 can be found
for a straight line and a convex region. The eight additional ones for curved lines or convex regions
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all fall in the range of relations that cannot be distinguished with the 4-intersection: they are A2 and
A3, B2 and B3, C2 and C3, D3, and E3. With the exception of the relations in band D, there is a 1:1
mapping between the 4-intersection- and 9-intersection-relations for a straight line and a convex
region (the relations in band B cannot be realized in either model). The two straight-line-convex-
region-relations that cannot be distinguished are (1) a straight line is completely in the boundary of
a convex region and (2) a straight line starts in the boundary following the boundary for a while,
until it ends in the convex region’s exterior.

Line-Line Relations

The 9-intersection characterization results in 33 distinct line-line relations in IR2  (Egenhofer and
Herring 1991). Since the 4-intersection can only characterize 24 = 16 distinct relations, it is obvious
that the 9-intersection provides a much finer resolution. Figure 5 shows a subset of the conceptual
neighborhood of topological line-line relations in IR2  and highlights the groups of those relations
that would not be distinguished by the 4-intersection. There are 10 such groups containing between
two and four relations. Six relations from the 4-intersection have exactly one corresponding 9-
intersection relation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
B

C
D
E
F
G
H

I

Figure 5: A subset of the conceptual neighborhood of topological line-line relations in IR2  (not all
links of topology distance 1 are depicted). Groups of relations with the same 4-intersection are
shaded.

As a strongly motivating example for the need of the finer granularity of the 9-intersection, consider
the topological relation equal (E9). Equal is part of a group with another two relations, all of which
have the same 4-intersection (Figure 6), and not a singleton as one would expect. Using the 9-
intersection, only the configuration in Figure 6a would be classified as an example of equal.



Max J. Egenhofer, Jayant Sharma, and David Mark
A Critical Comparison of the 4-Intersection and 9-Intersection Models for Spatial Relations: Formal Analysis

In: R. McMaster and M. Armstrong (eds), Autocarto 11.

(a) (b) (c)

Figure 6: Examples of topological relations between two lines in IR2  that have the same 4-
intersection ( A°«B°= ÿ∅; A°«∂B = ∅; ∂A « B°= ∅; and ∂A « ∂B = ÿ∅), but different 9-
intersections as their boundary-exterior and interior-exterior intersections differ.

Alternative 4-Intersections

The data model used here is based on concepts from point-set topology. A spatial region is a
simply connected area whose boundary is a Jordan curve; therefore, it has three topologically
distinct parts: the interior, boundary, and exterior. Since a region is a 2-dimensional object in a
2-dimensional space, specifying any one part completely determines the region and its other parts.

Based on this observation it appears reasonable to assume that topological relations between
regions can be characterized by considering the intersections of any pair of parts, for example,
boundary/exterior or interior/exterior, rather than only the boundary/interior intersections. To assess
such alternatives, one has to determine whether the 4-intersection based on the boundary/interior
intersections is equivalent to one based on boundary/exterior or interior/exterior intersections. If so,
the characterization of topological relations would have to be the same in each case.

• A 4-intersection based on boundary/exterior intersections cannot express the distinction between
the relations meet and overlap. The reason is that the only difference between meet and overlap is
whether the interiors do not or do intersect, respectively. Since the intersections of interiors is not
considered, the 4-intersections, for the configurations called meet and overlap in Figure 1, are
exactly the same.

• Similarly, a 4-intersection based on interior/exterior intersections cannot express the distinction
between the pairs of relations: meet and disjoint, contains and covers, inside and coveredBy,
because the only difference in each case is whether the boundaries intersect or not. Since the
intersection of boundaries is not considered, the 4-intersections are exactly the same.

• Finally, the alternatives of using a 4-intersection based on the closure—the union of the interior
and boundary—in combination with the interior, boundary, or exterior reveal the same
deficiencies as they cannot distinguish between overlap and covers/coveredBy, or overlap and
meet.

The conclusion is therefore that only boundary and interior should be used for the
4-intersection in characterizing topological relationships between regions.
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Conclusions

The two primary models of topological relations, the 4-intersection and the 9-intersection, were
compared for their expressive powers. Table 1 summarizes the results of the numbers of relations
that can be realized in each model for co-dimension 0. It was shown in this paper that for co-
dimension 0 exactly the same relations can be realized with the 4- and 9-intersection.

co-dimension 0 region Line
region ¡4 : 8 relations

¡9 : 8 relations
N/A

line N/A ¡4 : 8 relations
¡9 : 8 relations

Table 1: Number of binary topological relations that can be realized for regions and lines in co-
dimension 0 with the 4-intersection and the 9-intersection.

The situation is quite different if the two objects are embedded in a higher-dimensional space (Table
2). The 9-intersection has a finer granularity to distinguish relations between a line and a region,
and between two lines embedded in IR2 . The most crucial difference was found for line-line
relations, where the 4-intersection applied to IR2  does not provide a useful definition of an equal
relation. On the other hand, the 9-intersection compensates this shortcoming.

co-dimension 1    line
straight line

region

convex region

¡4 : 11 relations
¡9 : 19 relations

¡4 : 10 relations
¡9 : 11 relations

line

straight line

¡4 : 16 relations
¡9 : 33 relations

¡4 : 11 relations
¡9 : 11 relations

Table 2: Number of binary topological relations that can be realized for regions and lines in co-
dimension 1 with the 4-intersection and the 9-intersection.

The results have an impact on the implementation of spatial relations in a GIS. Although the 9-
intersection is necessary to distinguish such details, not all nine intersections have to be calculated at
all times when processing a query with such a topological relation. Most obvious is this in the case
of the line-region relations, where all intersections between the line’s exterior and the three parts of
the region are non-empty, independent of the relation between the two objects; therefore, calculating
these three intersections would not provide any information about the particular configuration.

The results of this paper must be considered in combination with results obtained from human-
subject testing of topological relations (Mark and Egenhofer 1992). Initial studies of line-region
configurations showed there that the differences in the distinctions made by the 9-intersection are
sometimes crucial when humans select natural-language terminology to describe some spatial
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situations. Only if the present analysis is considered in the entirety of the interplay between formal
mathematics and human-subjects testing, its significance will become obvious.
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