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ABSTRACT

This thesis investigates operations affeding identity of objeds in a
spatiotemporal database, ukiquitous for future temporal geographic information
systems (GIS).

Two dfferent techniques to record change in tempora databases are wmpared:
database versioning and ohed versioning. We show formally that these
tedhniques are euivaent and wse @nceptually simpler model of database
versioning for the further development.

The @nceptua model of our database is based onthe entity-relationship model.
The mmplete temporal database is an append-only series of snapshats, each of
which represents the state of the universe of discourse & a particular moment on
the time scde. Each snapshot consists of a set of objeds conneded with
relations.

Objeds are metaphaically perceived as having life; an olject has its birth or
credion, itslife or existence, its deah or destruction. The central concept in the
life of an ofject isits identifier, which is unchanged from the birth to the death
of an oljed. Identifiers are system constructs and they are maintained by the
database independently of the user.

Category theory and many-sorted algebras provide the formal background for
thisthesis. Exeautable dgebraic specificaions are written in a cdegoricd, pant-
free style of functional programming using Gofer environment. Gofer is a
dialed of the functional language Haskell. It suppats many-sorted algebras by
multi-parameter classes.

The mgjor result is the formal model for a universal spatiotemporal database,
cgpable of representing different classes of objectsin auniform way with respect
to change in identity of objeds. We propase atheory of lifestyles: agebras of
operations affeding identity of objeds. Lifestyles are compositions of basic
operations: create, destroy, suspend, and resume. The mereological relation (is
part of) is the most important relationship among objeds that affects the
existence of composite objeds and their parts. The @mncept of suspending parts
when composed into a whole @stracts the detail in herarchical cognitive
ressoning.



We stress the diff erences between two maor groups of compaositions: fusions
(composed parts are destroyed and canna be resumed) and aggregates
(composed parts are suspended and can be resumed).

The theory of lifestyles is compared with the work of other authors on the topic
of identity change. It is formally shown that our system is capable to represent
all operations enumerated in ather models, being at the same time @nceptually
simpler and more flexible.

Finally, we gply the theoretical apparatus on several categories of red world
objeds, ranging from the examplesin physicd domain (natural objects, movable
artifads, liquids, containers, living beings) to nontangible objeds in the social
redm (partnerships, ownership rights, and administrative units). We show that
metapharicd mappings between the physical and socia domain are possble.
The major benefit is the reusability of functions and concepts that can be
explored in bulding interoperable temporal information systems.
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Introduction 1

1. INTRODUCTION

The motivation for this thesis is best explained by an dd phlosophcd puzzle dou
change in identity. Our leading hypaothesis is that the set of operations aff ecting objed
identity in the dhanging world is finite. The method d algebraic spedfication, kased on
caegory theory is used to prove the hypothesis. Scientific contributions are enumerated
as well as the targeted audience Finally, the organization d the rest of this thesis is
presented.

1.1 Motivation

"On those who enter the same rive's, ever different waters flow."
Heraclitus (fr. 12

Change has attracted the dtention o philosophers snce atiquity: Heraditus raised the
question d identity and persistence under what condtions does an oljed persist
through time & the same objed?

The ideawas described by Plutarch in hiswritings abou the Greek hero Theseus. A
paraphrased version d Plutarch's gory is:

Theseus garted his voyage in a simple wooden ship. During the journey, he
replaced the wooden planks of the ship with new ones, throwing the old
planks over board. At the same time, anather ship salled parallé to the ship
of Theseus. The sail ors of the second ship were all ecting the planks thrown
by Theseus and wsing them to replace their own panks. Until the end d the
journey, Theseus replaced all parts of his ship, and the escort ship consisted
of al parts of the ship Theseus garted the journey. (Vita Thesei, 22-23)

The puzzing questions are: Which of the two ships is identicd to the origina? If it is
the second ship, when it gat the new identity? Is it possble that both ships are identicd
to the origina ship? Alternatively, could neither of them be identical to the original?

Zeno of Eleawas another Greek philosopher who analyzed change, motion, and
plurality of thingsin the world. He agued that the motionin a cntinuum isimpaossble.
In his arguments against the idea that the world contains more than ore thing, Zeno
derived his paradoxes from the assumption that if a magnitude can be divided then it
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can be divided infinitely often. In his most famous paradox, Achill es, Zeno claims that
the slower when running will never be overtaken by the quicker; for that which is
pursuing must first reach the point from which that which is fleeing started, so that the
slower must necessarily always be some distance deal (Hofstadter 1979.

A contemporary paralel exampleto the ship of Theseusisan dd car. The owner of
the ca changes its parts urtil the ca is completely renewed. His neighba picks the old
parts and aseembles a "new" old car. One may think that renewing an dd car would
have nat removed its identity. The authorities have standardized methods for
identification d movable goods to enforce legality of possessng them. For example, a
ca is uniquely described by its engraved chasss number. As long as this number is
preserved, the owner is free to replaceother parts of the ar given that the parts have
proper origin and functionality. Several other parts are numbered too (e.g., the engine),
but the dhasss number isin most courtries legally recognized as the valid identifier for
the ca asawhadle.

Liquids represent a more complicaed situation where temporal behavior is
concerned. Ships, cars, and their parts, like dl solid ojeds, have aisp, olbservable
boundiries allowing easy identificaion. On the other hand, liquid oljeds change their
shape in dfferent containers on the slightest adion. Liquids dip ou through the
smallest hdle in a omntainer becaise of gravity.

The identity of living beings is another puzzling example. It is known that human
cdls are regenerating and it is certain that we have completely new cdls every severa
yeas. Nevertheless an average human will claim that his identity is not changing while
the cdls are regenerating. The problem arises if a new human being would have been
made from the removed cell s in the same way as a new car is assembled from old parts.
This gives an idea of how difficult a strict decision abou temporal continuity in the red
world may be. Indeed, the answers depend onthe drcumstances one aks.

We do nd attempt to solve dl dilemmas concerning the old pwzle. We ae
concerned with representations of the real world for constructing information systems,
which can track change in identity of objeds. We perceve the real world as a colledion
of distinguishable entities that have properties and are mutually conrected by relations.
For example, pieces of furniture in a room are eitities, having color and weight as
properties, and there is at least a simple spatia relation between the furniture and the
room: the furniture isin the room. We ae aleto individuate dl entitiesin the observed
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part of reality. Even if two chairs had equal properties, we can tell one from ancther and
cognitively asggn dfferent identiti es to each chair.

An information system is a formal model of a part of redity. In an information
system, we have to store the theory that represents the model. A data model is a formal
construction that describes representation d the red world in a database. Entities are
represented by objeds, entity properties are represented by objed attributes, and
identity is represented by identifiers.

Early GIS dedt only with spatially referenced information. Research was
concentrated the grea majority of its effort upon the spatial comporents of the data.
Such atemporal GIS describe only one state of the data. Thus, expressveness of GIS
was reduced to a snapshaot view of the seleded phenomena: an update replaced and
destroyed the previously stored data. Historical states were lost and could na be
recovered. Such limitation was due to the lack of readily available hardware. The
problem of storage and fast retrieving of data was dominating the efforts to buld GIS
software. On the other hand, many scientific disciplines, as potential GIS users,
requested maintenance of various data dosely related to time & well as to space A
number of scientific contributions dedt with the gplicaion d GIS in dfferent fields,
espedaly in history, land management and ecology. It was found that nat al these
needs could be fulfill ed with a single general model. As the techndogy became mature
enough to suppat new requests, it was obvious that we have to revise and improve the
models behind it. In case of temporal GIS, a well understood concept of change is an
ultimate goal .

Recently, Frank argued that the major impediment to broader usage of modern GIS
is the ladk of tods deding with temporal information and processes in genera (Frank
19981). Capabiliti es to manage temporal information are necessary for decision-making
suppat in answering essential paliticd questions. The anceptual models underlying
modern GIS seam inherently incagpable of dealing with dynamic information.

1.2 Hypothesis

Many GIS applications enforce an ‘object’ view: features in the world are represented
as objeds with well-defined boundries (Frank 1996. The red world is smplified to
the representation o selected oljects being important for a given context - a universe of
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discourse. The universe of discourse is modeled as a series of sets of inter-related
objeds. Features have properties; in representation, oljeds have dtribute values.

Every feature has an identity that distinguishes it from al other feaures. In a
representation, the identity is represented as an identifier. An identifier may not be
arbitrarily changed by the user. Operations affeding olject identifiers define how the
objeds get, change or lose identifiers through time. The objeds are grouped in agebras
with resped to the gplicability of operations affecting identifiers. Since the period
between the gopearance and dsappearance of an oljed is cdled life, such algebras are
cdled lifestyles.

Our central hypathesis is that operations affeding ohead identity form a finite set
and operate in agebras, which we all lif estyles.

Other types of change include motion (change in locaion), deformation (change in
shape), and aher changes of attribute values. We ae interested in change of identifiers
only, and aher types of change will be negleded in thisthesis.

1.3 Approach

In order to prepare the framework for reasoning abou change in identities of objeds,
we build the forma model of a temporal database consisting of objects and relations.
Such database is a representation d the red world, which is assumed to consist of
fedures or things having properties. The inevitable phil osophca isaues of existence or
nonexistence of obeds in the red world are not treated in detail - the ontological
discussonisleft to phlosophers.

The subjea of this thesis is the dange in identity of objects. In the red world,
identity isaproduct of human cognition: we need a concept to tell one objed from other
objeds, sincelower levels of abstradion (e.g., the aomistic view) are not appropriate in
everyday life. In arepresentation (in a database), identity is represented by an identifier.
An identifier is given to an olged when the object is created and it remains unchanged
aslong asthe objed exists.

The world is continuowsly changing. In the red world, the dhange happens in the
valid o world time. In the database, the cthange is registered in the transaction o
database time, and the world time may be stored as an additional value for each change.
It is important to compare these two orthogonal dimensions of time and to investigate
which oreisimportant for the task in hand: tradking the change in identity of objeds.
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On the implementation level, the world could be represented in atemporal database
in many different ways. Two prominent possbiliti es are storing a new snapshot of a
complete database for every change (database versioning) and storing the new version
of the dhanged oljed only (object versioning). A comparison d these two methods is

important for implementation pupases, bu not for the theoreticd consideration.

Objeds can merge with ather objeds or they can split, bulding new objectsin bah
cases. This process is described by the operations affeding objed identity. These
operations are the rules for change in the life of objeds. We propcse the theory of
lifestyles that says that the number of operations affecting object identity is gnal and
that objeds can be dassfied depending on appli cabili ty of these operations.

The dhange of object identity is the main topic of this thesis. An oljed is observed
asif it (metapharicaly) has alife: a stretch o time or a set of non-conrected stretches
of time during which it exists. In a spatiotemporal database, change is cgptured as the
change in the dtributes of database objeds. The question when an oljed loses its
identity and becomes anather objed depends on the gplication danain. For example,
changing the mlor of a ar does not change the identity of the car. Changing its chasss,
however, may be sufficient to assgn the different identity to the ca.

1.4 Methodology

We use dgebraic spedfications for formalization. Algebras capture the aordinated
behavior of operations that are gplied to the same objeds. Algebras can be combined
enabling the reuse of arealy gained knowledge withou additional effort. Simple
operations are then combined into complex ones by functional compaosition. Algebras
can be parameterized, that is, appli cable to the range of different types.

Algebras are special case of more general category theory - mathematical discipline
that abstrads operations to arrows and individual vaues to sets of vaues. The
formalization d the problem is provided in a categorical setting, having the cdegory of
functions as the central category. Parameterization d data types enabled a high level of
abstradion. The properties of caegoricd product are exploited for developing the point-
free model - functions that do nd name their arguments, leading to generality of
application.

The prototype of an oljed-oriented temporal database is developed as an
exeautable spedfication in Gofer, a didect of the functional programming language
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Haskell. This prototype is used as the framework for testing the semantic
correspordence of the theoreticd apparatus.

The entity-relationship model of a temporal database is formalized in functional
language, and the propased theory of lifestylesis built ontop d it. Further extensions of
various applicaions are provided as exeautable prototypes as well.

1.5 Contributionsof thethesis

This work proposes a unifying core of rules for change in identity of objeds. These
rules are gplicable to a wide range of databases for administrative systems, socio-
eonanicd and natural sciences, wherever the historical databases are needed. The
major contributions are:

» a forma model of auniversal temporal database is provided as an exeautable
spedficaionwritten in acategoricd, pant-freestyle of functional language,
Independent of implementation detall s for objeds and ohed types,

» conceptua clarification among ontological primitives (in the red world) and
database dements (in arepresentation d the red world) is given: things are
mapped to oljeds, identity to identifiers, properties of things to attributes of
obeds;

» properties of identifiers (uniqueness immutabili ty, and nonreusabili ty) are
justified and preserved in the modd!;

» thetransadiontimeis necessary for atempora database to properly trea
temporal links between olject identifiers, whereas control over the vaid time
could be left to the user (asymmetry between transadion and valid time);

The theory of lifestyles as algebras that group the operations affecting the obed
identity is proposed. The change in compaosite objeds is based on the mereological
relation "part of", which is essential in human abstraction d complex objeds (the
details abou parts are neglected as long as the whale is observed). The theory of
lifestyles consist of the following traits:

» aminimal set of four primiti ve operations aff ecting objed identifiersis
propased, and a small number of possble compositionsis derived and werified
using precondti or/paostcondtion erificaion procedure;
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lifestyles - as algebras of the cmmpaosed simple operations aff ecting objea
identity - characterize the behavior of large categories of objeds, and therefore

are an efficient way for modeling change in various domains,

lifestyles are compared with ather prominent categorizations of operations on
objed identity. The lifestyles framework is sSmpler than ather models, yet at
least equally powerful,

spedficdly, aggregation of objects has two faces: temporal and atemporal. An
aggregationistemporal if it changes the identities of obedsinvaved. If nore
of the identities are dhanged, the relation ketween part andwhadeistreded as

any other relation;

afundamental difference between aggregation and fusion liesin the diff erent
nature of the underlying basic operations: suspend and destroy;

the transfer of lifestyles from material to nornmaterial objedsis transparent
and metapharical mapping between the gpropriate objed classes exists. This
can be explored for arapid development of temporal GIS. Different systems,
sharing the same are of lifestyles operations, are suitable for interoperability.

Finally, algorithms and functional programs are provided as the proof that the

transformation functions between two dfferent ways of storing temporal databases are

losdess Thus, the cnceptually simpler model of database versioning (changing

snapshots) can be used for theoretical considerations, and oljed versioning (which is

"chegoer" in terms of storage space) can be used for implementation d tempora
databases.

1.6 Audience

This work is related to severa disciplines. We cncentrated on giving a viable model

for designers of temporal databases on the cnceptual level. Thus, this work is targeted

to the researchers dudying the following areas:

designers of tempora databasesin general andtemporal GISin particular find
agenera approad to the modeling of changein the identity of objects;

designers of cadastral and other historical databases have a oncrete

implementation-ready specificationfor their applicaions,
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« artificial intelli genceis enriched with aformal model of an important domain
of common-sense knowledge - treament of change in auniverse of discourse
consisting of individual objeds.

1.7 Organization of thethesis

Related work of other researchers is presented in Chapter 2. Philosophers, from
Aristotle to modern ortologists, contributed to better understanding of change ad
caegorization d real world phenomena. Artificial intelligence was the first discipline
that tadled the problem of change with aformal apparatus - the situation cdculus. The
research in temporal databases and tempora GIS was intensified during the last two
decales, and several categorizations of change in identity of objeds were propcsed.
Finally, we introduce formal badkground of this thesis: caegory theory and standard
functional notation, which is helpful in reading the two subsequent chapters.

The basic concepts for a spatiotemporal database ae informally explained in
Chapter 3. We start from the ontologicd asumption that the world consists of
individual objeds with properties. The dements of the database based on the entity-
relationship model are informally explained. Two dfferent ways of updating the
database with new states are mpared, and algorithms for transformations are
proposed.

In Chapter 4, we introduce primiti ve operations aff ecting objed identity, and verify
their definitions with pre- and past-condtions. The primitive operations are cmposed
in two ways. The first set of compaosition aff ects a single objed; the second set affeds
several objects. Resulting operations are cdegorized into algebras - lifestyles. Two
major lifestyles are aggregations and fusions. An informal comparison with

caegorizations of other authorsis given.

The method and the tod of formalization - algebraic spedfications written in the
Gofer dialea of the functional programming language Haskell - are described in
Chapter 5. Conredions between the functional notation and the dgebraic gproach are
explained. Standard functions that are used in the rest of the thesis are shown.

The formal model of a mmplete spatiotemporal database is given in Chapter 6. The
elements of the entity-relationship model (objed, identifiers, attributes, values, value
sets, and snapshats) are abstraded as Haskell classes. Colledions are parameterized to
adhieve generality and extensibili ty of the model - operations are defined independently
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of the mncrete representation. A smple implementation is given together with
examples that show functiondity of the model. Finaly, the dgorithms for
transformation between two versioning techniques are formali zed in functional notation.

The formalization d the operations affeding objed identity is dore in Chapter 7.
The result is a small set of lifestyle dasses that are completely independent of
implementation isaues. All operations are written in a cdegoricd, pant-freestyle. The
formal comparison to categorizations of other authors is provided: all operations are
represented as compositi ons of lifestyle operations.

A caegorization d physicd objects, based on contemporary reseach in cognitive
linguistic, is proposed in Chapter 8. Each category is informally discussed and then
formally defined within the lifestyles framework. Representations and examples are
provided as the extensions to the model developed in previous chapters.

Seleded examples from the astrad, nontangible, social domain are described and
formalized in Chapter 9. Metaphaical mappings from the physical to the social domain
resulted in simple models and the @de re-usability. The conredions are represented as
dependencies between appropriate dassesin bah damains.

Conclusions and dredions for the future work are given in Chapter 10. The
complete printout of the exeautable program in the functional programming language is
avail able in the Appendix.
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2. CONTRIBUTING DISCIPLINES

In this chapter, the research onthe topic of change in dfferent scientific disciplines is
presented. The chapter is divided into the foll owing sedions: philosophcd badkground
of ontology and epistemology; the dforts of artificial intelligence (situation cdculus,
naive physics), research in temporal databases (time structure, temporal data models,
guery languages) and GIS (federated GIS, qualitative representations of changein GIS).
Finally, we present the formal badgroundfor thisthesis - category theory.

2.1 Ontology and representation of thereal world

Ontology is the science of what is. Ontology as traditionally conceved is not a
description d how we mnceptuali ze the world, bu rather a description d the world
itself. This, of course, assumes that there is only one true readlity to be described. An
ontology is either an abstraction d the formal feaures that charaderize dl scientific
areas (aformal ontology), or it is a statement of the necessary and sufficient condtions
for something to be a particular kind d entity within a given damain (a materia
ontology). Theories that are correct descriptions of a given danain of objeds allow us
to infer the material ontology for that domain. By investigating what is dhared by all
material ontologies we an infer the principles of formal ontology (Smith 1999.

The science of ontology was grounded by Aristotle in his two works: Categories
and Metaphysics. Aristotle divided the world into substances (things, or bodes) and
acadents (qualiti es, events, process). In the Aristotelian view substances exist ontheir
own, where acidents require substances to exist; substances may remain numerically
one and the same, admitting different acadents at different times; a substance is =if-
identica from the beginning to the end of its existence It is not substances that can have
temporal parts. The eistence of a substance is continuows through time (Smith to
appea).

Acoording to John McCarthy, a representation is cdled ortologically adequate if
the world could have that form withou contradicting the fads of the aspect of reality
that interests us (McCarthy and Hayes 1969). Examples of ontologicdly adequate
representations for different aspeds of redity are:
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1. Therepresentation d the world as a wlledion d particles interacting through
forces between each pair of particles.

2. Representation d the world as a giant quantum-mechanica wave function.

3. Representation as a system of interacting discrete aitomata.

Ontologicdly adequate representations are mainly useful for constructing genera
theories. Deriving observable mnsequences from the theory is a further step andit isthe
redm of epistemology - science of knowledge and its representation.

A representation is caled epistemologically adequate for a person a madine if it
can be used practicdly to expressthe fads that one adually has abou the aspect of the
world. Thus, nore of the above-mentioned representations are adequate to expressfads
as"Johnisat home", or "dogs chase cds" or "Johris telephore number is 321-7850".

2.2 Artificial intelligence

Artificia intelligence was the first scientific discipline that approached the problem of
change with the formalization tods. Artificia intelligence mncentrates its efforts on
situation caculus and reive physics. Both dredions have the mmmon goal: automation
of reasoning in the everyday dynamic world.

2.2.1 Stuation calculus

Stuation calculus, developed by McCarthy, is a first order language designed to
represent dynamicaly changing worlds in which all changes are the result of named
adions, (McCarthy 1957 McCarthy and Hayes 1969. A situation a a state is a
snapshoat of the world at a given moment. The world is concelved as being in some state
s, andthis gate can change only in consequence of some agent (human, robad, or nature)
performing an adion. If a is such an adion, then the succesr state to s resulting from
the performance of action a is denated by do(a,s). The adions have precondtions -
sufficient condtions, which the airrent world must satisfy, before the adion can be
performed in this date. For example: a posshility of my walking out of a room
presuppases that | am in the room and | can walk:

in((1, room), s) Owalk(l,s) OO Possble (walkout (I, room), ).

The result of the adion walkout results in a new situation in which "l am nat in the
room" is represented by the foll owing effed axiom:
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Posqwalkout(l,room),s) (I =in((I,room), dowakout(l,room),s)).

Beside dfed axioms, which change the situations, there ae aioms invariant in the
change: so called frame aioms. For example, my weight does not change if | walk out
of the room:

Posqwalkout(l,room),s) Cweight(l,x,s) [ weight (I,x,do(walkout(l,room),s)))

Only relatively few adions will affed the truth-value of a relation; all other actions
leave the relation invariant, and reed many frame aiioms. The difficulty to specify all
such axioms is the so-cdl ed frame problem.

Recently, Reiter has applied the situation cdculus for solving database problems
(Reiter 1994). Reiter proposed the solution for the database version d the frame
problem using mathematica induction besed onthe analogy between database states
and retural numbers. In his new manuscript, (Reiter in preparation), he revives the
situation cdculus as a formali zation method for artificial intelligence He argues that a
situation is not the same & a state; a situation is a tempora history, while astate is a
snapshat.

Stephen Bittner applied Reiter's ideas to model changes and inconsistencies in a
legal cadastre system (Bittner 1998. Starting with an initial situation, he proposed a set
of axioms for adion preandtions and a set of axioms for succeeding states that are
allowed in a legal cadastre. Possble discrepancies between the true states in the real
world and the rights registered in a lega cadastre ae marked as inconsistencies. The
formal model was devel oped as an exeautable Prolog program.

2.2.2 Naivephysics

Naive physics was proposed with the goa of studying the human common sense
knowledge dou the everyday physicd world (Hayes 1978; Hayes 198%).

The goa of the CYC project, (Lenat et a. 1990, was to identify the re of
common sense knowledge which would enable an artificial agent (roba) to act
intelli gently in red world circumstances. It came out that an immense ollection d facts
stored in the computer still coud na compensate for the common-sense knowledge
abou the physical world of an average human being (Hobbs and Moore 1985).

Hayes challenged the situation cdculus with the agument that mutually unrelated

fads are irrelevant for representing actions (Hayes 198%). Interadions between
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physicd objects need to be taken into accourt only when their histories overlap, bah
spatially and temporally. Hayes proposed that a basic ontologicd primitive shoud be a
pieceof space-time with natural boundiries, bah temporal and spatial. He alled these
primitives histories. History of atwo-dimensional spatial object is represented in Figure
2.1. Unlike asituation, a history has a shape; it is restricted spatially and extended
temporally. Indeed, situations are themselves histories of a very spedal kind, lkeing
spatially unboun@d and having temporal boundiries defined by the events between
which they are fitted.

L A finish(h)
Wl) L’;:_’_’:::_,_-__ i
&, ! |
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&’%e | begin(h) t end(h)
! N

Figure 2.1: History of a moving and transforming 2D-objed (Hayes 198%).

Further, Hayes formalized the behavior of liquids (Hayes 1985a). In comparison with
the formali zation d solid olgeds, liquids posed a more difficult problem. Hayes tried to
solve several problems coming from the strange properties of liquids: their merging,
splitti ng, moving, disappearing. Ead of these processes includes treament of time and
change. Hayes dresd that the individuation d liquidsis much harder problem than the
individuation d solid olgeds. The problem can be simplified if liquids are seen as
liquid ojedsin contained space bu such representation daes nat capture the nature of
liquids. Therefore, Hayes concluded that liquid oljeds exist as duals. enduring pieces
of liquid and temporary liquid ohjeds. An important conclusion was drawn about the
proper approach: the world can be separated into smaller domains of interest, which are
easier to formali ze.

Recently, Kuipers formalized continuows change using differential equations,

(Kuipers 1994). Kuipers approadced the problem of change from the physicist’s point of
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view - using the language of differential equations for describing a system and drawing
inferences abou it. A differential equation represents the structure of the system by
seleding certain continuows variables that charaderize the state of the system, and
cetain mathematicd constraints on the values those variables can take on. A set of
continuous functions of time describes the way the variables of the system evolve over
time starting from a given initial state.

2.3 Temporal databases

Database research concentrates on temporal dimensions, structure of time, and temporal
query languages. A comprehensive survey of the development in relational temporal
databases is given by Snodgrass (Snodgrass 1992. Snodgrass simmarized the major
concepts from appli cation-independent DBM S suppart for time-varying information. He
concludes that the semantics of the time domain, its gructure and dmensionality is well
understood. Many tempora query languages are airrently proposed: Tquel (Snodgass
1987, HQuel (Tansd 1986, Postgres (Stonebraker and Rowe 1985), HSQL (Sarda
1990, and TSQL2 (Snodgass 199%). While the query languages in relational
databases are formal, oljed-oriented temporal query languages lack the formality
(Snodgrass1995).

Time is multi-dimensional in a very particular sense. There is a @nsensus on
terminologicd isaies abou two dmensions (Jensen and Dyreson 199§: valid time
describes when an adion happens in the modeled world, and transaction time describes
when the information was entered in the database. The former is controlled by the
changing agent, the latter by the database.

Temporal databases are dassfied according to the temporal domain they suppart. If
neither transaction na valid timeis suppated the database is static. A roll back database
suppats transadion time, bu nat valid time. It permits the entering of fads in a
database, but only database time is gored with each fad. A historical database suppats
only vaid time. It alows the entering of historicd fads in a database withou
registration d the transadion time. Finally, a bitemporal database supports bath valid
and transaction time.

In all these variants, the user-defined time is not considered an attribute. In addition
to these dimensions, several third tempora dimensions were proposed to capture
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semantic detail s not covered by two-dimensional model: reference time (Clifford and
Isakowitz 1994 and event time (Kim and Chakravarthy 1994.

Depending on which dmension d time is used, there are several choices in its
representation. Time can be linea, branching or cyclic; discrete, dense or continuots;
interval or point-based; absolute or relative; bounded or unbounaed (Snodgrass19932).

24 Timein GIS

Frank concluded that the discusson abou different types of time resembles the
discusson abou different types of space in GIS (Frank 19%a). He proposed the
taxonamy of types of time with lattice structure. Special attention was paid to dfferent
granularity of time in administrative systems. Temporal dimension is usualy
represented in metricd units. points or intervals on a time scale. In many applicaion
areas, however, the order of events is al that matters or that is known, giving rise to
qualitative temporal reasoning. Frank gave the formalization d qualitative tempora
ressoning in GIS (Frank 1991), based onAllen’s interval work (Allen 198). Worboys
tried to amalgamate time and spacein a simple bitemporal GIS, and concluded that
there is adistinct asymmetry between the models of time and space (Worboys 1994).

2.4.1 GIS and adinistration

Human beings have invented and are still developing a cmmplex set of abstrad concepts
such as land ownership, money, marriage, or government (Searle 1995. In particular,
the concept of ownership is very important for modern GIS. The rights are tied to the
land: if there is no land, there ae norights. This rt of dependence extends the set to
the objeds whaose existence is dependent upon dher objects. The main representatives
in this group d entities are shadows and hdes (Casati and Varzi 1994). The cadastre is
an example of social construct attached to the concrete physica redity. The merging
and splitting of cadastre parcels are aucia operations for proper functionality of land
ownership information systems. Al-Taha presented a model of temporal reasoning in
cadastre based onthe extended relational databases (Al-Taha 1992.
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2.4.2 Objed identity intemporal GIS

Langran presented temporal database designs applicable to GIS applications (Langran
1989. In the relational database model, the dange is captured by credaing new
versions. Langran compares three methods of database versioning in resped to GIS:
table, tuple, and attribute versioning. She emphasized the reamgnition d different
versions of a dhanging objed as a fundamental problem for tempora databases. The
semantic problem of what magnitude of change causes an entity to get a new identity
and nd ancther version d the old, depends on the goplication.

A similar problem emerges in an integrated GIS when several thematic databases,
related to the same geographicad domain, are used simultaneously, (Al-Taha and Barrera
1994. Namely, an dd howse can be represented as a residential area in the local
cadastre database, and as a national monument in the state monuments database. Al-
Taha and Barrera proposed the three aiteria the identity must fulfill: uniqueness
immutability and nonreusability. Further, three capabiliti es for manipulating identiti es
in a GIS were propased: interrogation d a fedure for its identity, using identity as a
hande for the feaure itself, and, finally, the cmparison qeration to dedde if two
identiti es correspondto the same feaure. They also propacsed the defining identity as an
abstrad data type that hides the actual structure of the identifying medianism from the
user and shows only relevant usage operations. for comparing identiti es, assgning one
identity to a null element, constructing a null element, and for destroying the identity.
The transaction time perspedive was discussed only.

Finally, they enumerated a set of so cdled temporal constructs, that were dready
known from various urces, see Figure 2.2. The idea of temporarily suspending an
objea from a database (kill and reincarnate) was firstly presented by Clifford (Clifford
and Croker 1988.

Claramunt and Thériault proposed a taxonamy of change for spatial entities that
include deformations and movements (Claramunt and Thériault 1996. They divided the
change acording to the number of entities involved in three groups: evolution d a
single entity, functional relationships between entities, and evolution o several entities,
seeFigure 2.3.
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Figure 2.2: Temporal constructs of identities (Al-Taha 1994).
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Figure 2.3: Typology of spatiotemporal processes (Claramunt and Thériault 1996).
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In total, Claramunt and Thériault distinguished 16 dfferent spatiotemporal
processes. They stated that the range of phenomena that can be processed in atemporal
GISis probably inexhaustible.

Hornsby and Egenhofer discerned the following operations that either preserve or
change object identity: creae, destruct, reincarnate, issue, continue existence continue
nonexistence spawn, metamorphose, merge, generate, mix, aggregate, compound,
unite, amalgamate, combine, separate, splinter, divide, secede, dislve, seled (Hornsby
and Egenhdfer 1997).
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s s

b /

s’

[AF—{a] [AF—{ [ [af—sfs] [el—F

(a) spawn (b) metamorphaose (c) merge (d) generate (e) mix

Figure 2.4: Objed identity operations on simple objeds (Hornsby and Egenhofer 1997).

[=]>]°
Y
HO

C
\i Iil

=] =]
y
[m]

W) O
[ =] (=]
. ‘\\ //
0 \\4\\/}‘/
Eé

[o][=]%] |[=][=]®
\\
h |

][] | [=][=]"

B\
B

(a) aggregate (b) compound (©) unite (d) amalgamate (e) combine

Figure 2.5: Objed identity operations on composite objeds (Hornsby and Egenhofer 1997).

The dange description language (CDL) was proposed for qualitative graphical
representation d operations on identity of objects. The effects of change on the object
properties and the relationships between oljeds were analyzed with an emphasis on
topdogicd relations between spatia objeds. Two red-world phrenomena ae used as
examples: state borders and the spread of diseases. This work is extended to operations
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for composite objeds (Hornsby and Egenhder 1998. They distinguished two types of
compasite objeds: an aggregation (based on the relation part-of), and an asciation
(based on the relation member-of). They introduced the nation o framework arguing
that the parts form an aggregate only if they are sorted in a spedal configuration -
framework.

All mentioned authors describe dange operations informally, using intuitive
nations for diff erent situations from pradical applicaions.

2.5 Formal background: Category theory

Category theory is a generalized mathematicd theory of structures. One of its goalsisto
reved the universal properties of structures of a given kind via their relationships with
one ancther. Category theory was invented in 1945by Eilenberg and Mac Lane, who
borrowed the nation o caegory from Kant and Aristotle, (Eilenberg and Mac Lane
1945.

One of the interesting feaures of category theory is that it provides a uniform
treagment of the nation d structure. This can be seen, first, by considering the variety of
examples of categories. Almost every known example of a mathematical structure with
the gpropriate structure-preserving map yields a cdegory. Sets with functions between
them constitute a céegory. Metric spaces form a cdegory whose primitive dements are
points and whaose primitive operation is distance Category theory was used to model
GIS applicaions (Herring et a. 1990Q. The basic framework for a category theory of
spatial representations, relations and appli cations built uponthem was defined.

Category theory unifies mathematica structures in a second, perhaps even more
important, manner. Once atype of structure has been defined, it quickly becomes
imperative to determine how new structures can be @nstructed ou of the given ore and
how given structures can be decomposed into more dementary substructures. For
instance, given two sets A and B, set theory alows us to construct their Cartesian
product AxB. For an example of the second sort, given afinite Abelian group, it can be

decompaosed into a product of some of its subgroups.

Category theory is the dgebra of functions; the principal operation onfunctionsis
taken to be composition (Walters 1991). Category theory can be used in defining the
basic building blocks of datatypesin programming, and it offers ecnamy in definitions
and poafs.
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2.5.1 Definition d category

The following definitionis taken from (Bird and ce Moore 1997):

A caegory C is an agebraic structure mnsisting of a dassof objeds, denoted by
A, B, C,...,and so on,and a dassof arrows, denoted by f, g, h,...,and so on, together
with threetotal operations and ore partia operation.

The first two total operations are call ed target and source; both assgn an ojed to
an arrow. Formally, f: A — B indicaes that the source of the arow f is A and the target
of fisB.

The third total operation takes an oljed A to an arrow id: A— A, cdled the

identity arrow on A.

The partial operation is cdled compasition and takes two arrows to another one.
The composition g . f (pronource “g after ') is defined if and ory if f: A— B and
g: B — C for some objeds A, B, and C, in which caseg . f: A— C. In other words, if
the source of g isthetarget of f, then g . f is an arrow whose target is the target of g and

whase source is the sourceof f.

Compositionisrequired to be asciative andto have identity arrows as units:

h.(g.)=(h.g).f
foralf:A—B,g:B—Candh:C— D, and
idy.f=f=f.idg
foral f: A— B.

A smple example of a cdegory is a preordered set. Given two elements p, g of the
preordered set, there is a morphism f: p— q if and orly if p is snaler or equa to q.
Hence, a preordered set is a category in which there is at most one morphism between
any two oljeds.

Beside functions, there ae many more mathematicd data that can be viewed as a
caegory. Each dreded graph determines a category: nodes of a graph are objeds, and
al paths are morphisms (arrows) typed with their start and end nodas. Composition is
concatenation d paths. These data satisfy the aioms mentioned abowve, hence form a
cdegory.



Contributing Disciplines 21

2.5.2 Categorical product

A product of two oljects A and B consists of an olged and two arrows. The objed is
written as A x B and the arrows are written outl : Ax B — A and outr : Ax B — B.
These three things are required to satisfy the foll owing property: for each pair of arrows
f:C—>Aandg:C— B there «ists an arrow (i.e. an operation) [f,gll: C— Ax B
such that

h=[fgE outl. h=f and outr . h=g

for dl h: C— AxB. The operator [{,g0is pronourced “pair f and g”. The following

diagram summarizes the type information:

A& AxB ﬂ» B
[f,g0
f g
C

Figure 2.6: Commuting diagram for the cdegoricd product.

2.5.3 Category of sets andtotal functions

The motivating example of a cdegory is Fun, the category in which the objeds are sets
and the arows are typed functions. An arrow (i.e. a function) is a triple (f, A, B), in
which the set A contains the domain of f and set B is the range of f. By definition, A is
the source and B the target of (f, A, B). The identity arrow ida : A— A is the identity
function onA, and the mmposition d two arrows (f, A, B) and (g, C, D) is defined if
and orly if B= C, inwhich case

(9,B,D) .(f,A,B) =(g.f,A D)

where, ontheright, g . f denotes the usual composition d functionsg and f.

In the cdegory Fun, products are given by pairing. A x B is the Cartesian product
of A and B, and outl and outr are the projedion functions. The cdegoricd product is
useful in pdnt-freeprogramming.
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2.5.4 Functions

Functions are basic building blocks in functional caegory theory. Mathematically
speaking, afunctionfisarule of correspordence which associates with each element of
agiven type A aunique member of a second type B (Bird and Wadler 1988. The type A
is cdled the source or domain type, and B the target or range type. Thisfad is formally
expressed by the foll owing signature:

f:A- B
fa= bwhere a/B, bLJB

A function f is said to take aguments in A and return results in B. If a denotes an
element of A, then we writef (a), or just f a, to denate the result of applying the function
f to a. This vaue is the unique dement of B associated with a by the rule of
correspordence for f. The bracket notation, i.e. f (a), is usua in mathematics, bu we
will use the bracket-freenatation,i.e. f a, usual in functional programming.

If a function is defined by the gplication to its argument, it is a point-wise
definition. The examplesare: f x= X+ 2,gXx = 2 x X, €tc.

Some functions have very general source and target types. The foll owing definition
defines the identity function:

idx =X
The identity function maps every member of the source type to itself. Its type is

therefore A — Afor any type A.

2.5.5 Functiond composition

The compasition d two functions f and g is the function h such that hx= f(gx).
Functional composition is denoted by the dot operator (.) for the symbd usua in
mathematics (o):

(f.9x=1(gx
A signature is the information abou types of input and ouput for a particular function.
Signatures dart with the function reme followed by the symbad :: meaning "have type

of", inpu type(s) and an ouput type. The signature of functional compasition (.) is
given by:

Di:bsc)-(@a-b) - (a-c
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That is, functional composition takes a function d type (b - c), a function d type
(a - b), and returns a function d type (a — c). The only restriction on functional
compasition is that the source type of its left-hand argument must agreewith the target
type of its right-hand argument (b in our example &owe).

Functional compasitionis an associative operation:

(f.g).h=f.(g.h)
for al functions f, g and h. Therefore, there is no reed to enclose the functions in
bradkets when writi ng sequences of compositions.

There ae two basic styles for expresdng functions. the point-wise style ad the
point-free style. In the point-wise style afunction is described by its application to
arguments. In the poaint-free style, a function is described exclusively in terms of
functional compasition and algorithmic strategies can be formulated withou reference
to spedfic datatypes (Bird and de Moore 1997). The alvantage of functional
compasition is that some definitions can be written more concisely. For example, if the
function h is compasition o functionsfx=x+ 2 andgx= 2 x X, we can write it in so-
cdled padnt-wise notation as: hx=f(gx), but the point-free definition is clearer:
h=f.g. This leads to pdnt-free style of programming, which is free of the
complicaions involved in manipulating formula dealing with bound ‘ariables
introduced by explicit quantificaions.

2.5.6 Undefined values

Functions that are defined for all elements of their domain are called total functions.
Addition (+) among natural numbers is an example for a total function. Functions that
are nat defined for al elements of their domain are cdl ed partial functions. The simplest
example is numericd division by zero. If a cmputer encounters a task such as (1/0), it
evaluates an error message "attempt to dvide by zero", simply freezes, or crashes.

Partial functions play a maor role in computer science becaise they are used to
model algorithms that fail to halt for some inpu values. Unfortunately, the speaficaion
of abstrad datatypes with pertial functions poses srious problems (Loedx et al. 1996.
Therefore, a spedal element shoud be introduced to convert partial functions to total
ones. it is [, pronourced "bottom”, which stands for an undfined value. With the
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undefined value, every partial function can be treaed in the same way, as if it were a
total function.

2.6 Summary

The philosophicd discipline of ontology offers the basic assumptions abou the red
world. Artificia intelligence was the first discipline that attempted to formalize
changing world using first order logic. Situation cdculus with second ader logic and
mathematicd induction promised better results. The research on tempora databases
resulted in a plethora of temporal query languages, na yet fully standardized. Two
different temporal dimensions are distinguished: valid and transadion time. Two
principaly different models for evolution d a database ae database versioning and
objeda versioning. Research on tempora GIS concentrates on qualitative models of
change. Operations aff ecting objed existence ae drawn from specific goplicaions and
then systematized. A forma model of a spatiotemporal database with the suppat for
change in olect identity is missng. Algebra and caegory theory are sound
mathematicd founditions for dedarative description d rea world phenomena.
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3. FRAMEWORK FOR A SPATIOTEMPORAL DATABASE

The goa of this thesis is to propose anew concept in modeling change of objeds
existing in the red world. To achieve the goal we must write down our assumptions
abou thered world - we must set up an ontology. In this thesis, we aume that thered
world consists of things or fedures that have properties. Things either are made of
homogenous guff or consist of other things. Each thing has its identity.

Once we have defined what is in the world, we ae anpowered to propcse an
epistemological model for a spatiotemporal database. The world is in continuos
change: the objects are formed or born, they exist or live, and they disappear or die.
Identities of things in the red world are represented by identifiers of objeds in a
database. Once given to an oljed, the same identifier may not be dtached (re-used) to
any other objed, even if the original objed was destroyed.

Objeds and relations change over time, and hence the database dhanges, too. There
are two temporal dimensions in which we capture this change: vaid time and
transadion time. Valid time registers the time when the tange happens in the red
world. Transaction time registers the time when the change is gored in the database.

The way objects, identities, and relations are represented is an implementation
isgue. In addition, there is a choice & to whether the database is represented as a series
of database states or snapshots (so-cdl ed database-versioning) or a set of objeds with a
series of attribute states (objed/attribute versioning). Implementation issues are nat the
topic of investigation d thisthesis.

Therest of this chapter isdivided as foll ows. Firstly, we discussthe ontology of the
world making the important dedsions for further modeling. Next, the eistemologicd
model of the database is explained. Finally, implementation issues and the data model
are discus=d.

3.1 Ontology of thereal world

Since we dtempt to construct a model of the red world, we have to express our
asuumptions abou the red world to resolve passhble ambiguities of natural language. In
other words, we have to describe the ontology of the problem we investigate. Ontology
is an ancient philosophcd discipline, developed ariginally by Aristotle and later
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philosophers, and then rediscovered and redefined for the purpose of artificia
intelli gence

In phlosophy, ortology is the systematic accourt of existence It has been
concerned with the properties of objects, with their modes of existence and with
questions guch as how they can be divided in parts and hav they fill space (Smith
1982.

In artificial intelligence, an ortology is an explicit spedficaion d a
conceptuai zation. A conceptuali zation is an abstrad, simplified view of the world that
we wish to represent for some purpose (Gruber 1993, p. 198 Sincein Al "what exists
is that which can be represented”, ortology is often confused with epistemology -
science of knowledge and knowvledge representation.

We gply the ontologicd view of the world from Bunge (Bunge 1977 Bunge
1979. A forma model of objeds in oljed-oriented programming based on this
ontology can be foundin (Wand 1989.

3.1.1 Thingsandtheir properties

Acoording to Bunge, the world is compased of things and forms are properties of
things. Things are grouped into systems or aggregates of interacting comporents. Every
thing changes. Nothing comes out of nothing and no thing reduces to nahingness
Every thing abides by laws. Whether natural or social, laws are invariant relations
among properties.

The world is viewed as composed o things of two kinds: concrete things that are

cdled entities or substantial individuals, and conceptual things. An individual may be
either simple or compasite, namely, composed of other individuals.

Properties of substantial individuals are cdled substantial properties. A distinction
is made between attributes and properties. An individual may have aproperty that is
unknown to us. In contrast, an attribute is a feature asgned by usto an oljed. Indeed,
we recognize properties only through attributes. A known property must have at least

one dtribute representing it.

Properties do nd exist on their own bu are "attached" to entities. On the other
hand, entities are not bundes of properties. Thus, it might be said that the fundamental
comporents of the world are entities. Entities are "known" to us through their

properties. Properties are materiali zed in terms of attributes.
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The properties of composite things may be related to the properties of the things in
their compasition. Hence, properties of composite things are of two kinds. hereditary,
that is, properties that belong to the @mporents of a (compaosite) entity, and
nonkereditary. The latter are cdl ed emergent properties.

It is important that no two concrete, observable things can be the same. No two
substantial individuals have exadly the same properties. If we perceve that two entities
are identical, it is just becaise we do nd asdgn attributes to all their substantia
properties. For example, two glasses might have exadly the same superficia properties
(color, weight, material, cgpadty), and we canna see ay difference between them.
Nevertheless two glasses are two dfferent objects.

3.1.2 Changes

Full knowledge of a thing requires information abou how the states of the thing can
change. The necessary condtion for this is that every (concrete) thing has at least two
distinct states. When a thing undergoes a dhange, at least one property will have to
changein value; hence, a dhange of athing is manifested as a change of state. It follows
that, for a dnange to be passble, the thing has to have more than one state.

Bunge introduced the principle of nominal invariance to clarify the persistence of
things: “A thing, if named, shal keep its name throughou its history, as long as the
latter does not include dhanges in natural kind - changes which call for changes in
name.” (Bunge 1977, p. 22). Individuals with dstinct names are distinct. This is
similar to the unique name asumption incorporated in spedal theories of first order
logic that are capable to represent relational databases (Reiter 1984).

3.2 Epistemology of the world

Ontologies are mainly useful for constructing genera theories. Deriving observable
consequences from the theory is a further step. This is the task of epistemology.
Epistemology is the part of philosophy concened with knovledge and knawledge
representation. A representation is cdled epistemologicdly adequate for a person a
madineif it can be used pradicdly to expressthe fads that one actually has abou the
aspeds of the world (McCarthy and Hayes 1969.

The dements of the ontology propased in the previous sction are mapped to an
epistemology, which will be used in the rest of this thesis. Things are mapped to
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objeds, properties to attributes, naminal invariance to identity. As an epistemological
fad, different temporal perspedives are introduced.

A moded is a description d some phenomenon, creded for some purpose. It
embodes a dosed-world assumption: that the set of objeds and relations in the model
include everything necessary for that purpose. The model of the dhangeeable world
depends onthe dosed-world assumption. It isimposgble to predict the next value of an
objed attribute withou asuuming that al the influences of that attribute ae known
(Kuipers 1994. Therefore, in what follows, we assume that al the facts abou the
modeled seleded part of the world are known - what is not known, daes not exist.

3.2.1 Objed categories

Objed is a @ncept, abstraction, a thing with meaning for the problem at hand
(Rumbaugh et al. 199)). This definition embraces different categories of objects in the
red world. Here, categories mean classficaion and nd caegories in mathematicd
sense & in Chapter 2.

There ae physical objeds that smply exist - these ae substances in Aristotelian
ontology: stones, mourtains, rivers, the earth. We can, at least in theory, touch and
manipulate them. There ae dstract objeds that are immateria - these are acidents in
Aristotelian ortology: qualiti es, events, and processes. In addition, there is a spedal
group of objeds, which are cdled institutionalized acddents (Smith to appea). Such
objeds are result of human intelledual effort. Examples include the equator, the
Northern Hemisphere, state boundaries.

Objeds belong to categories or classes. The pigeon onmy windowsill i s a particular
instance of the cdegory of birds. A penguin is a less charaderistic example, yet an
instance of birds, too. Such categorization in which there ae instances more and less
characteristic for a particular caegory is known as radial caegorization (Lakoff 1987,
with more references to the pertinent cognitive literature).

Objeds have dtributes. Cars have mlor, year of production, length, weight, engine
power; cadastre parcels have aea, market value, usage. Each attribute may take avaue
from a pre-spedfied damain: a particular car can have the value red for the atribute
color and the value 1979for the dtribute year of production.
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3.2.2 ldentity

In the real world, athing simply exists, but within a representation, each olject neals a
speda handle by which it can be uniquely referenced and dstinguished from other
objeds. It is achieved by attaching an identifier to each oljed in the database. Objed
identity is considered ore of the esential paradigms in oljed-oriented modeling
(Cattell and Barry 1997 Rumbaugh et al. 199]). In a database, identiti es are represented
by identifiers, which are @nstructed and maintained by the database management
system.

The identity all ows the distinguishing of one objed from others, even if objeds are
of the same kind and have the same dtribute values. For example, a ca factory may
produce two cars that have completely the same gpeaance (color, dmension, engine
power, etc.). Yet, ead ca will have its own serial number that allows its unique
identification.

Identity has a different meaning than in mathematicd logic where the identity is
interchangeably used with equality (Tarski 1946. Two dfferent real objeds may be
equal under some @ncept of equality, bu never identicd.

The identity must fulfil three ©ndtions to properly perform its role (Al-Taha and
Barrera 1994):

* unigueness. Two dstinct objeds may not share the same identity.

* immutability: Identity isassgned at the aedion d an oljed and remainsthe
same during the lifetime of the object. Neither the system nor auser can
change the identity of the objed.

* non-reusability: A new obed may not take the identity of any already
destroyed oljed, since this could be interpreted as an invalidation d the
deletion d the latter objed.

The notion d objed identity is different from the notion d a primary key in the
relational model (Cattell and Barry 1997). Relational algebra, (Codd 19B), is based on
relational cdculus. It is a powerful tod for storing and processng tabular information,
but ladks the caability of representing objeds for deding with complex applicaions
like GIS. A tuplein arelational table is uniquely identified by the value of the mlumns
comprising the primary key of the table. If the value in one of those clumns is
changed, the tuple changes its identity and becomes a different tuple. In addition, if two
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tuples beacome equal in key values, they are merged. Traceaility to the prior value of
the primary key islost.

3.2.3 Relations

Objeds are mnrected through relations. Relations can be, for example, topdogica or
mereologicd. The other groups of relations include mmparatives (is longer than, is to
the eat of) and so cdled ‘Cambridge relations' (is father of, is cousin to) (Mulligan and
Smith 1988.

Topdogicd relations describe spatial link among objeds (my computer is on the
desk; a ar is parked in front of the house; | am in the room; the garden is between the
wall andthe fence).

Mereologicd relations describe how objeds are cmmposed o other objeds (a
keyboard is a part of a cmputer, a ca has four wheels, aroom is a part of a building).
For solid physicd objeds, we acept the view from naive physics that "every solid
physicd object is either a pieceof solid stuff, or else an assembly whichismade up d a
finite number of other solid physicd objects’ (Hayes 1985b, p. 3). In aher words,
there exist simple objeds and oljeds composed of parts. The relation part of isa central
relationin thisthesis.

In our epistemologicd model, mereologicd relations will be used to cover
ontologicd assumptions abou the structure of things consisting either of homogeneous
material or of other individual things.

3.2.4 The structure of time

The world is in continuows change: the objeds are formed or born, they exist or live,
and they disappear or die. Metaphaically spe&ing, the existence of an ohjed isthelife
of an ojed. A house &ists from the time it was built until it is destroyed.

The structure of time is complex - there ae severa choices: time can be linea or
branching, discrete or continuows, absolute or relative, bouneéd o unbourded
(Snodgrass1995).

Time ca be linear, branching, or cyclic (mostly used for planning). Two basic
structural models of time ae linea and kranching. In the linear model, time alvances
from the past to the future in a totally ordered fashion. In the branching model, time is
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linea from the past to nowv, where it splits into several time lines, eat representing a
potential future sequence of events. Along any future path, additional branches may
exist. The structure of branching time is a tree rooted at now. Finaly, the mode of
cyclictimeisapplicable for recurrent processes auch as yea seasons, seasona floodks.

Time can be discrete, dense or continuows. The discrete time line (if linea model is
asumed) is isomorphic to natural numbers: each pant in time has a single succesor.
On the other hand, dense models of time are isomorphic to the rationals or the reds:
between any two moments in time there exist another moment. Continuous models of
time ae isomorphic to the reas. they are dense, bu there are no gaps. Although time
itself is generally perceved to be cntinuows, most propcsals for adding a temporal
dimension are based on the discrete time model. In the discrete model, eadh natural
number corresponds to a nondemmposable unit of time with an arbitrary duration
cdled chronon.A chrononis the smallest duration d time other than a point that can be
represented in the discrete model. It is not a paint but a minimal line segment on the
timeline.

Time can be bourded or unboun@d on bdh ends: in the past and in the future.
Time began with the Big Bang. If the universe is closed, then the time will have an end
in the Big Crunch; if it is open, time will go onforever (Hawking 1988). Thisis more a
cosmologicd question and nd relevant for our purposes.

Time can be asolute (anchored) or relative (unanchored). Absolute time is fixed
with resped to a pre-defined time scde, usually Gregorian calendar time (e.g. January
1, 1999. Relative time, termed span, is a pieceof time withou a fixed pasition onthe
timescde, (e.g. 9 haurs).

In this thesis, we use linea, discrete, bourded, absolute model of time. We prefer
linea over branching time because of the simplicity. The discrete model is appropriate
for the limited representation capabiliti es of database techndogy. Bounded time suits
our nedals because we ae nat interested in the history or future of the whole universe,

but in the history and some short future of the resources concerning mankind.

3.2.5 Temporal dimensions

Two time dimensions are of general interest in the context of databases: valid time and
transaction time. The following definitions are taken from the latest version d the
consensus glossary in the temporal database community:
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"The valid time of afad is the time when the fact is true in the modeled redity. A fact
may have asciated any number of instants and time intervals, with single instants and
intervals being important speda cases. Valid times are usualy suppgied by the user.”
(Jensen and Dyreson 1998, p. 30).

"A database fad is dored in a database & some point in time, and after it is dored, it is
current urtil logicdly deleted. The transaction time of a database fact is the time when
the fad is current in the database and may be retrieved. Consequently, transadion times
are generaly not time instants, bu have duration. Transaction times are @nsistent with
the seridization d the transactions. They canna extend into the future. In addition, as it
is impossble to change the past, (past) transadion times canna be danged.
Transadiontimes may be implemented using transadion commit times, and are system-
generated and -suppied.” (Jensen and Dyreson 1998, p. 31).

With these definitions, four types of temporal databases are differentiated: static,
rollbadk, historic, and btemporal databases (Table 3.1). Static databases suppat neither
transadion na valid time. Historic databases suppat vaid time, bu not transadion
time. Rollback databases suppat transadion time, bu not valid time. Findly,
bitemporal databases suppat both valid and transaction time.

No Transadion Transadion
Time Time
No Valid Static Transaction
Time Database Database
Valid Historical Bi-temporal
Time Database Database

Table 3.1: Time perspedives and resulting temporal database models.

If afad is dored in the database & the same time it is observed in the modeled redlity,
transadion time is equal to valid time. An example for such a database is the
registration d cloud olservations by a satellite camera, assuuming that that the time
necessry to save the dataisinfinitely short (Jensen and Snodgass1992.

Two essential criteria the identifiers must fulfil (uniqueness and nonrreusabili ty)
are, by definition, expressble only in the transaction time. Therefore, we will consider
transadion time & our primary temporal dimension and assume that the valid time is
represented as an attribute.
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3.3 Conceptual model of atemporal database

A database is a computer-based colledion d data with the caability for controlled
definition, access retrieval, manipulation and presentation d data within the ollection.
A database represents a spedfic set of objeds slected from the real world that can be
represented. Such a set is cdled a unverse of discourse. In this ®dion, we anayze
conceptual model of our database. The representation d the database dements is
covered in Chapter 6.1

3.3.1 Objeds, attributes, andrelations

In a typed system, each ojed is an instance of the dassit belongs to. As we have
adreadly seen above, ohjeds can be physical, such as a ar, or abstrad, such as
ownership of a pieceof land. Both physical and abstrad objeds have their static and
dynamic side. To dfferentiate such oljeds, we use a ©mplex type system.

The dynamic or behaviora side of an olject is expressed as a set of operations that
the objed will perform. For example, a ca can be started, stopped, or repaired. While
under repair, it isnot avail able for driving.

Finaly, the objeds in a database have life spans; their lives begin when they are
entered in the database and end when they are removed from the database (see Figure
3.1). Between these two pants the objeds are updated: changes in their attributes are
recorded. Both the static and the dynamic sides of an olject are common for a particular
classor type of objects.

Real world
lifeline of athing
Birth > Death
Database
lifeline of arepresentation
create > delete

Figure 3.1: Life of athing in the red world vs. life of its representation in a database.

The static aspect of an olject is expressed by a mllection d named attributes, each of
which may take avalue from a pre-specified damain (Worboys 1995. A ca obed
might have color, manuacturer name, and engine power among its attributes. A
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particular car might take the value red for the color attribute. All attribute values for a
given olject in a particular moment constitute its state.

Objeds in the database ae @wnneded through relations. Relations are defined by
objed types, they are vaid ony if the related oljeds are of the proper type. Binary
relationships invalve two oljed types, ternary relations invalve three objed types, and
so on. A binary relationship may be one-to-one, ore-to-many, or many-to-many,
depending on hawv many instances of eac type participate in the relationship (Chen
1976. For example, marriage is a one-to-one relationship between two instances of type
Person. A woman can have aone-to-many mother-of relationship with many children.
Teaders and students typicdly participate in many-to-many relationship. Several books
may be placed onatable. A question we might want to ask is "Which bools lie on the
table?' To answer this question, a cnrection ketween bools and tables must exist in
the model. This conredion is cdled relationship. A relationship type conneds one or
more objed types. In our example, the relationship type isisOn. This stuationis siown
in Figure 3.2, using a diagrammatic language call ed entity-relationship dagram, or E-R
diagram.

isOn

Book <} Table

Figure 3.2: Entity-relationship diagram for a one-to-many relation isOn.

Objeds (or entities) are enclosed in redangular boxes; attributes are enclosed in
elli pses; identifiers are underlined. The link between the boxes bodk and table is a
relationship - isOn. The relationship isOn is many-to-one: the white part of the
rhomboid denotes the many side, and the blad part denotes the one side.

3.3.2 Database \s. oljed versioning

Much discusson in the literature centers around dfferent strategies to record change,
but these ae logically equivalent, as it will be shown in this dion. There ae two
distinct ways to represent change of objeds in a database depending which elements of
the static database are changed. If the complete new state of the database is dored for
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every change, it is cdl ed database versioning. If the new states of modified oljeds only
are stored, it iscalled oljed versioning.

Database versioning model produces a new snapshot of the whole database for
eath change. A snapshat is a set of objects and relationships among them valid at a
particular paint in time scde. An example is a phaograph showing a visible field of a
camera eye in the moment of exposure. In this view, the universe (world) of discourse
or a mmplete temporal database is a sequence of snapshots representing discrete
changes of objeds and relations amongthem sincethe aeation d adatabase. Typicdly,
amovie is atempora sequence of events recrded by a canera with a frequency of 24
snapshots per send. This model stores the mmplete history of a database - the
snapshat for any moment in the history of a database is realily available. A drawback
for implementation pupaoses is that a lot of unchanged information is gored many
times.

‘time ‘time

world at tg 0y att3

0z ends

world at t, ; ' : . oatt,

v

v

world at t;

/ VOI at thOZ at t1/03 at tlé/
>

[
L

Figure 3.3: Database versioning (left) and oljed versioning (right).

Objea versioning stores a new version for every changed olged or attribute. A universe
of discourseis a @lledion d objeds each of which has a version for every change the
objed was invalved in. This model stores the changed information ony. Each version
of changed oljeds must have atimestamp. A drawbad of objed versioning is that the
state of the complete database & a particular point in time must be cdculated. The
deletion d an ojed must be explicitly stated (object o, in Figure 3.3). In the case of
objed versioning, it is not easy to follow the evolution d the database from one
snapshat to the next.
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The mgjor difference between olject versioning and database versioning is in the
dimension onwhich the groupgng is done. In oljed versioning, oljeds are fixed, and
times are grouped. In database versioning, time is fixed, and oljeds are grouped. It
shoud be noted that the ad¢ua change occurs among attributes, i.e. a set of attributes
variesin an olgect, which has the permanent identity. The representation d two varying
objeds aaossthe four timeinstantsis shown in Figure 3.4.

TIME OBJECTS OBJECTS TIME
1 Car(red) Car(red) 1
2  Car(blue), House(white) Car (blue) 23
3 Car(blue), House(white) House (white) 234
4 House(white)

Figure 3.4: Grouping of times (left) and grouping of objeds (right).

The figure shows the universe of discourse nsisting of two oljects: a car and a house,
having a mlor as the dtribute. At the time point 1, orly the ca exists. At the time point
2, the ca color is changed to bue and the house gpears. At the time paint 4, the ar is
deleted.

It is beneficial to have amapping between database and ohed versioning. The
transformation functions from the snapshat view to the objects view and vice versa ae
based upon this difference in groupng dimensions. An abstrad data type of the
snapshot view is an ardered list of temporal elements paired with appropriate lists of
objeds a a specific time: [(1, redCar), (2, HueCar, whiteHouse), (3, HueCar,
whiteHouse), (4, whiteHouse)]. An abstrad data type of objed view is an exhausting
list of objeds paired with appropriate lists of temporal elements $howing when those
objeds existed: [redCar (1), blueCar (2,3), whiteHouse (2,3,4]. The dgorithm for the
transformation from the objed view to the snapshots view can be informally described
asfollows:

a) distribute time (pair timestamp with each object in each
shapshot),

b) find all objects,

c) select temporal points for each object: [(blueCar, 2),
(blueCar, 3)],

d) normalize each object: blueCar [2, 3],

e) concatenate results.



Framework for a Spatiotemporal Database 37

The inverse transformation starts with agroup d timed oljeds, and the dgorithm is:

a) distribute objects (pair each object with all temporal points),
b) find all temporal points,

c) select objects for each temporal point: [(2,blueCar),
(2,whiteHouse)],

d) normalize each timestamp: [(2, [blueCar, whiteHouse])],

€) concatenate results.
The complete ade for both transformations is given in Chapter 6. Transformations are
losdess that is, no information is lost when converted from one view to ancther.
Therefore, the choice of versioning tedhnique is an irrelevant implementation question,
and we will develop ou database model on the nceptually smpler database-
versioning approach. Each change in the database produces a new snapshot having a
new succeeding timestamp.

3.4 Treatment of errors

In the ided case, all observed and stored data match the true states in the universe of
discourse. This is, however, never the case. Because of imperfection in observation
apparatus or simply because of ladk of appropriate knowledge, errors occur.

An error in a database is a piece of stored information that does not match the true
state in the universe of discourse with the expeded accuracy. If an error is discovered, it
shoud be removed from the database. This dion describes possble situations and
propases adequate solutions of problems related to error correctionin databases.

We begin with a simple scenario of an error in a persona database. The personal
database stores data &ou people: their names and dates of birth. Now, suppacse the
foll owing transadions are performed onthe database:

On 250ct 1998,the data for a person with the name Johnwas entered
andthe date 20 Jan 1850 & Johns birthday. One month later,

25Nov 1998,it was foundthat John's birthday was not on

20Jan 1850, btion 20Jan 1950.An error occurred and reeds to be
correded.

The procedure of corredion depends of the caability of the database management
system to cope with various temporal dimensions:. transaction and valid time. Four cases
are distinguished: static, historical, rollbadk and htemporal database.
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Static database tracks neither the transaction na valid time. Such database could
record Johns birthdate & an optional attribute. In that case, the error data (the dtribute
20Jan 1850 is overwritten with the arred data (20 Jan 1950). After 25Nov 1998,
there is no information in the database if the aror ever happened. An inspection d the
database would have foundthat the database was always in the consistent (error-free
State.

Historicd database tracks the valid time, bu not the transadion time. A temporal
reference (timestamp) about the time when an event happened in reality is required for
every reoord in the database. The aroneous data (the timestamp for birth 20Jan 1850)
is overwritten with the corred timestamp for birth (20Jan 1950). As in the previous
example, there is no information abou the eistence of the earor. The database is
revised withou evidence that the revision ever took dace The only difference between
static and hstoricd databases is that a static database may model the tempord
dimension as an attribute, whereas a historicd database must trad the valid time.

The rollbadk database tradcs the transaction time, bu not the valid time. The
required tempora reference for every reoord is the time the record is gored in the
database. The valid time dimension is cgptured as an ogional attribute. In this case, we
have atransadion timestamp 250ct 1998 as the date the Johnis wrong birthdate was
entered and an attribute, 20Jan 1850, which shoud be wrreded. The crredion is
timestamped as an event happening on 25Nov 1998. After that date, we have @rrect
state in ou database, since the dtribute - Johris birthdate - has the correct value. What
IS more, an inspedion abou the state of the database between 250ct 1998 and
25Nov 1998 would have found that the database had recorded dfferent (factually
wrong) information abou Johris birthdate.

Finally, bitemporal database records a bitemporal element for every record in the
database - both valid and transadion times are recorded. The eror is correded by
adding the new transadion with the @rred timestamp in valid time for Johns birthdate.
The difference between hitemporal and roll badk databases is that a bitemporal database
suppats tempora query in valid time @ou every record in the database, whereas a
rollbadk database can insped such data as the dtribute only.

Katsuno and Mendelzon dstinguished two concepts in correding the aror state in
the database: updae and revision. An updae brings the knowledge base up to date
when the described world changes. A revision is obtaining new information abou a
static world (Katsunoand Mendelzon 199).
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The scenario we analyzed here is clearly a revision, lkecause the universe of
discourse was datic - Johris birthday did na change. In the first two cases (static and
historica databases), we lost the information abou existence of an error in past times.
In the last two cases (rollbadk and khtemporal databases) we just added the new
information to the existing knowledge, preserving the fad that we had had an error
before.

3.5 Summary

In this chapter, the setup for an oljed-oriented temporal database is described. The
database is a olledion d selected oljects and relations from the real world. The
esential concept of identity in a temporal database is explained: identity must be
unique, immutable and nonreusable. An olject has atype; it is an instance of the dass
Objeds areinvaved in relations, and atogether built a database.

Among different temporal models, a linear, discrete, bounad, absolute time is
chaosen. Transadiontime is sleded as primary tempora dimension, and the valid time
is an optional attribute. Although simple, the model is powerful enough for modeling
our universe of discourse. The dhange is modeled by database versioning - the mutation
of the complete database for every change. It is conceptually smpler than olject
versioning. Mappings between bah versionings are possble and losdess

The mnceptual model presented in this chapter is formalized in Chapter 6. In the

next chapter, we introduce the rules for the identity change - operations affeding object
identity.
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4. OPERATIONS AFFECTING OBJECT IDENTITY

In the real world, changes happen ower time. The dhange can be @ntinuows (gradual) or
caastrophic (abrupt). It may affed a particular attribute of an oljed (location, color, or
dimension), its relation to aher objeds (topdogy, parthood, or its mere existence
(identity). The topic of this thesis is the diange dfecting objed identity. Operations
aff ecting objed identity can be grouped in categories, which we will cal lifestyles.

The life of an ojed in a database begins with its creation. The aeation conrects
the new identity with a set of attribute values. An ojed may be creaed orly once
preserving its identity throughou its whole life. The creaion is common to all objeds.
The end d an oljed’s life is determined by its deah. Since some objeds might be
modeled as eternal in the context (e.g., the sun from the perspective of the eath), this
operation is not universal for all objeds in the database. Deep philosophicd questions
abou the red meaning of eternity are not considered in this thesis.

An ohjed may be modeled as having multiple episodes of its existence Such
temporary lossof existence is modeled with two operations: suspend and resume. The
operation suspend freezes the life of an olject urtil it is resumed. A computer taken
apart is suspended urtil it i s assembled again and its identity resumes.

The four basic operations are defined with premndtions and pctcondtions:
predicaes that are valid before and after applying the operations. All other operations
are compasitions derived from the basic operations.

Basic operations can be mmposed: an oljed can be destroyed, triggering the
creation of its succesors. This is the crucial property for modeling the higher level
operations like splitti ng and merging. The cmmposition tables $iow that the number of
compasitions of basic operationsisfinite.

Two dfferent lifestyles are recognized: fusions and agg egates. Fused oheds lose
thelr identity - they are destroyed (pouring two glasses of water into a jar destroys the
liquid ohjeds in bah glasss). Aggregated oljeds do nd lose their identity - they are
suspended (assembling the parts of a ca does nat destroy the identity of parts). Both
fusion and aggegation could be constructive or non-constructive. An example of
constructive fusion is pouing the water from the glasses in ajar. If the water is poured
bad into the glasses, and then again into the jar, the second fusion may be @mnsidered
as resuming the previously existed liquid oljed in the jar. Since no rew objects are
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creded, such fusion is nonconstructive Disassembling and assembling a ca is an
example of nonconstructive aggegation. The fina destruction d the ar is a
constructive segregation (the inverse operation to agg egation).

We present the minimal set of condtions a temporal database must satisfy for
deding with the proposed lifestyle operations. The ncept of lifestyles can be
implemented in a temporal database only if the database is recording the transaction
time (rollbadk and htempora databases).

4.1 Operations affecting theidentity of a single object

We propaose four basic operations affecting the identity of a single objed: create,
destroy, suspend, and resume. Basic operations are known under different names in
literature: as creae, destroy, kill, and reincarnate (Clifford and Croker 1988, as create,
destruct, and reincarnate (Hornsby and Egenhder 1997).

The first of them, create, is esential for all types of objeds. An olject can be
creaed independently of other objects or asa child olged of one or more parent objects.
The tempora link with the predecessors of a newly creaed olject isthe esential part of
the operation create.

The semnd basic operation, destroy, terminates the eistence of an olect. The
previous existence of the destroyed oljed is preserved, bu the objed canna be
referenced in the future time.

A temporary lossof existenceis modeled with the pair of operations. suspend and
resume. A suspended ojed is not adive in the database until it i s resumed. The dfeds
of al four simple operations on the existence of an olject are shown in Figure 4.1. The
value of the predicae exst changes after each gperation.

operation: | create [suspend| |[resume| [ destroy |
—— ¢ —— ¢ Time
< >
. not yes no yes not
exist: yet (suspended) anymore

Figure 4.1: Possble episodesin thelife of an objed.

Before an ohjed is creaed value of the predicate exst is "not yet". When an ojed is
creded, the value of exist changesto "yes'. Then, if an ojed is suspendable, it can be
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suspended and a spedal tag "no(suspended)” is used to describe this gate. A subsequent
resumption would have changed the state "no(suspended)” to "yes'. Finally, if an olject
is destroyed, the value of the predicae is"not anymore” meaning that the object canna
regppear in future states of the database. The last kind d transition could have happened
withou the intermediate suspension.

Further, the fifth operation, evolve, captures the semantics of changing the identity
of an oljed that preserves atemporal link with its predecesor. This operation affects a
single objed, although it isa cmpasition d two simpler operations. destroy and create.

4.1.1 Create

The istence of an olject in the database begins with the creaion o itsidentifier in the
database. In Figure 4.2 an identity labeled "1d1" is created at the time point t1. The
operation create is essntia for both the static and the temporal databases, since the
unique identity is needed for distinguishing objectsin static databases.

t1
P 1d1

Figure 4.2: |dentity operation create.

When an identifier is creded in a database, it is chosen from an abstrad set Q.
Therefore, the domain of the operation create is the set Q, and the range is the set of

identifiers. For a particular credion, the result type is an identifier (ID). Creding a
spedfied identifier is nat alowed, because such operation might violate the properties
of uniquenessand nonreusability of identifiers. Note that the label ID for an identifier
has different meaning from the label id for the identity function.

Using functional notation, the signature of the function create is written:
create:: Q - ID

The dfed of the aedaion ona database is explained using the standard technique in
program verificaion d state-oriented spedfications. precondtion and patcondtion,
(Loedkx et al. 1999. Verificaion consists of a set of assertions of the form:

{6} P{u},
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where ¢ and  are formulas of predicate logic and where P contains the piece of
program to be specified. If the precondtion ¢ hdds before exeaution d P, then this

exeaution terminates and the postcondtion ) hdds.

In our example, creation d a new objed takes the database from one state to
ancther. The precondtion for the initial state is that the objed with the identifier i does
not yet exist. The postcondtion for the final state dter the exeaution d the operation
create is that the objed with the identifier i exists. The values for conditions are taken
from Figure 4.1. Formally, this reads as:

Pre/Post - conditions: Code:

{exist (i) = “not yet"}
create
{exist (i) = “exist"}

The concept of predecesors, inevitable in temporal databases, isinherently tied with the
credgion d an oled. The credion is the only basic identity operation invalving
predecessors. The set of predeceswors is empty if the objed is created withou
predecessors. Therefore, there is no speda natation in Figure 4.2. Predecessors will be
shown in complex operations (seesection 4.2 kelow).

4.1.2 Destroy

The istenceof an olject in the database is terminated by destroying its identifier from
the database (Figure 4.3). For the database, it means that, from the moment of
destruction, it is not posgble to updite the properties objed. An olject is required to
exist if it isto be destroyed; destroy takes an identifier as an argument. The identifiers
of destroyed oljects are not forgotten, because of nonreusability. In addition, the
database may be queried abou the past existence of adestroyed ohjed.

2
i e

Figure 4.3: ldentity operation destroy.

When an identifier is destroyed, i.e. removed from a database, it is disposed to an
undefined space Therefore, the domain of the operation destroy is the set of identifiers,
and the range is infinity Q. For a particular destruction, the agument type is an
identifier ID. Using functional notation, the signature of the function destroy is written:

destroy:: ID - Q
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The precondtion for the operation destroy is the eistence of the identifier to be
destroyed in the database. The postcondtion is the nonexistence of the destroyed
identifier. In formal language:

Pre/Post - conditions: Code:

{exist (i) = “yes"}
destroy (i)
{exist (i) = “not any more”}

The values of predicates for the precondtion and the postcondtion are given in Figure
4.1.

4.1.3 Suwspend andresume

An oljed may have multiple episodes of its existence A well-known example from
history isthe state of Austria, which dsappeaed and regopeaed duing this century.

A temporary loss of existence is modeled with two operations: suspend and
resume. The first operation requires an active (not-suspended) identifier, while the
secondrequires a suspended identifier. In Figure 4.4, the shadowed bax with the struck
label represents the suspended identifier.

tl t2

|dl (—@—p| tet e —@—pp Id1

Figure 4.4: Identity operations suspend (at t1) and resume (at t2).

The operation suspend freezes an oljed by preserving it from other operations urtil it is
resumed. Appropriateness of this pair of operations is the matter of user's choice: one
coud asume that deeping of living beings appears to be equivalent to a suspended
state.

The type of arguments and results of the operations suspend and resume is the
same: an identifier (ID). The signature of both operationsis written:

suspend,resume:: ID - ID

The precondtion for the operation suspend is the eistence of the object. The
postcondtionisthat the objed is suspended.

Pre/Post - conditions: Code:
{exist (i) = “yes"}

suspend (i)
{exist (i) = “no (suspended "}



Operations Affeding Objed Identity 45

The precondtion for the operation resume is that the object is suspended. The
postcondtionisthat the objed exists again.

Pre/Post - conditions: Code:

{exist (i) = “no (suspended)”}
resume (i)
{exist (i) = “yes"}

This pair of operations, suspend/resume, reflects the pair kill/ reincarnate (Clifford and
Croker 1988. Hornsby and Egenhofer define reincarnation as the operation destruct
(equivalent to destroy in ou notation) followed by the operation create of an olject
with the same identity (Hornsby and Egenhder 1997. In our model, destroyed
identifiers canna be recreated.

4.1.4 Evolve

Basic operations presented so far could be mmpased in various ways. In this sdion,
we analyze compasitions of two basic operations applied subsequently to the same
obed.

Since the order of composed operations matters, there are 16 dfferent
compasitions. The compasition symbad "." ("daot”) is applied in the order as in the
equation: (g.f)(X)=g(f(x)). We eplore dl possble cmmpaositions in Table 4.1. A
compasition yielding undefined results is marked with O ("bottom™). A composition
yielding the state that is the same & the original is the identity function (id) in the
mathematica sense.

crede | destroy | suspend | resume
g
crede 0 evolve O O
destroy id O destroy | destroy
suspend suspend O O id
resume 0 0 id O

Table 4.1: Compositions g.f of two operations f and g on the same identity.

Theresultsin Table 4.1 are cadculated asg . f. That is, the operations from the row f are
applied first. Then, the operations from the wlumn g are gplied to the results of the
first operation (f).
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A composition as create.create is undefined, because the paostcondtion d the first
credion is the eistence of the identifier i. Thus, it canna be aeated again, since the
precondtion for the operation create is the non-existence of the objed. The predicate
exst hasthe signature ID — Bool, and the string values (nat yet, exist, na anymore) are
introduced to improve understanding. We write the proof in functional notation:

Pre/Post - conditions: Code:

{exist (i) = “not yet"}

create
{exist (i) = “exist"}
create
not fulfilled since
{exist (i) = “exist"} # {exist (i) = “not yet"}

The same nclusion can be proved for the @mposition destroy.destroy. The
precondtion for the seaond application d destroy is nat fulfill ed, because the identifier

is aready destroyed:
Pre/Post - conditions: Code:
{exist (i) = “yes"}
destroy
{exist (i) = “not anymore”}
destroy
not fulfilled since
{exist (i) = “not anymore”} # {exist (i) = “yes"}

If an identity is destroyed immediately after its credion, the result is the identity
function id (under assumption that the value “not yet” is identicd to “not anymore” if
the objed is destroyed at the sametimeit was creded) :

Pre/Post - conditions: Code:
{exist (i) = “not yet"}

create
{exist (i) = "yes"}

destroy

{exist (i) = “not anymore”}

Both passble compaositions of the operations suspend and resume yield the identity
function. We show the cae of the cmpasiti on resume.suspend:

Pre/Post - conditions: Code:
{exist (i) = “yes"}

suspend
{exist (i) = “no (suspended)”}

resume

{exist (i) = “yes"}

The mmposition d the operations suspend or resume with the operation destroy result
in destroy if the former is performed last. If the oppasite is the cae, i.e. if destroy is
performed first, the result is undefined: the destroyed identifier is not available for
suspend or resume.
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The acompositions create.suspend and create.resume are undefined, because the
objed must nat exist in order to be aeded (precondtion for create). The composition
resume.create fails because the precondtion for resume is nat fulfilled after the

credion. Finally, suspend.create results in suspend.
A composition d creation and destroying where the destroying comes first is the
most important result - a new operation evolve, having the foll owing signature:

ewlve: ID - ID

Because of the identity properties, the newly credaed identifier is denoted j in the
following verificaion. In addition, the old identifier (i) is the agument of the operation
create in order to maintain a tempora link with its predecesor. In the origina
definition d create, the predecessor argument was empty and thus omitted for the sake

of smplicity.
Pre/Post - conditions: Code:
{exist (i) = “yes"}
destroy (i)
{exist (i) = “not anymore”}
create (i)

{exist (j) = “yes"}

The oncept of identity evolution allows an oljed to change its identity under
condtions that atemporal link with the previous identity is established. An example for
such an operation is a courtry suddenly changing its constitution from a monarchy to a
repulic (like Italy during the SecondWorld War).

destroy

resume

Figure 4.5: State diagram for operations aff ecting identity of asingle objed.

A state diagram represents possble operations on a single object identity (Figure 4.5).
The operation ewlve yields the same result as the combination d operations destroy
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and create. The tempora chain is represented with the label "(1)" in the box of 1d2: the
identity 1d1isthe predecessor of the identity 1d2.

4.1.5 Removing hstories

A short explanation abou the difference between static and temporal databases with
resped to the operation destroy, and d the difference between destroying and removing
of the history of an olject is necessary. If an oljed is destroyed from a static database,
there is noway to recdl it | ater: the object is gone forever. In atemporal database, the
objed is nat present in the database from the time of destroy onwards, while its past
states may be referred to.

If we want to remove an oljeda from al snapshots of the database, we need ancther
type of operation, which neglects the historicd concept of temporal databases. Such an
operation is dangerous because it can cause an irrecoverable loss of data. It gives the
oppatunity to forge the history in an arbitrary way.

t1 tl t1 t1
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Figure 4.6: Destroying (left) vs. removing Hstories (right).

The left-hand side of Figure 4.6 shows the dfed of the destroy operation: from the
time-point t4 orwards, the objed with the identifier 2 is not avail able, bu its existence
before t4 is preserved. The right-hand side of the same figure shows what happens if the
objeds with the identifier 2 are removed completely from the database: every track of
its existence vanishes. Due to implementation constraints, we might at best conclude
that the objed with the identifier 2 existed, bu the objea with that identifier can na be
retrieved.

4.2 Compositions of basic operations affecting identity of several objects

Basic identity operations and its smple compasition evolve operate on a single object.
Y et, there ae many examples of change taking more than one objed as arguments, or
producing several objeds as aresult. Merging of two cadastral parcds produces a new,
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third parcd. On the other hand, a single cadastral parcel, if divided, produces two o
more parcds with new identifiers. Assembling al car parts produces a new objed - a
ca. Disassembling the ca prodwces, in genera, the original parts with their old
existence

All possble cmbinations of basic operations are shown in Table 4.2. The
operations affeding two o more identities come from the @mlumn g, and these ae
marked with the suffix “PL” (plural). The operations affeding single identity come
from the row f. Operations are gplied in such order that the aeationis performed at the
end, kecause it takes identifiers for predecessors.

f (one) crede destroy resume suspend
g (many)
creaePL 0 fisson 0 w-fisson
destroyPL | fuson | o | wfuson | o
resumePL 0 segregation 0 w-segregation
suspendPL aggegation | o | w-aggregation | O

Table 4.2: Compositions of operations aff ecting multiple identities.

Signatures for “PL” operations are given as foll ows (brackets [] are the standard symbal
for listsin functional languages):

createPL :: Q - [ID]
destroyPL :: [ID] - Q
suspendPL :: [ID] - [ID]
resumePL :: [ID] - [ID]

The compositions in the second and the third column o Table 4.2 are “constructive”,
because the objea on the one-side is creded or destroyed. The compositions in the
fourth and the fifth column of Table 4.2 are cdled “non-constructive” or week, becaise
the one-side object is neither destroyed na creded. Non-constructive mmpasitions are
marked with the prefix “w-* (we&k).

Depending on the operations applied onthe PL-side, two groups of operations are
distinguished: fusion/fisson and aggregate/segregate group.
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4.2.1 Fisson andfusion

A (constructive) fissonis the composition d destroying an oljed and creating a set of
its siccessors at the same time. Emerging objeds maintain a temporal link with the
original object. A weak fisson daes not destroy the original object, but only suspendit.

A (constructive) fusion is the composition o destroying several objeds and
creding anew single object at the same time. The emerging object maintains atempora
link with the set of destroyed oljeds. A we&k fusion daes not create the new objeds,
but resumes an aready existing one. The precondtion for a we& fusion is a we&k
fisson.

An example from a cadastral database involving fisson and fusion of parcels is
shown in Figure 4.7. The parcel 1 is destroyed and the new parcds (2 and 3) are
created. Both new parcds maintain atemporal link to the parcd 1. At some later paint,
the two parcels are united again. The identifiers 2 and 3 are destroyed. The new parcel
gets the new identifier (4), maintaining the temporal link with bah of its predecesors.

Id1 _ 1d2 1d3 . 1d4
fission fusion

M @ (23)

Figure 4.7: Fisson and fusion of cadastral parcdswith linksto predecesorsin parenthesis.

It is questionable whether the identity resulting from the fusion d a cmplete set of
identities fhoud be the same @& the original identity which fissoned before. To give
more flexibility to the designer, the mncept of reversible fisson and aggregation is
introduced. The original identity must be suspended (instead of destroyed) to be
resumed. This is modeled by weak fisson and fusion (w-fisson and w-fusion). As an
example, consider a carafe full of water whaose content is poured into two glasses. When
the water is poured badk to the crafe, the original liquid ohjed with the identifier Id1is
resumed (Figure 4.8).



Operations Affeding Objed Identity 51

w-fission w-fusion

Figure 4.8: We fission and fusion of liquid oljeds.

Common to bah types of fusion is the irreversibility of the fusion operation: fused
identiti es are destroyed and canna be re-used. Hence, identiti es of two cadastral parcds
fused into ore caina be re-established; liquid olgeds in two glasses canna be
distinguished after having been poued into the carafe.

T

A A
s i D> —» 0<¢
Figure 4.9: The lifestyle of fusions (D - destroy, C - crede, S - suspend, R - resume).

The complete set of posdgble fusions and fissons is $own in Figure 4.9. The four
distinctive operations are shown with the arows indicating the order of their applicaion
to the set of objeds:

First, in a constructive fusion (DD-C), the two (or more) objects are destroyed (DD)
and a new objed is creaed (C). Next, the resulting fused oljed can be suspended by a
wed fisson (S-CC), or destroyed by an immediate cnstructive fisson (D-CC) - the
longest arrow in Figure 4.9. In the former case, emerging objeds may fuse ajan
resuming the original objed by awee fusion (DD-R). At the end, the life of the fused
objed ends with a mnstructive fisson. A practicd example is an extension d the liquid
example shown in Figure 4.8: if the carafe is empty in the beginning, a @nstructive
fusion fill s it up. Pouring the water into glasses is a wed& fisgon. Pouring the water
bad into the crafe is a weak fusion. Finally, pauring the water on the floor is an
irreversible, constructive fisson. If we poured the water on the floor instead into the
glasss, it would have the eff ect of the longest arrow in Figure 4.9.

4.2.2 Aggregation andsegregation

Discusson abou the identity and aggregation is conneded with the part/whale relation.
From the perspedive of operations affeding objed identity explained so far, only such
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aggregations (and segregations) matter, which change identities of involved oljeds, i.e.
perform one of the four basic operations. The relation member-of withou influence on
the identity is not considered as an aggregationin this thesis, seeFigure 4.10. Such link
isusually cdled association (Khoshafian and Abnows 1990.

Idl Id] Id1
1d2 a3

Id2 Id3 1d2 [d3

Figure 4.10: Association of objeds and the reverse association.

An example of association is the membership of a person in a sport club: neither the
identity of the person na the identity of the dub changes if the person leaves the dub.
The same goes for the asciations of the states based on certain regiona groupngs
(e.g., Scandinavian courtries, Mediterranean states, etc.).

Hornsby and Egenhofer refer to bah aggregations and associations as composite
objeds. Aggregations, based onthe relation part-of, are formed from a framework - a
predefined method d pladng parts into “slots’. Colledions, based on the relation
member-of, are formed withou framework, (Hornsby and Egenhder 1998.

In this thesis, the aggregates are based onthe relation part-of only. In addition, we
asume an oged can be a part of exadly one objed, athough this is true for physica
things (the engine of one car canna be in another car at the same time). The multiple
levels of parthoodcan be modeled as hierarchies.

The example of constructive aggregation is a federation d several states (Hornsby
and Egenhder 1997). It is creded by the pdlitica contract among the statesin question.
Federal government takes over certain representing functions (currency, foreign pdicy,
defense) from the member-states. In that resped, member-states are suspended. Now,
suppcee that the federation kreaks apart: its identity is destroyed, whil e the identiti es of
member-states are resumed. A later re-union would have produced anew objed.
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Id1 k1 Id

Id2 Id3 1d2 [d3

Figure 4.11: Constructive aggregation: the aggregate is a new objed dependent on its parts.

An example of a weak aggregation (w-aggregate and w-segregate) is an episode in the
life of a car. The identity of a particular car as a movable object emerges when all
necessry parts are produced and properly conrected. As long as the ca functions, its
parts do nd have meaning outside the aggregate (ca). If a part of the car is broken and
neals to be repaired, the identity of the ar is suspended (since the car does not
function) and the identities of the parts are resumed. The broken part is repaired and all
parts are aggregated again, resuming the original identity of the ca. Even if one part is
changed, the identity of the ca is maintained.

The fundamental criteria for an aggregation to qualify for an identity affeding
operation is the dependence of aggregated oljeds on the aggregate. If the aggregated
objeds are suspended and the aggregate is creaed for the first time, it is a cnstructive
aggregation. If the aggregate dready exists, it is awedk aggregation: the obeds and the
aggregate ae mutually suspended and resumed.

R 7~ A g

»
S R
o C —> s—g - R —> <5

Figure 4.12: The lifestyle of aggregates (D - destroy, C - crede, S - suspend, R - resume).

The mmplete set of posgble aggregate and segregate operations is iown in Figure
4.13. It starts with a cnstructive aggregate when the parts are suspended giving birth to
the new objed. The new object could be destroyed in the next step (the long arrow) or
suspended (wedk segregation). The difference in resped to the previously explained
fusion lifestyles isin the reversibility of wed aggregatiorn/segregation. In the case of a
wedk fusion, ohects on the many-side were destroyed and therefore not resumable. In
the cae of weak segregation, oheds on the plural side ae resumed, and can be
suspended and resumed again.

A pradical example of an aggregateisa ar. When assembled for the first time, it is
a onstructive aggregation (SSC). There ae two dternatives for the next step: the
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immediate destruction (D-RR) and a weak segregation (S-RR). An immediate
destruction could be acar accident, after which remaining parts are individually used or
sold. A we&k segregation could be disassembling the ca to repair malfunctioning parts.
The identity of the ar is resumed when the broken pert isfixed or changed. Eventuadly,
every car isdestroyed, partstendto live alittl e longer.

4.3 Object identity through time

This thesis merges together object oriented concepts with the tempora database
framework. The acncept of objed identity is crucia for objed orientation and for
modeling processes in the dynamical world that surrounds us. The necessary condtion
for implementation d lifestyle operations (described in previous ctions) in atemporal
database is the proper dimension d time supparted.

4.3.1 Transaction-time condtion

The aiteria for object identity (uniqueness immutability, and nonrreusability) can be
satisfied in a database only if the system (database) is resporsible for managing the
objed identifiers. This applies both for static and tempora databases, regardless of
tempora dimension suppated. If the user would have cntrol of isuing new identifiers,
the objeds might have nonunique identifiers - the condtions would have been violated.
The user is resporsible for semantic dedsions such as: when an olject evolves (gets a
new identity instead of an dd ore); is a particular objed type destroyable or not; does a
relationship apply between oljeds of specified classes; shoud an oljed be destroyed or
suspended. The user must not dedde, however, that an alrealy destroyed oljed identity
may be used again.

The aiteria for the consistent behavior of identity in lifestyles framework are
stronger. The aucia property for lifestyles is the aility of objeds to maintain a
tempora link with their predecessors. It is of the greaest importancein operations like
ewlve fusion, fisson, bu a mere creation of an olject needs a list of predecessors for
the simplest model of parental relationship. In a static database, destruction of a parent
objed would leave the eisting child oljed with areference to a nonexisting identifier
(adea panter). The same happens in a database that trads the valid time dimension
only: histories of objeds that are once removed from the database caina be referred.
Thus, removing a parent objed would have the same dfed in avalid time database & it
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would have in a static database: the diild oljed has a tempora link with an oljed,
which canna be queried for existence neither at the aurrent time, nar at past times.

The transaction time is necessary for proper treatment of lifestyle operations,
becaise the databases suppating the transadion time do nd permanently remove
destroyed oljeds. Such databases are gpend orly - a new snapshat withou the
destroyed oljed is added. In bah rollbak and btemporal databases (that tradk the
transadion temporal dimension), the user can insped the complete history of the
database from its creation to the present moment. Even if an ojed is destroyed, the
temporal links of its child ojeds are pointing to certain oljects that can be referred and
queried for their propertiesin the past times.

The aoncept of lifestyles can be implemented orly in temporal databases that record
transadion time: rollback databases and ktemporal databases. Static and hstoricd
(valid-time-only) databases canna suppat lifestyle operations, becaise such databases
are not capable of tradking temporal links among objed identiti es.

4.3.2 Finitenessof the set of operations affeding ohed identity

A set of four basic operations affeding objed identity was proposed (create, destroy,
suspend, and resume). The only possble binary compaosition ona single object yielded
the fifth operation - ewlve Operations can involve one or more objeds in a single
aaion. The basic operations are mmposed according to the cardinality of objeds
invaved in change. The result was a group d eight compositions: constructive and
wed fissons and fusions, aggregations and segregations. That makes the total of 13
paossble operations affeding objed identity.

What happens with many identifiers on bdh sides? Namely, some danges of
multiple objeds result in a multiplicity of objects as well. The process of land
redistribution is well known in cadastre pradice: a set of parcels is transformed into
another set covering the same aea Oosterom grouped land redistribution, together with
split and unon, uner restructuring processes involving several entities (van Oosterom
1997). Figure 4.13 shows asimplified view of such change.
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ld1 ld2 Id3

Id4

Figure 4.13: Redistribution of land parcds.
Thisanomaly is easily modeled as the cmmposition d afusion of identities 1 and 2with
a subsequent fisgoninto two new identiti es.
restructure = fisson2 .fusion (1d1,1d2)

The result of fusion(ld1,]d2) is atemporary identity 1d3, which isimmediately fissoned
into 2 rew identities. A query abou the identity 1d3 would na have foundany valid
interval of its existence bu its predecessors are traceable & common predecessors of
al emerged parcels.

Thus, we @mnclude that the set of operations affecting object identity is finite. There
are 14 passble operations. Basic identity operations are: create, destroy, suspend, and
resume. These operations build an algebra with the following axioms:

create . destroy = evolve

destroy . create = id

suspend .resume = id

resume . suspend = id
Further, compositions of basic operations define 9 new operations (the suffix “PL”
means that the operationis applied to the group d two or more identiti es):

destroy . createPL = fisson

create . destroyPL = fusion

suspend . createPL = w-fisson

resume . destroyPL = w-fusion

create . suspendPL = agg egate

destroy . resumePL = segregate

resume . suspendPL = w-agg egate

suspend .resumePL = w-segregate

fisdon .fusion = restructure
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These compaositions extend the dgebra with additional axioms:

w-fusion .w-fisson=id

w-aggegate . w-segregate = id

w-segregate . w-aggegate = id
The aioms that are dted in this sdion are independent of the aguments (types of
objeds areirrelevant).

4.3.3 Comparisonwith the previous work

We mmpare our approach with the most detailed description o objed identity change
(Hornsby and Egenhder 1997). Informal discusson given hereis formalized in Sedion
7.3.

Hornsby and Egenhofer propose the foll owing operations for manipulating single
objeds. create  (withou predecesors), destruct , continu e existence
continue non-existence , reincarnate  (asadestruct followed by acr eate
of an ojed with the same identity, and two types of issue (creation d a new objed
from the &isting one): spawn and metamorphose . In case of spawn, the original

objed continuesto exist; in case of metamorphose |, the original objed is destroyed.

Our operation create covers both create and spawn, because an oljed can be
creded withou or with predecessors. The operation destroy is conceptualy similar to
destruct . Thelogicd model of our database ensures existence  or non-existence
of objeds from one database versionto the next, since dl not affeded oljeds are wpied
to the new state. The pair of operations suspend and resume explains the passhbility of
multiple goisodes of existence of an olged in a simpler way than a single operation
reincarnate  , which adualy contradicts with the nature of permanent destruction.
Finally, the operation ewlve has the same meaning as the secnd type of isae -

metamorphose .

For joining objects, Hornsby and Egenhder proposed a number of operations:
merge destroys the joined oljeds isauing the new object at the same time, generate
does not destroy the original objeds when a new objed is issued (parenthood, mix
issues a new object destroying ore parent but not both, aggregate  creates a new
objeda from a set of individual objeds that retain their identity, unite credes an
aggregate of composite objects, compound adds a subpart to a cmposite objed,
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amalgamate merges the subparts of two compasite objeds yielding the new composite
objed with new parts, combine joins the two composite objects retaining the identity
of their subparts.

In thisthesis, the mnstructive fusionisidenticd to merge, create with predecessors
is the same & generate . The mmpaosition d creation with parents as predecessors
followed by destroying of one parent is equal to mix . The operation aggegate covers
the semantics of both aggregate  and unite . The composition d weak segregation
and we&k aggegation with ore more object isidenticd to compound. The composition
of segregate and aggegate is the alequate replacement for combine . Finaly, the
compaosition o segregate, fuson and aggegate is a mode for the operation

amalgamate .

Hornsby and Egenhofer gave five operations for splitting of objects: splinter
separates a portion d the origina objed, which continues to exist; divide separates
the original object, which ceases to exist, into n parts; secede separates a part from the
compaosed oljed; dissolve  completely splits a mmpaosite objed into its congtitutive
parts, select alows for choice or seledion d either the entire objed or a portion o
obed.

In our model, the create with exadly one predecessor is equal to splinter . The
constructive fisgon is exadly a divide . The mmposition d we& segregation and
wed aggegation replaces secede, and constructive segregation is the same &

dissolve

To conclude, all types of change in identity discussed in (Hornsby and Egenhdfer
1997, can be eaily modeled with fewer operations. Besides the smpler compasitional
structure of our model, the concept of suspend/resume is better suited for modeling the
multiple goisodes in the eistence of an oljed than aher proposals. In addition, the
concept of wed fisson and weak fusion alows reincarnation d fissoned oljeds - an
important property not covered in previous work.

4.4 Summary

In this chapter, we introduced operations that govern the dange of identities in a
spatiotemporal database. All operations are divided into two groups. basic operations
and compositions. Basic identity operations are: create, destroy, suspend, and resume.
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Their compositions operate ather on a single object or on a group d obeds.
Composition d destroy followed by create is the only new operation among single
objed compasitions andit is cdl ed ewolve.

When severa objects are mnsidered, al posshle operations are obtained as
compositions of one basic operation ona single identity and ancther one operating on a
group of two o more identities. If the single identity is destroyable, we have
constructive compositions, if not we have weg compasitions. If the many-side is
destroyable, we have fusions, if not, we have aggregates. The fundamental difference
between aggregation and fusion is the irreversibility of fisson, while an aggregation is

alwaysreversible.

The aiteria for object identity can be fulfilled in any database, regardless of
tempora dimensions it suppat, assuming that the system controls the isauiing of new
identifiers. For the proper suppat to the lifestyle operations, the transaction time is
necessary, because temporal links among an oljed and its predecessors can be
preserved.

Since the cmpasitions cover al posshle caes of change in oljed identity, we
conclude that the set of operations is finite. We cmpare our results with the work of
other authors, concluding that our set of operations is more econamicd, conceptually
simpler, and has more expressve power than ather models.

All operations affeding objed identity explained here ae formalized in Chapter 7
in the context of an oljed-oriented temporal database, which is formalized in Chapter 6.
The next chapter presents the formali zation method exeautable dgebraic specifications
written in the functional language, and the formalization tod: Gofer dialed of the
functional programming language Haskell .
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5. METHODOLOGY: ALGEBRAIC SPECIFICATIONS

In this chapter, | describe the method wsed for formalization: algebraic spedficaions
written in a functional language. Algebraic specifications represent the necessary step
between a @nceptua model and its implementation, wsed to formally prove the
correctness of the latter. Algebraic specificaions are based on solid mathematicd
foundhtions (caegory theory) and mathematicd methods can be goplied to them.

Functional languages are formaly defined: a mpiler checks the syntax,
completenessand aher formal aspeds of a program. Such programs are exeautable and
can be used as a prototype. Gofer (Jones 19917), an experimental dialect of the non-strict
and strongly typed functional programming language Haskell (Peterson et al. 1997, is
used for formalization in this thesis. It unifies sveral advanced features from other
similar languages: automatic type deding, user defined abstract data types, higher
order functions, parameterized pdymorphism and lazy evauation. The Gofer code is
compad, readable and patable. Abstrad data types, pdymorphism and inheritance, as
implemented in Gofer, alow the speafications to be written in an olject-oriented
manner. After the machine has cheded the syntax and the programmer chedked the
semantics by applying it to example caes, a specification can be easily transated into

any other objed-oriented environment.

This chapter is organized as follows:. the first sedion is a short introduction in
algebraic spedfications dressng their importance in constructing programs; the second
sedion is dedicated to general terms and concepts in functional programming; the third
sedion explains Haskell syntax, to the extent necessary to understand spedfications
provided in thisthesis.

5.1 Algebraic specifications

Algebraic spedfications represent the necessary step between a conceptual model and
its implementation, which is used to formally prove the mrreanessof the latter (Liskov
and Guttag 1986. The purpaose of a spedficaionisto formally describe the behavior of
objeds. Algebraic spedfications provide aclear and compad representation d theories
for behavior of objeds. They are based on solid mathematical founditions and
mathematicd methods can be gplied to them.
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Algebraic spedfications were introduced to describe data dstractions (abstract data
types) in software design (Guttag et al. 1979. The goa was to construct the aiioms
describing the behavior of datatypes independently of a particular implementation.

5.1.1 De€finitions

An agebrais adescription d a set of conneded operations that are gplied to a set of
types. This is the generalized definition d algebra, introduced as "universal algebra’
(Birkhoff 1945.

The dgebraic specificaion consists of three parts (Ehrich et al. 1989:
» aset Sof sorts (objects),
» aset Z of operations applicableto thistype, and
» aset E of axioms defining the behavior of these operations.

An algebraic axiom spedficaion is defined by the triple (S 2, E), which represents an
algebraic structure.
A sort is an element or objed of a particular type. If the set S contains sorts of only

ore type, then we talk abou single-sorted algebra. In a multi-sorted algebra, sorts of
different types may occur. Multi-sorted algebras are used to buld structured data types
from more basic ones.

The set > contains operations applicable only to the sorts of S Two kinds of
operations exist (Liskov and Guttag 1986,Chapter 10): constructors and olservers.
Constructors are operations to creae or modify a sort. Their result is an oged of the
defined sort. Observers are operations to olserve properties of a sort. The result is an
objed of ancther sort (often Boolean). A minimal set of operations that are sufficient to
generate dl values of a sort is a set of basic constructors, whereas the minimal set of
operations to retrieve these values is a set of basic observers.

A set E of axioms can be thought of as a set of rules which shows how each
operation is applied to a sort. Axioms relate operations on sorts of the same type. An
axiom states that an operation can be reduced o rewritten with some other operations

whil e preserving its meaning.
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5.1.2 Examples

We describe the familiar algebra of natural numbers, foll owing the syntax from (Ehrich
et al. 1989. Operations for addition, subtraction, regation and crating zero element are
described by their signatures. types of arguments and the result. Axioms define the
behavior of the operations are listed (two subsequent dashes "--" mean that the rest of
thelineisa mmment).

Algebra AbelianGroup (number)

Operations:
+, - number -> number -> number
negate :: number -> number
0  :number

Axioms:
atb=b+a -- commutative law
(at+b)+c= a+(b+c)= a+b+c -- associative law
O+a=a+0=a -- existence of identity
a+(negatea)=0 -- existence of inverse
a-b=a+(negateb) -- definition of subtraction

Algebras can be used to describe behaviors other than numbers, for example the
properties of a stadk. In such cases, more than one type is used and it is cdled multi-
sorted or heterogeneous (Birkhoff and Lipson 197).

A stadk can accept e ements pushed orto it. The operation push puts an element in a
stack; the operation top returns the top element, the operation pop returns a stack with
the top element removed. We show the parameterized algebra of stacks: the operations
are independent of the type of a. Thus, the following specificaion is universal for all

types.

Algebra Stack (stack of a, a)

Operations:
empty :: stack of a -- constructor
push :: a -> stack of a -> stack of a -- constructor
pop :: stack of a -> stack of a -- observer
top :: stack of a -> a -- observer

Axioms:
top (pushas)=a - al
pop (pushas)=s -- a2
top (empty) = error -- a3
pop (empty) = error -- a4

Using the termindogy from the previous subsection, we have defined an algebraic
structure (S, 2, E), where: S={stack, a}, = ={empty, pwsh, pop,top}, E={al, a2, a3,
ad}.

The behavior of the operations push, pop, and top is fully explained by the aioms a1,
a2, a3,and a4. The top element after pushing an element onto the stack is the dement
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that was pushed on.The stack that is returned after pushing something onto a stadk and
then applying a popto the result is the same stack before the push operation.

Using the point-free natation, explained in Sedion 2.5.5 the aiom al would be

written as.
pop . pshx = id

indicating that the mmbination d a push and a pop operation is the identity operation,
which dces not change the argument.

The aioms a3 and a4 yields an error as the result: the top d an empty stad is nat
defined. The operation top is then a partia function, unafined over an empty stak of
any type. This operation can be made total by extending the set of carriers with a speaal
element “error” that represents the “undefined value” (Loeckx et a. 1999. Then, the
first line of the spedfication shoud be: Algebra Stack (stack of a, a, error)

5.1.3 Advantages of algebraic spedfications

In the processof developing reliable software, spedfications are used for (Guttag et al.
1978:

» design andimplementation d abstract data types:
Algebraic speafications can capture the behavior of objedsin aformal
manner. It is possble to create cmmplex types by using specificaions of other,
simpler datatypes. An important purpose of a specificaionisto organize

types, values and operations that can be used for implementation.

e proof that animplementationis corred:
It can be done by showingthat the original axioms are satisfied by the
implementation, which is probably the most important purpose of formal
spedficaions.

o early test:
If aspecificdioniswritten in an exeautable programming language, it can be
tested as a prototype (Frank and Kuhn 1993.
In this thesis, algebraic specificaions are the esentia meta-language for a formal
description d lifestyles in arder to communicae the information with pdential
implementors.
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5.2 Functional programming

Functional programming languages are formally defined: a cmpil er cheds the syntax,
type completenessand aher formal aspeds of a program. Such programs are exeautable
and can be used as a prototype. Furthermore, functional programming languages and
algebraic spedfications use asimilar syntax and have similar mathematical foundations.
Functional languages can express mantics and are eay to undxstand, which are the
esentia requirements for formal spedficaion languages (Frank and Kuhn 199%. Since
functional programming languages fulfill these requirements and allow for rapid
prototyping in addition, they are used as ecificaion and prototyping tods in this
study.

Programming in a functional language wnsists of building definitions in the form
of functions and wsing the computer to evaluate expressons (Bird and Wadler 1988.
Definitions are @nstructed according to mathematicd principles, and are expressd in
notation that is gmilar to the traditional mathematicd notation. If an expresson
posseses a well-defined value, then the order in which a computer evaluates the
expresson daes not aff ect the result.

5.2.1 Functiond vs. imperativelanguages

Most programming languages used today are imperative: the commands modify an
implicit state. A typicd example for implicit storing of a state is the assgnment to a
counter (e.g., a:=a+ 1). Examples of sequencing are begin/end, while/loop, and goto
constructs.

In contrast to imperative programming languages, functional programming
languages are declarative, i.e., there ae no side effects and the programming is dore
with expressons rather than commands. If a functional language is completely free of
side dfects, it is cdled pue functional programming language. If some side effects
exist, the language isimpure.

An excdlent comparison d imperative and functional programming languages is
presented in the Turing Award ledure by John Badkus (Backus 1978. Badkus
compared an imperative program for cdculating the inner product with its functional

courterpart. The imperative program was written in Pascal-li ke fashion:

c:=0
fori:=1 step 1 until n do
c:=c + afi] * bli]
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The functional version d the program, trandlated to the standard Haskell natation by the
author of thisthesis, was:

innerproduct = foldr (+) 0 . map (foldr (*) 1) . transpose
Functions (+) and () are standard addition and multiplicaion; (.) denctes functional
compasition. Functions foldr, map are higher order functions defined in the standard
prelude (library) of Haskell and explained in Sedion 5.2.6 lelow. The function
transpase converts the rows of amatrix to its columns.

Badkus concluded that the functional program has the following important
advantages over its imperative counerpart:
* it operates only onits arguments,
* itishierarchicd, being built from simpler functions,
 itis gatic and nomepetitive,
* it operates onwhoe conceptual units, na words,

* it incorporates no chta; it is completely generd, it works for any pairs of
conformable vedors,

* it doesnot name its arguments,

it employs forms and functions that are generally useful in many other
programs.

The functional programs are cmputationally complete: any function can be expressed
using those that are drealy defined. The most important elements of functional
programming are referential transparency, strong typing and type inference
paymorphism, higher-order functions, pattern matching, and lazy evaluation. These
elements are eplained in the following subsections. First, we eplain caegoricd
combinators - the backgroundfor the paint-freestyle of programming.

5.2.2 Categorical combinators

Categoricd combinators are functions that refled important concepts from category
theory, thus enabling point-free style programming - description d a function
exclusively in terms of functional composition. The combinators used in later chapters
are described: categorical product, condtionals, and currying.
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Categorical product, (see Figure 2.6) known as “crossproduct” or “pairing” of two
functions over asingle agument is described with the foll owing functions:

pair (f,g)a=(fa,ga)

outl (a, b) =a

outr(a,b)=b
These functions are related by the foll owing properties

f
g

outl . pair (f, g)
outr . pair (f, g)

A pair of functions can be gplied to apair of arguments as well:
cross (f, g) (a, b) = (fa, g b)
The function crosscan be expressed as compasition d basic functions:
cross (f, g) = pair (f. outl, g . outr)
Some aditional auxiliary combinators, related to the cdegoricd product, are defined to
simplify manipulation d functions: swap, asocl, asocr.

swap (a,b) = (b,a)

assocl (a,(b,c)) = ((a,b),c)

assocr ((a,b),c) = (a,(b,c))
The cdegoricd product covers the cases when bah functions are gplied on an
argument. The conditional operator covers the cae when ony one of the two functions
is applied onan argument, depending on a predicae, as in the McCarthy condtional
form (p — f, g) for writing condtionals. The @mndtional combinator is defined as:

cond p (f, g) a = if (p a) then (f a) else (g a)
Condtions can be combined with the functions meet and join. Both functions originate
from the lattice theory: meet is written as n, and join is written as (0. The signature of
both functionsis:

meet, join :: (a -> Bool, a -> Bool) -> a -> Bool
The function meet returns True if and orly if the secnd argument satisfies both
condtions (relational and). The function join returns True if the second argument
satisfies at least one condtion (relational or):

meet ((>2),(<4)) 5 = False
join ((>2),(<4)) 5 = True
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Functions of more than one argument can be defined in ore of two basic styles: either
by pairing the aguments, asin

plus(a,b)=a+b
or by currying, asin

cplusab=a+b
The diff erence between plus and cplusis just one of type:

plus ::Numa=>(a, a)->a

cplus::a->a->a
The function curry (after logician Haskell B. Curry) converts a non-curried function
into a aurried one, and the function uncurry does the inverse:

curryfab="f(a, b)

uncurry f(a,b)=fab
Curried functions are common in functional programming, because they usually lead to
fewer brackets. We will, however, follow the alvice from Bird (Bird and de Moore
1997 and wse uncurried functions in cases when it leals to clearer definitions. The
reason is that the product type (a,b) isasimpler objed than the functiontypea-> b in
an abstract setting.

5.2.3 Referential transparency

One of the properties of functional languages that are lost when side effects are
introduced is referentia transparency. The term referentially transparent refers to the
style of programming where “equds can te replaced by equds’ (Hudak, 1989, p.362
For example, in the expresson (the valid Haskell syntax):

fxy=(@+1)*@+2)

where a = (X +y)/2

the gplicaion (x+y)/2 creded by the where expresson may be substituted for any free
ocaurrence of a such as in (a+l)*(a+2) . The substitution is possble becaise a
expresson (in ou case the locd definition d a) always dencotes the same value. Thisis
only guaranteed in the ésenceof side dfeds.

Referential transparency alows mathematicd reasoning based on substitutions
(equational reasoning). It permits mathematicd proofs of program behavior, and is
useful in writing and debugging programs.
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5.2.4 Srongtyping

Every objed in a computer program has a type. The fundamental purpose of a type
system isto prevent the occurrence of exeaution errors during the runnng of a program
(Cardelli 1997). With the help of a type inference mechanism types of expressons can
be inferred, when littl e or no type information is given explicitly (Cardelli and Wegner
1985 Milner 1978. For example, given some predetermined types (e.g., constants 1
and 2 are of the type Int), a type inference mechanism can logically deduce types of
expressons (e.g., deducing from "x=1+2" that x is of the type Int).

The languages in which types are chedked during program compil ation are clled
strongly typed languages. The languages in which type decking is performed duing
program exeaution are cdled urtyped languages. Miranda, ML, and Haskell are
strongly typed languages, whereas LISP and Basic ae untyped languages. Haskell
suppat writing large program fragments where type information is omitted; the type
system of Haskell automaticdly assgns typesto such program fragments.

5.2.5 Polymorphism

A language is sid to be padymorphic if its values and variables may have more than
one type. A palymorphic function is a function that can be gplied to arguments of
different types. A padymorphic type is a type whase operations can be gplied to aher
types. An example of a paymorphic function is addition d integers or floating
numbersl.

When the name of an operation is overloaded with two meanings it is ad-hoc
polymorphism or overloadng. In Haskell |l anguage, we have parametric polymorphism,
since overloaded functions may be only applied to a predetermined range of types. How
thisisredized in Haskell-like languages is explained in Sedion 5.3.3

5.2.6 Higher-order functions

The source and target types of functions in functional programming are not restricted in
any way: functions can take any value & argument and yield any value & result. In

1 In Haskell, the infix operator (+), with the signature a->a->a, is a member of the type dass Num,
which is, among other types, defined over the types Int and Float. Therefore, (+) 1 2yields 3, (+) 1.0 20
yields 3.0.
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particular, these values may themselves be functions. Hence, a higher-order functionis
every function, which has functions as its arguments or its result.

A mathematicd example is the derivation function, which takes a function as the
argument and yields its derivative (which is afunction, too) as the result. In sedion 3.1,
we have dready seen the functional compasition (.) - the most often cited example of
higher-order functions in functional programming.

The standard example, the function map converts a function operating on elements
to a function operating on lists of elements. Elements of lists are enclosed in square
bradkets and separated by commas. The type of mapis given by:

map :: (a->b) -> ([a] -> [b])
The source of map is a function d type (a -> b), and the target is again a function
having thetype (a] -> [b]) . For example:

map sqrt [1,4,9] = [1,2,3]
Another example is the function foldr (fold right), which recursively applies the given
function onthe result of the preceding applicaion to the dements of alist. The informal
description o foldr:

foldr fa[x, X, ... %] = fxe(F X2 ... (fFaxy)...)

The type of foldr is given by:

foldr:: (a->b->b)->b->[a] ->b
An example is the summing of all elementsin alist of integers. The functionis (+), the
start valueis 0.

foldr (+) 0 [3,6,10] = 19
The third standard higher-order function is the function filter, which returns the sublist
of those dements of alist which satisfy the given predicate. The type of filter is given
by:

filter :: (a -> Bool) -> [a] -> [a]
For example, if the predicateis (<5) having thetypent -> Bool) , filtering the list of
thefirst ten natural numbers yields:

filter (<5) [1,2,3,4,5,6,7,8,9,10] = [1,2,3,4]
The higher-order function flip swaps the arguments of a function:

fipfab=flipfba
fip(-)32=(-)23=-1
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5.2.7 Pattern matching

In order to define new functions in functional programming, a programmer can chocse
between two passbiliti es: condtional equations or pattern matching. An example for a
condtional equationis the foll owing definition o standard fadorial function:

fac n = if n = 0 then 1 else n * fac (n-1)
The same eff ect can be adieved by pattern matching:

fac0=1
fac n = n * fac (n-1)

Pattern matching is one of the rnerstones of an equational style of definition. It leals
to a deaner and more readily understandable definition than a style based oncondtional
equations.

5.2.8 Lazy ewaluation

Lazy (nonstrict) evaluation is a technique of evaluating expressons that has two
properties: no expressonis evauated urtil its value is needed, and noshared expresson
is evaluated more than orce The first of these ideas is illustrated by the following
function:

ignoreArgument x = 3
Since the result of the function "ignoreArgument” does not depend onthe value of its
argument (x), that argument will not be evaluated. Shown here, the evaluation d the
argument (1/0) gives 3.

5.3 Haskdl and Gofer

A nonstrict, lazy functional programming language Haskell, named after the logician
Haskell Curry, is now widely regarded as the language of choice anong lazy functional
programming languages (Bird 199®B). Its gandardization is suppated by the scientific
community (Peterson et a. 1997, and the development is promising. The main
impediment to its wider use in the past was the ladk of simple portable interpreter of a
huge Haskell compil er.

Gofer interpreter (Jones 1991 is an experimental dialed of Haskell. In addition to
standard functionality of Haskell, Gofer suppats multi-parameter type dasss, a very
important feaure for complex modeling. Gofer is snall, patable, stable, smpleto lean
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and wse, and nevertheless powerful functional programming todl. These ae the most
important reasons for its popuarity. Recently, Haskell Users Gofer System (Hugs)
becane avail able, which unfies certain advantages of Gofer with conformity to Haskell
standard. We deade to use Gofer for this thesis because of its gability - the version of
Hugs matching the Gofer featuresis gill i n the testing phase.

Since Haskell is dandardized, we describe its syntax and semantics. Each usage of
Gofer fedures that differs from the standard Haskell will be marked. Further
information abou the basics and advanced topics of functional programming in Haskell
can be foundin the recent textbooks on that topic (Bird 1998, (Thompson 1999.

5.3.1 Layout rule

Readability of Haskell code is further improved by the layout rule - the level of
indentation indicaes the structure of a program. Non-indented lines represent top levels
of a Haskell program. Every indentation shows that the indented line adually continues
a previous, lessindented line. Equally indented lines share the same level in the
structure. This rule dlows the programmer to write long lines of code simply by
bre&ing the line and indenting the rest and reduces the need for parentheses (like
begin/end in a Pascd-li ke language.

5.3.2 Predefined and ser-defined data type anstructors

An identifier in Haskell begins with a letter of the dphabet optionally followed by a
sequence of characters, each of which is either a letter, a digit, an apostrophe (') or an
underbar (). ldentifiers representing functions or variables must begin with a lower
case letter (identifiers beginning with an upper case letter are used to dencte a specia
kind d function cdled a constructor function.

Severa data types are predefined in Haskell standard prelude: integer (Int)
floating point numbers (Float) , Boolean values (Bool) , charaders (Char) , lists([a] ),
strings (String ), and tuples (for example, (a,b) isapair).

1:Int

1.0 :: Float

True, False :: Bool
‘a' :: Char
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If ais atype then [a] is a list whose dements are values of type a. Lists can be
arbitrarily long, bu al elements must be of the same type. There are severa ways of
writing li st expressons:

» thesimplest list of any type isthe empty list, written[] ;

* nonempty lists can be mnstructed either by explicitly li sting the members of
thelist (for example: [1,3,10] ) or by adding asingle dement onto the front of
ancther list using the (:) operator (for example: 1:3:10: ] ).

A string istreated as alist of charaders and the type Stringis smply an abbreviation for
the type [Char]. Strings are written as sequences of characters enclosed between
quaation marks ().

A product type (tuple) consists of a predefined number of elements of any kind. The
examples are:

(1, 'a") :: (Int, Char), -- pair

(‘a, 2, 1.0) :: (Char, Int, Float) -- triple

("Name",[1,2,21],(2,3),1) :: (String,[Int],(Int,Int),Int) -- quadruple

User-defined data types are declared by the keyword data together with type
constructors. A type constructor is afunction that constructs a new data type from other
predefined datatypes. Constructors gart with capitals. In the next example, the new data
type Person is introduced by applying the anstructor function P to an integer and a
string.

data Person = P Int String
A sum type (enumeration) is represented as a series of values separated by a"| . The
standard example is the definition d the days of the week:

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
A type synonym is an alias for an aready existing data type. It is introduced by a
keyword type. The new type ID behaves as the predefined type Int in ou program.

type ID = Int
There ae other predefined types and methods of introducing new types, bu not relevant

for the purpose of this thesis. Complete reference of Haskell data types and type
synonyms can be foundin (Peterson et al. 1997%.
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5.3.3 Classss andinstances

A type dass can be though of as an algebra of types whose dements are cdled
instances of the dass(Jones 1997). It is used to model the behavior of a data type or a
parameterized family of data types (Jones et a. 199). In this sdion, we ded with
smple dasses that have a single parameter. Classes with multiple parameters are
represented in Sedion 5.3.4 telow.

To test the spedfications, we neal a representation and an implementation. In a
classbased functional programming language, these @ncepts are separated, leading to
the foll owing threendtions: class data, and instance These threenctions correspondto
spedficaion, representation and implementation o an abstrad datatype.

A class consists of a set of operations expressed by functions applied to a type (or
types). In the dassdedaration, the first line (call ed the classheader) states which class
is defined, lists the parameters and may list condtions for the parameters. In the
following lines the signatures of operations are given, describing the types of their
arguments and d the result. In a Haskell signature, data types and type parameters
before the last arrow ‘->‘ represent the arguments types, and the last one represents the
type of the result.

The type dass Eq is a simple and wseful example, whose instances are precisely
those types whose dements can be tested for equality. The declaration d this class
given in the standard prelude is as foll ows:

class Eq a where
(==), (/) :: a->a->Bool
X/=y=not (Xx==y)

Thethird line of the dassdedaration provides adefault definition d the (/=) operator in
terms of the (==) operator (similar to derived operations in terms of algebra). Thus, it is
only necessry to give adefinition for the (==) operator in order to define dl of the
member functions for the dassEq. It is poassble to override default member definitions
by giving an alternative definition as appropriate for specific instances of the dass
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The data representation is constructed from predefined representations for basic
types. integers (Int), floating point numbers (Float), and characters (Char). These can
be combined as lists (a variable number of comporents of the same type) or records (a
fixed number of comporents of different types). For most classes the representation is
some sort of record, here for example cnsisting of a string and two integers:

data Point = Pt String Int Int

where aString represents the identifier of apaint and the Ints are x andy coordinates.

I nstances conred the data types with classs: they explain how the operations defined
in a dassare arried ou using this particular representation. In ou example, functions
(==) and (/=) arepdymorphic: they are gplicable for each type that is an instance of
the dassEqg. We can freely choose the way in which pants are ammpared for equality,
for example just by testing for simil arity of name:

instance Eq Point where

(==) (Point n1 x1 y1) (Point n2 x2 y2) = (==) il i2

Finally, we need the physicd redization d our model to test if the intended meaning is
captured. These are aeated and initi ali zed with the dedarations like:

pl, p2, p3 :: Point

pl=Pt34

p2=Pt14

p3=Pt34
We can seethat p1 == p2 gives False , p1 == p3 gives True , and so on. Frank and
Kuhn wsed the similar approad to compare different approaches to pant equality in the
North-American Open GIS Consortium, where different systems cooperating in a
heterogeneous environment can use different semantics in their equality operation
(Frank and Kuhn 19%).
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5.3.4 Classes with multi ple parameters

Gofer is the first language to suppat the use of type dasses with multiple parameters
(Jones 1995, and thus the modeling of multi-sorted algebras. This fedure dlows
further hiding of implementation issues from specificaion d functions. It is possble,
for example, to define operations on two-dimensional points withou speafying how
coordinates are expressed (as integers or as floats):

class Points p a where
getX::pa->a
getY::pa->a

A representation (datatype Point) is also parameterized in the similar way.
data Pointa=Ptaa
Findly, an implementation o the dass Points on the datatype Point is defined as

foll ows:
instance Points Point a where
getX (Ptbc)=b
getY (Ptbc)=c
The type of theresult is not fixed and depends on the type of argument. If the parameter
of Point is an integer, the result of the functionx will be an integer.

The ancept of inheritance is modeled within the context of a dass In addition,
with multi-parameter classes, inherited behavior can be spedfied for each parameter.
For example, we made no restrictions on the type of coordinates for the dass Points
abowe - the program would accept a string or character as well as any user-defined
datatype. If we want only numbers as coordinates, we must add the context to the dass
dedaration:

class Num a => Points p a where
getX::pa->a
getY :pa->a

The types for coordinates must be instances of the dass Num. Any type that is not an
instance of Num (e.g., a tharacter) causes an error.

The testing examples are:

p4 :: Ptint

p5 :: Pt Float
p4=Pt34
p5=Pt4.05.0

Then, getx pa gives3 (Int), gety p5 gives5 (Float).
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The multi-parameter classes are the key prerequisite for modeling many-sorted
algebras. This advanced feature of Gofer is exploited in the rest of this thesis to hide
implementation cetail s (e.g., of representation d objeds) in developing spedfication on
the high level of abstraction (e.g., databases as coll edions of objects).

54 Summary

In this chapter, we presented the formalization method sed in this thesis: algebraic
spedficaions written in the functional programming language Gofer. The definiti ons of
the main terms in algebraic spedficaions are given and clarified on simple examples.
The avantages of exeautable spedficaions are readability, easy understanding and
testing, and rapid prototyping.

The daraderistics of the functional programming language Haskell are described
with spedal attention paid to properties present in Gofer. Besides the most important
syntax rules, which are necessary for realing the rest of this thesis, we stressed the more
advanced concepts such as higher-order functions, type dasses and classes with
multi ple parameters. These ancepts are the building blocks for the formali zation o an
objed-oriented temporal database in the next chapters.
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6. SPATIOTEMPORAL DATABASE IN MODEL IMPLEMENTATION

The dements of a spatiotemporal database and the design decisions for a temporal
model, described in Chapter 3, are formalized here, based on formalization concepts
explained in Chapter 5. The result is a full-fledged exeautable model of a temporal
database, which will serve @& a starting point for modeling lifestyle operations in
Chapter 7.

We begin with the specificaion d the database dements. objeds with attributes
and identifiers, value sets, values and relations, with a brief description d the entity-
relationship data model (Chen 1976 introduced in Chapter 3, and continue with the
formalization o snapshots and operations on full temporal databases. The secondstep is
the dhoice of representation for abstract definitions given in the first step: we define
appropriate datatypes for physicd representation d database dements. In the third step,
we @nrect the astrad spedficaion with the representation in an implementation. The
spedficaionis applied ona simple example with queries that test if the model behaves
asintended.

At the end d chapter, aformal description d transformation functions between the
objed versioning and the database versioning is given.

6.1 Data model for atemporal database

A data model is a model of the structure of the information system, independent of
implementation cetails, and wsed as a basis for employing agorithms on the data. The
goal of this sction is to develop a forma model of a tempora database that is
independent on implementation d objeds and olject types. We adieve such
independence by attaching two additional parameters (datatypes for objeds and olject
types) to all colledions (snapshots and temporal database). Other elements of the model
(attributes, value sets, values, identifiers, and relations) are not parameterized for the
sake of clarity and simplicity. The data mode is based on Chen's entity-relationship
model (Chen 1976.



Spatiotemporal Database in Model Implementation 78

6.1.1 Objed identifiers

Identifiers are modeled as an abstrad classwith the operations for producing the next
(new) identifier (nextID), for observing the identifier (getID), and for the cmparison o
two identifiers (samel D). The operation for comparison d equality isinherited from the
classEq. For every implementation d the dass|Ds there must be an equality test for
the datatype. Note that there is no constructor operation for setting an identifier to the
abstrad datatype. Identifiers are generated automaticdly by the function nexID, and
canna be arbitrarily changed for any implementation.

class Eq i => IDs i where
nextiD ::i->i
getlD :i->ID
samelD ::i->i-> Bool
samelD ij=getIDi==getlD |

For simplicity, the identifiers are implemented as integers. Other structures would be
possble. Natural numbers form an ordered set with equality defined. Peano's axioms
guarantee that each new identifier is dways different from all i dentifiers that are dready

issued, becausen+ 1>n.

type ID = Int

instance IDs ID where
nextiDi=i+1
getlD =id

The identifier of an ojed is unique for a whole database, because succesors are
always different. The identifier canna be arbitrarily changed: it is not mutable. The
source of new identifiers - the set of natura numbers - is theoretically infinite: old
identifiers are not re-used. Therefore, al three cndtions for identifiers, mentioned in
Sedion 3.2.2 are fulfill ed: uniqueness immutabili ty and norreusabili ty.

The dassIDs can be instantiated na only on the object datatype, bu on a olledion
of objeds as well, in order to determine the latest identifier issued in a snapshaot or a
database.

6.1.2 Attributes, values sts andvalues

Attributes of objeds are represented as value sets with assgned predefined types of
values. According to Chen, an attribute can be formally defined as a function which
maps from an entity set into a value set or a Cartesian product of value sets. (Chen
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1976. Examples of attributes are avalue set Name with avalue of Sring, or avalue set
Age with avalue of Int.

We model the dtributes as the dassAttrib with a constructor attrib, and olservers
getValueSet and getValue, that return the vaue set and value, respedively. The
operation setValue upcdetes the value of an attribute. Finally, the operation seledAtt
extrads an attribute with the given value set.

class Attribs a where
attrib  :: (ValueSet, Value) -> a
getValueSet :: a -> ValueSet
getValue :: a->Value
setValue :Value->a->a
selectAtt :: ValueSet ->[a] -> a
selectAtt s = head . filter ((s==).getValueSet)

The number of value sets is finite for a spedfic gplicaion danain. We define the
datatype ValueSet that will cover the demonstrative purposes.

data ValueSet = Name | Age | Preds | Alive | Amount | Capacity | Weight
Chen assumed that there shoud exist dired representations of values (Chen 197%).
Thus, values shoud be basic datatypes: charaders, integers, and floats. We must wrap
different types of values in a single datatype, because we need a list representation o
attributes, and li sts accept only elements having equal types.

data Value = Vs String | Vb Bool | Vi Int | Vf Float | Vp [Int]
There is a predicate asciated with each value set to test whether a value belongs to it.
This is modeled with the operation checkV in the dassValueSets with two parameters
and an implementation over the datatypes ValueSet and Value. Usually, only a single
type of value can be asdgned to a particular type of value set, whereas each type value
serves for several types of value sets.

class ValueSets vs v where
checkV :: (vs, v) -> Bool

The operations for wrapping and urwrapping the basic types from and to the value
datatype ae defined in the dass Values with the operations wrapValue and
unwrapValue.

class Values v a where
unwrapValue :: v ->a
wrapValue :a->v
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Finally, we give the representation d attributes. It will be needed in definitions of the
abstrad specification d objectsin the following subsedion.

data Attrib = Att (ValueSet, Value)

After definition d identifiers, value sets and values, we procead with the fully abstrad
definition o objeds - the "first-class' citizensin ou model.

6.1.3 Objeds

The dassrepresenting the astract data type of objects is parameterized in the objed
type and defines the operations for creaion d a new object (makeObyj), attaching the
attributes to the objed (setAttribs) and retrieving the objed type and the list of attributes
(getObjtype and getAttribs) respectively. These four operations are dependent of a
particular representation d objed datatype. The next four operations (for adding and
updating a single atribute or severa attributes at once) are defined by already known
operations and do nao depend ona particular implementation. Their default definitions
arevalid for every implementation d classObjeds.

class IDs (o t) => Objects o t where
makeObj :: (t,ID)->ot
setAttribs :: [Attrib] ->o0t->0t
getObjType ::ot->t
getAttribs :: o t -> [Attrib]

addAtt  :: ValueSet ->Value ->ot->o0t
addAtt s v = uncurry setAttribs . pair (f . getAttribs, id)
where f = cons . pair (const (attrib (s, v)), id)

addAtts :: [(ValueSet, Value)]->ot->o0t
addAtts = (flip.foldr) (uncurry addAtt)

updateAtt :: Eq ValueSet => ValueSet -> Value ->ot->o0t
updateAtt s v = uncurry setAttribs . pair (f . getAttribs, id)
where f = updateBy ((s==).getValueSet) (attrib (s, Vv))

updateAtts :: Eq ValueSet => [(ValueSet, Value)]->o0t->0t
updateAtts = (flip.foldr) (uncurry updateAtt)

The dassIDs is mentioned in context, ensuring that for each implementation d the
class Objeds an implementation d the dassIDs must exist. All functions are defined
withou the explicit naming of all their arguments, in a categorical point-free style. The
functions uncurry, pair, flip, and foldr are explained in Chapter 5. The functionid is the
standard identity function; cons is the uncurried version of the list constructor (:) with
the foll owing meaning: cons (1, [2,3]) = [1,23]; const is the @nstant function - it takes
two arguments and return the first one. The function updaeBy replaces the dements of
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alist that satisfy the given criteria with a given element: updaeBy even 6[1,2,34] =
[1,6,36].

6.1.4 Relations

Relations are represented as tuples consisting of a relation type and a pair of obed
identifiers. For the sake of the simplicity of natation, we introduce atype synonym Rel
for representing relations:

type Rel = (RelType, (ID, ID))
The datatype for different relation types is Rel Type. In this chapter we will need orly a
gpatia relation"On". The relation PartOf will be exploited in subsequent chapters.

data RelType = On | PartOf
A relation shoud be established ony between appropriate types of objeds, eg., an
engine caana be apart of atable, bu can be apart of acar. Thisismodeled with a dass

Relatable.

class Relatable t where
relatable :: (RelType, (t, t)) -> Bool

The implementation d the operation relatable depends on the object typet.

6.1.5 Satic database - a snapshot

Objeds and relationships at a particular moment build a snapshat - a static database. A
snapshot is modeled as an abstrad datatype with the operations for manipulating objeds
and relations. Operations dependent on an implementation are: observers getObjects and
getRelations, constructors setObjects and setRelations.

The operation liftS transforms a function that operates on a list of objeds to a
function that operates on the snapshot abstract type. For example, if a function head
returns the first object from alist of objeds, the function headS= 1iftS head will return
the first objed from a snapshot containing the list of objeds. The similar operation to
liftS is liftR, which "lifts" the function ower a list of relations to a function ower a
snapshot containing the list of relations.

class (Objects o t, IDs (s o t), Relatable t) => Snapshots s o t where
getObjects ::sot->[ot]
getRelations :: s 0t -> [Rel]
setObjects ::[ot]->sot->sot
setRelations :: [Rel] ->sot->sot
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liftS:: (Jot]->[ot])->sot->sot
liftS f = uncurry setObjects . pair (f . getObjects, id)

liftR :: ([Rel] ->[Rel]) ->sot->sot
liftR f = uncurry setRelations . pair (f . getRelations, id)

A snapshat is a static database describing the universe of discourse in a particular
moment. It is sufficient to define the representation d the snapshot datatype & a tuple
consisting of anewest identifier, alist of objedsandalist of relations:

data Snapshot o t = Snap ID [o t] [Rel]
The datatype for snapshots is parameterized for objeds and ohect types. In order to
represent change between the states in a database, a @llection o snapshats is necessary.

6.1.6 Temporal database - a colledion d snapshaots

The dass TDBs defines the astract datatype of a @lledion d snapshaots with orly two
operations: the observer getSnaphats, which retrieves the list of snapshats, and the
constructor setSnashats, which changes the list of snapshats.

class TDBs td o t where
getSnapshots :: td o t -> [Snapshot o t]
setSnapshots :: [Snapshotot]->tdot->td ot

The aucia database operations are spedfied in the dass Databases. All of these
operations are paymorphic and can be gplied either on a static database (a single
snapshot) or ona llection d snapshats (abstradly defined in the dassTDBS).

The operation newObj creates a new objed in a database. Note that the only
argument for this function is the object type (t). The identifier will be asgned
automaticdly and canna be dhanged by the user. The function deleteObj removes an
objea from the database; updaeObj applies a function onan oljed that has the given
identifier; exstObj is a test if the objed with the given identifier still exist; seleaObj
retrieves object from a database; queryObj returns a spedfic property of the objed with
the given identifier. The function get is a shortcut for retrieving the value of a given
value set (the first argument of get) of an ojed (represented by its identifier). The
default definition o get depends on the implementation d the function queryOb.

Functions over relations have the following meanings: addRel puts the given
relation into a database; deleteRel removes a relation from a database; addRels adds
several instances of the single relation type invaolving a single identifier (for example,
several books are put on a table); deleteRels deletes al relations of a given type and a
single identifier (for example, al objeds that are on a particular table); deleteRelsID



Spatiotemporal Database in Model Implementation

83

removes all relations the given oljed participated in (if an ojed is removed from the

database); getRels retrieves all identifiers that participate in a particular relation type

with a given identifier; getConvRels retrieves converse relations.

class Snapshots d o t => Databases d o t where

newObj :t->dot->dot
deleteObj::ID->dot->dot

updateObj:: (ot->ot)->ID->dot->dot

existObj :: ID ->d ot -> Bool
selectObj::ID->dot->o0t
queryObj ::(0ot->x)->ID->dot->x

queryObjs ::(0t->x)->[ID]->dot->[x]
queryObjs g is = liftM (queryObj q) is

get :: ValueSet ->ID ->d o t -> Value

get a = queryObj (getValue . selectAtt a . getAttribs)

addRel ID->RelType->ID->dot->dot
addRels  : RelType->[ID]->ID->dot->dot
deleteRel : RelType -> (ID,ID)->dot->dot
deleteRels :: RelType->ID->dot->dot

deleteRelsID ::ID->dot->dot
getRels  :: RelType ->ID->dot->[ID]

getConvRels :: RelType ->ID->dot->[ID]

-- for queries (observers)

liftQ :: TDBs d ot => (Snapshotot->x)->dot->x

liftQ f =f . head . getSnapshots

-- for updates (constructors)

liftuU :: TDBs d o t => (Snapshot o t -> Snapshotot)->dot->d o't
liftu f = h . cross (g, id) . pair (getSnapshots, id)

where h = uncurry setSnapshots
g = cons. pair (f . head, id)

-- for operations on a list of identifiers (map)
liftM:: (ID->dot->x)->[ID]->dot->[X]

liftM f is = map (uncurry f) . cpl . pair (const is, id)

The "lift" operations have default definitions: liftQ transforms any query on a snapshaot

datatype to a query on an abstrad type of temporal database; liftU transforms an update

functions on a snapshat to an updite function onan abstrad type of tempora database;

lift M applies a function d asingle ID to alist of identifiers, returning a list of queried

values. The grea benefit of "lift" operations is that we have to define the

implementation d operations only for snapshats.

The operation liftU is crucial for operations that create or change objed identifiers.
First, the mlledion d snapshats together with the cmplete database is retrieved with
par (getSnaphat,id), and then the first element of the resulting list of snapshats (the
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function head retrieves the first edlement of alist) is updated and added onthe top d the
unchanged original li st (with the function g). The resulting list of snapshatsis attached
bad to the original database. Thus, each update operation append a new snapshaot to
alrealy existing list. There ae no destructive updates. The temporal order of events is
stored as the ordering of the snapshats.

So far, we spedfied al abstrad classes necessary for a full-fledged temporal
database. The model for representation d objects, oljed types, and tempora databases
is presented in the next sedion.

6.2 Representation of objects, object types and temporal databases

The representations for attributes, values, value sets, relations, identifiers, and snapshots
are drealy given. In this sdion, we give possble representations for parameters of
clases in the previous <ction. objeds and oljed types. Finaly, a possble
representation o temporal databaseis given.

An oljed will be represented as a tuple @nsisting of an identifier, an oljed type,
and a list of attributes. The datatype Object is parameterized with respect to the objed
type. The same datatype for objedsis retained throughou this thesis.

data Object t = Obj ID t [Attrib]
Objed types are represented as enumerated datatype expressng a particular needs of
the gplicaion damain. In this chapter, we present a smple example of a database
consisting of two types of solid oljeds (a block world). In subsequent chapters, the
parameterization d the database with respect to oljed types will be exploited for
representation d various object classs.

data ObjType = Book | Table
Finally, our tempora database is the mlledion d snapshats: a simple datatype
consisting of alist of snapshats.

data TDB o't = T [Snapshot o ]
The datatype TDB has two parameters: the first (o) for the objed datatype and the
seaond (t) for the datatype of object types. Thus, such representation is cgpable of
representing various objeds and oljed types withou changing its implementation.
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6.3 Implementation of the data model

In this section, we show an implementation d asimple, yet complete tempora database
with two oljed types (books and tables) conrected with a single relation (On). We start
with the implementation by conrecting the dasses with datatypes in order the latter
appeaed in Sedion 6.1

6.3.1 Implementation d values, value sets, and dtributes

The implementation d the dass ValueSets over datatypes ValueSet and Value is
necessary to asaure that values are dways assgned to appropriate value sets.

instance ValueSets ValueSet Value where

checkV (Name, (Vs a))=True
checkV (Age, (Via)) =True

checkV (Amount, (Vfa))=True
checkV (Capacity, (Vf a)) = True
checkV (Preds, (Vpa))=True

checkV (Alive, (Vb a)) = True

checkV (Weight, (Vfa)) = True

checkV _ = False

In this chapter, we will use only the value set Name. Therefore, the wrappers are defined
only for string values.

instance Values Value String where
unwrapValue (Vs s) =s
wrapValue s=Vs s

Theimplementation o operations in the dassAttribs over the datatype Attrib:

instance Attribs Attrib where
attrib = cond checkV (Att, error "incompatible value types")
getValueSet (Att (s,v)) =s
getValue (Att(s,v)) =v
setValue v (Att (s,u)) = attrib (s,v)

The implementation d the wnstructor function attrib cheds the compatibility of its
arguments (a value set and a value), and returns an error message if the types are not
compatible.

6.3.2 Implementation d objeds andrelations

The dassObjects can be instantiated over the parameterized datatype Objed t withou
concrete implementation d objed typet.
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instance Objects Object t where
makeObj (t,i) = Obj it []
getObjType (Objitas) =t
getAttribs (Obj it as) = as
setAttribs as (Obj it bs) = Objitas

Since the dassIDs was in the mntext of the dass Objects, it must be instantiated for
Objed t, too.

instance IDs (Object t) where
samelD a b = samelD (getID a) (getID b)
getlD (Objitas) =i

The representation d relations is already defined in Section 6.1.4, bt the dass
Relatable shoud be implemented over the datatype ObjType. The only valid relationin
our simple database is between olject types Book and Table (in that order), and its type
isOn.

instance Relatable ObjType where
relatable (On, (Book, Table)) = True
relatable _ = False

The dass Relatable can have different instantiations for different representation o
objed types. We will t ake alvantage of thisin the following chapters.

6.3.3 Implementation d snapshats

The datatype Snaghat is an instance of classes IDs, Snaghats, and Databases. The
first instance implements the most important operation d al: nexID. The new
identifiers are issued by a snapshot and triggered each time anew object is created. The
observer getID retrieves the latest identifier issued.

instance IDs (Snapshot o t) where
getID (Snapiosrs) =i
nextlD (Snap i 0s rs) = Snap (nextID i) os rs

Theinstance of the dassSnaphatsis smple:

instance Snapshots Snapshot o t where
getObjects (Snap i os rs) = 0s
setObjects os (Snap i psrs) = Snapiosrs
getRelations (Snapiosrs) =rs
setRelations ts (Snap i os rs) = Snap i 0s ts

All update operations in a database ae adually defined over a snapshat as the instance
of the dassDatabases over the parameterized type Snashot o t. The operation newObj
that credes anew objed in a snapshat triggers the nextID for a snapshat and produces a
new objed with the new identifier. The operation deleteObj removes all relations the
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objed participated in. Other operations over objects have the behavior already explained
in Sedion6.1.6

instance Databases Snapshot o t where
newObj t = nextID . uncurry setObjects .
cross (cons . pair (makeObj.outl, outr), id) .
cross (assocl. pair (const t, id), id) .
pair (cross (getlD, getObjects), outr) . pair (nextID, id)

existObj i = cond p (false, true) where
p = null . filter ((i==).getID) . getObjects

deleteObji =IiftS f. liftR g where
f = filter ((i/=).getID)
g = filter (meet ((i/=).outl.outr, (i/=).outr.outr))

updateObj f i = cond (existObj i) (g, h) where
g = liftS (map (cond ((i==).getID) (f, id)))
h = error ("the object " ++ show i ++ " does not exist.")

selectObj i = (cond existObj i) (f, g) where
f = head . filter ((i==).getID) . getObjects
g = error ("the object " ++ show i ++ " does not exist.")

queryObjqi =q. selectObj i
queryObjs g is = liftM (queryObj q) is

addRel jti=cond p (f, g) where
p = relatable . pair (const t, pair (h i, hj))
h a = queryObj getObjType a
f = liftR(cons . pair (pair (const t, pair (const i,const j)),id))
g = error "types are not relatable.”

addRels tis j = (flip . foldr) (addRel j t) is

deleteRel tis = liftR (filter (join' ((t/=).outl, (is/=).outr)))
deleteRels ti = liftR(filter (join' ((t/=).outl, (i/=).outr.outr)))
deleteRelsID i = liftR(filter(meet((i/=).outl.outr,(i/=).outr.outr)))

getRels ti = map (outl.outr) . filter p . getRelations where
p = meet ((t==).outl, (i==).outr.outr)

getConvRels ti = map (outr.outr) . filter p . getRelations where
p = meet ((t==).outl, (i==).outl.outr)

Among operations over relations, adding a new relation includes a died if the objed
types are relatable. The function join' isrelational or already described in Chapter 5 (the
apaostrophe is added to avoid the name dash with the function join from the standard
Gofer prelude).

6.3.4 Implementation d atemporal database

The datatype TDB implements following clases from our model: IDs, TDBs, and
Databases. Theinstantiation o the dassIDs enables the query abou the latest identifier
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in the whole database. Sincethe operationlift Q is necessary, the dassDatabase must be
mentioned in context and an instantiation o the dassDatabase over the datatype TDB
must be provided.

instance (Databases TDB o t) => IDs (TDB o t) where
getlD = liftQ getID

Further, the operationsin the dassTDBs are implement to enable retrieval and ypdating
of alist of snapshats.

instance TDBs TDB o t where
getSnapshots (T ss) = ss
setSnapshots ss (T ts) =T ss

Finally, the implementation d the dassDatabases is surprisingly simple: all functions
are transformed with appropriate lift operations to the functions operating on the latest
snapshat.

instance (TDBs TDB o t, Databases Snapshot o t)
=> Databases TDB o t where

newObj t = liftU (newObj t)
deleteObji =liftU (deleteObj i)
updateObj fi = liftU (updateObj f i)
existObj i = liftQ (existObj i)
selectObji = liftQ (selectObj i)

queryObj qi = IiftQ (queryObj q i)

addRel jti =liftU (addRel jti)
addRels tis j = liftU (addRels t is j)
deleteRels ti = liftU (deleteRels t i)
deleteRelsID i = liftU (deleteRelsID i)
getRelsti =liftQ (getRels t i)
getConvRels t i= liftQ (getConvRels t i)

Thus, we finished with the implementation d our data model. All classes defined in
Sedion 6.1 are mnneded with the representation types. Detail s abou implementation
of standard type dasses (Eq, Text, Num) are omitted and can be foundin the Appendix.

6.4 An example database

In this sction, we show a full example of a simple temporal database. Behavior of all
functions introduced in data model istested. The universe of discourse that serves as the
test-bed consists of two bools named "bookA" and "bodkB" and two tables named
"tableA" and "tableB". Beside the popuation d the database with these four objects, we
will test the caability of the model to prevent illegal operations like putting an already
deleted book orthe table.
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First, we popuate our database starting from an empty database tdO with the
foll owing piece of code:

tdo, td1, td2, td3, td4, td5, td6, td7 :: TDB Object ObjType
td0O=T[Snap O[] []]

td1 = foldr newObj tdO [Table, Table, Book, Book]

td2 = updateObj (addAtt Name (Vs "Book1")) 1 td1

td3 = updateObj (addAtt Name (Vs "Book2")) 2 td2

td4 = updateObj (addAtt Name (Vs "Tablel")) 3 td3

td5 = updateObj (addAtt Name (Vs "Table2")) 4 td4

td6 = addRel (On, (1,3)) td5

td7 = addRel (On, (2,4)) td6

The result is the following state of the database (only the latest snapshat) represented
using asimple implementation d Gofer type dassTexX:

? 1iftQ show td7

Snapshot

Latest ID =4

Objects: [

4 Table Attribs:[ name ="Table2"],
3 Table Attribs:[ name ="Tablel"],
2 Book Attribs:[ name ="Book2"],
1 Book Attribs:[ name ="Book1"]]

Relations: [2 is on 4,1 is on 3]

Thus, we @nclude that the operations newObj, updaeObj, and addRe show the
intended behavior. Severa tests can be performed onthe fina state td7 and we will
show possble adions and results as comments. For each test operation, the expeded
type is ecified explicitly to avoid type erors. We use identifiers for referring the
objeds, because identifiers are guaranteed to be unique. If unique names are given to all
objeds, it would be possble to refer the objeds in a more natura manner - by using
their names.

tstl, tst2 :: Bool

tst3 :: Object ObjType

tst4 :: Value

tst5 :: String

tst6 :: Object ObjType

tst7 :: [Rel]

tst8 :: TDB Object ObjType

tstl = existObj 4 td7
-- True

tst2 = existObj 4 (deleteObj 4 td7)
-- False

tst3 = selectObj 4 (deleteObj 4 td7)
-- error: the object 4 does not exist.
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tst4 = get Name 1 td7
-- Vs "Book1"

tst5 = unwrapValue (get Name 1 td7)
-- Bookl

tst6 = selectObj 3 td7
-- Obj 3 Table [Att (Name,Vs "Tablel")]

tst7 = liftQ getRelations (deleteRel On (1,4) td7)
- [(On, (2,4))]

tst8 = addRel (On, (4,1)) td7
-- error: types not relatable.

The first test shows that the function existObj gives the expeded result for an existing
objed. The second and third test show that the deleted ohjeds do nd exist and canna
be seleded from the latest snapshot. Two examples of querying existing objeds are
shown in tst4 and tst5. A succesdul seledion d an ojed is $own in tst6. The last two
tests ded with relations: tst7 shows which relations remain in the database dter a
succesdul deletion d an existing relation, and tst8 shows what happens if we attempt to
put atable onthe book (aundefined relation).

6.5 Formal model of transformations between ver sioning techniques

In Section 3.3.2we daimed that the transformations between two versioning techniques
(objeda versioning and database versioning) are losdess We give the forma model for
transformations and show on a simple example that any transformation composed with
the inverse transformation return the original database.

6.5.1 Spedfication

All functions are defined in the dass Groups, which has two parameters. t for
representation d time and o for representation d objects. The function toOV transforms
a database versioning model to an olject versioning model. The function toDV is the
inverse operation to toOV. Both functions are composed in five steps explained in
Sedion 3.3.2 distribute, find, seled, narmali ze, and concatenate.

class (Eqt, Eq 0) => Groups t o where

-- (database versioning -> object versioning)
distrTime :: [(t,[0])] -> [(o,1)]
distrTime = concat . map cpl . map swap

findObjs :: [(0,1)] -> [0]
findObjs = nub . map outl
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-- select times for given object

selTimes :: (0, [(0,1)]) -> [(0,1)]
selTimes = uncurry filter . cross (flip ((==).outl), id)

normObj :: [(o,t)] -> (o,[t])
normObj = pair (head . map outl, map outr)

toOV :: [(t.[o])] -> [(o,[t])]
toOV = map (normObj.selTimes) . cpl
. pair (findObjs, id) . distrTime

-- the opposite case (object versioning -> database versioning)
distrObjs :: [(o,[t])] -> [(0,1)]
distrObjs = concat . map cpr

findTimes :: [(0,1)] -> [t]
findTimes = nub . map outr

-- select objects at given time
selObjs :: (t,[(0,1)]) -> [(0,1)]
selObjs = uncurry filter . cross (flip ((==).outr), id)

normTime :: [(0,t)] -> ([o],t)
normTime = pair (map outl, head . map outr)

toDV :: [(o,[t)] -> [(t.[0])]
toDV = map (swap.normTime.selObjs). cpl
. pair (findTimes, id) . distrObjs

Beside severa aready seen functions, functions for Cartesian products (cpl and cpr)

and the function nub deserve alditional explanationt.

6.5.2 Representation d time and oljeds

Time is represented with integers. Objects are simplified to a tuple cnsisting of an
identifier, an olject type and asingle dtribute (color).

type Time = Int

data ObjX = Ob ID ObjT Color
data ObjT = House | Car

data Color = Red | Blue | White

6.5.3 Implementation

An instance of the dassEq is necessary for the datatypes ObjX and Color to compare
objedsfor equality:

1 Cartesian product left (cpl) pairs alist of values with a single value: cpl ([1,2,3],4)=[(1,4), (2,4), (3.4)].
Cartesian product right (cpr) pairs asingle value with alist of values: cpr (4,[1,2,3])=[(4,1), (4,2), (4,3)].
The function nubremoves dupli cates from alist: nub[1,2,3,3,2]=1,2,3.
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instance Eq ObjX where
==) (Obitc)(Objud)=i==j&&c==

instance Eq Color where
Red == Red = True
Blue == Blue = True
White == White = True
_==_=False

Since dl functions of the dassGroups have default definitions, we need just to conred
the dasswith the representations for time and oljeds.

instance Groups Time Obj

In the next subsedion, we test the model on the simple example mentioned in Sedion
3.3.2

6.5.4 Examples

We mnstruct the objeds House and Car, and prepare alist of snapshats representing the
universe of discourse.

01, 02, 03 :: ObjX

01 =0b 1 Car Red

02 = Ob 1 Car Blue

03 = Ob 2 House White

dvi, dv2 : [(Time, [ObjX])]
dvl =[(1, [01]), (2, [02,03]), (3, [02,03]), (4, [03])]

ov1l :: [(ObjX,[Time])]
ovl =toOV dvil

dv2 =toDV ov1l
The results of exeauting tests dvl, ovl, and dv2 are:

dvl =
[(1,[redCar]),(2,[blueCar,whiteHouse]),
(3,[blueCar,whiteHouse]),(4,[whiteHouse])]

ovl =
[(redCar,[1]),(blueCar,[2,3]),(whiteHouse,[2,3,4])]

dv2 =
[(1,[redCar]),(2,[blueCar,whiteHouse]),
(3,[blueCar,whiteHouse]),(4,[whiteHouse])]

We can see that the gplicaion d the transformation function toDV after the
transformation function toOV yields the origina database. The @mpaosition d
transformation functions is equal to the identity function. Transformations between two
versioning techniques are losdess
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6.6 Summary

An entity-relationship model of a working temporal database is formally described and
an exeautable specificaion is provided. The @ncepts of identifiers, attributes, value
sets, values, ojeds, snapshats, and temporal databases are formalized as classes in
Gofer. The objed identifiers are issued by the system during the cregion d new objeds
only, and cahna be abitrarily changed after the aeation d objeds. Thus, the
condtions of uniqueness immutability and nonreusability of identifiers are satisfied.
The relations are valid only if the objects represented in relations by their identifiers
have gpropriate types. A simple instantiation is made for a small database and the
functionality of the operations is tested. Finaly, we formalized the dgorithms for
transformations between versioning techniques presented in Sedion 3.3.2.We showed
that these transformations are losdess

In the next chapter, we build the model for operations affeding objed identity on
top d the spatiotemporal database presented here.
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7. OPERATIONSAFFECTING OBJECT IDENTITY - A FORMAL MODEL

In previous chapter, we develop an exeautable functional spedficaion o a full-fledged
temporal database based on the entity-relationship data model. On top d that
spedficaion, we formalize lifestyles - classes of operations affeding object identity,
described in Chapter 4. Lifestyle operations are completely independent of the
representations for objects and ohed types. At the end, we give a @mparison with
other prominent propasals for caegorizations of operations that change objed identity.
The implementations and appli cations of lifestyles are given in Chapters 8 and 9.

7.1 Operations affecting singleidentity

The basic operations that affed the identity of a single objed (create, destroy, suspend,
resume, and ewlve) are formalized in separate Gofer classes with appropriate classes
from the previous chapter in the context.

7.1.1 Create

In the previous chapter, the operation newObj for produwcing a new object in the
database was introduced in the dassDatabases. The operation create maintains a set of
tempora links with predecessors. Therefore, a list of predecessors is a mandatory
argument of the operation create. Predecesors can be set only during the aeation d the
objed. Objeds, which are aeated from scratch, have ah empty list of predecessors.

Two auxiliary operations are defined: createWithID and createN. The former
operation returns a pair consisting of the newly creaed identifier and the updated
database, whil e the latter creates svera new objeds with the same object type and with
the same set of predecesors, yet with dfferent identifiers. The number of creaed
objedswith the function createN is determined by its first argument (n).

class (Objects o t, IDs (d o t), Databases d o t)
=> Creatable d o t where

create 2 (ID],t)->dot->dot
createWithID :: ([ID],t)->dot->(ID,dot)
createN 2 Int->([ID],t)->dot->dot

create (is, ot) = uncurry (updateObj f) . pair (getID, id) . newObj ot
where f = addAtt Preds (Vp is)

createWithID (is, ot) = pair (getID, id) . create (is, ot)

createN n (is, ot) = flip (!!) n . iterate (create (is, ot))
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The operations updateObj, getlD, and newObj are inherited from the dasses Objeds
IDs, and Databases, respedively. Two standard operations over lists are used for the
definition d the operation createN: iterate and (!!)1.

7.1.2 Destroy

The operation destroy is not applicable to al objed types. In order to be destroyable, a
spedfic object type must implement the method destroyable from the dass
DestroyableT ('T' stands for type):

class DestroyableT d where
destroyable :: d -> Bool

This classis then added to the cntext of the dassDestroyable, ensuring that for each
implementation d class Destroyable (parameterized in oljed type t) an instance
DestroyableT t exists.

class (DestroyableT t, Creatable d o t) => Destroyable d o t where
destroy::ID->dot->dot
destroy i = cond p (f, g) where
p = destroyable . getObjType . selectObj i
f = deleteObj i
g = error ("the object" ++ show i ++ "is not destroyable™)

The prerequisite that the objed type is destroyable is gated in the wndtion p for the
operation deleteObj inherited from the dassDatabases. Although the dassDatabasesis
not explicitly mentioned in the context of the dassDestroyable, it isimplicitly inherited
from the dass Creatable, which is in the cntext. The operation destroy has the
following effect: the objed is removed from the latest snapshat; it canna actively
participate in further changes to the database, bu its previous existence can be
referenced. All relations in which the objed had participated are removed as well .

7.1.3 Suwspend andresume

The operations suspend and resume are mutually dependent. It is natural to model both
of them in the single dassSuspendalde. Operations suspendObj and resumeObj operate
on ohed level.

1 The function iterate generates an infinite list by iteratively applying a function on the last element:
iterate (+2) 1 = [1,3,5,7...]. The function (!!) n seleds the n" element of the list. (I!) ['a,'b',c] 1 ='b'
(indexing starts from 0).
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A predicae suspendalie is needed to ched if an olged type can be suspended or
not. The predicate is defined in the dass SuspendaldeT which must be instantiated for
ead ohject type.

class SuspendableT s where
suspendable :: s -> Bool

On the objed level (class SuspendaldeO), the predicae suspended cheds whether an
objed is alrealy suspended, whereas the functions suspendObj and resumeObj change
the atribute Alive of the objed.

class Objects o t => SuspendableO o t where
suspended ::ot->Bool
suspended = not .unwrapValue . getValue . selectAtt Alive . getAttribs

suspendObj :ot->ot
suspendObj = updateAtt Alive (Vb False)

resumeObj :ot->ot
resumeObj = updateAtt Alive (Vb True)

Finally, the operations suspend and resume push the operations suspendObj and
resumeObj, respedively, to the database level. The dass Suspendalde needs both
clases SwspendaleT and SuspendalleO, together with the dass Creatable in its
contexts.

class (SuspendableT t, SuspendableO o t, Creatable d 0 t)
=> Suspendable d o t where

suspend, resume ::ID->dot->dot
suspend i = cond p (f, g) where
p = suspendable . getObjType . selectObj i
f = updateObj suspendObj i
g = error ("the object” ++ show i ++ "is not suspendable™)

resume i = cond p (f, g) where
p = queryObj suspended i
f = updateObj resumeObj i
g = error ("the object” ++ show i ++ "is already suspended")

The operations suspend and resume are defined condtionally: an oljed can be
suspended if it is suspendable and can be resumed only if it is already suspended. All
operations on the database level are mmpletely independent of the implementation at
the aost of a cmplex set of condtions for the type parametersin the mntext.

7.1.4 Evolve

The evolvable objects must implement the dass Destroyable as can be seen in the
context. Any later instantiation is independent of the instantiation d the database.
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class Destroyable d o t => Evolvable d o t where
evolve ::ID->dot->dot
evolve i = destroy i . uncurry (updateObj' setAttribs)
. pair (pair (getlD, getAttribs. selectObj i), id) . uncurry create
. assocl. pair (const (wrap i), pair (getObjType . selectObj i, id))
where updateObj' f (i,x) = updateObj (f ) i

The new object is created with the original objed as the predecessor: the code fragment
const (wrapi) produces asingletonlist [i] that is used as the agument for the operation
create. All attributes of the original objeds are transferred to the emerging objed as
well, leading to a cmplex definition.

7.2 Operations affecting multipleidentities

Compositions of basic operations are modeled with the following four classes:
Aggregates, WAggregates, Fusions and WFusions. Classes with the prefix "W' cover the
week or non-constructive caes of fusions and aggregation.

7.2.1 Constructiveagg egates

The @nstructive aggregates must implement the dasses Suspendalle and Destroyable.
The operation agg egate suspends the objects having the identifiers from the given list,
credes a new objed with the given olject type, and establishes the relation PartOf
among the suspended oljects and the newly created oljed.

class (Destroyable d o t, Suspendable d o t)
=> Aggregates d o t where
aggregate :: [ID]->t->dot->dot
aggregate is t = uncurry (addRels PartOf is) . createWithID ([],t)
. (flip.foldr) suspend is
segregate :ID->dot->dot
segregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i, g)
where g = deleteRels PartOf i . destroy i

The operation segregate first searches all i dentifiers that are parts of the given identifier,
resumes matching objeds, removes relations PartOf, and destroys the object with the
given identifier.

7.2.2 Weak agg egates

Wed& or nonconstructive aggregations and segregations does not destroy objeds.
Therefore, such objeds are only creatable and suspendalle. It is sufficient to add the
classSuspendalle to the mntext, because the dassCreatable isinherited implicitly.
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class Suspendable d o t => WAggregates d o t where
waggregate :: [ID]->ID->dot->dot
waggregate is i = (flip.foldr) suspend is.addRels PartOf is i.resume i
wsegregate :ID->dot->dot
wsegregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i,g)
where g = deleteRels PartOf i . suspend i

The operation wagg egate differs from aggegate ony in that the aggregated oljed is
resumed instead of created. Similarly, the operation wsegregate differs from segregate
in that the segregated oljed is suspended insteal of destroyed.

7.2.3 Constructivefusions

Constructive fusions are not reversible. Thus, the dass Destroyable is the only class
necessary in the mntext. The operation fusion creaes a new object with the given ohjed
type and destroys the objects having identifiers from the given list. The new object has
destroyed oljeds as predecesors.

class Destroyable d o t => Fusions d o t where
fusion :: [ID]->t->dot->dot
fusion is t = (flip . foldr) destroy is . create (is, t)
fissionN ::Int->ID->dot->dot
fissionN n i = uncurry (createN n) . pair (f, destroy i)
where f = pair (wrap . const i, getObjType . selectObj i)
restructure :: [ID] ->t->Int->dot->dot
restructure is t n = uncurry (fissionN n).pair (getlD,id).fusion is t

The operation fissonN creaes n new objects that al have the same type & the original
objed. Each of n new objects has exadly single predecessor - the identifier of the
original objects. Finally, the operation restructure is modeled as a mmpasition ketween
afusion and a subsequent fisson d the fusioned olject.

7.2.4 \Weak fusions

We& or non-constructive fusions implement the dass Suspendalde. The dass
Destroyable is necessary as well, because the operation wfusion destroys fused oljects.

class (Destroyable d o t, Suspendable d o t) => WFusions d o t where
wfusion :: [ID]->ID->dot->dot
wfusion is i = (flip . foldr) destroy is . resume i
wfissionN :: Int->ID->dot->dot
wfissionN n i = uncurry (createN n) . pair (f, suspend i)
where f = pair (wrap . const i, getObjType . selectObj i)

The only difference between constructive and weak fusion is formalized as the
difference of the basic operation applied on the single objed side of the operation:
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constructive operations create (destroy) the objed, while wee operations resume
(suspend) oheds.

7.3 Comparison of lifestyleswith other categorizations of identity change

Theory of lifestyles is powerful enough to completely cover already existing propcsals
for caegorization d change in identities, naably those of Al-Taha and Barrera (1994,
and Hornsby and Egenhdfer (1997). The mapping between lifestyles and the operations
propased by Al-Taha and Barrera (shown in Figure 2.2) is draightforward:

create = create
destroy = destroy
kill = suspend
reincarnate = resume
evolve = evolve
identify = foldr destroy
spawn i = uncurry create . pair (f, id)
where f = pair (wrap . const i, getObjType . selectObj i)

aggregate = aggregate
disaggregate = segregate
fuse = fusion

fission = fission

Phenomena that can be modeled in the lifestyles framework and canna be modeled in
the proposal by Al-Taha and Barrera include we&k fissons and aggregates, and the
operation restructure.

Operations propcsed by Hornsby and Egenhder, informally discussed in Sedion
4.3.3are formalized as compositi ons of the high-level lifestyles operations only:

metamorphose :: Evolvabledot=>ID->dot->dot
metamorphose = evolve

spawn :: Creatabledot=>ID->dot->dot
spawn i = uncurry create . pair (f, id)
where f = pair (wrap . const i, getObjType . selectObj i)

mergeH :: Fusionsdot=>[ID]->t->dot->dot
mergeH = fusion

generate :: Creatabledot=>[ID]->t->dot->dot
generate = curry create

mix :: Destroyabledot=>[ID]->t->dot->dot
mix (i:is) t = destroy i . curry create is t

The functions that operate on composite objects are compound unite, amalgamate,
combine, secede, and dislve The function segregate’ returns a pair consisting of alist
of aggregated ohjects and the database. It is used in definition o the function combine.
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The operation amalgamate (see Figure 2.5-d) is especially interesting. It is a
composition d fusions followed by an aggregation. Objeds that amagamate ae
aggregates with an arbitrary number of parts. It must be defined which parts of these
objeds are fusible. What happens if one @mposite has more parts than aher
composites that amalgamate? Is it posgble to fuse severa parts of one cmmposite with a
single part of other composite? It seans that amalgamate dlows many different
situations, and it is not clea if the proper behavior for each case can be standardized.
Without loss of generality, we formalize only the cae where the foll owing condtions
are fulfill ed:

1. al composite objeds have the same number of parts,
2. only one part of particular compasite may participate in eat fusion, and

3. parts are fused with resped to some ordering within the original composed oljects -
thisisequal to the framework setting (Hornsby and Egenhdfer 1999.

With these assumptions, the operation amalgamate is formally defined as a composition

of multiple fusions foll owed by an aggregation o fused oljeds.

segregate’ :: Aggregatesdot=>ID->dot->([ID],dot)
segregate' i = pair (outl, (uncurry.flip.foldr) resume)
. pair (getRels PartOf i, destroy i)

compound :: WAggregatesdot=>ID->ID->dot->dot
compound i j = uncurry (flip waggregate j)

. Cross (cons . pair (const i, id), id)

. pair (getRels PartOf j, wsegregate j)

unite :: Aggregatesd ot =>[ID]->t->dot->dot
unite = aggregate

combine :: Aggregatesdot=> [ID]->t->dot->dot
combine is t db = aggregate js t db where
js = concat . map (outl . (flip segregate' db)) $ is

amalgamate :: (Fusions d o t, Aggregates d o t)
=>[ID]->t->t->dot->dot

amalgamate is t1 t2 db = uncurry (aggregate ns) (t1, db') where
db' = outr (foldr fusion’ (t2, db) jss)
jss = transpose . map (outl . (flip segregate' db)) $ is
fusion'isl (t1,dbl) = (t1, fusion is1 t1 dbl)
ns =[a+1 .. b]
a =getlD db
b =a + length is

secede :: WAggregatesdot=>ID->ID->dot->dot
secede i j = uncurry (flip waggregate j)

. cross (filter (i/=), id)

. pair (getRels PartOf j, wsegregate j)
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dissolve :: Aggregatesdot=>ID->dot->dot
dissolve = segregate

The functions compound and secede shows an advantage of lifestyles: if there exist
some minimal condtion for an aggregation (e.g., a spedfic number of parts), secesson
will automaticdly signali ze if the condtionisnat fulfill ed any more.

Generality expressd with compositions is comparable with the iconic language
used by Hornsby and Egenhder. The operation missng in their propcsa is the
operation suspend and related concepts of weak operations on composite objeds.

7.4 Summary

The operations affecting objed identity are formalized ontop d the formal model
of an entity-relationship tempora database developed in Chapter 6. First, simple
operations are modeled as primitive lifestyles, and their compositions are divided into
four complex lifestyles: weak and constructive aggregations and fusions. The difference
between the two variations of eadch (constructive and weak) is that the underlying
operations on the single-side are create and destroy in the first case, and suspend and
resume in the second case. Dependencies among classes for all li festyles are shown in

Figure 7.1.

| SuspendableTt |

¥
| Objedsot |—>| SuspendableO ot |

| Databasesd ot~ —>| Cregabled ot  |—>| Suspendabled ot |—>{ WAggregatesd ot |

) {
| DestroyableTt  |—>| Destroyabled ot | Aggregatesd ot |
l \ WFusionsd ot |

| Evolvabledot | | Fusonsd ot |

Figure 7.1: Classes hierarchy for lifestyles.

A comparison d our proposal with ather caegorizations of change showed that the
theory of lifestyles offers greaer flexibility and generality with lessoperations.
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8. LIFESTYLESOF PHYSICAL OBJECTS

In previous chapters, we defined and formali zed the general framework for the dhange
aff ecting identity of objects. Objeds were described as completely abstrad, having only
identifiers and operations on them in common. Whereas sich abstrad treament is
suitable for laying down the theoretica fourndation for change operations, examples that
are more @rncrete ae necessary to show the pradica importance of our approad.

We focus on the gplicability of our theoreticd considerations to the spedfic
groups of real-world oljeds. Objeds are divided into physicd and abstrad ones.
Physicd objeds are mncrete, graspable things that make up the physical reality of the
world. Abstrad objects are mncepts that exist only as a matter of a social consensus (for
example: marriages, partnerships, or unions of states). We analyze astract objeds in
the subsequent chapter.

In this chapter, an extended accourt on physicd objeds is given. A categorization
of physical objeds, based oncontemporary cognitive linguistics, is presented. Physicd
objeds may be solid o liquid, movable or immovable, natural or human-made, living or
nontliving. As a speda class eterna objeds are introduced for the representation o
objeds having the lifespan longer than the @ntext within which such oljeds are
considered.

Eadh subsedion consists of an informal overview with the cmmon sense
badgroundand a forma model. The forma model for each applicaion is built on top
of the general model of lifestyles, formalized in Chapter 7.

8.1 Solid objects

Solid oljeds are nontliving objects with crisp boundries that are physicdly observable
by humans. They can be moved and their boundxries then become evident. These
objeds endue; they can be destroyed and creaed, bu only by recognizable actions and
events (through cutting, crushing, burning); they have abeginning and an end (Hayes
1985).

Solid oljeds are divided into movable and immovable objeds. Movable objeds are
typicdly manipulable by humans; they fit in the small-scde or tabletop space (Mark and
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Frank 199%). Movable objects can be natural objects (objeds as they existed withou
humans) and artifads (objects produced by human activities).

Immovable objeds are typicdly much larger than movables, they are not
manipulable and form geographical space (Egenhder and Mark 19%); they are places
in which humans are placal, can move through or leave. Since there is no significant
difference between natura and human-made immovable objeds for the purpose of this
thesis, these ae treaed together.

movable immovable
natural stones, fruits mountains, valleys
artifaat cas, computers | buildings, roads

Table 8.1: Categorization of solid oljeds.

The cdegorization d solid ojeds is propcsed (see Table 8.1), and all caegories are
analyzed in the foll owing subsections.

8.1.1 Movable natural objeds

Natural movable solids are small-scde objeds as found in the natura environment.
Such oljeds are usually similar to aher objects of the same kind, bu can be eaily
individuated. They come to being by natural processes that separate small er pieces from
large masss. erosion, eathquakes, or volcandogy. Typicd examples are stones and
fruits. Note that fruits are aborder case to living objects. Once picked, hovever, fruits
can be ssumed “dead” for purpases of this dion.

Natural objeds are creatable and destroyable. The lifestyle of natural objeds is
characterized by the foll owing formali zation:

class Destroyable d o t => MovableNaturals d o t where
createMovNat :: String -> Float -> ([ID],t)->dot->dot
createMovNat name w a = uncurry (updateObj (addAtts as))
. createWithID a
where as = [(Name, Vs name), (Preds, Vp []), (Weight, Vf w)]

We assgned three default attributes for movable natural objeds: a name, a list of
predecessors, and weight. A simple representation d fruits and stones, followed by the
implementation d the database model developed in Chapters 6 and 7is:



Lifestyles of Physicd Objeds 104

data MovNat = Fruit | Stone
instance Relatable MovNat where
relatable (On, (Fruit, Stone)) = True
instance Creatable TDB Object MovNat
instance DestroyableT MovNat where
destroyable Fruit = True
destroyable Stone = True
instance MovableNaturals TDB Object MovNat

Example queries on a small database ae shown. Objects are aeated with two additi onal
arguments: a String for names and a Float for weights of movable natural objeds.

mnO0, mn1, mn2 :: TDB Object MovNat

mnO =T [Snap 0[] []]

mnl = createMovNat "appleA" 0.4 ([],Fruit) mnO
mn2 = createMovNat "stoneA" 1.2 ([],Stone) mn1
mn3 = createMovNat "stoneB" 2.3 ([],Stone) mn2

tstmnl = existObj 3 (destroy 3 mn3)
-- False

tstmn2 = get Weight 2 mn3

- Vfl.2

The first test shows that the objed named stoneB does nat exist after the operation
destroy. The secondtest extrads the value for the value set Weight of the objed named
stoneA.

8.1.2 Movable artifacts

Artifads are solid ojeds produced by human activity. In this sdion, we cnsider
movable atifacts only, while the immovable atifacts are described together with
immovable natural objeds in the next subsedion.

A movable atifad can be apiece of homogenows lid stuff (e.g. a glasg or an
asembly, which is made up d afinite number of other artifads (e.g. a window). All
manufadured goods we encourter and use in ou everyday life conform to these aiteria.
Prototypicd examples for smple artifads are tires, wooden hricks, bdts, and screws.
Prototypicd examples for complex artifads are ars, chairs, computers, and watches.

The property of being a part or having parts determines the lifestyle of movable
artifads. The individuation d assembled artifadsis smple a long as the original parts
are halding together. The problem arises when the parts are dianged or broken, for
example. What makes a complex objed the same through time, is a question from the
story abou the ship of Theseus, mentioned in the introduction d this thesis. Assuming
spatiotemporal continuity, an asembly retains the same identity even if al of its parts
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are replaced (Hayes 1989). This view is plausible in the purely physica world we ae
deding with in this chapter.

The seaond henomenonrelated to complex artifads is that of functionality. Such
objeds are mnstructed to fulfill certain human neeals. If an artifad is not working
properly, it must be repaired; often orly a not-functioning part is replaceal. We usually
talk abou “dead computers’ or “dead cars’. When a computer or a car is repaired, it
lives again - it is reincarnated. Therefore, it makes sense to alow such oljeds to be
suspended (when broken) and resumed (when successully repaired).

The formalization d movable artifads resembles the aggregate lifestyle, alowing
the objeds to be suspended and resumed. Our example will be aca consisting of
several changeable parts: a thasss, an engine, and four wheels. If a wheel is to be
changed, the ca istemporarily taken apart - suspended, and each of its partsis resumed.
An aggregation d other origina parts with the new whed resumes the original identity
of the cr.

We formali ze the behavior of movable atifads with operations grouped in the dass
MovableArtifacts, which inherits operations from the dasses Aggregates and
WAggregates. The default attributes for movable atifads are names and truth-values for
the state (alive or suspended). The operations destroy, segregate, waggegate,
wsegregate are inherited from the dasses mentioned in the ntext. Three new
operations are defined for aggregates. addPart brings additional part to an arealy
existing aggregate; removePart takes a specific part away; replacePart exchanges an
existing part of an aggregate with a part from the outside world. It is esentia that all
three mentioned operations be modeled as a composition d a wea segregation
followed by a wedk aggregation. If any criteria for the eistence of the aggregate were
not met after the parts are changed, the dhange would be rejected by the system.

class (Aggregates d o t, WAggregates d o t)
=> MovableArtifacts d o t where
createMovArt :: String -> ([ID],t)->dot->dot
createMovArt name t = uncurry (updateObj (addAtts as)).createWithID t
where as = [(Name, Vs name), (Alive, Vb True)]

aggregateMovArt :: String -> [ID]->t->dot->dot
aggregateMovArt name is t = uncurry (updateObj (addAtts as))
. pair (getID, id) . aggregate is t
where as = [(Name, Vs name), (Alive, Vb True)]
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addPart::ID->ID->dot->dot
addPart i j = uncurry (flip waggregate j)
. cross (cons . pair (const i, id), id)
. pair (getRels PartOf j, wsegregate j)

removePart:: ID->ID->dot->dot
removePart i j = uncurry (flip waggregate j)
. cross (filter (i/=), id)
. pair (getRels PartOf j, wsegregate j)

replacePart : ID->ID->ID->dot->dot
replacePart i j k = uncurry (flip waggregate k)
. cross (cons . pair (const i, filter (j/=)), id)
. pair (getRels PartOf k, wsegregate k)

A simple representation d car parts with the necessary instances of the dasses
Relatable, DestroyableT, Suspendalle, and MovableArtifacts:

data MovArt = Car | Chassis | Engine | Wheel

instance Relatable MovArt where
relatable (PartOf, (Chassis, Car)) = True
relatable (PartOf, (Engine, Car)) = True
relatable (PartOf, (Wheel, Car)) = True

instance DestroyableT MovArt where
destroyable Car = True
destroyable Chassis = True
destroyable Engine = True
destroyable Wheel = True

instance SuspendableT MovArt where
suspendable Car = True
suspendable Chassis = True
suspendable Engine = True
suspendable Wheel = True

instance MovableArtifacts TDB Object MovArt
We popuate an example database with several objeds. a dasss, an engine, and four
wheds sl build a car. Then, the test demonstrate the exchange of a whed that is a
part of the car with an "external” whed (5).

ma0 =T [Snap O[] []]

mal = createMovArt "wheel-1 " ([], Engine) ma0

ma2 = createMovArt "wheel-2 " ([], Chassis) mal

ma3 = createMovArt "wheel-3 " ([], Wheel) ma2

ma4 = createMovArt "wheel-4 " ([, Wheel) ma3

mab = createMovArt "wheel-5 " ([], Wheel) ma4

ma6 = createMovArt "chassisA" ([], Wheel) ma5

ma7 = createMovArt "engineA " ([J, Wheel) ma6

ma8 = aggregateMovArt "carA " [1,2,3,4,6,7] Car ma7

-- exchange wheel5 (5) and wheel2 (2) in the car (8)
tstmal = replacePart 5 2 8 ma8

-- the new state of the database is then:
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Snapshot

Latest ID =8

Objects: [
#8 Car ["carA ", resumed , []],
#7 Wheel [ "engineA ", suspended, []],
#6 Wheel [ "chassisA", suspended, []],
#5 Wheel [ "wheel-5", suspended, []],
#4 Wheel [ "wheel-4 ", suspended, []],
#3 Wheel [ "wheel-3 ", suspended, []],
#2 Chassis[ "wheel-2 ", resumed , []],
#1 Engine [ "wheel-1 ", suspended, []]]
Relations: [
5 is part of 8,
1is part of 8,
3 is part of 8,
4 is part of 8,
6 is part of 8,
7 is part of 8]

The whed-2 is resumed, the relation PartOf between the whedl-2 and the carA is
removed, the whed-5 is suspended and it is the new part of the carA.

8.1.3 Imnovable geographic objeds

Immovable physicd objeds are human-made or natural objects that are not (easily)
manipulable by humans. Such oljeds fill so-cdled large-scde geographicd space
“gpace whaose structure anna be observed from a single viewpaoint” as defined by
Kuipers (Kuipers 1978, p.129 acknowledging all ambiguities coming from such a
straightforward definition as explained by Mark and Frank (Mark and Frank 19%).
Namely, “a single viewpoint” might be aplane or a satellit e, when the viewer would be
able to olserve large-scde objeds from a single viewpaint. If an average observer is a
pedestrian, havever, the definition given by Kuipersisvalid.

Immovable objeds made by humans are buildings. skyscrapers, roads, squares,
bridges, dams. Natural immovables are eath topography phenomena: hill s, mountains,
valleys, islands, peninsulas. Human-made immovables have aisp boundries, while
natural immovables have fuzzy bourdaries. This distinction is, howvever, imposed by
human reasoning, and nd by natural laws.

The operations that can be gplied to these objeds are aeation, destroying and
evolution.
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class Destroyable d o t => Immovables d o t where
createlmmov :: String -> ([ID],t)->dot->dot
createlmmov name a = uncurry (updateObj (addAtts as)) . createWithID a
where as = [(Name, Vs name), (Preds, Vp [])]

The necessary instances are:

data Immovable = Mountain | Building
instance Relatable Immovable
instance DestroyableT Immovable where
destroyable Mountain = True
destroyable Building = True
instance Immovables TDB Object Immovable

A brief example: ahouse evolvesto a museum.

im0, im1, im2 :: TDB Object Immovable

imO=TI[Snap O[] []]

im1 = createlmmov "Alps " ([], Mountain) im0

im2 = createlmmov "HouseA" ([], Building) im1

im3 = (uncurry (set Name (Vs "MuseumA")).pair (getID, id).(evolve 2)) im2

The result of im2 (the state before evolution) is:

Latest ID =2
Objects: [
#2 Building[ "HouseA", 1],
#1 Mountain[ "Alps ", [II]

Evolution (im3) is followed with setting the new name ("MuseumA") for a former
howse. The wde fragment "evolve 2" produces the new objed, which is referred by
getID of the latest snapshaot. Thus, the name is st to the newly created olged (with
identifier equal to 3) and nd to the original objed (ID=2), which dces not exist after

evolution. The resulting snapshat is:

Latest ID =3
Objects: [
#3 Building[ "MuseumA", [2]],
#1 Mountain[ "Alps *, []]]

The obed 2 is destroyed, bu its identifier is added to the list of predecessors of the
newly created olject.

8.2 Liquids

Liquids consist of many small 1oosely connected particles. Liquids differ from solid
objeds insofar they have no definite shape. They easily merge, split, move, and change
shape because of gravity. Liquids are hard to grasp, bu necessary for many fundamental
physicd and physiological processs.
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Hayes gave the first forma accourt on liquids (Hayes 198%). He proposed 15
different physical states of liquids ranging from wet surfaceto spray. In this thesis, we
analyze only contained, buk, lazy liquids in space e.g. water in a glass ariver or a
lake. Even such simplified view of liquids beas two dfferent representations: liquids
contained in solid oljeds - containers, and independent liquid ojeds. We start the

discussonwith the latter case: pure liquid ojeds, and then return to containers.

8.2.1 Liquid obeds

The lifestyle of liquid olgeds is smple: it is a prototypica example of constructive
fusion. The liquid oljeds fuse with ather liquid olgeds into a new object that has the
identifiers of fused oljeds as predecessors. Fused oljeds are destroyed, and canna be
resumed. If aliquid oljed is fissoned, new objects emerge and the original object is
destroyed. We introduce the dass Liquids that has a single operation - the function
createLiquid, which adds three default attributes to liguid objeds. a name, a list of
predecessors, and an amourt.

class (Fusions d o t) => Liquids d o t where
createlLiquid :: String -> Float -> ([ID],t) ->dot->dot
createLiquid name x a = uncurry (updateObj (addAtts as))
. createWithID a
where as = [(Name, Vs name), (Preds, Vp (outl a)), (Amount, Vf x)]

A representation d water objects with instances necessary to inherit operations from the
classesin context:

data Liquid = Water

instance Relatable Liquid

instance DestroyableT Liquid where
destroyable Water = True

instance Liquids TDB Object Liquid

instance Fusions TDB Object Liquid

Finally, a simple example of two liquid oljeds that fuse into the third ore. At the end
the new objed isfisgoned into 3 rew objects and the result is shown.

w0, wl, w2, w3 :: TDB Object Liquid
wO=TI[SnapO0[][]]

w1l = createLiquid "waterA" 2.4 ([], Water) w0
w2 = createLiquid "waterB" 2.8 ([], Water) w1l
w3 = fusion [1,2] Water w2

w4 = fissionN 3 3 w3
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Latest ID =6
Objects: [
#6 water[ [3]],
#5 water[ [3]],
#4 water[ [3]]]
Relations: []

In the next sedion, we analyze behavior of liquids in containers, a more interesting
situation that is closer to the everyday perception d liquids by humans.

8.2.2 Liquidsin containers

A container isasolid ojed or a part of solid ojed, which bound a contained space—
a onrected vdume of threedimensional-spacewhich has a mntiguouws rigid boundry
below it and aroundit (Hayes 1985). The surface of a container is impermeable and
normally contains no le&s. The concept of quantity or amourt is essentia for reasoning
abou contained liquids. A container islimited by its capacity — the maximum amount of
liquid it can contain.

This view of liquid oljeds alows their essy indviduation through the
individuation d containers, which are solid ojeds. The dhange of amourt of liquidin a
container does not change the identity of the cntained liquid. Using this ontology, we
can individuate and reason abou dynamicd liquid oljeds like rivers or baths. The
lifestyle of containers is dable, similar to solid oljeds arealy discussed. They are
creaed, destroyed, suspendable, and evolvable (astream can grow to ariver).

The remaining combination is the existence of liquid within a solid artifad, e.g., an
amourt of teain the awp. We dam this case is an aggregate & well, bu with some
spedal properties which require caeful analysis.

The aggregate is the fill ed cup consisting of the aip and the teainside it. The liquid
objed inside the aup kehaves as a fusible objed, bu it can be danged only after it has
resumed after the segregation d the wntainer.

If we ae dou to add some teainto the ap, thefill ed cup is suspended and the aup
and the anoun of tea ae resumed (weak segregation); the anourt of tea fuses with the
added amourt of tea into a new liquid olgea (fusion); the aip and the new amount of
tea aie aggregated as the old fill ed cup (we&k aggregation).

The questionis. what is, after al, an empty cup - isit a aup or afilled cup with no
content? The answer is: if it isan “empty” cup, it is an aggregation d the ap and azero

amournt of liquid.
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The formalization hes two levels: the objed level and the database level. At the
objed level, the dass Containers is necessry to capture operations for changing the
amourt of asingle ontainer (pouIn and takeOut). It has two olservers (with the prefix
"get") and two constructors (with the prefix "set") for retrieving and setting the
mandatory attributes Amourt and Capeacity onthe single objeds.

class Objects 0 t => ContainersO o t where
getAmount :: ot->Float
getCapacity :: ot -> Float
setAmount :: (Float,ot)->o0t
setCapacity :: (Float,ot) -> o0t

getAmount = unwrapValue . getValue . selectAtt Amount . getAttribs
getCapacity = unwrapValue . getValue . selectAtt Capacity . getAttribs
setAmount = uncurry (updateAtt Amount) . cross (wrapValue, id)
setCapacity = uncurry (updateAtt Capacity) . cross (wrapValue, id)

iSEmpty :: o t -> Bool
isEmpty = (==0.0) . getAmount

pourln :: (Float,0t)-> o0t

pourln = cond p (f,g) where
p = leq . pair (plus.cross(id,getAmount), getCapacity.outr)
f = setAmount . pair (plus.cross (id,getAmount),outr)
g = error "would overflow"

takeOut :: (Float, 0t)->0't

takeOut = cond p (f,g) where
p =leq . cross (id, getAmount)
f = setAmount . pair (minus.swap.cross (id,getAmount),outr)
g = error "not enough in the container”

The predicate isEmpty and the functions pouIn and takeOut are defined in terms of
basic operations and thus independent of the implementation. If the incoming amourt is
bigger than the freespacein the container, an overflow error occurs. If the anourt to be
taken ou from the antainer is bigger than the available anount, an uncerflow error
ocaurs.

At the database level, the operation createCont produces a @ntainer with default
attributes (name, predecessors, amourt, and cgpadty). A new container is created orly
if the proposed capadty is greater than the proposed amourt.

class (ContainersO o t, Aggregates d o t) => Containers d o t where

createCont :: String -> Float -> Float -> ([ID],t)->dot->dot
createCont name a c s = cond p (f, g) where

p = const (a <=c¢)

f = uncurry (updateObj h) . createWithID s

g = error "amount cannot be greater than capacity"

h = addAtts [(Name, Vs name), (Alive, Vb True),

(Amount, Vf a), (Capacity, Vf c)]
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pourFrominto :: Float->ID->ID->dot->dot
pourFrominto a i j = updateObj (curry pourln a) j
. updateObj (curry takeOut a) i

The operation pourFrominto isa composition d the operations pourIn and takeOut, that
ensure that the total amourt of liquid in the universe of discourse is preserved
(conservation law).

Theinstantiation d the necessary classes for the representation types foll ows.

data Container = Cup | Tea | FilledCup

instance Relatable Container where
relatable (In, (Tea, FilledCup)) = True
relatable (PartOf, (Tea, FilledCup)) = True
relatable (PartOf, (Cup, FilledCup)) = True

instance DestroyableT Container where
destroyable Cup = True
destroyable Tea = True
destroyable FilledCup = True

instance SuspendableT Container where
suspendable Cup = True
suspendable Tea = True
suspendable FilledCup = True
instance ContainersO Object Container
instance Containers TDB Object Container

A simple example with two cups with certain amourts of tea and pouing an amourt to
ancther cupis provided.

¢s0, csl, ¢s2, ¢s3, cs4 :: TDB Object Container
¢csO=T [Snap O[] []]

csl = createCont "firstCup " 4.0 10.0 ([],Cup) csO
cs2 = createCont "secondCup"” 4.0 10.0 ([],Cup) csl
cs3 = createCont "teaA " 5.05.0 ([],Tea) cs2

cs4 = aggregate [1,3] FilledCup cs3

tesl, tes2 :: Value

tcsl = get Amount 1 cs4

- Vvf4.0

tcs2 = get Amount 1 (pourFrominto 3.0 1 2 cs4)
- Vf1.0

Thefirst cup hesthe anount 4.0in cs4. After we pou the anourt 3.0to the second cup,
the rest amourt is 1.0.

8.3 Living beings

Living beings are &le to reproducetheir kind. They breah, ed, grow, and, findly, die.
These ae fundamental characteristics of biologicd life. Between the birth and deah,
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living beings retain their identity, although they are dangeable in many ways. size,
color, and appeaance.

We begin with simple living beings. persons, animals, plants, and dscussa specia
case of treewith fruits in the subsequent sedion.

8.3.1 Persons, anmals, and pants

Two fundamental properties of living beings are essential for the modeling of their
lifestyle: birth and deah. Death o the end of biologicd life is universal for al living
beings, and it is naturally modeled with the operation destroy. Birth or the beginning of
lifeis amore challenging task. It was modeled as an additional construct: reproduction
(Hornsby and Egenhder 1997, in accordance with common-sense representation o
parental relations in the human society.

class Destroyable d o t => Livings d o t where
createLiving :: String -> ([ID],t) ->dot->dot
createLiving name a = uncurry (updateObj (addAtts as)).createWithID a
where as = [(Name, Vs name), (Preds, Vp (outl a))]

The former case seems too complicae for the cmmon sense based applications.
Therefore, the simpler solutions are dready incorporated into the semantics of the
operation createlLiving: a aeation takes the identifiers of parents as the predecesrs,
preserving a tempora link among children and their parents. Thus, an additional
construct for reproduction is superfluows. A simple implementation with examples
foll ows.

data Living = Person | Animal | Plant

instance DestroyableT Living where
destroyable Person = True
destroyable Animal = True
destroyable Plant = True

instance Livings TDB Object Living
instance Relatable Living

livo, livl, liv2, liv3 :: TDB Object Living
livO=T [Snap 0[] []]

livl = createLiving "John" ([], Person) livO
liv2 = createLiving "Mary" ([], Person) livl
liv3 = createLiving "Sue " ([1,2], Person) liv2

Thus, the person "Sue" has the identifiers of John and Mary as her predecesrs -
parents.
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8.3.2 Treeswith fruits

A treewith its seasonal fruits is another example of living objects. A tree with fruitsis
an aggregate. In an implementation, trees and fruits are modeled as sispendable objects
(to enable aggregation). A tree is a persistent carrier, existence of which is independent
of fruits. Fruits are seasonally creaed by the tree (negleding some adgstance from the
nature). Fruits grow to a certain time when they start to rot if not collected and
consumed by animals or people.

A treewith fruits is a composed oljed that consists of a tree (container) and fruits
(containment). Although we can court items of fruit, it is possble to spes abou fruits
in terms of amourt or mass Thus, we can coll ect a certain amourt of fruits from atreg
leaving the rest to be lleded later. Eventually, the rest rots after a certain period.
When the last fruit vanishes from a tree with fruits, it is a tree what is left - the
compaosed oljed is destroyed. During the next season a new composed olject will

emerge: the old treewith new fruits.

Formally, atreewith fruitsis a mnstructive aggregate between exadly one tree and
exadly one anourt of fruits. This is expresed in the andtion for the operation
aggegatelree

class (ContainersO o t, Aggregates d o t) => TreeWithFruits d o t where
createTree :: String -> Float -> ([ID],t)->dot->dot
createTree name a s = uncurry (updateObj h) . createWithID s where
h = addAtts [(Name, Vs name), (Alive, Vb True), (Amount, Vf a)]

aggregateTree :: [ID]->t->dot->dot
aggregateTree is t = cond p (f, g) where

p = eql . pair (const (length is), const 2)

f = aggregate is t

g = error "only a single fruits object allowed"

The fact that fruits canna be poured back to the tree is expressed in the instantiation o
the dassContainersO:

instance ContainersO Object Tree where
pourln = error " not possible "
takeOut = cond p (f,g) where
p =leq . cross (id, getAmount)
f = setAmount . pair (minus.swap.cross (id,getAmount),outr)
g = error "not enough fruits on the tree"

data Tree = ATree | Fruits | TreeWithFruits
instance Relatable Tree where
relatable (PartOf, (ATree, TreeWithFruits)) = True
relatable (PartOf, (Fruits, TreeWithFruits)) = True
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instance DestroyableT Tree where
destroyable ATree = True
destroyable Fruits = True
destroyable TreeWithFruits = True

instance SuspendableT Tree where
suspendable ATree = True
suspendable Fruits = True
suspendable TreeWithFruits = False

instance TreeWithFruits TDB Object Tree

The datatype of the aggregate (TreeWithFruits) is not suspendable - only constructive
aggregation is posshle. Fruits come seasonal and - once wllected - canna be
aggregated with the tree.

tfo, tf1, tf2, tf3 :: TDB Object Tree

tf0 =T [Snap O [] 1]

tf1 = createTree "TreeA " 10.0 ([],ATree) tfO
tf2 = createTree "FruitsA" 5.0 ([],ATree) tf1

tf3 = aggregateTree [1,2] TreeWithFruits tf2

ttfl :: Float

ttf1 = queryObj getAmount 1 tf3

-5.0

ttf2 = updateObj (curry pourln 7.0) 2 tf3
-- not possible

8.4 Eternal objects

Eterna objeds are never destroyed. In the model, it means that their life span is by
orders of magnitude longer than the mntext they are mnsidered in. An excdlent
exampleisthe Sunfrom the human perspedive.

The lifestyle of eternal objects is the simplest of all. They just exist, and are, in
contrast to al other categories, na destroyable.

class (Creatable d o t) => Eternals d o t where
createEternal :: String -> ([ID],t)->dot->dot
createEternal name a = uncurry (updateObj (addAtts as)).createWithID a
where as = [(Name, Vs name), (Preds, Vp (outl a))])

data Eternal = Star | Planet

instance Relatable Eternal

instance DestroyableT Eternal where
destroyable Star = False
destroyable Planet = False

instance Eternals TDB Object Eternal
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Finally, we can test if a aeated oljed can be destroyed:

€0, el, e2 :: TDB Object Eternal
e0=TI[Snap O[] []]

el = createEternal "Sun" ([],Star) e0
e2 =destroy 1 el

-- error: the object #1 is not destroyable.

An attempt to destroy an eternal objed resultsin an error message.

8.5 Summary

In this chapter, we gave acategorization d objeds constructing the physicd redlity of
our world. At the level of detall assumed here, the physicd objeds are divided into
solids, liquids, living beings, and eternal objeds. The operations on identity within eat
caegory are modeled with the gparatus developed in previous chapters. The theory of
lifestylesis powerful enough to describe diversity of physicd objeds. Usually, asimple
extension d sets of objed typesis al that is necessary. Sometimes, howvever, we must
introduce new classes to capture the semantics of additional important operations. This
is achieved easily by putting our general framework in the context of new instances.
The hierarchy of clasesis iownin Figure 8.1.

| Creaabled ot —>| Eterndsot |

[ MovableNaturalsdot |

| DestroyableT t Immovablesd ot |

[ Livingsd ot |

| TreeWthFruitsd ot |
[ ContainersO ot )
Containersd ot |

| Aggregatesd ot

| WAggregatesd ot |—>| MovableArtifactsd ot |

[ Fusonsd ot ——>{ Liquidsd ot |

Figure 8.1: Classes hierarchy for lifestyles of physicd objeds.

The level of application presented in this chapter — physical redity - is the starting point
for modeling amore complex environment of social reality — abstrad objects.
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9. LIFESTYLESOF ABSTRACT OBJECTSIN THE SOCIAL REALM

In this chapter, we @ntinue to provide pradical applicaions for the theoretical
framework of operations affeding object identity. After the analysis of physicd
(tangible) objeds in the previous chapter, we @ncentrate on abstrad objects. non
graspable things that exist only in view of a particular social agreement. These objeds
construct the social redity of the world, the part completely dependent on human
beings.

We give an informal description d typical socia constructs. marriages and
businesspartnerships. Such constructs emerge, develop and cease to exist through time.
An analogy is drawn between social constructs and physicd objects from the previous
chapter. Humans have aility to use metaphoricd transformation from one experience,
to structure experience in ancther situation.

Severa typicd applications from the GIS domain are described: administrative
units, ownership and wsufruct rights on cadastre parcds. These important concepts are
formalized using the todls developed in the previous chapters. Marriages, partnerships,
and administrative units dare behavior with movable artifads, ownership rights with
liquids, and wsufruct rights with trees and fruits.

9.1 Constructsof social reality

Most human interadion is defined by the rules of socia behavior. Some of these rules
are nat written (friendships, promises), bu many of them exist in written form, cdled
institutional fads (Seale 1995. The @ncepts that belong in this group are numerous:
money, marriage, partnerships, ownership, governments, citi zenship, etc.

Institutional fads need physicd objects as gatusindicators. Pieces of paper or coins
are physical obeds, which under certain circumstances are wnsidered as money. A
pasgort is a valid indicator that its owner is empowered to travel to certain foreign
courtries and come bad to his home @urtry.

Institutional fads depend on coll ective intentionality; common will of the aitical

majority in a particular society to accept the rules. In contrast to physicd objects, which
wea out as we use them (cars, shirts), the institutional objeds are renewed and
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strengthened by their constant use (ownership, citizenship, money, marriage,
government) (Searle 1995.

We have dosen two typical institutional fads for the analysis of lifestyles
applicability: marriages and business partnerships. Both concepts are described by
underlying metaphars that relate institutional fads with physical, graspable objeds.

In cognitive science, metaphas are ways of understanding one domain of
experience by using the terms from ancther, possbly simpler domain (Lakoff and
Johrson 198(0. A common pejudiceis thinking abou metaphars as grictly poetic and
rhetoricd figures of speech that express emotions, moods, and attitudes. In what
follows, we mnsider and wse of metaphars in the sense of cognitive science

9.1.1 Marriage

Marriage begins with two people simply living together. The @rnversion o spatial
proximity and cohabitation to an institutional fad is justified by the need for a system of
colledively recognized rights, resporsibiliti es, duies, and obigations (Seale 19%).
Theingtitutional fad of marriage is aresult of the institutional fad of the speech act in a
spedal context: mutual promises of spousesin front of a presiding official.

In this thesis, we consider the institutional fad of marriage & an abstrad object on
its own. Our goal is to show that such an ohjed has its lifestyle smilar to certain
physicd objects. The set of metaphars for marriage is propased in (Johnson 1993. On
the basis of individual interviews of married coudes, Johrnson found ou that people
percave their marriage through one or more of the foll owing metaphors. MARRIAGE IS
A MANUFACTURED OBJECT, MARRIAGE IS AN ONGOING JOURNEY, MARRIAGE IS A
DURABLE BOND BETWEEN TWO PEOPLE, MARRIAGE IS A RESOURCE/INVESTMENT, and
MARRIAGE IS AN ORGANIC UNITY, (Johrson 1993. How to extrad a unifying core from
such wide pal ette of metaphars?

Johrson's metaphars are formed around the opinions of the people dou ther
marriages. We will analyze the life cycle of a marriage and its effeds on the spouses.
The following scenario of a naive society is propaosed: there are unmarried men and
women, thase who are married, and thase who were married before. Thisis exadly how
the red world is e by the eyes of the gpropriate lega office — let us call it “the
marriage registry”. Then, a marriage begins with the registration d a mutual agreement
of both spouses in front of a registrar. Both spouses are removed from the list of
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unmarried people and added to the list of married people. The end d marriage is
registered either as aresult of the deah of a spouse or alega procedure cdled dvorce
If the spouses get divorced, they canna be transferred badk to the list of unmarried
people — marriage is irreversible. Even in the cae that they marry each ather again, it
would nd be their first marriage.

The lifestyle described here gives rise to a new metapha for marriage: MARRIAGE
IS A CONSTRUCTIVE AGGREGATE. To suppat this clam we can draw the following
parall els between two damains:

» the marriage begins as an aggregation d two people, and after the marriage
they are not avail able for ancther marriage (spouses are shielded against other

aggregation);
 thedivorce endsthe marriage, producing the two dd oljeds— spouses,

» deah o one of spouses ends the marriage, the other spouseisthen free;

» themarriageisirreversible — the same spouses married again make the new
marriage, (once destroyed, a marriage is not reincarnatable). It shoud be noted
that thisisthelegal, bu not a“naive” view.

Thus, the formalization d marriage resembles the formalization o movable
artifads from previous chapter. The only difference is gipulated by regulations. a new
marriage is dways a new marriage, even between the same persons. Marriages are
constructive aggregates only - they canna be suspended or resumed.

The formdization d marriages begins with the operation createPerson that
incorporate the dtribute Age. It is assumed that there is a minimal age @ndtion for
marriage being 18 years. Next, the operation destroyPerson has two cases:. if a person
was not married, orly the personis destroyed; if the person was married, the marriageis
destroyed as well .

class (Eq t, Aggregates d o t) => Marriages d o t where
createPerson :: String -> Int-> ([ID],t)->dot->dot
createPerson name age s = uncurry (updateObj h) . createWithID s where
h = addAtts [(Name, Vs name), (Alive, Vb True), (Age, Vi age)]

destroyPerson::ID->dot->dot
destroyPerson i = cond (married i) (f . pair (head . h i, g), g) where
married x = not . null . h x
h x = getConvRels PartOf x
f = uncurry destroy
g = destroy i
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createMarriage :: (ID,ID) ->t->dot->dot
createMarriage (i, j) t = cond (meet (p,q)) (f, g) where

p = uncurry (/=) . pair (h i, hj)

h x = queryObj getObjType x

g = meet (age i, age j)

age x = geq . pair (y . getAttribs . selectObj x, const 18)

y = unwrapValue . getValue . selectAtt Age

f = aggregate [i,j] t

g = error "not a legal marriage!"

divorceMarr :: ID->dot->dot
divorceMarr = segregate

Marriage is created with the operation createMarriage, which performs two cheds:
persons must be of different type (gender), and bdh must be older than 18years. If one
of these aiteria is not fulfilled, the marriage is declared illegal and will not be
registered. Finally, divorce is smilar to the operation segregate. It ensures that a weak
aggregationis not posshble.

The representation and negessary instances:

data Marr = Marriage | Male | Female
instance Eq Marr where

(==) Male Male = True

(==) Female Female = True

(==) Marriage Marriage = True

(==) _ _=False

instance Relatable Marr where
relatable (PartOf, (Male, Marriage)) = True
relatable (PartOf, (Female, Marriage)) = True
instance SuspendableT Marr where
suspendable Marriage = False
suspendable Male = True
suspendable Female = True
instance DestroyableT Marr where
destroyable _ = True
instance Marriages TDB Object Marr

We ae realy to demonstrate some examples of the presented theory:

mmO0, mm1, mm2, mm3, mm4, mm5, mmé6 :: TDB Object Marr
mmO =T [Snap O [] []]

mm1 = createPerson "John" 20 ([], Male) mmO

mmz2 = createPerson "Mary" 20 ([], Female) mm1

mm3 = createPerson "Sue " 17 ([], Female) mm2

mm4 = createMarriage (1,2) Marriage mm3 -- OK

mmb5 = createMarriage (1,3) Marriage mm3 -- not legal

mm6 = destroyPerson 1 mm4

mm?7 = divorceMarr 4 mm4

The operation mm4 returns the following state (John and Marry are parts of the
marriage, bah are suspended):
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Latest ID =4
Objects: [
#4 Marriage[ [1],
#3 Female ["Sue ", resumed , 17, []],
#2 Female [ "Mary", suspended, 20, []],
#1 Male [ "John", suspended, 20, []]]
Relations: [
1is part of 4,
2 is part of 4]

The operation mnb (trying to construct a marriage between 17 yeas old Sue and John)
results in an error message - marriage is nat legal. The operation mm6 (John des)
destroys the marriage and resumes Mary's identifier:

Latest ID =4
Objects: [
#3 Female ["Sue ", resumed , 17, []],
#2 Female [ "Mary", suspended, 20, []]]
Relations: []

We onclude that a powerful model for a marriage registry can be developed as an
extension d the generic lifestyle of constructive aggregation.

9.1.2 Businesspartnerships

Our seand example comes from the domain of econamics. Legal organization o
business adivities and relationships is an important issue in modern society. To avoid
disputes, promises and friendships are replacel by contracts and business partnerships.
The goa reached by such institutionali zation is the higher predictabili ty of behavior of
al partiesinvolved.

The idea of partnership is based on sharing of common investments and added
values through profits in equal parts: there ae no spedal items exclusively owned by
one partner. According to the Swisscivil law (Schweizerisches Obligationenredt - OR)
compiled in (Schorenberger 1976, a simple partnership "is a ntractual agreement
between two or more persons to attain a joint goal with joint forces and means’, the
trandation by (Arpagaus 1997). The original text in German is:

"[Einfache] Gesellschaft ist die vetragsméaldge Verbindungvon zwel
oder mehreren Personen zur Erreichungeines gemeinsamen Zweckes
mit gemeinsamen Kréften oder Mitteln." OR 8530

Ead partner must share the profit with aher partners. Each partner takes the equal part
in aprofit or aloss A partnership isover if the goal it is grounded for does not exist any
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more or is unreadhable, or if one of partners dies, or if one of partners bankrupts, or on
agreement of partners, or if the agreed period d time pasts, or if the court dedde so.

The simple partnerships are very much like marriages, and we will nat formalize
the same thing twice. Instead, we shall |ook at the rules of groundng and dsmissng
stock corporations (Aktiengesell schaften - AG). A stock corporation "is a separate legal
entity with a @rporate name and legal capital that is fixed in advance and dvided into
shares of cgpital stock”, (Arpagaus 1997). The original text in German is:

"Die Aktiengesell schaft ist eine Gesell schaft mit eigener Firma, deren
zum voraus bestimntes Kapital (Grundkapital) in Teil summen (Aktien)
zerlegt ist undfur deren Verbindichkdten nu das

Gesdll schaftsvermdgen héftet." OR §620

A stock corporationis modeled as a movable atifact with two condtions for groundng
and subsequent changes in the structure of sharehadders: the number of sharehdders and
the amourt of capital stock. Shareholders are modeled as containers of shares. The dass
Partnerships is charaderized with the operation sumStocks, which establishes the
condtion for groundng the crporation in the operation createCorporation. The
amourt of ground stock remains aways the same (athough the par value of a single
share may vary). In the following formalization, we assume that the fixed number of
shares is 1000Q each share has the value of 10 francs, hence reaching the minimal
cgpital stock value of 10000Swissfrancs.

class (Containers d o t, MovableArtifacts d o t)
=> Partnerships d o t where
createStockHolder :: String -> Float -> ([ID],t) ->dot->dot
createStockHolder name m s = uncurry (updateObj h) . createWithID s
where
h = addAtts [(Name, Vs name), (Alive, Vb True),
(Amount, Vf m), (Capacity, Vf 10000.0)]

sumStocks :: [ID] -> ValueSet -> d o t -> Float
sumStocks is a = sum . map (unwrapValue . getValue . selectAtt a
. getAttribs) . liftM selectObj is

createCorporation :: String ->[ID]->t->dot->dot
createCorporation name sstd =
if s >10000.0 then cond (meet (p,true)) (f,g) d
else error " not enough capital” where
p = geq . pair (const (length ss), const 3)
s = sumStocks ss Amount d
f = uncurry (updateObj (addAtts [(Alive, Vb True),
(Amount, Vf s)])) . pair (getID, id) . aggregate ss t
g = error "founding of the corporation not possible"
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sellShares :: Float->ID ->ID->dot->dot
sellShares = pourFrominto

sellAllShares :: ID->ID->ID->dot->dot
sellAllShares a b ¢ d = removePart a c d'
where d' = pourFrominto fa b d
f = unwrapValue (get Amount a d)

The operation sell Shaes simulates the transfer of a cetain number of shares from one
sharehadlder to anather one. If one shareholder decides to qut and sell al his sares, he
is aso removed from the aggregate - corporation. In bah cases, it is esentia that the
number of shares remains the same. The representation and implementation o inherited
classes on the datatype foll ows.

data Partnership = Corporation | StockHolder
instance Relatable Partnership where
relatable (PartOf, (StockHolder, Corporation)) = True

instance SuspendableT Partnership where
suspendable Corporation = True
suspendable StockHolder = True

instance DestroyableT Partnership where
destroyable _ = True

A prototype of a arporation and the possble danges are shown in the foll owing
example. First, a corporation (ID=5) is creaed with the total of 10000 shares. If the
sharehadder A (ID=1) buys 2500 shares from the sharehodder B, the sum remains the
same. If B sdlls all, heleaves the @rporation, the sum of shares remains the same.

pa0, pab6 :: TDB Object Partnership
pal, pa2, pa3, pa4, pa5 :
Snapshot Object Partnership -> Snapshot Object Partnership

pal0 =T [Snap O[] ]]

pal = createStockHolder "holderA" 2000.0 ([],StockHolder)
pa2 = createStockHolder "holderB" 4000.0 ([],StockHolder)
pa3 = createStockHolder "holderC" 3000.0 ([],StockHolder)
pa4 = createStockHolder "holderD" 2000.0 ([],StockHolder)
pa5 = createCorporation "corporA” [1,2,3,4] Corporation

-- serialized transaction:

pa6 = liftU (pa5 . pa4 . pa3 . pa2 . pal) pa0

pa7, pa8 :: TDB Object Partnership

-- shareholder A sells some shares (2500) to B:

pa7 = liftU (sellShares 2500.0 2 1) pa6

-- shareholder A sells all shares to B in the corporation 5:
pa8 = liftU (sellAllShares 2 1 5) pa6
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The transaction pa7resultsin:

Latest ID =5
Objects: [
#5 Corporation[ "corporA", resumed , 11000.0, []],
#4 StockHolder[ "holderD", suspended, 2000.0, 11000.0, []],
#3 StockHolder[ "holderC", suspended, 3000.0, 11000.0, []],
#2 StockHolder[ "holderB", suspended, 1500.0, 11000.0, []],
#1 StockHolder[ "holderA", suspended, 4500.0, 11000.0, []]]
Relations: [
1is part of 5,
2 is part of 5,
3is part of 5,
4 is part of 5]

The transaction pa8resultsin:

Snapshot
Latest ID =5
Objects: [
#5 Corporation[ "corporA", resumed , 11000.0, []],
#4 StockHolder[ "holderD", suspended, 2000.0, 11000.0, []],
#3 StockHolder[ "holderC", suspended, 3000.0, 11000.0, []],
#2 StockHolder[ "holderB", resumed , 0.0, 11000.0, []],
#1 StockHolder[ "holderA", suspended, 6000.0, 11000.0, []]]
Relations: [
1is part of 5,
3is part of 5,
4 is part of 5]

Stock corporations dare the lifestyle with movable atifacts. The cndtions for
existence ae different than in physical domain, because of legal regulations.

9.2 Lifestylesof land units

In this sction, we focus on the gplicaion d lifestyles theory on land information
systems. Theland damain is sleded becaise spatial administrative subdvisions of land
area over the whale groundof our planet, being the areaof environmental concerns (in
case of vital resources for the future), international disputes (in case of wars), and
careful measuring and mapping (in case of national surveying).

9.2.1 Ownership rights on cadastre parcds

The right of ownership is the basic right in common law. In Austrian law, ownership in
general is defined as follows (tranglation d the author):
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“Viewed as aright, ownership is the cmmpetence to rule the substance and the use
of athing to ore’s arbitrarinessand to bar anybody else from substance and use.”

This definition is very broad and acourts for watches, cars, and peces of land as
well. The ownership of land is ssmewhat specific: land is non-perishable and it canna
be eaily stolen, lost, destroyed, a counterfeited (Smith and Zaibert 1996.

The ownership rights behave like liquids: once melted, these are nat splittable - new
rights emerge. The reason is the legal nature of the ownership rights posed uponthe
parcd. A good example for indivisibili ty of rights is the mortgage.

class Liquids d o t => Parcels d o t where
createParcel :: String -> Float -> ([ID],t)->dot->dot
createParcel = createLiquid

data Parcel = Parcel

instance Relatable Parcel

instance DestroyableT Parcel where
destroyable Parcel = True

instance Parcels TDB Object Parcel
instance Liquids TDB Object Parcel

pO, p1, p2, p3 :: TDB Object Parcel

PO =T [Snap 0[] [1]

pl = createParcel "parcelA" 2.4 ([], Parcel) p0O
p2 = createParcel "parcelB" 2.8 ([], Parcel) p1
p3 = fusion [1,2] Parcel p2

p4 = fissionN 3 3 p3

p6 = restructure [1,2] Parcel 4 p2 --4,5,6,7

The metapha behind the model is OWNERSHIP RIGHTS ON PARCELS ARE LIQUID
OBJECTS.

9.2.2 Usufruct rights

Thereisaspeda right that can be imposed ona calastre parcd: the owner of the parcd
transfers the right of harvesting the parcd to ancther person, who then is sid to have
usufruct right on the parcd. Usufruct is the right to use ancther's property while not
changing or harming it.

If the parcd is not harvested, the possble benefit is irreversibly gone, just like the
fruits from the tree rot if not picked. Therefore, the right of usufruct can be formalized
in the same way as the life of trees with fruits.
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class TreeWithFruits d o t => Usufructs d o t where
createAParcel :: String -> Float -> ([ID],t)->dot->dot
createAParcel = createTree
createUsufruct :: [ID] ->t->dot->dot
createUsufruct = aggregateTree

data UsufructRight = AParcel | Usufruct | ParcelWithUsufruct

instance Relatable UsufructRight where
relatable (PartOf, (AParcel, ParcelWithUsufruct)) = True
relatable (PartOf, (Usufruct, ParcelWithUsufruct)) = True

instance DestroyableT UsufructRight where
destroyable AParcel = True
destroyable Usufruct = True
destroyable ParcelWithUsufruct = True

instance SuspendableT UsufructRight where
suspendable AParcel = True
suspendable Usufruct = True
suspendable ParcelWithUsufruct = False

instance ContainersO Object UsufructRight where
pourln = error " not possible "
takeOut = cond p (f,g) where
p =leq . cross (id, getAmount)
f = setAmount . pair (minus.swap.cross (id,getAmount),outr)
g = error "not enough usufruct on the parcel”
instance TreeWithFruits TDB Object UsufructRight
instance Usufructs TDB Object UsufructRight

-- examples:

ufo, ufl, uf2, uf3, uf4 :: TDB Object UsufructRight

ufo =T [Snap O [] []]

ufl = createAParcel "parcelA " 10.0 ([],AParcel) ufO
uf2 = createAParcel "usufructA " 10.0 ([],Usufruct) ufl
uf3 = createAParcel "parcelB " 5.0 ([],AParcel) uf2
uf4 = createUsufruct [1,2] ParcelWithUsufruct uf3

tufl :: Float

tufl = get Amount 3 uf4

- Vf5.0

tuf2 = updateObj (curry pourln 7.0) 2 uf4
-- not possible

The lifestyle of usufruct rights can be fully matched by the model of trees with

fruits.

9.2.3

Administrative units

Administrative units (states, courties, provinces) can be assmbled and dsassembled

fredy, depending only on the common will of the subjeds invaved. The forma model

is completely similar to the model for movable atifads, described in Sedion8.1.2
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class MovableArtifacts d o t => Unions d o t where
createUnit :: String -> ([ID],t)->dot->dot
createUnit = createMovArt

aggregateUnits :: String -> [ID] ->t->dot->dot
aggregateUnits = aggregateMovArt

addUnit:: ID->ID->dot->dot
addUnit = addPart

secedeUnit::ID ->ID->dot->dot
secedeUnit = removePart

The implementation for the gpropriate objed typeis:

data AdminUnit = State | Union
instance Relatable AdminUnit where
relatable (PartOf, (State, Union)) = True
instance DestroyableT AdminUnit where
destroyable State = True
destroyable Union = True
instance SuspendableT AdminUnit where
suspendable State = True
suspendable Union = True
instance MovableArtifacts TDB Object AdminUnit
instance Unions TDB Object AdminUnit

Our case study will be forming of Canada, followed by a hypotheticd secesson o
Quebec (Hornsby and Egenhder 1997). The unionisformed by 10 states:

au0, aul, au2, au3 :: TDB Object AdminUnit
au0 =T [Snap O[] []]

aul = createUnit "Quebec " (], State) au0
au2 = createUnit "Ontario "([I, State) aul
au3 = createUnit "New Brunswick " ([], State) au2
au4 = createUnit "Nova Scotia " ([], State) au3

aub = createUnit "British Columbia " ([], State) au4

au6 = createUnit "Prince Edward Isl" ([], State) au5

au7 = createUnit "Alberta "([l, State) au6

au8 = createUnit "Manitoba "([l, State) au7

au9 = createUnit "Newfoundland " ([], State) au8

aulo = createUnit "Saskatchewan " ([], State) au9

aull = aggregateUnits "Canada "[1,2,3,4,5,6,7,8,9,10] Union aul0

-- all parts of canada as a list of IDs
tstauO = getRels PartOf 11 aull

-- all parts as a list of objects:
tstaul = map (flip selectObj aull) (getRels PartOf 11 aull)

-- finally, secession
tstau2 = secedeUnit 1 11 aull

-- results in:
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Latest ID =11
Objects: [
#11 Union[ "Canada " resumed , []],
#10 State[ "Saskatchewan ", suspended, []],
#9 State[ "Newfoundland ", suspended, []],
#8 State[ "Manitoba ", suspended, []],
#7 State[ "Alberta ", suspended, []],
#6 State[ "Prince Edward Isl", suspended, []],
#5 State[ "Britisch Columbia”, suspended, []],

#4 State[ "Nova Scotia ", suspended, []],
#3 State[ "New Brunswick ", suspended, []],
#2 State[ "Ontario ", suspended, []],

#1 State[ "Quebec ", resumed |, []]]
Relations: [

2is part of 11,
3is part of 11,
4 is part of 11,
5is part of 11,
6 is part of 11,
7 is part of 11,
8 is part of 11,
9is part of 11,
10 is part of 11]

The Quebec is sgregated and resumed, while Canada survived. Other administrative
divisions (e.g., thedivision d astate in provinces and courties) could be modeled in the
same manner. The metaphor behind this model is. ADMINISTRATIVE UNITS ARE
MOVABLE ARTIFACTS.

9.3 Summary

In this chapter, we focused on abstract objeds — oljects that evolved with human
society and whose eistenceis dependent on hunan agreement. Such oljeds are call ed
institutional fads, in contrast to bonafide fads that do nd neal to be enforced. We
showed that institutional objeds could be modeled in the same way as physicd objects
by the simple extension d the propaosed theory of lifestyles.

Marriages and partnerships, seen from a registry perspedive, exercise the lifestyle
of aggregatable objects: marriages are @nstructive aggregates, partnerships are
movable atifacts where the parts are @wntainers shareholders.

Administrative subdvisions of land — regardliess if they are unions, federations,
states, provinces or courties — are similar to movable atifads. Lower-level units can be
removed, added, replaced or regrouped within higher-level units. Ownership rights on a
cadastral parcel, on the other hand, resemble liquid oljeds: parcels fuse and fisson
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irreversibly creaing the new parcds and destroying the eisting parcds. Finaly, the
kind d partial right on cadastral parcd — usufruct right —is smilar to a treewith fruits:
if the parcel is not harvested, the usufruct right is gone for that year.

The hierarchy of classes for abstract objeds and the dependencies uponthe classes
of physical objeds and generic lifestyles are shown in Figure 9.1.

[ TreeWthFruitsd ot ——{ Usufructsdot |

[ ContainersO ot
Containers d ot |
| Aggregatesd ot I\ > Marriagesdot |

| WAggregatesd ot ——>| MovableArtifactsd ot |—>| Unionsd ot |

[ Partnershipsd ot |

| Fusonsd ot —>{ Liquidsd ot —>| Parcdsd ot |

Figure 9.1: Classes hierarchy for nontangible (abstrad) objeds from social redm.

The theory of lifestyles is applicable to a wide range of phenomena in the world of
ingtitutional fads — the part of real world human activities. Extensions to the dass
system propcsed in the previous chapter are simple and straightforward. The most
significant institutions of human society are modeled similar to smpler domains of
physicd objects.
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10. CONCLUSIONS AND FUTURE WORK

The goal of this thesis was to explore the behavior of objed identity in a spatiotemporal
database, and to examine the goplicability of the theory in various applicaion damains
both in physicd and social realm.

We used the aentity-relationship (E-R) model for the representation o the red world
(Chen 1979. Identifiable features are represented as objeds, which are distinguishable
by unique identifiers. Properties of features are represented as attributes (functions from
obeds to values). Relationships among features are modeled as relations among
obeds.

All objeds and relations at a single paint of time build a snapshat. Objects and
relations are changing over time. For each change, a new snapshat is appended to the
database. The whae spatiotemporal database mnsists of a number of snapshats, and
time is implicitly stored as the ordering of snapshats. We used linea, discrete, and
totally ordered model of time.

Objeds are metaphaically perceived as having life: an olject has its birth or
credion, its life or existence, its deah or destruction. The central concept in the life of
an objed isits identifier, which is unchanged from the birth to the deah of the object.
Identifiers are system constructs and they are maintained by the database independently
of the user. A long discusson abou the model for a general temporal database was
necessry to prepare the groundfor change in identity, because we wanted to represent
both the multi-purpose temporal database and the properties of identifiers in a single

environment.

Four basic operations affecting objed identity are proposed: create, destroy,
suspend, and resume. Their compositions are ather applicable on a single objed
(ewolve), or on a group d objects (constructive and week fusion, fisson, agg egate and
segregate, and restructure). Altogether, these operations build a finite set of identity
aff ecting operations. Depending on the gplicability of operations on identity, objects
can be divided into two main lifestyles: fusions and aggregates. We showed that the
examples of these lifestyles are foundin bah the physicd and the astract domain.

The theory of lifestyles reduces the efforts for constructing the gplications that
neal temporal database models. In order to buld an applicaion (e.g., for tempora GIS),
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the designer must only instantiate his objects to appropriate lifestyles classes, and all
necessary properties will be aitomaticdly deduced using the inheritance mechanism.

10.1 Resultsand major findings

The maor result of this thesis is the forma model for a universal spatiotempora
database, cgpable of representing different classes of objeds in a uniform way with
resped to change in identity of objeds. The “representation mapping’ between the red
world and the database model is essntia: feaures are mapped to oljeds; identities are
mapped to identifiers; properties to attributes. The broad term of cognitively assgned
identity is reduced to the prototypicd cases. objeds that have aisp bourdaries either in
virtue of their physicd appearance (like cars and buldings) or in virtue of an
ingtitutional agreament (like calastre parcels and administrative units).

The aiteria an identifier must fulfill (uniqueness immutability, and non
reusability) hold in any database, bu lifestyle operations are possble only if the
transadion time dimension is suppated and there is no owerwriting of the existing data.
Only if new identifiers are asggned automaticdly and a new version d a database is
appended for each change, a consistent treament of temporal links among identifiersis
posshle.

10.1.1 Lifestyles

Lifestyles are dgebras of operations affeding objed identifiers. Not al operations are
applicable for every objed class(e.g., car tires canna be fused).

The set of operations affeding objed identifiers in a temporal database is finite.
Asauming that there ae four basic operations (create, destroy, suspend, resume), the
number of their compasitions is an exhaustible set, covering a wide range of situations
encourtered in the gplicaion danain. This st is developed in alogicd system, based
on caegory theory, using functional compasition orly.

create (is, ot) = uncurry (updateObj f) . pair (getID, id) . newODbj ot
where f = addAtt Preds (Vp is)
destroy i = cond p (f, g) where
p = destroyable . getObjType . selectObj i
f = deleteObj i
g = error ("the object” ++ show i ++ "is not destroyable™)
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suspend i = cond p (f, g) where
p = suspendable . getObjType . selectObyj i
f = updateObj suspendObj i
g = error ("the object” ++ show i ++ "is not suspendable™)

resume i = cond p (f, g) where
p = queryObj suspended i
f = updateObj resumeQbj i
g = error ("the object” ++ show i ++ "is already suspended")

All possble compositions of the four basic operations are divided into 5 classes:
evolvable, constructive aygregates, wedk aggregates, constructive fusions, and weak
fusions. The point-free formulae follow (detail s are given in Chapter 7):

evolve i = uncurry (set Preds (Vp (wrap i)))
. pair (getlD, destroy i) . uncurry (updateObj' setAttribs)
. pair (pair (getID, getAttribs. selectObj i), id) . uncurry create
. assocl. pair (nil, pair (getObjType . selectObj i, id))
where updateObj' f (i,x) = updateObj (f X) i

aggregate is t = uncurry (addRels PartOf is) . createWithID ([],t)
. (flip.foldr) suspend is
segregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i, g)
where g = deleteRels PartOf i . destroy i

waggregate is i = (flip.foldr) suspend is.addRels PartOf is i.resume i

wsegregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i,g)
where g = deleteRels PartOf i . suspend i

fusion is t = (flip . foldr) destroy is . create (is, t)

fissionN n i = uncurry (createN n) . pair (f, destroy i)
where f = pair (wrap . const i, getObjType . selectObj i)

restructure is t n = uncurry (fissionN n).pair (getlD,id).fusion is t
wfusion is i = (flip . foldr) destroy is . resume i

wfissionN n i = uncurry (createN n) . pair (f, suspend i)
where f = pair (wrap . const i, getObjType . selectObj i)

The diff erence between a @nstructive fusion (fusion) and a week fusion (wfusion) isin
the semantics of underlying operations. a cnstructive fusion creates a new objed,
whereas a we& fusion resumes an arealy existing one. In the same manner, a
constructive fisson destroys an olject, whereas a weak fisson suspends an oljed. Both
constructive and wee&k fusions destroy fused obects. Thus, a fusion is aways
irreversible.

The rationale behind constructive and weak aggregations (segregations) is smilar
to constructive and wed fusions (fisgons) with an esential difference both
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constructive and weak aggregations suspend the aggregated oljects. Thus, a week
aggregationis areversible operation.

The theory of lifestylesis compared to ather prominent proposals for caegorization
of operations aff ecting object identity: the propacsal by Al-Taha and Barrera (199) and
the proposal by Hornsby and Egenhder (1997). In Sedion 7.3, we show that all well-
defined operations in bah proposals can be formally modeled with lifestyles. We
provided translations of those operationsin functional language. The theory of lifestyles
is astep forward with resped to ather proposals, because it is more genera an powerful
than the propcsal of Al-Taha and Barrera, and it is conceptually smpler than, yet
equally powerful asthe propaosal of Hornsby and Egenhder.

10.1.2 Application d lifestyles

Objeds are mmposed in aggregates, and cetail s abou single parts are hidden urtil we
change the level of abstradion (a ar is perceived as a unity as long as it functions
properly; its tire becomes important if it is broken). The relation part-of (aggregation)
matters when identifiers are cmncerned, because the identifiers of parts are suppressed in
a whaoe. At the same time the relation member-of (association) does not change the
identifiers: an ojed can be simultaneousy member of many sets, nore of which
diminish its identity (a car can be amember of al red ofjects, of all movable objects,
etc.).

A caegorization d objects existing in the red world is propcsed and each category
is formalized. Lifestyles of physicd (tangible) objeds could be gplied on abstrad
(nontangible) objects using metaphoricd transfer. Operations in ore domain (e.g., trees
with fruits) are gplied to ancther domain (e.g., cadastre parcds with usufruct rights)
withou atering the definiti ons of operations. The dependencies among common classes
in physicd and abstract domains are shown in Figure 10.1. This leads to the
simplificaion d the overall model, enabling the database designer to reuse asignificant
amount of code. Modeling d abstrad objects (ingtitutional fads) is of enormous
importance for future GIS. The posshility to ded with such oljects using simpler
models of physical objeds al ows better insight into their nature a well.
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| Creaabled ot —>| Eterndsot |

[ MovableNaturalsd ot |

| DestroyableT t Immovablesd o't |

[ Livingsd ot |

[ TreeWthFruitsd ot |——{ Usufructsdot |

| ContainersO ot
Containersd ot |
| Aggregatesd ot | > Marriagesdot |

[ WAggregatesd ot |—>{ MovableArtifactsd ot | —>[ Unionsd ot |

[ Partnershipsdot |

| Fusonsd ot > Liquidsd ot —> Parcdsd ot |

Figure 10.1: Classes hierarchy - from generic lifestyles along physical objedsto abstrad objeds.

Transformations between the two dfferent concepts of altering temporal database
(database versioning and olject versioning) are losdess - they transfer complete
information from one view to another. The diff erence between the techniques lies in the
different dimensions for groupng thematic and temporal elements. Database versioning
groups thematic dements (objects) for each temporal element. Objed versioning groups
temporal elements for each thematic dement (objed), seeFigure 3.4. We provided the
algorithms for transformations between versioning techniques in Sedion 3.3.2 and
formalized the dgorithms in the functional language in Section 6.5 Since the
transformations are losdess we developed a mnceptual model based on the simpler,
database versioning view.

10.1.3 Discusson

In this thesis, we provided a model of an oljed-oriented spatiotemporal database with
the emphasis on changes in identifiers of objects. The dange in attributes was nat the
topic of discusson. An oljed may change its identity by changing its attributes. Thisis
modeled as the evolution construct, bu the semantic deasion hav much change in
attributes is necessary for an oljed to evolve is left to the human expert for a particular
domain. Such criteria could be formali zed for different applicaion areas and then added
as compositions to the generic operation evolve.
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A single relationship between oljeds is exclusively discussed: the mereologicd
relation "part of". This relation is the basis for cognitive process of hierarchicd
abstradion: humans tend to omit detail s abou parts of the whole & long asthe whadeis
functioning properly (e.g., the engine in a ar). Ancther relation for constructing
compaosite objeds - the asciation "member-of” - is omitted from our model, because
thisrelation daes not change identity of objectsinvalved.

The last remaining iswue is how lifestyles help in designing temporal GIS. A hint
how this can be dore is provided in Chapters 8 and 9 the generic lifestyles framework
is extended to suite the needs eadt particular applicaion. A designer of GIS needs only
to asdgn the objects of his model to appropriate lifestyles and provide the
implementation d basic dasss. The unified treatment of the dange in ohjed
identifiers is automaticaly inherited. Models based on lifestyles would share cmmon
behavior of operations, leading to increased interoperability among the gplicaionsin
different domains. The theory of lifestyles is an important step in the diredion o
interoperable temporal information systems.

10.2 Directionsfor futurework

In this thesis, we @ncentrated exclusively on change of object identity. Properties
(attributes) of objects are dso worth investigating: how attributes change under the
proposed rules of change? Thisis espedaly important for such qualiti es of objects that
can be added or averaged in case anew object results from the fusion o several existing
objeds. The examples of such attributes include aea, volume, and weight. In order to
be averaged or summed up, such attributes must be quantitatively measurable ather on
an interval or on a ratio scale (Stevens 1946, in contrast to qualities that are only
nominal (color), or ordinal (hardness.

Operations affecting object identity imply significant changes to the relations
among the dhanged oljeds. A detailed analysis of these ansequences with respect to
the nature of relations is an interesting research topic, espedally for GIS applicaions.
For example, how the topdogicd relations of an olject are distributed on its child
objeds after the original objed isfissoned?

Finally, further work is necessary on producing more @mplete categorizations of
red world oljects for specific domains and onthe investigation d the requirements the
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genera mode of lifestyles soud fulfill to cagpture the semantics of these
caegorizations.

The temporal model implemented in this thesis was smple. Branching time with
multiple futures is possble. Which temporal dimension (transadion, \aid) is
appropriate for dealing with lifestyles in branching time? Does cyclic time negate the
identity uniqueness or just disable destroying (and lifestyles based on destroying)?

In arollbadk database, modeling of future timesis not posgble. If we ald the valid
time dimension, we @uld model posshle dternatives. In that case, some interesting
guestions abou levels of existence aise: a aedion d a particular car may be projeded
into the future even before concrete, physical parts are aggregated into a new ca as a
moving objed.

Finally, in ou model, the user has complete freedom in manipulating the valid time
dimension. It is posgble to impose some @nstraints on the valid time. For example, in
the transadion time, a fusion implies that the deletion time of fused oljeds and the
credion time of the amerging object coincide. If this requirement is applied to the valid
time dimension, the freedom of updating the database by the user is restricted.
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GOFER PROJECT FILE

-- tdbProj.gp calls all other scripts
-- collection of Gofer scripts for the temporal database (chapter 6) and
-- for all applications from chapters 8 and 9

adds.gs -- from categorical prelude (Bird&deMoor 1997)
attrib.gs -- attributes, values, value sets

object.gs -- identifiers and objects

database.gs -- database operations

snapshot.gs  -- implementations on snapshots
tempdb.gs -- implementations on temporal databases
lifestyles.gs -- lifestyle operations

comparison.gs -- comparison with previous work

text.gs -- text instances for all types so far
simplelife.gs -- books and tables example

transf.gs -- versionings transformation

chapter08.gs -- chapter 8: (movable naturals, immovables,
-- living, eternal, liquids)

movarts.gs  -- movable artifacts

containers.gs -- containers

treeFruits.gs -- trees with fruits

marriages.gs -- chapter 9

partnerships.gs

usufruct.gs

unions.gs

parcels.gs

PRELUDE ADDITIONS

-- adds.gs
-- categorical additions to the standard Gofer prelude
-- based on Algebra of programming (Bird & de Moor 1997)

-- standard combinators:
outl :: (a,b) > a

outr :: (a,b) -> b

swap :: (a,b) -> (b,a)
outl (a,b) =a
outr(a,b)=b

swap (a, b) = (b, a)

assocl :: (a,(b,c)) -> ((a,b),c)
assocr :: ((a,b),c) -> (a,(b,c))
assocl (a,(b,c)) = ((a,b),c)
assocr ((a,b),c) = (a,(b,c))

pair :: (a->b,a->c)->a->(b,c)

cross :: (a->b,c->d)->(a,c) -> (b,d)

cond ::(a->Bool)->(a->b,a->b)->a->b
pair (f,g)a=(fa,ga)

cross (f,g) (a,b) = (fa, g b)

cond p (f,g) a=if (p a) then (f a) else (g a)

-- relations:

leq, eql, geq :: Ord a => (a, a) -> Bool
leqg = uncurry (<=)

egl = uncurry (==

geq = uncurry (>=)

false = const False
true = const True
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meet, join' :: (a -> Bool,a -> Bool) -> a -> Bool
meet (r,s) = cond r (s, false) -- logical AND
join' (r,s) = cond r (true, s) -- logical OR

--numerical functions:

plus, minus :: Numa=>(a,a)->a
plus = uncurry (+)
minus = uncurry (-)

-- list processing functions:
nil :: a -> [b]
nil = const []

wrap :: a->[a]
wrap = cons . pair (id, nil)

cons :: (a,[a]) -> [a]
cons = uncurry (:)

-- cartesian product left
cpl :: ([a],b) -> [(a,b)]

cpl (x,b) =[(a,b) | a <- ]
-- cartesian product right
cpr :: (a,[b]) -> [(a,b)]
cpr (ay) =[(ab) | b <-y]

-- end of categorical additions

-- list update (for updateAtts in object.gs)
updateBy :: EQb =>(a->b) ->a->[a] -> [a]
updateBy f a = map (cond ((f a ==).f) (const a, id))

-- end of adds.gs

ATTRIBUTES

-- attrib.gs
-- attributes, values, value sets

class Attribs a where
attrib  :: (ValueSet, Value) -> a
getValueSet :: a -> ValueSet
getvValue : a->Value
setValue :Value->a->a
selectAtt :: ValueSet ->[a] -> a
selectAtt s = head . filter ((s==).getValueSet)

class ValueSets vs v where
checkV :: (vs, v) -> Bool

class Values v a where
unwrapValue :: v ->a
wrapValue :a->v

data Attrib = Att (ValueSet, Value)
instance (Eq ValueSet, Eq Value) => Eq Attrib where
(==) a b = getValueSet a == getValueSet b
&& getValue a == getValue b
instance Attribs Attrib where
attrib = cond checkV (Att, error "incompatible value types")
getValueSet (Att (s,v)) =s
getValue (Att(s,v)) =v
setValue v (Att (s,u)) = attrib (s,v)
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data ValueSet = Name | Age | Preds | Alive | Amount | Capacity | Weight
instance Eq ValueSet where
(==) Name Name = True
(==) Age Age = True
(==) Amount Amount = True
(==) Capacity Capacity = True
(==) Preds Preds = True
(==) Alive Alive = True
(==) Weight Weight = True
(==) __=False
instance ValueSets ValueSet Value where
checkV (Name, (Vs a)) = True
checkV (Age, (Via))=True
checkV (Amount, (Vf a)) = True
checkV (Capacity, (Vf a)) = True
checkV (Preds, (Vp a)) = True
checkV (Alive, (Vb a)) = True
checkV (Weight, (Vf a)) = True
checkV (_, ) = False

data Value = Vs String | Vb Bool | Vi Int | Vf Float | Vp [Int]

instance Eq Value where
(==)(Vsa)(Vsh)=a==
(==)(Vba)(Vbb)=a==
(==)(Via) (Vib)=a==
(==) (Vfa) (Vfb)=a==
(==)(Vpa) (Vpb)=a==
(==) __ =False

instance Values Value String where
unwrapValue (Vs s) =s
wrapValue s=Vss

instance Values Value Bool where
unwrapValue (Vb b) =b
wrapValueb=Vb b

instance Values Value Int where
unwrapValue (Vii) =i
wrapValue i = Vii

instance Values Value Float where
unwrapValue (Vff) =f
wrapValue f = Vf f

instance Values Value [Int] where
unwrapValue (Vp is) = is
wrapValue is = Vp is

instance Num Value where
(+) (Vfa) (Vfb)=Vf(a+Dh)
(-) (vfa) (Vfb)=Vf(a-b)

-- end of attrib.gs
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IDENTITIFIERSAND OBJECTS

-- object.gs
-- identifiers and objects

class Eq i => IDs i where
samelD, notSamelD :: i-> i -> Bool
nextiD ::i->1i
getiD ::i-> 1D
samelDij=getlIDi==getlDj
notSamelD i = not . samelD i
class IDs (o t) => Objects o t where
makeObj : (t,ID)->ot
getObjType ::o0t->t
getAttribs :: o t -> [Attrib]
setAttribs :: [Attrib] ->o0t->0t

addAtt  :: ValueSet->Value->ot->o0t
addAtt s v = uncurry setAttribs . pair (f . getAttribs, id)
where f = cons . pair (const (attrib (s, v)), id)
addAtts :: [(ValueSet, Value)]->ot->o0t
addAtts = (flip.foldr) (uncurry addAtt)
updateAtt :: Eq ValueSet => ValueSet -> Value ->o0t->o0t
updateAtt s v = uncurry setAttribs . pair (f . getAttribs, id)
where f = updateBy ((s==).getValueSet) (attrib (s, Vv))
updateAtts :: Eq ValueSet => [(ValueSet, Value)]->o0t->0t
updateAtts = (flip.foldr) (uncurry updateAtt)

type ID = Int
instance IDs Int where
nextlD = (+1)
data Object t = Obj ID t [Attrib]
instance IDs (Object t) => Eq (Object t) where
==) = samelD
instance IDs (Object t) where
samelD a b = samelD (getID a) (getID b)
getID (Objitas) =i
instance Objects Object t where
makeObj (t,i) = Objit[]
getObjType (Objitas) =t
getAttribs (Objitas) = as
setAttribs as (Obj it bs) = Objitas
-- end of object.gs

DATABASE OPERATIONS

-- database.gs
-- database operations

class (Objects o t, IDs (s o t), Relatable t) => Snapshots s o t where
getObjects ::sot->[ot]
getRelations :: s 0t ->[Rel]
setObjects :: [ot]->sot->sot
setRelations :: [Rel] ->sot->sot

liftS:: (Jot]->[ot])->sot->sot

liftS f = uncurry setObjects . pair (f . getObjects, id)
liftR :: ([Rel] -> [Rel]) ->sot->sot

liftR f = uncurry setRelations . pair (f . getRelations, id)
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class TDBs td o t where
getSnapshots :: td o t -> [Snapshot o {]
setSnapshots :: [Snapshotot]->tdot->tdot

class Snapshots d o t => Databases d o t where
newObj :t->dot->dot
existObj :: ID ->d ot->Bool
existObjs :: [ID] -> d o t -> Bool
deleteObj ::ID->dot->dot
updateObj:: (ot->ot)->ID->dot->dot
selectObj::ID->dot->0t
queryObj ::(ot->x)->ID->dot->x

queryObjs 1 (0ot->x)->[ID]->dot->[x]

queryObjs g is = liftM (queryObj q) is
-- a shortcut for getting the Value from an object

get :: ValueSet ->ID ->d o t -> Value

get a = queryObj (getValue . selectAtt a . getAttribs)
-- a shortcut for updating the Attribute in an object

set :: ValueSet -> Value ->ID->dot->dot

set s vi = updateObj (updateAtt s v) i

addRel :ID->RelType->ID->dot->dot
addRels :: RelType->[ID]->ID->dot->dot

deleteRel :: RelType -> (ID,ID)->dot->dot
-- involving a reltype and an ID on the right
deleteRels :: RelType ->ID->dot->dot
-- involving an ID either on left or right
deleteRelsID :: ID->dot->dot
getRels :: RelType->ID->dot->]ID]
getConvRels :: RelType ->ID ->d o t -> [ID]

-- for queries and select
liftQ :: TDBsd ot=> (Snapshotot->x)->dot->x
liftQ f =f . head . getSnapshots

-- for updates, deletions and creations
liftU :: TDBs d o t => (Snapshot o t -> Snapshotot)->dot->dot
liftU f=h. cross (cons . g, id) . pair (getSnapshots, id)
where h = uncurry setSnapshots
g = pair (f . head, id)
-- for operations on a list of identifiers (map)
liftM :: (ID->dot->x)->[ID]->dot->[x]
liftM f is = map (uncurry f) . cpl . pair (const is, id)

class Relatable t where
relatable :: (RelType, (t, t)) -> Bool

type Rel = (RelType, (ID, ID))
data RelType = PartOf | In | On | NoneRel
instance Eq RelType where
(==) PartOf PartOf = True
(==) InIn=True
(==) On On = True
(==) _ _=False
data Snapshot ot = Snap ID [o t] [Rel]

-- end of database.gs
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SNAPSHOTS

-- snapshot.gs
-- implementation for a static database

instance Eq [0 t] => Eq (Snapshot o t) where
(==) (Snapior)(Snapjps)=i==j&& o0==p&&r==s
instance IDs (Snapshot o t) where
getID (Snapiosrs) =i
nextID (Snap i 0s rs) = Snap (nextID i) os rs
instance Snapshots Snapshot o t where
getObjects (Snap i os rs) = 0s
setObjects os (Snap ipsrs) =Snapiosrs
getRelations (Snapiosrs) =rs
setRelations ts (Snap iosrs) = Snapios ts

instance Databases Snapshot o t where
newObj t = nextID . uncurry setObjects .
cross (cons . pair (makeObj.outl, outr), id) .
cross (assocl. pair (const t, id), id) .
pair (cross (getlD, getObjects), outr) . pair (nextID, id)

existObj i = cond p (false, true) where
p = null . filter ((i==).getID) . getObjects

existObjs is = and . liftM existObj is

deleteObji =IiftS f. liftR g where
f = filter ((i/=).getID)
g = filter (meet ((i/=).fst.snd, (i/=).snd.snd))

updateObj f i = cond (existObj i) (g, h) where
g = liftS (map (cond ((i==).getID) (f, id)))
h = error ("the object " ++ show i ++ " does not exist.")

selectObji = cond (existObj i) (f, g) where
f = head . filter ((i==).getID) . getObjects
g = error ("the object " ++ show i ++ " does not exist.")

queryObjqi =q. selectObj i
addRel jti=cond p (f, g) where

p = relatable . pair (const t, pair (h i, hj))
h a = queryObj getObjType a

f = liftR (cons . pair (pair (const t, pair (const i, const j)), id))

g = error "types are not relatable."
addRels tis j = (flip . foldr) (addRel j t) is

deleteRel t is = liftR (filter (join' ((t/=).outl, (is/=).outr)))
deleteRels ti = liftR (filter (join' ((t/=).outl, (i/=).outr.outr)))

deleteRelsID i = liftR (filter (meet ((i/=).outl.outr, (i/=).outr.outr)))

getRels ti = map (outl.outr) . filter p . getRelations where
p = meet ((t==).outl, (i==).outr.outr)

getConvRels t i = map (outr.outr) . filter p . getRelations where

p = meet ((t==).outl, (i==).outl.outr)

-- end of snapshot.gs
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TEMPORAL DATABASE

-- tempdb.gs
-- implementation for temporal databases

data TDB ot =T [Snapshot o 1]

instance Eq [Snapshot o t] => Eq (TDB o t) where
=) (Ts)(Tt)=s==t

instance (Databases TDB o t) => IDs (TDB o t) where
getID = liftQ getID

instance Snapshots TDB o t

instance TDBs TDB o t where
getSnapshots (T ss) = ss
setSnapshots ss (Tts) =T ss

instance (TDBs TDB o t, Databases Snapshot o t)
=> Databases TDB o t where
newObj t = liftU (newObj t)
deleteObji = IiftU (deleteObj i)
updateObj fi =liftU (updateObj f i)

existObj i = liftQ (existObj i)
existObjs is = liftQ (existObjs is)
selectObji = liftQ (selectObj i)

queryObj qi = IiftQ (queryObj q i)

addRel jti =liftU (addRel jti)

addRels tis j = liftU (addRels tis j)
deleteRel t is = liftU (deleteRel t is)
deleteRels ti = liftU (deleteRels t i)
deleteRelsID i = liftU (deleteRelsID i)
getRelsti = liftQ (getRels t i)
getConvRels ti =liftQ (getConvRels t i)

-- end of tempdb.gs

LIFESTYLE OPERATIONS

-- lifestyles.gs

class Databases d ot => Creatable d o t where

create =z (D], t)->dot->dot
createWithID :: ([ID],t) ->dot->(ID,dot)
createN @ Int->([IDl,t)->dot->dot

create (is, ot) = uncurry (updateObj f) . pair (getID, id) . newODbj ot
where f = addAtt Preds (Vp is)

createWithID (is, ot) = pair (getlD, id) . create (is, ot)

createN n (is, ot) = flip (!!) n . iterate (create (is, ot))

class DestroyableT d where
destroyable :: d -> Bool

class (DestroyableT t, Creatable d o t)
=> Destroyable d o t where
destroy ::ID->dot->dot
destroy i = cond p (f, g) where
p = destroyable . getObjType . selectObj i
f = deleteObj i
g = error ("the object #" ++ show i ++ " is not destroyable")
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class SuspendableT s where
suspendable :: s -> Bool
class (Objects o t, SuspendableT t) => SuspendableO o t where
suspended ::ot->Bool
suspended = not . unwrapValue . getValue . selectAtt Alive . getAttribs
suspendObj :ot->ot
suspendObj = updateAtt Alive (Vb False)
resumeObj :ot->ot
resumeObj = updateAtt Alive (Vb True)
class (SuspendableO o t, Creatable d o t)
=> Suspendable d o t where
suspend, resume ::ID->dot->dot
suspend i = cond p (f, g) where
p = suspendable . getObjType . selectObj i
f = updateObj suspendObj i
g = error ("the object #" ++ show i ++ " is not suspendable™)
resume i = cond p (f, g) where
p = queryObj suspended i
f = updateObj resumeObj i
g = error ("the object #" ++ show i ++ " is already suspended")

class Destroyable d o t => Evolvable d o t where
evolve :ID->dot->dot
evolve i = uncurry (set Preds (Vp (wrap i)))
. pair (getID, destroy i) . uncurry (updateObj' setAttribs)
. pair (pair (getlID, getAttribs. selectObj i), id) . uncurry create
. assocl. pair (nil , pair (getObjType . selectObj i, id))
where updateObj' f (i,x) = updateObj (f x) i

class Destroyable d o t => Fusions d o t where
fusion:: [ID]->t->dot->dot
fusion is t = (flip . foldr) destroy is . create (is, t)
fissionN :: Int->ID->dot->dot
fissionN n i = uncurry (createN n) . pair (f, destroy i)
where f = pair (wrap . const i, getObjType . selectObj i)
restructure :: [ID] ->t->Int->dot->dot
restructure is t n = uncurry (fissionN n) . pair (getID, id) . fusion is t

class (Destroyable d o t, Suspendable d o t)
=> WFusions d o t where
wfusion :: [ID]->ID->dot->dot
wfusion is i = (flip . foldr) destroy is . resume i

wfissionN :: Int->ID->dot->dot
wfissionN n i = uncurry (createN n) . pair (f, suspend i)
where f = pair (wrap . const i, getObjType . selectObj i)

class (Destroyable d o t, Suspendable d o t)
=> Aggregates d o t where

aggregate :: [ID]->t->dot->dot
aggregate is t = uncurry (addRels PartOf is) . createWithID ([],t)
. (flip.foldr) suspend is
segregate :ID->dot->dot
segregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i, g)
where g = deleteRels PartOf i . destroy i

class Suspendable d o t => WAggregates d o t where
waggregate :: [ID]->ID->dot->dot
waggregate is i = (flip . foldr) suspend is . addRels PartOf is i .resume i
wsegregate :ID->dot->dot
wsegregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i, g)
where g = deleteRels PartOf i . suspend i
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--instances:
instance Creatable Snapshot o't
instance Creatable Snapshot o t => Creatable TDB o t where
create = liftU . create
createN n = liftU . createN n
instance Destroyable Snapshot o t
instance Destroyable TDB o t
instance Suspendable Snapshot o t
instance Suspendable TDB o t
instance Evolvable Snapshot o't
instance Evolvable Snapshot o t => Evolvable TDB o t where
evolve = liftU . evolve
instance Fusions Snapshot o't
instance Fusions TDB o't
instance WFusions Snapshot o t
instance WFusions TDB o' t
instance Aggregates Snapshot o t
instance Aggregates TDB o't
instance WAggregates Snapshot o't
instance WAggregates TDB o t
instance SuspendableO Object t
-- end of lifestyles.gs

COMPARISON WITH PREVIOUSWORK

--comparison.gs

-- comparison with hornsby&egenhofer:
metamorphose :: Evolvabledot=>ID->dot->dot
metamorphose = evolve
spawn :: Creatabledot=>ID->dot->dot
spawn i = uncurry create . pair (f, id)
where f = pair (wrap . const i, getObjType . selectObj i)

mergeH :: Fusionsdot=>[ID]->t->dot->dot
mergeH = fusion

generate :: Creatabledot=>[ID]->t->dot->dot
generate = curry create

mix :: Destroyabled ot =>[ID]->t->dot->dot
mix (i:is) t = destroy i . curry create is t

-- auxiliary functions
segregate' :: Aggregatesdot=>ID->dot->([ID],dot)
segregate' i = pair (outl, (uncurry.flip.foldr) resume)

. pair (getRels PartOf i, destroy i)
wsegregate' :: WAggregatesdot=>ID->dot->([ID],dot)
wsegregate' i = pair (outl, (uncurry.flip.foldr) resume)

. pair (getRels PartOf i, suspend i)

-- composite objects:
compound :: WAggregatesdot=> ID->ID->dot->dot
compound i j = uncurry (flip waggregate j)

. cross (cons . pair (const i, id), id)

. pair (getRels PartOf j, wsegregate j)

unite :: Aggregatesdot=>[ID]->t->dot->dot
unite = aggregate

combine :: Aggregatesdot=> [ID]->t->dot->dot
combine is t db = aggregate js t db where
js = concat . map (outl . (flip segregate' db)) $ is
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amalgamate :: (Fusions d o t, Aggregates d o t)
=>[ID]->t->t->dot->dot
amalgamate is t1 t2 db = uncurry (aggregate ns) (t1, db") where
db' = outr (foldr fusion' (t2, db) jss)
jss = transpose . map (outl . (flip segregate’' db)) $ is
fusion' isl (t1,db1) = (t1, fusion is1 t1 dbl)
ns =[a+l .. b]
a=getiD db
b =a + lengthis
secede :: WAggregatesdot=>ID->ID->dot->dot
secede i j = uncurry (flip waggregate j)
. cross (filter (i/=), id)
. pair (getRels PartOf j, wsegregate j)
dissolve :: Aggregatesdot=>ID->dot->dot
dissolve = segregate
-- end of comparison.gs

REPRESENTATIONS OF DATATYPES

-- text.gs
-- text instances for datatypes given in comments
--data Attrib = Att (ValueSet, Value)
instance Text Attrib where
showsPrec 0 a = showString " --. shows (getValueSet a)
. showChar ' ' . shows (getValue a)
--data ValueSet = Name | Age | Preds | Alive | Amount | Capacity | Weight
instance Text ValueSet where
showsPrec d Name = showString "name ="
showsPrec d Age = showString "age ="
showsPrec d Preds = showString "preds ="
showsPrec d Alive = showString "state ="
showsPrec d Amount = showString "amount ="
showsPrec d Capacity = showString "capacity ="
--data Value = Vs String | Vb Bool | Vi Int | Vf Float | Vp [Int]
instance Text Value where
showsPrec d (Vs a) = shows a
showsPrec d (Vb a) = if a then showString "resumed "
else showString "suspended”
showsPrec d (Vi a) = shows a
showsPrec d (Vf a) = shows a
showsPrec d (Vp a) = shows a
--data Object t = Obj ID t [Attrib]
instance (Objects Object t, Text t) => Text (Object t) where
showsPrec d a = showString "\n #". shows (getID a) . showString " "
. shows (getObjType a) --. showString " Attribs:"
. shows (getAttribs a)
--data RelType = PartOf | In | On | NoneRel
instance Text RelType where
showsPrec d PartOf = showString " is part of "
showsPrec d In = showString " is in "
showsPrec d On = showString " is on "
--data Snapshot o t = Snap ID [o t] [Rel]
instance (IDs (Snapshot o t), Snapshots Snapshot o t, Text [0 t])
=> Text (Snapshot o t) where
showsPrec d a = showString "\nSnapshot\n Latest ID =" . shows (getID a)
. showString "\n Objects: " . shows (getObjects a)
. showString "\n Relations: " . shows (getRelations a)
--data TDB ot = T [Snapshot o 1]
instance (TDBs TDB o t, Text [Snapshot o t]) => Text (TDB o t) where
showsPrec d a = showString "\nTDB " . shows (getSnapshots a)
instance Text Rel where
showsPrec d (a, (b,c)) = showString "\n " . shows b . shows a . shows ¢
x :: (Text (Snapshot o t), Databasesd ot, TDBsd ot) =>d o t -> String
x = liftQ show -- shortcut for showing the latest snapshot of the database
-- end of text.gs
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AN EXAMPLE OF DATABASE (SECTION 6.4)

-- simplelife.gs

-- implementation of lifestyles for ObjType
-- with examples for Section 6.4

data ObjType = Book | Table | Room
instance Text ObjType where
showsPrec d Book = showString "Book "
showsPrec d Table = showString "Table"
showsPrec d Room = showsString "Room "
instance Relatable ObjType where
relatable (On, (Book, Table)) = True
relatable (In, (Table, Room)) = True
relatable _ = False
class Destroyable d o t => Simples d o t where
createSimple :: String -> ([ID],t)->dot->dot
createSimple s t = uncurry (updateObj f) . createWithID t
where f = addAtts [(Name, Vs s)]

instance Simples Snapshot Object ObjType
instance Simples TDB Object ObjType

-- optional instances for t = ObjType (could be SimpleType)

instance DestroyableT ObjType where
destroyable Book = True
destroyable Table = True
destroyable Room = True
destroyable _ = False

instance SuspendableT ObjType where
suspendable Book = True
suspendable Table = True
suspendable Room = True
suspendable _ = False

-- examples for section 6.4 two books and two tables

tdO, td7 :: TDB Object ObjType
td1, td2, td3, td4, td5, td6

:: Snapshot Object ObjType -> Snapshot Object ObjType
td0O=T[Snap O[] [1]
td1 = createSimple "BookA" ([], Book)
td2 = createSimple "BookB" ([], Book)
td3 = createSimple "TableA" ([], Table)
td4 = createSimple "TableB" ([], Table)
td5 = addRel 30n 1
td6 = addRel 4 On 2
td7 = liftU (td6.td5.td4.td3.td2.td1) tdO

tstl, tst2 :: Bool

tst3 :: Object ObjType

tst4 :: Value

tst5 :: String

tst6 :: Object ObjType

tst7 :: [Rel]

tst8 :: TDB Object ObjType

tstl = existObj 4 td7

-- True

tst2 = existObj 4 (deleteObj 4 td7)
-- False

tst3 = selectObj 4 (deleteObj 4 td7)
-- error: the object 4 does not exist.
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tst4 = get Name 1 td7

-- Vs "Book1"

tst5 = unwrapValue (get Name 1 td7)

-- Book1

tst6 = selectObj 3 td7

-- Obj 3 Table [Att (Name,Vs "Tablel")]

tst7 = liftQ getRelations (deleteRel On (1,3) td7)
- [(On, (2,4))]

tst8 = addRel 1 On 4 td7

-- error: types are not relatable.

-- end of simplelife.gs

TRANSFORMATIONS BETWEEN VERSIONINGS

-- transfs.gs

-- transformation between the fixed time (database versioning)
-- and the fixed theme (object versioning)

type Time = Int

class (Eq t, Eq 0) => Groups t o where
distrTime :: [(t,[0])] -> [(0,1)]
distrTime = concat . map cpl . map swap

findObjs :: [(0,1)] -> [0]
findObjs = nub . map outl

-- select times for given object (DV -> OV)
selTimes :: (o, [(0,)]) -> [(0,1)]
selTimes = uncurry filter . cross (flip ((==).outl), id)

normObj :: [(o,t)] -> (o,[t])
normObj = pair (head . map outl, map outr)

toOV :: [(t.[o])] -> [(o,[t])]
toOV = map (normObj.selTimes) . cpl . pair (findObjs, id) . distrTime

-- the opposite case (OV -> DV)
distrObjs :: [(o,[t])] -> [(0,t)]
distrObjs = concat . map cpr

findTimes :: [(0,1)] -> [t]
findTimes = nub . map outr

-- select objects at given time
selObjs :: (t,[(0,1)]) -> [(0,1)]
selObjs = uncurry filter . cross (flip ((==).outr), id)
normTime :: [(0,t)] -> ([0],t)
normTime = pair (map outl, head . map outr)

toDV :: [(0,[t])] -> [(t,[0])]
toDV = map (swap.normTime.selObjs). cpl . pair (findTimes, id) . distrObjs
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instance Groups Time ObjX
data ObjX = Ob ID ObjT Color
instance Text ObjX where
showsPrec d (Ob it c) = shows c . shows t
instance Eq ObjX where
(==)(Obitc)(Objud)=i==j&&c==
data ObjT = HouseT | CarT
instance Text ObjT where
showsPrec d HouseT = showString "House"
showsPrec d CarT = showString "Car"
data Color = Red | Blue | White
instance Text Color where
showsPrec d Red = showString "red"
showsPrec d Blue = showString "blue"
showsPrec d White = showString "white"
instance Eq Color where
Red == Red = True
Blue == Blue = True
White == White = True
_==_=False
-- thesis example, sections 3.2.2 and 6.5
01, 02, 03 :: ObjX
01 =0b 1 CarT Red
02 =0Ob 1 CarT Blue
03 = Ob 2 HouseT White
dvi, dv2 : [(Time, [ObjX])]
dvl =[(1, [01]), (2, [02,03]), (3, [02,03]), (4, [03])]
ovl =toOV dvl
dv2 = toDV ovl

-- end of transf.gs

PHYSICAL OBJECTS

-- chapter08.gs
-- applications from chapter 8

--the applications of lifestyles: each object is a class with attributes added
--during its creation

--8.1.1 movable naturals (stones,fruits)

--8.1.3 immovable geographic objects (mountains, buildings)

--8.2 living beings (persons)

--8.4 eternals

class Destroyable d o t => MovableNaturals d o t where
createMovNat :: String -> Float -> ([ID], t)->dot->dot
createMovNat name w a = uncurry (updateObj (addAtts as)) . createWithID a
where as = [(Name, Vs name), (Preds, Vp []), (Weight, Vf w)]

-- immovable objects
class Destroyable d o t => Immovables d o t where
createlmmov :: String -> ([ID],t)->dot->dot
createlmmov name a = uncurry (updateObj (addAtts as))
. pair (getID, id) . create a
where as = [(Name, Vs name)]

-- living objects:
class Destroyable d o t => Livings d o t where
createliving :: String -> ([ID],t) ->dot->dot
createLiving name a = uncurry (updateObj (addAtts as)) . createWithID a
where as = [(Name, Vs name), (Preds, Vp (outl a))]
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-- simple liquids
class (Fusions d o t) => Liquids d o t where
createLiquid :: String -> Float -> ([ID],t)->dot->dot
createLiquid name x a = uncurry (updateObj (addAtts as)) . createWithID a
where as = [(Name, Vs name), (Preds, Vp (outl a)), (Amount, Vf x)]
fusionLiquid :: [ID]->t->dot->dot
fusionLiquid is t d = f (fusion is t d) where
f x = updateObj (updateAtt Amount (Vf z)) (getID x) x
z = sum (map (flip (queryObj g) d) is)
g = unwrapValue . getValue . selectAtt Amount . getAttribs

-- eternals:
class (Creatable d o t) => Eternals d o t where
createEternal :: String -> ([ID],t)->dot->dot
createEternal name a = uncurry (updateObj (addAtts as)) . createWithID a
where as = [(Name, Vs name), (Preds, Vp (outl a))]

-- EXAMPLES:
-- movable naturals
data MovNat = Fruit | Stone
instance Text MovNat where
showsPrec d Fruit = showString "Fruit"
showsPrec d Stone = showString "Stone"
instance Relatable MovNat where
relatable (On, (Fruit, Stone)) = True
relatable _ = False
instance Creatable TDB Object MovNat
instance DestroyableT MovNat where
destroyable Fruit = True
destroyable Stone = True
instance MovableNaturals Snapshot Object MovNat
mnO, mn2 :: TDB Object MovNat
mnO =T [Snap 0[] []]
mn2 = liftU (createMovNat "appleA" 0.4 ([],Fruit)
.createMovNat "stoneA" 1.2 ([],Stone)
.createMovNat "stoneB" 2.3 ([],Stone)) mn0
tstmnl = existObj 3 (destroy 3 mn2)
-- False
tstmn2 = get Weight 3 mn2
- Vf2.3

-- immovables
data Immovable = Mountain | Building
instance Text Immovable where
showsPrec d Mountain = showString "Mountain”
showsPrec d Building = showString "Building"
instance Relatable Immovable
instance DestroyableT Immovable where
destroyable Mountain = True
destroyable Building = True
instance Immovables Snapshot Object Immovable
im0, im2 :: TDB Object Immovable
imO=TI[Snap O[] []]
im2 = liftU (createlmmov "Alps " ([], Mountain)
.createlmmov "HouseA" ([], Building)) im0
im3 = (uncurry (set Name (Vs "MuseumA")).pair (getID, id).(evolve 1)) im2
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--simple liquids
data Liquid = Water | Wine
instance Text Liquid where
showsPrec d Water = showString "water"
showsPrec d Wine = showString "wine "
instance Relatable Liquid
instance DestroyableT Liquid where
destroyable Water = True
destroyable Wine = True
instance Liquids Snapshot Object Liquid
instance Fusions Snapshot Object Liquid
w0, w2, w3 :: TDB Object Liquid
wO0=TI[SnapO0[][]]
w2 = [iftU ( fissionN 3 3
. fusion [1,2] Water
. createLiquid "waterA" 2.4 ([], Water)
. createLiquid "waterB" 2.8 ([], Water)
w0
w3 = liftU (fusionLiquid [4,5,6] Water) w2

-- livings:
data Living = Person | Animal | Plant
instance Text Living where
showsPrec d Person = showString "person
showsPrec d Animal = showString "animal”
showsPrec d Plant = showString "plant "
instance DestroyableT Living where
destroyable Person = True
destroyable Animal = True
destroyable Plant = True
instance Livings TDB Obiject Living
instance Livings Snapshot Object Living
instance Relatable Living
liv0, livl :: TDB Object Living
livO=T [Snap 0[] []]
livl = liftU (createLiving "John" ([], Person)
. createLiving "Mary" ([], Person)

. createLiving "Sue " ([1,2], Person)) livO

-- eternals
data Eternal = Star | Planet
instance Text Eternal where
showsPrec d Star = showString "star
showsPrec d Planet = showString "planet”
instance Relatable Eternal
instance DestroyableT Eternal where
destroyable Star = False
destroyable Planet = False
instance Eternals TDB Object Eternal
instance Eternals Snapshot Object Eternal
e0, el, e2 :: TDB Object Eternal
e0=TI[Snap O[] []]
el = liftU (createEternal "Sun" ([],Star)) e0
e2 =destroy 1 el
-- error: the object #1 is not destroyable

-- end of chapter08.gs
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MOVABLE ARTIFACTS

-- movarts.gs

-- movable artifacts (car, chassis, wheel, engine)
-- creation, aggregation, replacePart example

class (Aggregates d o t, WAggregates d o t) => MovableArtifacts d o t where
createMovArt :: String -> ([ID], t) ->dot->dot
createMovArt name ti = uncurry (updateObj (addAtts as)) . createWithlID ti
where as = [(Name, Vs name), (Alive, Vb True)]
aggregateMovArt :: String -> [ID]->t->dot->dot
aggregateMovArt name is t = uncurry (updateObj (addAtts as))
. pair (getID, id) . aggregate is t
where as = [(Name, Vs name), (Alive, Vb True)]

addPart::ID->ID->dot->dot
addPart i j = uncurry (flip waggregate j)
. cross (cons . pair (const i, id), id)
. pair (getRels PartOf j, wsegregate j)

removePart:: ID->ID->dot->dot
removePart i j = uncurry (flip waggregate j)
. cross (filter (i/=), id)
. pair (getRels PartOf j, wsegregate j)

replacePart:: ID->ID->ID->dot->dot
replacePart i j k = uncurry (flip waggregate k)
. cross (cons . pair (const i, filter (j/=)), id)
. pair (getRels PartOf k, wsegregate k)

-- movable aritifacts

data MovArt = Car | Chassis | Engine | Wheel

instance Text MovArt where
showsPrec d Car = showString "Car "
showsPrec d Chassis = showString "Chassis"
showsPrec d Engine = showString "Engine "
showsPrec d Wheel = showString "Wheel "

instance Relatable MovArt where
relatable (PartOf, (Chassis, Car)) = True
relatable (PartOf, (Engine, Car)) = True
relatable (PartOf, (Wheel, Car)) = True
relatable (PartOf, (_, Car)) = False
instance DestroyableT MovArt where
destroyable Car = True
destroyable Chassis = True
destroyable Engine = True
destroyable Wheel = True
instance SuspendableT MovArt where
suspendable Car = True
suspendable Chassis = True
suspendable Engine = True
suspendable Wheel = True
instance MovableArtifacts Snapshot Object MovArt
instance MovableArtifacts TDB Object MovArt

-- case study: the carA has chassisA, engineA, and wheels 1,2,3, and 4
-- change the wheel w3 with wheel w5
ma0, ma9 :: TDB Object MovArt
mal =T [Snap O[] []]
mal, ma2, ma3, ma4, mas5, ma6, ma7, ma8 ::
Snapshot Object MovArt -> Snapshot Object MovArt
mal = createMovArt "wheel-1 " ([], Engine)
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ma2 = createMovArt "wheel-2 " ([], Chassis)

ma3 = createMovArt "wheel-3 " ([], Wheel)

ma4 = createMovArt "wheel-4 " ([], Wheel)

ma5 = createMovArt "wheel-5 " ([], Wheel)

ma6 = createMovArt "chassisA" ([], Wheel)

ma7 = createMovArt "engineA " ([], Wheel)

ma8 = aggregateMovArt "carA " [1,2,3,4,6,7] Car

ma9 = liftu (ma8.ma7.ma6.ma5.ma4.ma3.ma2.mal) ma0
-- all parts of a car as a list of IDs

tstmaO = getRels PartOf 8 ma9

-- all parts as a list of objects:

tstmal = map (flip selectObj ma9) (getRels PartOf 8 ma9)
-- use: liftQ show (outr tstma2)

tstma2 = pair (getRels PartOf 8, wsegregate 8) ma9

-- exchange wheel5 (5) and wheel2 (2) in the car (8)
tstma3 = liftU (replacePart 5 2 8) ma9

tstma4 = liftU (removePart 1 8) ma9

tstma5 = liftU (addPart 1 8) tstma4

-- end of movarts.gs

CONTAINERS

-- containers.gs
-- chapter 8.3
-- pourFrominto example, conservation law

class Objects o t => ContainersO o t where
getAmount :: ot->Float
getCapacity :: ot -> Float
setAmount :: (Float,ot)->o0t
setCapacity :: (Float,ot) -> ot

getAmount = unwrapValue . getValue . selectAtt Amount . getAttribs
getCapacity = unwrapValue . getValue . selectAtt Capacity . getAttribs

setAmount = uncurry (updateAtt Amount) . cross (wrapValue, id)

setCapacity = uncurry (updateAtt Capacity) . cross (wrapValue, id)

iSEmpty :: o t -> Bool
isEmpty = (==0.0) . getAmount

pourln :: (Float,0t)-> o0t

pourln = cond p (f,g) where
p = leq . pair (plus.cross(id,getAmount), getCapacity.outr)
f = setAmount . pair (plus.cross (id,getAmount),outr)
g = error "would overflow"

takeOut :: (Float, 0t)-> 0t

takeOut = cond p (f,g) where
p =leq . cross (id, getAmount)
f = setAmount . pair (minus.swap.cross (id,getAmount),outr)
g = error "not enough in the container”

class (ContainersO o t, Aggregates d o t) => Containers d o t where

createCont :: String -> Float -> Float -> ([ID],t)->dot->dot
createCont name a ¢ s = cond p (f, g) where
p = const (a <=c¢)
f = uncurry (updateObj h) . createWithID s
g = error "amount cannot be greater than capacity"
h = addAtts [(Name, Vs name), (Alive, Vb True),
(Amount, Vf a), (Capacity, Vf c)]

pourFrominto :: Float->ID ->ID->dot->dot
pourFrominto a i j = updateObj (curry pourln a) j
. updateObj (curry takeOut a) i
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data Container = Cup | Tea | FilledCup
instance Text Container where
showsPrec d Cup = showString "Cup
showsPrec d Tea = showString "Tea "
showsPrec d FilledCup = showString "Filled cup
instance Relatable Container where
relatable (In, (Tea, FilledCup)) = True
relatable (PartOf, (Tea, FilledCup)) = True
relatable (PartOf, (Cup, FilledCup)) = True
relatable _ = False
instance DestroyableT Container where
destroyable Cup = True
destroyable Tea = True
destroyable FilledCup = True
instance SuspendableT Container where
suspendable Cup = True
suspendable Tea = True
suspendable FilledCup = True
instance ContainersO Object Container
instance Containers TDB Object Container
instance Containers Snapshot Object Container

-- examples:

¢s0, csb5 :: TDB Object Container

csl, ¢cs2, ¢s3, cs4 :: Snapshot Object Container -> Snapshot Object Container
csO =T [Snap O[] []]

csl = createCont "firstCup " 4.0 10.0 ([],Cup)
cs2 = createCont "secondCup" 4.0 10.0 ([],Cup)
cs3 = createCont "teaA " 5.05.0 ([],Tea)

cs4 = aggregate [1,3] FilledCup

cs5 = liftU (cs4 . ¢s3 . cs2 . csl) csO

--tcsl, tcs2 :: Value

tcsl = get Amount 1 ¢s5

-Vf4.0

tcs2 = get Amount 1 (pourFrominto 3.0 1 2 csb)
-Vf1.0

tcs3 = liftU (updateObj (curry pourln 7.0) 2) cs5
-- owould overflow

-- end of containers.gs

TREESWITH FRUITS

-- treeFruits.gs
-- chapter 8.3
-- fruits can be just takenOut (collected) but not pouredinto”

class (ContainersO o t, Aggregates d o t) => TreeWithFruits d o t where
createTree :: String -> Float -> ([ID], t)->dot->dot
createTree name a s = uncurry (updateObj h) . createWithID s where
h = addAtts [(Name, Vs name), (Alive, Vb True), (Amount, Vf a)]
aggregateTree :: [ID]->t->dot->dot
aggregateTree is t = cond p (f, g) where
p = eql . pair (const (length is), const 2)
f = aggregate is t
g = error "only a single fruits object allowed"

data Tree = ATree | Fruits | TreeWithFruits
instance ContainersO Object Tree where
pourln = error " not possible "
takeOut = cond p (f,g) where
p =leq . cross (id, getAmount)
f = setAmount . pair (minus.swap.cross (id,getAmount),outr)
g = error "not enough fruits on the tree"
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instance Text Tree where
showsPrec d ATree = showString "Tree "
showsPrec d Fruits = showString "Fruits "
showsPrec d TreeWithFruits = showString "FruitTree"
instance Relatable Tree where
relatable (PartOf, (ATree, TreeWithFruits)) = True
relatable (PartOf, (Fruits, TreeWithFruits)) = True
relatable _ = False
instance DestroyableT Tree where
destroyable ATree = True
destroyable Fruits = True
destroyable TreeWithFruits = True
instance SuspendableT Tree where
suspendable ATree = True
suspendable Fruits = True
suspendable TreeWithFruits = False
instance TreeWithFruits TDB Object Tree
instance TreeWithFruits Snapshot Object Tree

-- examples:

tfO, tf1 :: TDB Object Tree

tf0 =T [Snap O [] 1]

tfl = liftU (createTree "TreeA " 10.0 ([],ATree)
. createTree "FruitsA" 5.0 ([],ATree)
. aggregateTree [1,2] TreeWithFruits ) tf0

ttfl :: Float

ttfl = queryObj getAmount 1 tf1

-5.0

ttf2 = updateObj (curry pourin 7.0) 2 tf1

-- not possible

-- end of treeFruits.gs

MARRIAGES

-- marriages.gs, chapter 9.1.1
class (Eq t, Aggregates d o t) => Marriages d o t where
createPerson :: String -> Int -> ([ID],t)->dot->dot
createPerson name age s = uncurry (updateObj h) . createWithID s where
h = addAtts [(Name, Vs name), (Alive, Vb True), (Age, Vi age)]
destroyPerson ::ID->dot->dot
destroyPerson i = cond (married i) (f . pair (head . h i, g), g) where
married x = not . null . h x
h x = getConvRels PartOf x
f = uncurry destroy
g = destroy i
createMarriage :: (ID,ID) ->t->dot->dot
createMarriage (i, j) t = cond (meet (p,q)) (f, g) where
p = uncurry (/=) . pair (hi, hj)
h x = queryObj getObjType x
g = meet (age i, age j)
age x = geq . pair (y . getAttribs . selectObj x, const ( 18))
y = unwrapValue . getValue . selectAtt Age
f = aggregate [i,j] t
g = error "not a legal marriage!"
divorceMarr :: ID->dot->dot
divorceMarr = segregate
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data Marr = Marriage | Male | Female
instance Eq Marr where
(==) Male Male = True
(==) Female Female = True
(==) Marriage Marriage = True
(==) _ _=False
instance Text Marr where
showsPrec d Marriage = showString "Marriage"
showsPrec d Male = showString "Male "
showsPrec d Female = showString "Female
instance Relatable Marr where
relatable (PartOf, (Male, Marriage)) = True
relatable (PartOf, (Female, Marriage)) = True
relatable _ = False
instance SuspendableT Marr where
suspendable Marriage = False
suspendable Male = True
suspendable Female = True
instance DestroyableT Marr where
destroyable _ = True
instance Marriages TDB Object Marr
instance Marriages Snapshot Object Marr

-- examples:

mmO0, mm4, mm5, mm6, mm7, mma8 :: TDB Object Marr
mm1l, mm2, mma3 :: Snapshot Object Marr -> Snapshot Object Marr
mmO =T [Snap O [] []]

mm1 = createPerson "John" 20 ([], Male)

mm2 = createPerson "Mary" 20 ([], Female)

mm3 = createPerson "Sue " 17 ([], Female)

mm4 = liftu (mm3 . mm2 . mm1) mmoO

mmb5 = liftU (createMarriage (1,2) Marriage) mm4 -- OK
mm6 = liftU (createMarriage (1,3) Marriage) mm4 -- not legal
mm7 = liftU (destroyPerson 1) mm5

mm8 = liftU (divorceMarr 4) mm5

-- end of marriages.gs

PARTNERSHIPS

-- parnerships.gs

class (Containers d o t, MovableAtrtifacts d o t)
=> Partnerships d o t where
createStockHolder :: String -> Float -> ([ID],t) ->dot->dot

createStockHolder name m s = uncurry (updateObj h) . createWithID s

where
h = addAtts [(Name, Vs name), (Alive, Vb True),
(Amount, Vf m), (Capacity, Vf 11000.0)]

sumStocks :: [ID] -> ValueSet -> d o t -> Float
sumStocks is a = sum . map (unwrapValue . getValue . selectAtt a
. getAttribs) . liftM selectObj is

createCorporation :: String ->[ID]->t->dot->dot
createCorporation name sstd =
if s > 10000.0 then cond (meet (p,true)) (f,g) d
else error " not enough capital" where
p = geq . pair (const (length ss), const 3)
s = sumStocks ss Amount d

f = uncurry (updateObj (addAtts [(Name, Vs name), (Alive, Vb True),

(Amount, Vf s)])) . pair (getID, id) . aggregate ss t
g = error "founding of the corporation not possible"
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sellShares :: Float->ID->ID->dot->dot
sellShares = pourFrominto

sellAllShares :: ID->ID->ID->dot->dot
sellAllShares a b ¢ d = removePartacd'
where d' = pourFromintofa b d
f = unwrapValue (get Amount a d)

data Partnership = Corporation | StockHolder
instance Text Partnership where
showsPrec d Corporation = showString "Corporation”
showsPrec d StockHolder = showString "StockHolder"
instance Relatable Partnership where
relatable (PartOf, (StockHolder, Corporation)) = True
relatable _ = False
instance SuspendableT Partnership where
suspendable Corporation = True
suspendable StockHolder = True
instance DestroyableT Partnership where
destroyable _ = True
instance Partnerships TDB Object Partnership
instance Partnerships Snapshot Object Partnership
instance Containers Snapshot Object Partnership
instance Containers TDB Object Partnership
instance ContainersO Object Partnership
instance MovableArtifacts TDB Object Partnership
instance MovableArtifacts Snapshot Object Partnership
instance Suspendable TDB Object Partnership
--instance WAggregates Snapshot Object Partnership

-- examples:
pa0, pa6 :: TDB Object Partnership
pal, pa2, pa3, pa4, pa5 :

Snapshot Object Partnership -> Snapshot Object Partnership

pal =T [Snap O ] [I]

pal = createStockHolder "holderA" 2000.0 ([],StockHolder)
pa2 = createStockHolder "holderB" 4000.0 ([],StockHolder)
pa3 = createStockHolder "holderC" 3000.0 ([],StockHolder)
pa4 = createStockHolder "holderD" 2000.0 ([],StockHolder)
pa5 = createCorporation "corporA" [1,2,3,4] Corporation

-- serialized transaction:

pa6 = liftU (pa5 . pa4 . pa3 . pa2 . pal) pa0

pa7, pa8 :: TDB Object Partnership

-- shareholder A sells some shares (2500) to B

pa7 = liftU (sellShares 2500.0 2 1) pa6

-- shareholder A sells all shares to B in the corporation 5
pa8 = liftU (sellAllShares 2 1 5) pa6

the result of: x pa6 -- starting situation

Snapshot

Latest ID =5
Objects: [
#5 Corporation[ "corporA", resumed , 11000.0, []],
#4 StockHolder[ "holderD", suspended, 2000.0, 11000.0, []],
#3 StockHolder[ "holderC", suspended, 3000.0, 11000.0, []],
#2 StockHolder[ "holderB", suspended, 4000.0, 11000.0, []],
#1 StockHolder[ "holderA", suspended, 2000.0, 11000.0, [11]
Relations: [
1is part of 5,
2 is part of 5,
3is part of 5,
4 is part of 5]

the result of: x pa7 -- the sum of stock is the same,
B sold some shares to A
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Snapshot
Latest ID =5
Objects: [
#5 Corporation[ "corporA", resumed , 11000.0, []],
#4 StockHolder[ "holderD", suspended, 2000.0, 11000.0, []],
#3 StockHolder[ "holderC", suspended, 3000.0, 11000.0, []],
#2 StockHolder[ "holderB", suspended, 1500.0, 11000.0, []],

#1 StockHolder[ "holderA", suspended, 4500.0, 11000.0, [11]
Relations: [

1is part of 5,
2 is part of 5,
3is part of 5,
4 is part of 5]

the result of: show pa8 -- the sum of stocks is the same, B is free

Snapshot

Latest ID =5

Objects: [
#5 Corporation[ "corporA", resumed , 11000.0, []],
#4 StockHolder[ "holderD", suspended, 2000.0, 11000.0, []],
#3 StockHolder[ "holderC", suspended, 3000.0, 11000.0, []],
#2 StockHolder[ "holderB", resumed , 0.0, 11000.0, []],

#1 StockHolder[ "holderA", suspended, 6000.0, 11000.0, [11]
Relations: [

1is part of 5,
3is part of 5,
4 is part of 5]

-- end of partnerships.gs
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USUFRUCT RIGHTS

-- usufruct.gs

-- chapter 9.2.3

-- usufruct <= tree (fruits can be just takenOut (collected) but not
-- pouredinto")

-- "usufruct rights are fruit trees"

class TreeWithFruits d o t => Usufructs d o t where
createAParcel :: String -> Float -> ([ID],t)->dot->dot
createAParcel = createTree
createUsufruct :: [ID]->t->dot->dot
createUsufruct = aggregateTree

data UsufructRight = AParcel | Usufruct | ParcelWithUsufruct

instance Text UsufructRight where
showsPrec d AParcel = showString "Parcel "
showsPrec d Usufruct = showString "Usufruct
showsPrec d ParcelWithUsufruct = showString "FruitTree"
instance Relatable UsufructRight where
relatable (PartOf, (AParcel, ParcelWithUsufruct)) = True
relatable (PartOf, (Usufruct, ParcelWithUsufruct)) = True
relatable _ = False
instance DestroyableT UsufructRight where
destroyable AParcel = True
destroyable Usufruct = True
destroyable ParcelWithUsufruct = True
instance SuspendableT UsufructRight where
suspendable AParcel = True
suspendable Usufruct = True
suspendable ParcelWithUsufruct = False
instance ContainersO Object UsufructRight where
pourln = error " not possible "
takeOut = cond p (f,g) where
p =leq . cross (id, getAmount)
f = setAmount . pair (minus.swap.cross (id,getAmount),outr)
g = error "not enough usufruct on the parcel”
instance TreeWithFruits TDB Object UsufructRight
instance TreeWithFruits Snapshot Object UsufructRight
instance Usufructs TDB Object UsufructRight
instance Usufructs Snapshot Object UsufructRight

-- examples:

ufo, ufl, uf2, uf3, uf4 :: TDB Object UsufructRight

ufo =T [Snap O [] []]

ufl = liftU (createAParcel "parcelA " 10.0 ([J,AParcel)) ufo
uf2 = liftU (createAParcel "usufructA " 10.0 ([],Usufruct)) ufl
uf3 = liftU (createAParcel "parcelB " 5.0 ([],AParcel)) uf2
uf4 = liftU (createUsufruct [1,2] ParcelWithUsufruct) uf3

tufl :: Value

tufl = get Amount 3 uf4

--Vf5.0

tuf2 = updateObj (curry pourln 7.0) 2 uf4
-- not possible

-- end of usufruct.gs
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UNIONS

-- unions.gs

-- administrative units (country unions)
-- creation, aggregation, secede example

class MovableArtifacts d o t => Unions d o t where
createUnit :: String -> ([ID], t)->dot->dot
createUnit = createMovArt

aggregateUnits :: String ->[ID]->t->dot->dot
aggregateUnits = aggregateMovArt

addUnit:: ID->ID->dot->dot
addUnit = addPart

secedeUnit::ID ->ID->dot->dot
secedeUnit = removePart

-- movable aritifacts
data AdminUnit = State | Union
instance Text AdminUnit where
showsPrec d State = showString "State"
showsPrec d Union = showString "Union"
instance Relatable AdminUnit where
relatable (PartOf, (State, Union)) = True
relatable _ = False
instance DestroyableT AdminUnit where
destroyable State = True
destroyable Union = True
instance SuspendableT AdminUnit where
suspendable State = True
suspendable Union = True
--instance AdminUnitsO Object AdminUnit
instance MovableArtifacts TDB Object AdminUnit
instance MovableArtifacts Snapshot Object AdminUnit
instance Unions TDB Object AdminUnit
instance Unions Snapshot Object AdminUnit
-- case study: Canada and Quebec
-- secede Quebec, and put it back later
au0, aul2 :: TDB Object AdminUnit
aull, aulO, au9, au8, au7, au6, aus, au4, au3, au2, aul :
Snapshot Object AdminUnit -> Snapshot Object AdminUnit
au0 =T [Snap O[] []]

aul = createUnit "Quebec " ([1, State)
au2 = createUnit "Ontario " ([, State)
au3 = createUnit "New Brunswick " ([], State)
au4 = createUnit "Nova Scotia " ([], State)

au5 = createUnit "Britisch Columbia" ([], State)

au6 = createUnit "Prince Edward Isl" ([], State)

au7 = createUnit "Alberta " ([1, State)

au8 = createUnit "Manitoba " ([I, State)

au9 = createUnit "Newfoundland " ([], State)

aulo = createUnit "Saskatchewan " ([], State)

aull = aggregateUnits "Canada "[1,2,3,4,5,6,7,8,9,10] Union

aul2 =liftU (aull . aul0 . au9 . au8 . au7 . au6 . au5.aud . au3d . au2 .

aul) au0

-- all parts of canada as a list of IDs

tstauO = getRels PartOf 11 aul2

-- all parts as a list of objects:

tstaul = map (flip selectObj aul?2) (getRels PartOf 11 aul?2)
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-- use: x (outr tstau2)

tstau2 = liftU (secedeUnit 1 11) aul2

tstau3 = pair (getRels PartOf 11, wsegregate 11) aul2
tstaud = liftU (evolve 1) tstau2

tstau5 = liftU (set Name (Vs "Quebec Noveau ") 12) tstaud
tstau6 = liftU (addUnit 12 11) tstau5

-- end of unions.gs

PARCELS

-- parcels.gs
-- parcels are liquids

class (Liquids d o t) => Parcels d o t where
createParcel :: String -> Float -> ([ID], t) ->dot->dot
createParcel = createLiquid
mergeParcel :: [ID]->t->dot->dot
mergeParcel = fusionLiquid

-- instances:
data Parcel = Parcel
instance Text Parcel where
showsPrec d Parcel = showString "parcel”
instance Relatable Parcel
instance DestroyableT Parcel where
destroyable Parcel = True
instance Parcels TDB Object Parcel
instance Parcels Snapshot Object Parcel
instance Liquids TDB Object Parcel
instance Liquids Snapshot Object Parcel

pO0, p3, p4, p5, p6, p7 :: TDB Object Parcel

pl, p2 :: Snapshot Object Parcel -> Snapshot Object Parcel
PO =T [Snap 0[] [1]

pl = createParcel "parcelA" 2.4 ([], Parcel)

p2 = createParcel "parcelB" 2.8 ([], Parcel)

p3 = liftu (p2 . p1) pO

p4 = liftU (fusion [1,2] Parcel) p3

p5 = liftU (fissionN 3 3) p3

p6 = liftU (mergeParcel [1,2] Parcel) p3 -- 3 [1,2]

p7 = liftU (restructure [1,2] Parcel 4) p3 --4,5,6,7

-- end of parcels.gs
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