
Lifestyles - A Paradigm for the Description
of Spatiotemporal Databases

by

Dipl.-Ing. Damir Medak

A THESIS

submitted in partial fulfillment of the requirements

of the degree of

Doctor of Technical Sciences

submitted at the

Technical University Vienna

Faculty of Science and Technology

Advisory Committee:

Univ.-Prof. Dr. Andrew Frank

Department of Geoinformation, E127

Technical University Vienna

Univ.-Prof. Dr. Thomas Eiter

Computer Science Department, E184

Knowledge Based Systems Group

Technical University Vienna

Vienna, May 1999 ...

2

ABSTRACT

This thesis investigates operations affecting identity of objects in a

spatiotemporal database, ubiquitous for future temporal geographic information

systems (GIS).

Two different techniques to record change in temporal databases are compared:

database versioning and object versioning. We show formally that these

techniques are equivalent and use conceptually simpler model of database

versioning for the further development.

The conceptual model of our database is based on the entity-relationship model.

The complete temporal database is an append-only series of snapshots, each of

which represents the state of the universe of discourse at a particular moment on

the time scale. Each snapshot consists of a set of objects connected with

relations.

Objects are metaphorically perceived as having li fe: an object has its birth or

creation, its li fe or existence, its death or destruction. The central concept in the

li fe of an object is its identifier, which is unchanged from the birth to the death

of an object. Identifiers are system constructs and they are maintained by the

database independently of the user.

Category theory and many-sorted algebras provide the formal background for

this thesis. Executable algebraic specifications are written in a categorical, point-

free style of functional programming using Gofer environment. Gofer is a

dialect of the functional language Haskell . It supports many-sorted algebras by

multi -parameter classes.

The major result is the formal model for a universal spatiotemporal database,

capable of representing different classes of objects in a uniform way with respect

to change in identity of objects. We propose a theory of li festyles: algebras of

operations affecting identity of objects. Lifestyles are compositions of basic

operations: create, destroy, suspend, and resume. The mereological relation (is

part of) is the most important relationship among objects that affects the

existence of composite objects and their parts. The concept of suspending parts

when composed into a whole abstracts the detail i n hierarchical cognitive

reasoning.

3

We stress the differences between two major groups of compositions: fusions

(composed parts are destroyed and cannot be resumed) and aggregates

(composed parts are suspended and can be resumed).

The theory of li festyles is compared with the work of other authors on the topic

of identity change. It is formally shown that our system is capable to represent

all operations enumerated in other models, being at the same time conceptually

simpler and more flexible.

Finally, we apply the theoretical apparatus on several categories of real world

objects, ranging from the examples in physical domain (natural objects, movable

artifacts, liquids, containers, li ving beings) to non-tangible objects in the social

realm (partnerships, ownership rights, and administrative units). We show that

metaphorical mappings between the physical and social domain are possible.

The major benefit is the reusabili ty of functions and concepts that can be

explored in building interoperable temporal information systems.

4

ACKNOWLEDGMENTS

This page is dedicated to all who helped me in getting this work done. Writing a thesis

is li ke rowing a boat in a river. I thank Professor Kre
�����������
	�����
������

Adrijana Car for

showing me where the river source was and where my journey should start. Colleagues

on the Department of Geoinformation provided an excellent, friendly working

atmosphere for my first oarstrokes. Since the department was in constant flux during

these years, it is diff icult to mention the complete crew - thanks to all those brave

mermaids and sailors who were always willi ng to help when I was in trouble.

The admiral of the fleet, Professor Andrew Frank, was - of course - a constant in

this changing environment. Although with the highest rank in our metaphorical navy, he

was generously navigating my boat through streams and waves, escaping numerous

reeves (one should keep in mind that rowers are sitting with their backs to the direction

of movement of the boat). I thank Professor Frank for his advice, encouragement, help

and patience during the whole journey, even when continents and oceans appeared to be

between us.

Special thanks goes to Gwen Raubal for bringing my English into shape to such

extent that I could understand all navigating instructions and write a reasonably readable

diary of my journey. Last but not least, I am grateful to my second advisor, Professor

Thomas Eiter, who carefully examined my diary when my boat came close to the mouth

of the river, entering the open sea of wisdom.

5

to my wife Jasna, with love

i

TABLE OF CONTENTS

1. INTRODUCTION..1

1.1 Motivation ..1

1.2 Hypothesis..3

1.3 Approach ..4

1.4 Methodology...5

1.5 Contributions of the thesis..6

1.6 Audience...7

1.7 Organization of the thesis...8

2. CONTRIBUTING DISCIPLINES...10

2.1 Ontology and representation of the real world..10

2.2 Artificial intelligence..11

2.2.1 Situation calculus..11

2.2.2 Naive physics...12

2.3 Temporal databases..14

2.4 Time in GIS..15

2.4.1 GIS and administration ...15

2.4.2 Object identity in temporal GIS...16

2.5 Formal background: Category theory ...19

2.5.1 Definition of category..20

2.5.2 Categorical product...21

2.5.3 Category of sets and total functions ..21

2.5.4 Functions...22

2.5.5 Functional composition...22

2.5.6 Undefined values...23

2.6 Summary...24

3. FRAMEWORK FOR A SPATIOTEMPORAL DATABASE...25

3.1 Ontology of the real world..25

3.1.1 Things and their properties ...26

3.1.2 Changes...27

3.2 Epistemology of the world..27

3.2.1 Object categories...28

3.2.2 Identity...29

3.2.3 Relations..30

3.2.4 The structure of time..30

3.2.5 Temporal dimensions...31

ii

3.3 Conceptual model of a temporal database..33

3.3.1 Objects, attributes, and relations...33

3.3.2 Database vs. object versioning..34

3.4 Treatment of errors...37

3.5 Summary...39

4. OPERATIONS AFFECTING OBJECT IDENTITY ...40

4.1 Operations affecting the identity of a single object ..41

4.1.1 Create..42

4.1.2 Destroy ..43

4.1.3 Suspend and resume..44

4.1.4 Evolve..45

4.1.5 Removing histories..48

4.2 Compositions of basic operations affecting identity of several objects..................................48

4.2.1 Fission and fusion..50

4.2.2 Aggregation and segregation ..51

4.3 Object identity through time...54

4.3.1 Transaction-time condition..54

4.3.2 Finiteness of the set of operations affecting object identity...55

4.3.3 Comparison with the previous work..57

4.4 Summary...58

5. METHODOLOGY: ALGEBRAIC SPECIFICATIONS..60

5.1 Algebraic specifications..60

5.1.1 Definitions...61

5.1.2 Examples...62

5.1.3 Advantages of algebraic specifications ...63

5.2 Functional programming ..64

5.2.1 Functional vs. imperative languages...64

5.2.2 Categorical combinators...65

5.2.3 Referential transparency...67

5.2.4 Strong typing ...68

5.2.5 Polymorphism..68

5.2.6 Higher-order functions..68

5.2.7 Pattern matching...70

5.2.8 Lazy evaluation..70

5.3 Haskell and Gofer ...70

5.3.1 Layout rule ..71

5.3.2 Predefined and user-defined data type constructors..71

5.3.3 Classes and instances..73

5.3.4 Classes with multiple parameters..75

5.4 Summary...76

iii

6. SPATIOTEMPORAL DATABASE IN MODEL IMPLEMENTATION......................................77

6.1 Data model for a temporal database ...77

6.1.1 Object identifiers ...78

6.1.2 Attributes, values sets and values..78

6.1.3 Objects...80

6.1.4 Relations..81

6.1.5 Static database - a snapshot ..81

6.1.6 Temporal database - a collection of snapshots..82

6.2 Representation of objects, object types and temporal databases...84

6.3 Implementation of the data model ..85

6.3.1 Implementation of values, value sets, and attributes...85

6.3.2 Implementation of objects and relations..85

6.3.3 Implementation of snapshots...86

6.3.4 Implementation of a temporal database ..87

6.4 An example database..88

6.5 Formal model of transformations between versioning techniques..90

6.5.1 Specification..90

6.5.2 Representation of time and objects..91

6.5.3 Implementation..91

6.5.4 Examples...92

6.6 Summary...93

7. OPERATIONS AFFECTING OBJECT IDENTITY - A FORMAL MODEL...............................94

7.1 Operations affecting single identity ..94

7.1.1 Create..94

7.1.2 Destroy ..95

7.1.3 Suspend and resume..95

7.1.4 Evolve..96

7.2 Operations affecting multiple identities..97

7.2.1 Constructive aggregates..97

7.2.2 Weak aggregates ...97

7.2.3 Constructive fusions..98

7.2.4 Weak fusions..98

7.3 Comparison of lifestyles with other categorizations of identity change.................................99

7.4 Summary...101

8. LIFESTYLES OF PHYSICAL OBJECTS...102

8.1 Solid objects...102

8.1.1 Movable natural objects..103

8.1.2 Movable artifacts...104

8.1.3 Immovable geographic objects..107

iv

8.2 Liquids..108

8.2.1 Liquid objects..109

8.2.2 Liquids in containers ...110

8.3 Living beings..112

8.3.1 Persons, animals, and plants...113

8.3.2 Trees with fruits...114

8.4 Eternal objects..115

8.5 Summary...116

9. LIFESTYLES OF ABSTRACT OBJECTS IN THE SOCIAL REALM117

9.1 Constructs of social reali ty ...117

9.1.1 Marr iage..118

9.1.2 Business partnerships..121

9.2 Lifestyles of land units..124

9.2.1 Ownership rights on cadastre parcels...124

9.2.2 Usufruct rights...125

9.2.3 Administrative units...126

9.3 Summary...128

10. CONCLUSIONS AND FUTURE WORK ...130

10.1 Results and major findings...131

10.1.1 Lifestyles..131

10.1.2 Application of lifestyles..133

10.1.3 Discussion ...134

10.2 Directions for future work ..135

v

TABLE OF FIGURES

Figure 2.1: History of a moving and transforming 2D-object (Hayes 1985a). ...13

Figure 2.2: Temporal constructs of identities (Al-Taha 1994). ..17

Figure 2.3: Typology of spatiotemporal processes (Claramunt and Thériault 1996).17

Figure 2.4: Object identity operations on simple objects (Hornsby and Egenhofer 1997).........................18

Figure 2.5: Object identity operations on composite objects (Hornsby and Egenhofer 1997).18

Figure 2.6: Commuting diagram for the categorical product..21

Figure 3.1: Life of a thing in the real world vs. life of its representation in a database..............................33

Figure 3.2: Entity-relationship diagram for a one-to-many relation isOn. ...34

Figure 3.3: Database versioning (left) and object versioning (right). ...35

Figure 3.4: Grouping of times (left) and grouping of objects (right)..36

Figure 4.1: Possible episodes in the li fe of an object..41

Figure 4.2: Identity operation create. ...42

Figure 4.3: Identity operation destroy. ...43

Figure 4.4: Identity operations suspend (at t1) and resume (at t2). ..44

Figure 4.5: State diagram for operations affecting identity of a single object..47

Figure 4.6: Destroying (left) vs. removing histories (right)..48

Figure 4.7: Fission and fusion of cadastral parcels with links to predecessors in parenthesis....................50

Figure 4.8: Weak fission and fusion of liquid objects. ...51

Figure 4.9: The li festyle of fusions (D - destroy, C - create, S - suspend, R - resume).51

Figure 4.10: Association of objects and the reverse association...52

Figure 4.11: Constructive aggregation: the aggregate is a new object dependent on its parts....................53

Figure 4.12: The li festyle of aggregates (D - destroy, C - create, S - suspend, R - resume).......................53

Figure 4.13: Redistribution of land parcels. ...56

Figure 7.1: Classes hierarchy for li festyles...101

Figure 8.1: Classes hierarchy for li festyles of physical objects..116

Figure 9.1: Classes hierarchy for non-tangible (abstract) objects from social realm................................129

Figure 1.1: Classes hierarchy - from generic li festyles along physical objects to abstract objects...........134

Introduction 1

1. INTRODUCTION

The motivation for this thesis is best explained by an old philosophical puzzle about

change in identity. Our leading hypothesis is that the set of operations affecting object

identity in the changing world is finite. The method of algebraic specification, based on

category theory is used to prove the hypothesis. Scientific contributions are enumerated

as well as the targeted audience. Finally, the organization of the rest of this thesis is

presented.

1.1 Motivation

"On those who enter the same rivers, ever different waters flow."

Heraclitus (fr. 12)

Change has attracted the attention of philosophers since antiquity: Heraclitus raised the

question of identity and persistence: under what conditions does an object persist

through time as the same object?

The idea was described by Plutarch in his writings about the Greek hero Theseus. A

paraphrased version of Plutarch's story is:

Theseus started his voyage in a simple wooden ship. During the journey, he

replaced the wooden planks of the ship with new ones, throwing the old

planks over board. At the same time, another ship sailed parallel to the ship

of Theseus. The sailors of the second ship were collecting the planks thrown

by Theseus and using them to replace their own planks. Until the end of the

journey, Theseus replaced all parts of his ship, and the escort ship consisted

of all parts of the ship Theseus started the journey. (Vita Thesei, 22-23)

The puzzling questions are: Which of the two ships is identical to the original? If it is

the second ship, when it got the new identity? Is it possible that both ships are identical

to the original ship? Alternatively, could neither of them be identical to the original?

Zeno of Elea was another Greek philosopher who analyzed change, motion, and

plurali ty of things in the world. He argued that the motion in a continuum is impossible.

In his arguments against the idea that the world contains more than one thing, Zeno

derived his paradoxes from the assumption that if a magnitude can be divided then it

Introduction 2

can be divided infinitely often. In his most famous paradox, Achill es, Zeno claims that

the slower when running will never be overtaken by the quicker; for that which is

pursuing must first reach the point from which that which is fleeing started, so that the

slower must necessarily always be some distance ahead (Hofstadter 1979).

A contemporary parallel example to the ship of Theseus is an old car. The owner of

the car changes its parts until the car is completely renewed. His neighbor picks the old

parts and assembles a "new" old car. One may think that renewing an old car would

have not removed its identity. The authorities have standardized methods for

identification of movable goods to enforce legali ty of possessing them. For example, a

car is uniquely described by its engraved chassis number. As long as this number is

preserved, the owner is free to replace other parts of the car given that the parts have

proper origin and functionali ty. Several other parts are numbered too (e.g., the engine),

but the chassis number is in most countries legally recognized as the valid identifier for

the car as a whole.

Liquids represent a more complicated situation where temporal behavior is

concerned. Ships, cars, and their parts, li ke all solid objects, have crisp, observable

boundaries allowing easy identification. On the other hand, liquid objects change their

shape in different containers on the slightest action. Liquids slip out through the

smallest hole in a container because of gravity.

The identity of li ving beings is another puzzling example. It is known that human

cells are regenerating and it is certain that we have completely new cells every several

years. Nevertheless, an average human will claim that his identity is not changing while

the cells are regenerating. The problem arises if a new human being would have been

made from the removed cells in the same way as a new car is assembled from old parts.

This gives an idea of how difficult a strict decision about temporal continuity in the real

world may be. Indeed, the answers depend on the circumstances one asks.

We do not attempt to solve all dilemmas concerning the old puzzle. We are

concerned with representations of the real world for constructing information systems,

which can track change in identity of objects. We perceive the real world as a collection

of distinguishable entities that have properties and are mutually connected by relations.

For example, pieces of furniture in a room are entities, having color and weight as

properties, and there is at least a simple spatial relation between the furniture and the

room: the furniture is in the room. We are able to individuate all entities in the observed

Introduction 3

part of reali ty. Even if two chairs had equal properties, we can tell one from another and

cognitively assign different identities to each chair.

An information system is a formal model of a part of reali ty. In an information

system, we have to store the theory that represents the model. A data model is a formal

construction that describes representation of the real world in a database. Entities are

represented by objects, entity properties are represented by object attributes, and

identity is represented by identifiers.

Early GIS dealt only with spatially referenced information. Research was

concentrated the great majority of its effort upon the spatial components of the data.

Such atemporal GIS describe only one state of the data. Thus, expressiveness of GIS

was reduced to a snapshot view of the selected phenomena: an update replaced and

destroyed the previously stored data. Historical states were lost and could not be

recovered. Such limitation was due to the lack of readily available hardware. The

problem of storage and fast retrieving of data was dominating the efforts to build GIS

software. On the other hand, many scientific disciplines, as potential GIS users,

requested maintenance of various data closely related to time as well as to space. A

number of scientific contributions dealt with the application of GIS in different fields,

especially in history, land management and ecology. It was found that not all these

needs could be fulfill ed with a single general model. As the technology became mature

enough to support new requests, it was obvious that we have to revise and improve the

models behind it. In case of temporal GIS, a well understood concept of change is an

ultimate goal.

Recently, Frank argued that the major impediment to broader usage of modern GIS

is the lack of tools dealing with temporal information and processes in general (Frank

1998b). Capabiliti es to manage temporal information are necessary for decision-making

support in answering essential politi cal questions. The conceptual models underlying

modern GIS seem inherently incapable of dealing with dynamic information.

1.2 Hypothesis

Many GIS applications enforce an ‘object’ view: features in the world are represented

as objects with well -defined boundaries (Frank 1996). The real world is simpli fied to

the representation of selected objects being important for a given context - a universe of

Introduction 4

discourse. The universe of discourse is modeled as a series of sets of inter-related

objects. Features have properties; in representation, objects have attribute values.

Every feature has an identity that distinguishes it from all other features. In a

representation, the identity is represented as an identifier. An identifier may not be

arbitrarily changed by the user. Operations affecting object identifiers define how the

objects get, change or lose identifiers through time. The objects are grouped in algebras

with respect to the applicabili ty of operations affecting identifiers. Since the period

between the appearance and disappearance of an object is called li fe, such algebras are

called li festyles.

Our central hypothesis is that operations affecting object identity form a finite set

and operate in algebras, which we call lif estyles.

Other types of change include motion (change in location), deformation (change in

shape), and other changes of attribute values. We are interested in change of identifiers

only, and other types of change will be neglected in this thesis.

1.3 Approach

In order to prepare the framework for reasoning about change in identities of objects,

we build the formal model of a temporal database consisting of objects and relations.

Such database is a representation of the real world, which is assumed to consist of

features or things having properties. The inevitable philosophical issues of existence or

non-existence of objects in the real world are not treated in detail - the ontological

discussion is left to philosophers.

The subject of this thesis is the change in identity of objects. In the real world,

identity is a product of human cognition: we need a concept to tell one object from other

objects, since lower levels of abstraction (e.g., the atomistic view) are not appropriate in

everyday li fe. In a representation (in a database), identity is represented by an identifier.

An identifier is given to an object when the object is created and it remains unchanged

as long as the object exists.

The world is continuously changing. In the real world, the change happens in the

valid or world time. In the database, the change is registered in the transaction or

database time, and the world time may be stored as an additional value for each change.

It is important to compare these two orthogonal dimensions of time and to investigate

which one is important for the task in hand: tracking the change in identity of objects.

Introduction 5

On the implementation level, the world could be represented in a temporal database

in many different ways. Two prominent possibiliti es are storing a new snapshot of a

complete database for every change (database versioning) and storing the new version

of the changed object only (object versioning). A comparison of these two methods is

important for implementation purposes, but not for the theoretical consideration.

Objects can merge with other objects or they can split , building new objects in both

cases. This process is described by the operations affecting object identity. These

operations are the rules for change in the li fe of objects. We propose the theory of

li festyles that says that the number of operations affecting object identity is small and

that objects can be classified depending on applicabili ty of these operations.

The change of object identity is the main topic of this thesis. An object is observed

as if it (metaphorically) has a li fe: a stretch of time or a set of non-connected stretches

of time during which it exists. In a spatiotemporal database, change is captured as the

change in the attributes of database objects. The question when an object loses its

identity and becomes another object depends on the application domain. For example,

changing the color of a car does not change the identity of the car. Changing its chassis,

however, may be suff icient to assign the different identity to the car.

1.4 Methodology

We use algebraic specifications for formalization. Algebras capture the coordinated

behavior of operations that are applied to the same objects. Algebras can be combined

enabling the reuse of already gained knowledge without additional effort. Simple

operations are then combined into complex ones by functional composition. Algebras

can be parameterized, that is, applicable to the range of different types.

Algebras are special case of more general category theory - mathematical discipline

that abstracts operations to arrows and individual values to sets of values. The

formalization of the problem is provided in a categorical setting, having the category of

functions as the central category. Parameterization of data types enabled a high level of

abstraction. The properties of categorical product are exploited for developing the point-

free model - functions that do not name their arguments, leading to generality of

application.

The prototype of an object-oriented temporal database is developed as an

executable specification in Gofer, a dialect of the functional programming language

Introduction 6

Haskell . This prototype is used as the framework for testing the semantic

correspondence of the theoretical apparatus.

The entity-relationship model of a temporal database is formalized in functional

language, and the proposed theory of li festyles is built on top of it. Further extensions of

various applications are provided as executable prototypes as well .

1.5 Contributions of the thesis

This work proposes a unifying core of rules for change in identity of objects. These

rules are applicable to a wide range of databases for administrative systems, socio-

economical and natural sciences, wherever the historical databases are needed. The

major contributions are:

• a formal model of a universal temporal database is provided as an executable

specification written in a categorical, point-free style of functional language,

independent of implementation details for objects and object types;

• conceptual clarification among ontological primitives (in the real world) and

database elements (in a representation of the real world) is given: things are

mapped to objects, identity to identifiers, properties of things to attributes of

objects;

• properties of identifiers (uniqueness, immutabili ty, and non-reusabili ty) are

justified and preserved in the model;

• the transaction time is necessary for a temporal database to properly treat

temporal li nks between object identifiers, whereas control over the valid time

could be left to the user (asymmetry between transaction and valid time);

The theory of li festyles as algebras that group the operations affecting the object

identity is proposed. The change in composite objects is based on the mereological

relation "part of", which is essential in human abstraction of complex objects (the

details about parts are neglected as long as the whole is observed). The theory of

li festyles consist of the following traits:

• a minimal set of four primitive operations affecting object identifiers is

proposed, and a small number of possible compositions is derived and verified

using precondition/postcondition verification procedure;

Introduction 7

• li festyles - as algebras of the composed simple operations affecting object

identity - characterize the behavior of large categories of objects, and therefore

are an eff icient way for modeling change in various domains;

• li festyles are compared with other prominent categorizations of operations on

object identity. The li festyles framework is simpler than other models, yet at

least equally powerful;

• specifically, aggregation of objects has two faces: temporal and atemporal. An

aggregation is temporal i f it changes the identities of objects involved. If none

of the identities are changed, the relation between part and whole is treated as

any other relation;

• a fundamental difference between aggregation and fusion lies in the different

nature of the underlying basic operations: suspend and destroy;

• the transfer of li festyles from material to non-material objects is transparent

and metaphorical mapping between the appropriate object classes exists. This

can be explored for a rapid development of temporal GIS. Different systems,

sharing the same core of li festyles operations, are suitable for interoperabilit y.

Finally, algorithms and functional programs are provided as the proof that the

transformation functions between two different ways of storing temporal databases are

lossless. Thus, the conceptually simpler model of database versioning (changing

snapshots) can be used for theoretical considerations, and object versioning (which is

"cheaper" in terms of storage space) can be used for implementation of temporal

databases.

1.6 Audience

This work is related to several disciplines. We concentrated on giving a viable model

for designers of temporal databases on the conceptual level. Thus, this work is targeted

to the researchers studying the following areas:

• designers of temporal databases in general and temporal GIS in particular find

a general approach to the modeling of change in the identity of objects;

• designers of cadastral and other historical databases have a concrete

implementation-ready specification for their applications;

Introduction 8

• artificial intelli gence is enriched with a formal model of an important domain

of common-sense knowledge - treatment of change in a universe of discourse

consisting of individual objects.

1.7 Organization of the thesis

Related work of other researchers is presented in Chapter 2. Philosophers, from

Aristotle to modern ontologists, contributed to better understanding of change and

categorization of real world phenomena. Artificial intelli gence was the first discipline

that tackled the problem of change with a formal apparatus - the situation calculus. The

research in temporal databases and temporal GIS was intensified during the last two

decades, and several categorizations of change in identity of objects were proposed.

Finally, we introduce formal background of this thesis: category theory and standard

functional notation, which is helpful in reading the two subsequent chapters.

The basic concepts for a spatiotemporal database are informally explained in

Chapter 3. We start from the ontological assumption that the world consists of

individual objects with properties. The elements of the database based on the entity-

relationship model are informally explained. Two different ways of updating the

database with new states are compared, and algorithms for transformations are

proposed.

In Chapter 4, we introduce primitive operations affecting object identity, and verify

their definitions with pre- and post-conditions. The primitive operations are composed

in two ways. The first set of composition affects a single object; the second set affects

several objects. Resulting operations are categorized into algebras - li festyles. Two

major li festyles are aggregations and fusions. An informal comparison with

categorizations of other authors is given.

The method and the tool of formalization - algebraic specifications written in the

Gofer dialect of the functional programming language Haskell - are described in

Chapter 5. Connections between the functional notation and the algebraic approach are

explained. Standard functions that are used in the rest of the thesis are shown.

The formal model of a complete spatiotemporal database is given in Chapter 6. The

elements of the entity-relationship model (object, identifiers, attributes, values, value

sets, and snapshots) are abstracted as Haskell classes. Collections are parameterized to

achieve generali ty and extensibili ty of the model - operations are defined independently

Introduction 9

of the concrete representation. A simple implementation is given together with

examples that show functionali ty of the model. Finally, the algorithms for

transformation between two versioning techniques are formalized in functional notation.

The formalization of the operations affecting object identity is done in Chapter 7.

The result is a small set of li festyle classes that are completely independent of

implementation issues. All operations are written in a categorical, point-free style. The

formal comparison to categorizations of other authors is provided: all operations are

represented as compositions of li festyle operations.

A categorization of physical objects, based on contemporary research in cognitive

linguistic, is proposed in Chapter 8. Each category is informally discussed and then

formally defined within the li festyles framework. Representations and examples are

provided as the extensions to the model developed in previous chapters.

Selected examples from the abstract, non-tangible, social domain are described and

formalized in Chapter 9. Metaphorical mappings from the physical to the social domain

resulted in simple models and the code re-usabili ty. The connections are represented as

dependencies between appropriate classes in both domains.

Conclusions and directions for the future work are given in Chapter 10. The

complete printout of the executable program in the functional programming language is

available in the Appendix.

Contributing Disciplines 10

2. CONTRIBUTING DISCIPLINES

In this chapter, the research on the topic of change in different scientific disciplines is

presented. The chapter is divided into the following sections: philosophical background

of ontology and epistemology; the efforts of artificial intelli gence (situation calculus,

naive physics), research in temporal databases (time structure, temporal data models,

query languages) and GIS (federated GIS, qualitative representations of change in GIS).

Finally, we present the formal background for this thesis - category theory.

2.1 Ontology and representation of the real world

Ontology is the science of what is. Ontology as traditionally conceived is not a

description of how we conceptualize the world, but rather a description of the world

itself. This, of course, assumes that there is only one true reali ty to be described. An

ontology is either an abstraction of the formal features that characterize all scientific

areas (a formal ontology), or it is a statement of the necessary and suff icient conditions

for something to be a particular kind of entity within a given domain (a material

ontology). Theories that are correct descriptions of a given domain of objects allow us

to infer the material ontology for that domain. By investigating what is shared by all

material ontologies we can infer the principles of formal ontology (Smith 1999).

The science of ontology was grounded by Aristotle in his two works: Categories

and Metaphysics. Aristotle divided the world into substances (things, or bodies) and

accidents (qualiti es, events, processes). In the Aristotelian view substances exist on their

own, where accidents require substances to exist; substances may remain numerically

one and the same, admitting different accidents at different times; a substance is self-

identical from the beginning to the end of its existence. It is not substances that can have

temporal parts. The existence of a substance is continuous through time (Smith to

appear).

According to John McCarthy, a representation is called ontologically adequate if

the world could have that form without contradicting the facts of the aspect of reali ty

that interests us (McCarthy and Hayes 1969). Examples of ontologically adequate

representations for different aspects of reali ty are:

Contributing Disciplines 11

1. The representation of the world as a collection of particles interacting through

forces between each pair of particles.

2. Representation of the world as a giant quantum-mechanical wave function.

3. Representation as a system of interacting discrete automata.

Ontologically adequate representations are mainly useful for constructing general

theories. Deriving observable consequences from the theory is a further step and it is the

realm of epistemology - science of knowledge and its representation.

A representation is called epistemologically adequate for a person or machine if it

can be used practically to express the facts that one actually has about the aspect of the

world. Thus, none of the above-mentioned representations are adequate to express facts

as "John is at home", or "dogs chase cats" or "John's telephone number is 321-7850".

2.2 Artificial intelligence

Artificial intelli gence was the first scientific discipline that approached the problem of

change with the formalization tools. Artificial intelli gence concentrates its efforts on

situation calculus and naive physics. Both directions have the common goal: automation

of reasoning in the everyday dynamic world.

2.2.1 Situation calculus

Situation calculus, developed by McCarthy, is a first order language designed to

represent dynamically changing worlds in which all changes are the result of named

actions, (McCarthy 1957; McCarthy and Hayes 1969). A situation or a state is a

snapshot of the world at a given moment. The world is conceived as being in some state

s, and this state can change only in consequence of some agent (human, robot, or nature)

performing an action. If a is such an action, then the successor state to s resulting from

the performance of action a is denoted by do(a,s). The actions have preconditions -

suff icient conditions, which the current world must satisfy, before the action can be

performed in this state. For example: a possibili ty of my walking out of a room

presupposes that I am in the room and I can walk:

in((I, room), s) ∧ walk(I,s) ⊃ Possible (walkout (I, room), s).

The result of the action walkout results in a new situation in which "I am not in the

room" is represented by the following effect axiom:

Contributing Disciplines 12

Poss(walkout(I,room),s) ⊃ ¬in((I,room), do(walkout(I,room),s)).

Beside effect axioms, which change the situations, there are axioms invariant in the

change: so called frame axioms. For example, my weight does not change if I walk out

of the room:

Poss(walkout(I,room),s) ∧ weight(I,x,s) ⊃ weight (I,x,do(walkout(I,room),s)))

Only relatively few actions will affect the truth-value of a relation; all other actions

leave the relation invariant, and need many frame axioms. The diff iculty to specify all

such axioms is the so-called frame problem.

Recently, Reiter has applied the situation calculus for solving database problems

(Reiter 1994). Reiter proposed the solution for the database version of the frame

problem using mathematical induction based on the analogy between database states

and natural numbers. In his new manuscript, (Reiter in preparation), he revives the

situation calculus as a formalization method for artificial intelli gence. He argues that a

situation is not the same as a state; a situation is a temporal history, while a state is a

snapshot.

Stephen Bittner applied Reiter's ideas to model changes and inconsistencies in a

legal cadastre system (Bittner 1998). Starting with an initial situation, he proposed a set

of axioms for action preconditions and a set of axioms for succeeding states that are

allowed in a legal cadastre. Possible discrepancies between the true states in the real

world and the rights registered in a legal cadastre are marked as inconsistencies. The

formal model was developed as an executable Prolog program.

2.2.2 Naive physics

Naive physics was proposed with the goal of studying the human common sense

knowledge about the everyday physical world (Hayes 1978; Hayes 1985b).

The goal of the CYC project, (Lenat et al. 1990), was to identify the core of

common sense knowledge which would enable an artificial agent (robot) to act

intelli gently in real world circumstances. It came out that an immense collection of facts

stored in the computer still could not compensate for the common-sense knowledge

about the physical world of an average human being (Hobbs and Moore 1985).

Hayes challenged the situation calculus with the argument that mutually unrelated

facts are irrelevant for representing actions (Hayes 1985b). Interactions between

Contributing Disciplines 13

physical objects need to be taken into account only when their histories overlap, both

spatially and temporally. Hayes proposed that a basic ontological primitive should be a

piece of space-time with natural boundaries, both temporal and spatial. He called these

primitives histories. History of a two-dimensional spatial object is represented in Figure

2.1. Unlike a situation, a history has a shape; it is restricted spatially and extended

temporally. Indeed, situations are themselves histories of a very special kind, being

spatially unbounded and having temporal boundaries defined by the events between

which they are fitted.

Time

 begin(h) t end(h)

 finish(h)

 slice(h,t)
 start(h)

 where(start(h))

 when(h)

 Space

Figure 2.1: History of a moving and transforming 2D-object (Hayes 1985a).

Further, Hayes formalized the behavior of liquids (Hayes 1985a). In comparison with

the formalization of solid objects, liquids posed a more diff icult problem. Hayes tried to

solve several problems coming from the strange properties of liquids: their merging,

splitti ng, moving, disappearing. Each of these processes includes treatment of time and

change. Hayes stressed that the individuation of liquids is much harder problem than the

individuation of solid objects. The problem can be simpli fied if liquids are seen as

liquid objects in contained space, but such representation does not capture the nature of

liquids. Therefore, Hayes concluded that liquid objects exist as duals: enduring pieces

of liquid and temporary liquid objects. An important conclusion was drawn about the

proper approach: the world can be separated into smaller domains of interest, which are

easier to formalize.

Recently, Kuipers formalized continuous change using differential equations,

(Kuipers 1994). Kuipers approached the problem of change from the physicist’s point of

Contributing Disciplines 14

view - using the language of differential equations for describing a system and drawing

inferences about it. A differential equation represents the structure of the system by

selecting certain continuous variables that characterize the state of the system, and

certain mathematical constraints on the values those variables can take on. A set of

continuous functions of time describes the way the variables of the system evolve over

time starting from a given initial state.

2.3 Temporal databases

Database research concentrates on temporal dimensions, structure of time, and temporal

query languages. A comprehensive survey of the development in relational temporal

databases is given by Snodgrass (Snodgrass 1992). Snodgrass summarized the major

concepts from application-independent DBMS support for time-varying information. He

concludes that the semantics of the time domain, its structure and dimensionali ty is well

understood. Many temporal query languages are currently proposed: Tquel (Snodgrass

1987), HQuel (Tansel 1986), Postgres (Stonebraker and Rowe 1986), HSQL (Sarda

1990), and TSQL2 (Snodgrass 1995b). While the query languages in relational

databases are formal, object-oriented temporal query languages lack the formali ty

(Snodgrass 1995a).

Time is multi -dimensional in a very particular sense. There is a consensus on

terminological issues about two dimensions (Jensen and Dyreson 1998): valid time

describes when an action happens in the modeled world, and transaction time describes

when the information was entered in the database. The former is controlled by the

changing agent, the latter by the database.

Temporal databases are classified according to the temporal domain they support. If

neither transaction nor valid time is supported the database is static. A rollback database

supports transaction time, but not valid time. It permits the entering of facts in a

database, but only database time is stored with each fact. A historical database supports

only valid time. It allows the entering of historical facts in a database without

registration of the transaction time. Finally, a bitemporal database supports both valid

and transaction time.

In all these variants, the user-defined time is not considered an attribute. In addition

to these dimensions, several third temporal dimensions were proposed to capture

Contributing Disciplines 15

semantic details not covered by two-dimensional model: reference time (Cli fford and

Isakowitz 1994) and event time (Kim and Chakravarthy 1994).

Depending on which dimension of time is used, there are several choices in its

representation. Time can be linear, branching or cyclic; discrete, dense or continuous;

interval or point-based; absolute or relative; bounded or unbounded (Snodgrass 1992).

2.4 Time in GIS

Frank concluded that the discussion about different types of time resembles the

discussion about different types of space in GIS (Frank 1998a). He proposed the

taxonomy of types of time with lattice structure. Special attention was paid to different

granularity of time in administrative systems. Temporal dimension is usually

represented in metrical units: points or intervals on a time scale. In many application

areas, however, the order of events is all that matters or that is known, giving rise to

qualitative temporal reasoning. Frank gave the formalization of qualitative temporal

reasoning in GIS (Frank 1994), based on Allen’s interval work (Allen 1983). Worboys

tried to amalgamate time and space in a simple bitemporal GIS, and concluded that

there is a distinct asymmetry between the models of time and space (Worboys 1994).

2.4.1 GIS and administration

Human beings have invented and are still developing a complex set of abstract concepts

such as land ownership, money, marriage, or government (Searle 1995). In particular,

the concept of ownership is very important for modern GIS. The rights are tied to the

land: if there is no land, there are no rights. This sort of dependence extends the set to

the objects whose existence is dependent upon other objects. The main representatives

in this group of entities are shadows and holes (Casati and Varzi 1994). The cadastre is

an example of social construct attached to the concrete physical reali ty. The merging

and splitti ng of cadastre parcels are crucial operations for proper functionality of land

ownership information systems. Al-Taha presented a model of temporal reasoning in

cadastre based on the extended relational databases (Al-Taha 1992).

Contributing Disciplines 16

2.4.2 Object identity in temporal GIS

Langran presented temporal database designs applicable to GIS applications (Langran

1989). In the relational database model, the change is captured by creating new

versions. Langran compares three methods of database versioning in respect to GIS:

table, tuple, and attribute versioning. She emphasized the recognition of different

versions of a changing object as a fundamental problem for temporal databases. The

semantic problem of what magnitude of change causes an entity to get a new identity

and not another version of the old, depends on the application.

A similar problem emerges in an integrated GIS when several thematic databases,

related to the same geographical domain, are used simultaneously, (Al-Taha and Barrera

1994). Namely, an old house can be represented as a residential area in the local

cadastre database, and as a national monument in the state monuments database. Al-

Taha and Barrera proposed the three criteria the identity must fulfill: uniqueness,

immutabili ty and non-reusabili ty. Further, three capabiliti es for manipulating identities

in a GIS were proposed: interrogation of a feature for its identity, using identity as a

handle for the feature itself, and, finally, the comparison operation to decide if two

identities correspond to the same feature. They also proposed the defining identity as an

abstract data type that hides the actual structure of the identifying mechanism from the

user and shows only relevant usage operations: for comparing identities, assigning one

identity to a null element, constructing a null element, and for destroying the identity.

The transaction time perspective was discussed only.

Finally, they enumerated a set of so called temporal constructs, that were already

known from various sources, see Figure 2.2. The idea of temporarily suspending an

object from a database (kill and reincarnate) was firstly presented by Cli fford (Cli fford

and Croker 1988).

Claramunt and Thériault proposed a taxonomy of change for spatial entities that

include deformations and movements (Claramunt and Thériault 1996). They divided the

change according to the number of entities involved in three groups: evolution of a

single entity, functional relationships between entities, and evolution of several entities,

see Figure 2.3.

Contributing Disciplines 17

Id1

T1

Id2

T2

T4

Id1

T3

Id1

a) Id1 Created at T1 b) Id2 Destroyed at T2 c) Id1 Killed at T3 and Reincarnated at T4

Id3

T5

Id1

Id3

T6

Id4

Id5

Id3

Id6

T7

Id6

Id7

Id8

d) Id1 Evolved into Id3 at T5 e) Id4, Id5 Identified to Id3 at T6 f) Id6 Spawns Id7, Id8 at T7

Id9
Id9

Id10
Id11

T8
Id9

Id11
Id10

T9

Idc

T10

 Idb

Ida

Idx

T11

Idy

Idz

g) Id10, Id11 Aggregate to Id9 at T8,
 Id9 Disaggregate at T9

h) Ida, Idb Fuse into Idc at T10 i) Idx Fissions into Idy, Idz at T11

Figure 2.2: Temporal constructs of identities (Al-Taha 1994).

I - Evolution of a single entity
a) Basic changes

(1) Appearance (2) Disappearance (3) Stability

b) Transformations c) Movements

(1) Expansion (2) Contraction (3) Deformation (1) Displacements (2) Rotation

II - Functional relationships between entities

a) Replacement processes b) Difusion processes

(1) Succession (2) Permutation (1) Production (2) Reproduction (3) Transmission

III - Evolution of spatial structures involving several entities (restructuring processes)

(1) Split (2) Union (3) Re-allocation

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

x

y

x

y t1 t2

Figure 2.3: Typology of spatiotemporal processes (Claramunt and Thériault 1996).

Contributing Disciplines 18

In total, Claramunt and Thériault distinguished 16 different spatiotemporal

processes. They stated that the range of phenomena that can be processed in a temporal

GIS is probably inexhaustible.

Hornsby and Egenhofer discerned the following operations that either preserve or

change object identity: create, destruct, reincarnate, issue, continue existence, continue

non-existence, spawn, metamorphose, merge, generate, mix, aggregate, compound,

unite, amalgamate, combine, separate, splinter, divide, secede, dissolve, select (Hornsby

and Egenhofer 1997).

A A

B

A A

B

A

B

A

B

C

A

B

A

B

C

A

B

A

B

C

(a) spawn (b) metamorphose (c) merge (d) generate (e) mix

Figure 2.4: Object identity operations on simple objects (Hornsby and Egenhofer 1997).

C
A

B

A

B

C A

B

D

C

D

A

B

G

D

C
A

B

E

F

D

C

E

F

A

B

D

C

A

B

E

F

H

I D

C

E

F

A

B

G

G

D

C

A

B

E

F

D

C

E

F

A

B

(a) aggregate (b) compound (c) unite (d) amalgamate (e) combine

Figure 2.5: Object identity operations on composite objects (Hornsby and Egenhofer 1997).

The change description language (CDL) was proposed for qualitative graphical

representation of operations on identity of objects. The effects of change on the object

properties and the relationships between objects were analyzed with an emphasis on

topological relations between spatial objects. Two real-world phenomena are used as

examples: state borders and the spread of diseases. This work is extended to operations

Contributing Disciplines 19

for composite objects (Hornsby and Egenhofer 1998). They distinguished two types of

composite objects: an aggregation (based on the relation part-of), and an association

(based on the relation member-of). They introduced the notion of framework arguing

that the parts form an aggregate only if they are sorted in a special configuration -

framework.

All mentioned authors describe change operations informally, using intuitive

notions for different situations from practical applications.

2.5 Formal background: Category theory

Category theory is a generalized mathematical theory of structures. One of its goals is to

reveal the universal properties of structures of a given kind via their relationships with

one another. Category theory was invented in 1945 by Eilenberg and Mac Lane, who

borrowed the notion of category from Kant and Aristotle, (Eilenberg and Mac Lane

1945).

One of the interesting features of category theory is that it provides a uniform

treatment of the notion of structure. This can be seen, first, by considering the variety of

examples of categories. Almost every known example of a mathematical structure with

the appropriate structure-preserving map yields a category. Sets with functions between

them constitute a category. Metric spaces form a category whose primitive elements are

points and whose primitive operation is distance. Category theory was used to model

GIS applications (Herring et al. 1990). The basic framework for a category theory of

spatial representations, relations and applications built upon them was defined.

Category theory unifies mathematical structures in a second, perhaps even more

important, manner. Once a type of structure has been defined, it quickly becomes

imperative to determine how new structures can be constructed out of the given one and

how given structures can be decomposed into more elementary substructures. For

instance, given two sets A and B, set theory allows us to construct their Cartesian

product A×B. For an example of the second sort, given a finite Abelian group, it can be

decomposed into a product of some of its subgroups.

 Category theory is the algebra of functions; the principal operation on functions is

taken to be composition (Walters 1991). Category theory can be used in defining the

basic building blocks of datatypes in programming, and it offers economy in definitions

and proofs.

Contributing Disciplines 20

2.5.1 Definition of category

The following definition is taken from (Bird and de Moore 1997):

A category C is an algebraic structure consisting of a class of objects, denoted by

A, B, C,..., and so on, and a class of arrows, denoted by f, g, h,..., and so on, together

with three total operations and one partial operation.

The first two total operations are called target and source; both assign an object to

an arrow. Formally, f : A � B indicates that the source of the arrow f is A and the target

of f is B.

The third total operation takes an object A to an arrow id : A � A, called the

identity arrow on A.

The partial operation is called composition and takes two arrows to another one.

The composition g . f (pronounce “g after f”) is defined if and only if f : A � B and

g : B � C for some objects A, B, and C, in which case g . f : A � C. In other words, if

the source of g is the target of f, then g . f is an arrow whose target is the target of g and

whose source is the source of f.

Composition is required to be associative and to have identity arrows as units:

h . (g . f) = (h . g) . f

for all f : A � B, g : B � C and h : C � D, and

idA . f = f = f . idB

for all f : A � B.

A simple example of a category is a preordered set. Given two elements p, q of the

preordered set, there is a morphism f : p � q if and only if p is smaller or equal to q.

Hence, a preordered set is a category in which there is at most one morphism between

any two objects.

Beside functions, there are many more mathematical data that can be viewed as a

category. Each directed graph determines a category: nodes of a graph are objects, and

all paths are morphisms (arrows) typed with their start and end nodes. Composition is

concatenation of paths. These data satisfy the axioms mentioned above, hence form a

category.

Contributing Disciplines 21

2.5.2 Categorical product

A product of two objects A and B consists of an object and two arrows. The object is

written as A × B and the arrows are written outl : A × B � A and outr : A × B � B.

These three things are required to satisfy the following property: for each pair of arrows

f : C � A and g : C � B there exists an arrow (i.e. an operation) 〈 f,g〉 : C � A × B

such that

h = 〈 f,g〉 ≡ outl . h = f and outr . h = g

for all h : C � A × B. The operator 〈f,g〉 is pronounced “pair f and g” . The following

diagram summarizes the type information:

A A × B B

C

〈 f,g〉
g f

outl outr

Figure 2.6: Commuting diagram for the categorical product.

2.5.3 Category of sets and total functions

The motivating example of a category is Fun, the category in which the objects are sets

and the arrows are typed functions. An arrow (i.e. a function) is a triple (f, A, B), in

which the set A contains the domain of f and set B is the range of f. By definition, A is

the source and B the target of (f, A, B). The identity arrow idA : A � A is the identity

function on A, and the composition of two arrows (f, A, B) and (g, C, D) is defined if

and only if B = C, in which case

(g, B, D) . (f, A, B) = (g . f, A, D)

where, on the right, g . f denotes the usual composition of functions g and f.

In the category Fun, products are given by pairing. A × B is the Cartesian product

of A and B, and outl and outr are the projection functions. The categorical product is

useful in point-free programming.

Contributing Disciplines 22

2.5.4 Functions

Functions are basic building blocks in functional category theory. Mathematically

speaking, a function f is a rule of correspondence which associates with each element of

a given type A a unique member of a second type B (Bird and Wadler 1988). The type A

is called the source or domain type, and B the target or range type. This fact is formally

expressed by the following signature:

f :: A → B

f a = b where a∈ B, b∈ B

A function f is said to take arguments in A and return results in B. If a denotes an

element of A, then we write f (a), or just f a, to denote the result of applying the function

f to a. This value is the unique element of B associated with a by the rule of

correspondence for f. The bracket notation, i.e. f (a), is usual in mathematics, but we

will use the bracket-free notation, i.e. f a, usual in functional programming.

If a function is defined by the application to its argument, it is a point-wise

definition. The examples are: f x = x + 2, g x = 2 × x, etc.

Some functions have very general source and target types. The following definition

defines the identity function:

id x = x

The identity function maps every member of the source type to itself. Its type is

therefore A →→→→ A for any type A.

2.5.5 Functional composition

The composition of two functions f and g is the function h such that h x = f (g x).

Functional composition is denoted by the dot operator (.) for the symbol usual in

mathematics (o):

(f . g) x = f (g x)

A signature is the information about types of input and output for a particular function.

Signatures start with the function name followed by the symbol :: meaning "have type

of", input type(s) and an output type. The signature of functional composition (.) is

given by:

(.) :: (b → c) → (a → b) → (a → c)

Contributing Disciplines 23

That is, functional composition takes a function of type (b → c), a function of type

(a → b), and returns a function of type (a → c). The only restriction on functional

composition is that the source type of its left-hand argument must agree with the target

type of its right-hand argument (b in our example above).

Functional composition is an associative operation:

(f . g) . h = f . (g . h)

for all functions f, g and h. Therefore, there is no need to enclose the functions in

brackets when writing sequences of compositions.

There are two basic styles for expressing functions: the point-wise style and the

point-free style. In the point-wise style a function is described by its application to

arguments. In the point-free style, a function is described exclusively in terms of

functional composition and algorithmic strategies can be formulated without reference

to specific datatypes (Bird and de Moore 1997). The advantage of functional

composition is that some definitions can be written more concisely. For example, if the

function h is composition of functions f x = x + 2 and g x = 2 × x, we can write it in so-

called point-wise notation as: h x = f (g x), but the point-free definition is clearer:

h = f . g. This leads to point-free style of programming, which is free of the

complications involved in manipulating formula dealing with bound variables

introduced by explicit quantifications.

2.5.6 Undefined values

Functions that are defined for all elements of their domain are called total functions.

Addition (+) among natural numbers is an example for a total function. Functions that

are not defined for all elements of their domain are called partial functions. The simplest

example is numerical division by zero. If a computer encounters a task such as (1/0), it

evaluates an error message "attempt to divide by zero", simply freezes, or crashes.

Partial functions play a major role in computer science because they are used to

model algorithms that fail to halt for some input values. Unfortunately, the specification

of abstract data types with partial functions poses serious problems (Loeckx et al. 1996).

Therefore, a special element should be introduced to convert partial functions to total

ones: it is ⊥, pronounced "bottom", which stands for an undefined value. With the

Contributing Disciplines 24

undefined value, every partial function can be treated in the same way, as if it were a

total function.

2.6 Summary

The philosophical discipline of ontology offers the basic assumptions about the real

world. Artificial intelli gence was the first discipline that attempted to formalize

changing world using first order logic. Situation calculus with second order logic and

mathematical induction promised better results. The research on temporal databases

resulted in a plethora of temporal query languages, not yet fully standardized. Two

different temporal dimensions are distinguished: valid and transaction time. Two

principally different models for evolution of a database are database versioning and

object versioning. Research on temporal GIS concentrates on qualitative models of

change. Operations affecting object existence are drawn from specific applications and

then systematized. A formal model of a spatiotemporal database with the support for

change in object identity is missing. Algebra and category theory are sound

mathematical foundations for declarative description of real world phenomena.

Framework for a Spatiotemporal Database 25

3. FRAMEWORK FOR A SPATIOTEMPORAL DATABASE

The goal of this thesis is to propose a new concept in modeling change of objects

existing in the real world. To achieve the goal we must write down our assumptions

about the real world - we must set up an ontology. In this thesis, we assume that the real

world consists of things or features that have properties. Things either are made of

homogenous stuff or consist of other things. Each thing has its identity.

Once we have defined what is in the world, we are empowered to propose an

epistemological model for a spatiotemporal database. The world is in continuous

change: the objects are formed or born, they exist or li ve, and they disappear or die.

Identities of things in the real world are represented by identifiers of objects in a

database. Once given to an object, the same identifier may not be attached (re-used) to

any other object, even if the original object was destroyed.

Objects and relations change over time, and hence the database changes, too. There

are two temporal dimensions in which we capture this change: valid time and

transaction time. Valid time registers the time when the change happens in the real

world. Transaction time registers the time when the change is stored in the database.

The way objects, identities, and relations are represented is an implementation

issue. In addition, there is a choice as to whether the database is represented as a series

of database states or snapshots (so-called database-versioning) or a set of objects with a

series of attribute states (object/attribute versioning). Implementation issues are not the

topic of investigation of this thesis.

The rest of this chapter is divided as follows. Firstly, we discuss the ontology of the

world making the important decisions for further modeling. Next, the epistemological

model of the database is explained. Finally, implementation issues and the data model

are discussed.

3.1 Ontology of the real world

Since we attempt to construct a model of the real world, we have to express our

assumptions about the real world to resolve possible ambiguities of natural language. In

other words, we have to describe the ontology of the problem we investigate. Ontology

is an ancient philosophical discipline, developed originally by Aristotle and later

Framework for a Spatiotemporal Database 26

philosophers, and then rediscovered and redefined for the purpose of artificial

intelli gence.

In philosophy, ontology is the systematic account of existence. It has been

concerned with the properties of objects, with their modes of existence and with

questions such as how they can be divided in parts and how they fill space (Smith

1982).

In artificial intelli gence, an ontology is an explicit specification of a

conceptualization. A conceptualization is an abstract, simpli fied view of the world that

we wish to represent for some purpose (Gruber 1993, p. 199). Since in AI "what exists

is that which can be represented", ontology is often confused with epistemology -

science of knowledge and knowledge representation.

We apply the ontological view of the world from Bunge (Bunge 1977; Bunge

1979). A formal model of objects in object-oriented programming based on this

ontology can be found in (Wand 1989).

3.1.1 Things and their properties

According to Bunge, the world is composed of things and forms are properties of

things. Things are grouped into systems or aggregates of interacting components. Every

thing changes. Nothing comes out of nothing and no thing reduces to nothingness.

Every thing abides by laws. Whether natural or social, laws are invariant relations

among properties.

The world is viewed as composed of things of two kinds: concrete things that are

called entities or substantial individuals, and conceptual things. An individual may be

either simple or composite, namely, composed of other individuals.

Properties of substantial individuals are called substantial properties. A distinction

is made between attributes and properties. An individual may have a property that is

unknown to us. In contrast, an attribute is a feature assigned by us to an object. Indeed,

we recognize properties only through attributes. A known property must have at least

one attribute representing it.

Properties do not exist on their own but are "attached" to entities. On the other

hand, entities are not bundles of properties. Thus, it might be said that the fundamental

components of the world are entities. Entities are "known" to us through their

properties. Properties are materialized in terms of attributes.

Framework for a Spatiotemporal Database 27

The properties of composite things may be related to the properties of the things in

their composition. Hence, properties of composite things are of two kinds: hereditary,

that is, properties that belong to the components of a (composite) entity, and

nonhereditary. The latter are called emergent properties.

It is important that no two concrete, observable things can be the same. No two

substantial individuals have exactly the same properties. If we perceive that two entities

are identical, it is just because we do not assign attributes to all their substantial

properties. For example, two glasses might have exactly the same superficial properties

(color, weight, material, capacity), and we cannot see any difference between them.

Nevertheless, two glasses are two different objects.

3.1.2 Changes

Full knowledge of a thing requires information about how the states of the thing can

change. The necessary condition for this is that every (concrete) thing has at least two

distinct states. When a thing undergoes a change, at least one property will have to

change in value; hence, a change of a thing is manifested as a change of state. It follows

that, for a change to be possible, the thing has to have more than one state.

Bunge introduced the principle of nominal invariance to clarify the persistence of

things: “A thing, if named, shall keep its name throughout its history, as long as the

latter does not include changes in natural kind - changes which call for changes in

name.” (Bunge 1977, p. 221). Individuals with distinct names are distinct. This is

similar to the unique name assumption incorporated in special theories of f irst order

logic that are capable to represent relational databases (Reiter 1984).

3.2 Epistemology of the world

Ontologies are mainly useful for constructing general theories. Deriving observable

consequences from the theory is a further step. This is the task of epistemology.

Epistemology is the part of philosophy concerned with knowledge and knowledge

representation. A representation is called epistemologically adequate for a person or

machine if it can be used practically to express the facts that one actually has about the

aspects of the world (McCarthy and Hayes 1969).

The elements of the ontology proposed in the previous section are mapped to an

epistemology, which will be used in the rest of this thesis. Things are mapped to

Framework for a Spatiotemporal Database 28

objects, properties to attributes, nominal invariance to identity. As an epistemological

fact, different temporal perspectives are introduced.

A model is a description of some phenomenon, created for some purpose. It

embodies a closed-world assumption: that the set of objects and relations in the model

include everything necessary for that purpose. The model of the changeable world

depends on the closed-world assumption. It is impossible to predict the next value of an

object attribute without assuming that all the influences of that attribute are known

(Kuipers 1994). Therefore, in what follows, we assume that all the facts about the

modeled selected part of the world are known - what is not known, does not exist.

3.2.1 Object categories

Object is a concept, abstraction, or thing with meaning for the problem at hand

(Rumbaugh et al. 1991). This definition embraces different categories of objects in the

real world. Here, categories mean classification and not categories in mathematical

sense as in Chapter 2.

There are physical objects that simply exist - these are substances in Aristotelian

ontology: stones, mountains, rivers, the earth. We can, at least in theory, touch and

manipulate them. There are abstract objects that are immaterial - these are accidents in

Aristotelian ontology: qualiti es, events, and processes. In addition, there is a special

group of objects, which are called institutionalized accidents (Smith to appear). Such

objects are result of human intellectual effort. Examples include the equator, the

Northern Hemisphere, state boundaries.

Objects belong to categories or classes. The pigeon on my windowsill i s a particular

instance of the category of birds. A penguin is a less characteristic example, yet an

instance of birds, too. Such categorization in which there are instances more and less

characteristic for a particular category is known as radial categorization (Lakoff 1987,

with more references to the pertinent cognitive literature).

Objects have attributes. Cars have color, year of production, length, weight, engine

power; cadastre parcels have area, market value, usage. Each attribute may take a value

from a pre-specified domain: a particular car can have the value red for the attribute

color and the value 1979 for the attribute year of production.

Framework for a Spatiotemporal Database 29

3.2.2 Identity

In the real world, a thing simply exists, but within a representation, each object needs a

special handle by which it can be uniquely referenced and distinguished from other

objects. It is achieved by attaching an identifier to each object in the database. Object

identity is considered one of the essential paradigms in object-oriented modeling

(Cattell and Barry 1997; Rumbaugh et al. 1991). In a database, identities are represented

by identifiers, which are constructed and maintained by the database management

system.

The identity allows the distinguishing of one object from others, even if objects are

of the same kind and have the same attribute values. For example, a car factory may

produce two cars that have completely the same appearance (color, dimension, engine

power, etc.). Yet, each car will have its own serial number that allows its unique

identification.

Identity has a different meaning than in mathematical logic where the identity is

interchangeably used with equali ty (Tarski 1946). Two different real objects may be

equal under some concept of equali ty, but never identical.

The identity must fulfil three conditions to properly perform its role (Al-Taha and

Barrera 1994):

• uniqueness: Two distinct objects may not share the same identity.

• immutability: Identity is assigned at the creation of an object and remains the

same during the li fetime of the object. Neither the system nor a user can

change the identity of the object.

• non-reusability: A new object may not take the identity of any already

destroyed object, since this could be interpreted as an invalidation of the

deletion of the latter object.

The notion of object identity is different from the notion of a primary key in the

relational model (Cattell and Barry 1997). Relational algebra, (Codd 1979), is based on

relational calculus. It is a powerful tool for storing and processing tabular information,

but lacks the capabili ty of representing objects for dealing with complex applications

like GIS. A tuple in a relational table is uniquely identified by the value of the columns

comprising the primary key of the table. If the value in one of those columns is

changed, the tuple changes its identity and becomes a different tuple. In addition, if two

Framework for a Spatiotemporal Database 30

tuples become equal in key values, they are merged. Traceabili ty to the prior value of

the primary key is lost.

3.2.3 Relations

Objects are connected through relations. Relations can be, for example, topological or

mereological. The other groups of relations include comparatives (is longer than, is to

the east of) and so called 'Cambridge relations' (is father of, is cousin to) (Mulli gan and

Smith 1986).

Topological relations describe spatial li nk among objects (my computer is on the

desk; a car is parked in front of the house; I am in the room; the garden is between the

wall and the fence).

Mereological relations describe how objects are composed of other objects (a

keyboard is a part of a computer, a car has four wheels, a room is a part of a building).

For solid physical objects, we accept the view from naive physics that "every solid

physical object is either a piece of solid stuff , or else an assembly which is made up of a

finite number of other solid physical objects" (Hayes 1985b, p. 73). In other words,

there exist simple objects and objects composed of parts. The relation part of is a central

relation in this thesis.

In our epistemological model, mereological relations will be used to cover

ontological assumptions about the structure of things consisting either of homogeneous

material or of other individual things.

3.2.4 The structure of time

The world is in continuous change: the objects are formed or born, they exist or li ve,

and they disappear or die. Metaphorically speaking, the existence of an object is the li fe

of an object. A house exists from the time it was built until it is destroyed.

The structure of time is complex - there are several choices: time can be linear or

branching, discrete or continuous, absolute or relative, bounded or unbounded

(Snodgrass 1995a).

Time can be linear, branching, or cyclic (mostly used for planning). Two basic

structural models of time are linear and branching. In the linear model, time advances

from the past to the future in a totally ordered fashion. In the branching model, time is

Framework for a Spatiotemporal Database 31

linear from the past to now, where it splits into several time lines, each representing a

potential future sequence of events. Along any future path, additional branches may

exist. The structure of branching time is a tree rooted at now. Finally, the model of

cyclic time is applicable for recurrent processes such as year seasons, seasonal floods.

Time can be discrete, dense or continuous. The discrete time line (if linear model is

assumed) is isomorphic to natural numbers: each point in time has a single successor.

On the other hand, dense models of time are isomorphic to the rationals or the reals:

between any two moments in time there exist another moment. Continuous models of

time are isomorphic to the reals: they are dense, but there are no gaps. Although time

itself is generally perceived to be continuous, most proposals for adding a temporal

dimension are based on the discrete time model. In the discrete model, each natural

number corresponds to a non-decomposable unit of time with an arbitrary duration

called chronon. A chronon is the smallest duration of time other than a point that can be

represented in the discrete model. It is not a point but a minimal li ne segment on the

time line.

Time can be bounded or unbounded on both ends: in the past and in the future.

Time began with the Big Bang. If the universe is closed, then the time will have an end

in the Big Crunch; if it is open, time will go on forever (Hawking 1988). This is more a

cosmological question and not relevant for our purposes.

Time can be absolute (anchored) or relative (unanchored). Absolute time is fixed

with respect to a pre-defined time scale, usually Gregorian calendar time (e.g. January

1, 1998). Relative time, termed span, is a piece of time without a fixed position on the

time scale, (e.g. 9 hours).

In this thesis, we use linear, discrete, bounded, absolute model of time. We prefer

linear over branching time because of the simplicity. The discrete model is appropriate

for the limited representation capabiliti es of database technology. Bounded time suits

our needs because we are not interested in the history or future of the whole universe,

but in the history and some short future of the resources concerning mankind.

3.2.5 Temporal dimensions

Two time dimensions are of general interest in the context of databases: valid time and

transaction time. The following definitions are taken from the latest version of the

consensus glossary in the temporal database community:

Framework for a Spatiotemporal Database 32

"The valid time of a fact is the time when the fact is true in the modeled reali ty. A fact

may have associated any number of instants and time intervals, with single instants and

intervals being important special cases. Valid times are usually supplied by the user."

(Jensen and Dyreson 1998, p. 370).

"A database fact is stored in a database at some point in time, and after it is stored, it is

current until l ogically deleted. The transaction time of a database fact is the time when

the fact is current in the database and may be retrieved. Consequently, transaction times

are generally not time instants, but have duration. Transaction times are consistent with

the serialization of the transactions. They cannot extend into the future. In addition, as it

is impossible to change the past, (past) transaction times cannot be changed.

Transaction times may be implemented using transaction commit times, and are system-

generated and -supplied." (Jensen and Dyreson 1998, p. 371).

With these definitions, four types of temporal databases are differentiated: static,

rollback, historic, and bitemporal databases (Table 3.1). Static databases support neither

transaction nor valid time. Historic databases support valid time, but not transaction

time. Rollback databases support transaction time, but not valid time. Finally,

bitemporal databases support both valid and transaction time.

No Transaction
Time

Transaction
Time

No Valid
Time

Static
Database

Transaction
Database

Valid
Time

Historical
Database

Bi-temporal
Database

Table 3.1: Time perspectives and resulting temporal database models.

If a fact is stored in the database at the same time it is observed in the modeled reali ty,

transaction time is equal to valid time. An example for such a database is the

registration of cloud observations by a satellit e camera, assuming that that the time

necessary to save the data is infinitely short (Jensen and Snodgrass 1992).

Two essential criteria the identifiers must fulfil (uniqueness and non-reusabili ty)

are, by definition, expressible only in the transaction time. Therefore, we will consider

transaction time as our primary temporal dimension and assume that the valid time is

represented as an attribute.

Framework for a Spatiotemporal Database 33

3.3 Conceptual model of a temporal database

A database is a computer-based collection of data with the capabili ty for controlled

definition, access, retrieval, manipulation and presentation of data within the collection.

A database represents a specific set of objects selected from the real world that can be

represented. Such a set is called a universe of discourse. In this section, we analyze

conceptual model of our database. The representation of the database elements is

covered in Chapter 6.1.

3.3.1 Objects, attributes, and relations

In a typed system, each object is an instance of the class it belongs to. As we have

already seen above, objects can be physical, such as a car, or abstract, such as

ownership of a piece of land. Both physical and abstract objects have their static and

dynamic side. To differentiate such objects, we use a complex type system.

The dynamic or behavioral side of an object is expressed as a set of operations that

the object will perform. For example, a car can be started, stopped, or repaired. While

under repair, it is not available for driving.

Finally, the objects in a database have li fe spans; their li ves begin when they are

entered in the database and end when they are removed from the database (see Figure

3.1). Between these two points the objects are updated: changes in their attributes are

recorded. Both the static and the dynamic sides of an object are common for a particular

class or type of objects.

li feline of a thing

Real world

Birth Death

li feline of a representation

Database

create delete

Figure 3.1: Life of a thing in the real world vs. life of its representation in a database.

The static aspect of an object is expressed by a collection of named attributes, each of

which may take a value from a pre-specified domain (Worboys 1995). A car object

might have color, manufacturer name, and engine power among its attributes. A

Framework for a Spatiotemporal Database 34

particular car might take the value red for the color attribute. All attribute values for a

given object in a particular moment constitute its state.

Objects in the database are connected through relations. Relations are defined by

object types; they are valid only if the related objects are of the proper type. Binary

relationships involve two object types, ternary relations involve three object types, and

so on. A binary relationship may be one-to-one, one-to-many, or many-to-many,

depending on how many instances of each type participate in the relationship (Chen

1976). For example, marriage is a one-to-one relationship between two instances of type

Person. A woman can have a one-to-many mother-of relationship with many children.

Teachers and students typically participate in many-to-many relationship. Several books

may be placed on a table. A question we might want to ask is "Which books lie on the

table?" To answer this question, a connection between books and tables must exist in

the model. This connection is called relationship. A relationship type connects one or

more object types. In our example, the relationship type is isOn. This situation is shown

in Figure 3.2, using a diagrammatic language called entity-relationship diagram, or E-R

diagram.

Book Table

BookID TableID Name Name

isOn

Figure 3.2: Entity-relationship diagram for a one-to-many relation isOn.

Objects (or entities) are enclosed in rectangular boxes; attributes are enclosed in

elli pses; identifiers are underlined. The link between the boxes book and table is a

relationship - isOn. The relationship isOn is many-to-one: the white part of the

rhomboid denotes the many side, and the black part denotes the one side.

3.3.2 Database vs. object versioning

Much discussion in the literature centers around different strategies to record change,

but these are logically equivalent, as it will be shown in this section. There are two

distinct ways to represent change of objects in a database depending which elements of

the static database are changed. If the complete new state of the database is stored for

Framework for a Spatiotemporal Database 35

every change, it is called database versioning. If the new states of modified objects only

are stored, it is called object versioning.

Database versioning model produces a new snapshot of the whole database for

each change. A snapshot is a set of objects and relationships among them valid at a

particular point in time scale. An example is a photograph showing a visible field of a

camera eye in the moment of exposure. In this view, the universe (world) of discourse

or a complete temporal database is a sequence of snapshots representing discrete

changes of objects and relations among them since the creation of a database. Typically,

a movie is a temporal sequence of events recorded by a camera with a frequency of 24

snapshots per second. This model stores the complete history of a database - the

snapshot for any moment in the history of a database is readily available. A drawback

for implementation purposes is that a lot of unchanged information is stored many

times.

time time

world at t3 o1 at t3

o3 ends
o3 at t2

o1 at t1 o2 at t1 o3 at t1

world at t2

world at t1

Figure 3.3: Database versioning (left) and object versioning (right).

Object versioning stores a new version for every changed object or attribute. A universe

of discourse is a collection of objects each of which has a version for every change the

object was involved in. This model stores the changed information only. Each version

of changed objects must have a timestamp. A drawback of object versioning is that the

state of the complete database at a particular point in time must be calculated. The

deletion of an object must be explicitly stated (object o3 in Figure 3.3). In the case of

object versioning, it is not easy to follow the evolution of the database from one

snapshot to the next.

Framework for a Spatiotemporal Database 36

The major difference between object versioning and database versioning is in the

dimension on which the grouping is done. In object versioning, objects are fixed, and

times are grouped. In database versioning, time is fixed, and objects are grouped. It

should be noted that the actual change occurs among attributes, i.e. a set of attributes

varies in an object, which has the permanent identity. The representation of two varying

objects across the four time instants is shown in Figure 3.4.

 TIME OBJECTS OBJECTS TIME

 1 Car(red) Car (red) 1

 2 Car(blue), House(white) Car (blue) 2 3

 3 Car(blue), House(white) House (white) 2 3 4

 4 House(white)

Figure 3.4: Grouping of times (left) and grouping of objects (right).

The figure shows the universe of discourse consisting of two objects: a car and a house,

having a color as the attribute. At the time point 1, only the car exists. At the time point

2, the car color is changed to blue and the house appears. At the time point 4, the car is

deleted.

It is beneficial to have a mapping between database and object versioning. The

transformation functions from the snapshot view to the objects view and vice versa are

based upon this difference in grouping dimensions. An abstract data type of the

snapshot view is an ordered list of temporal elements paired with appropriate lists of

objects at a specific time: [(1, redCar), (2, blueCar, whiteHouse), (3, blueCar,

whiteHouse), (4, whiteHouse)]. An abstract data type of object view is an exhausting

list of objects paired with appropriate lists of temporal elements showing when those

objects existed: [redCar (1), blueCar (2,3), whiteHouse (2,3,4)]. The algorithm for the

transformation from the object view to the snapshots view can be informally described

as follows:

a) distribute time (pair timestamp with each object in each
 snapshot),

b) find all objects,

c) select temporal points for each object: [(blueCar, 2),
 (blueCar, 3)],

d) normalize each object: blueCar [2, 3],

e) concatenate results.

Framework for a Spatiotemporal Database 37

The inverse transformation starts with a group of timed objects, and the algorithm is:

a) distribute objects (pair each object with all temporal points),

b) find all temporal points,

c) select objects for each temporal point: [(2,blueCar),
(2,whiteHouse)],

d) normalize each timestamp: [(2, [blueCar, whiteHouse])],

e) concatenate results.

The complete code for both transformations is given in Chapter 6. Transformations are

lossless, that is, no information is lost when converted from one view to another.

Therefore, the choice of versioning technique is an irrelevant implementation question,

and we will develop our database model on the conceptually simpler database-

versioning approach. Each change in the database produces a new snapshot having a

new succeeding timestamp.

3.4 Treatment of errors

In the ideal case, all observed and stored data match the true states in the universe of

discourse. This is, however, never the case. Because of imperfection in observation

apparatus or simply because of lack of appropriate knowledge, errors occur.

An error in a database is a piece of stored information that does not match the true

state in the universe of discourse with the expected accuracy. If an error is discovered, it

should be removed from the database. This section describes possible situations and

proposes adequate solutions of problems related to error correction in databases.

We begin with a simple scenario of an error in a personal database. The personal

database stores data about people: their names and dates of birth. Now, suppose the

following transactions are performed on the database:

On 25 Oct 1998, the data for a person with the name John was entered
and the date 20 Jan 1850 as John's birthday. One month later,
25 Nov 1998, it was found that John's birthday was not on
20 Jan 1850, but on 20 Jan 1950. An error occurred and needs to be
corrected.

The procedure of correction depends of the capabili ty of the database management

system to cope with various temporal dimensions: transaction and valid time. Four cases

are distinguished: static, historical, rollback and bitemporal database.

Framework for a Spatiotemporal Database 38

Static database tracks neither the transaction nor valid time. Such database could

record Johns birthdate as an optional attribute. In that case, the error data (the attribute

20 Jan 1850) is overwritten with the correct data (20 Jan 1950). After 25 Nov 1998,

there is no information in the database if the error ever happened. An inspection of the

database would have found that the database was always in the consistent (error-free)

state.

Historical database tracks the valid time, but not the transaction time. A temporal

reference (timestamp) about the time when an event happened in reali ty is required for

every record in the database. The erroneous data (the timestamp for birth 20 Jan 1850)

is overwritten with the correct timestamp for birth (20 Jan 1950). As in the previous

example, there is no information about the existence of the error. The database is

revised without evidence that the revision ever took place. The only difference between

static and historical databases is that a static database may model the temporal

dimension as an attribute, whereas a historical database must track the valid time.

The rollback database tracks the transaction time, but not the valid time. The

required temporal reference for every record is the time the record is stored in the

database. The valid time dimension is captured as an optional attribute. In this case, we

have a transaction timestamp 25 Oct 1998 as the date the John's wrong birthdate was

entered and an attribute, 20 Jan 1850, which should be corrected. The correction is

timestamped as an event happening on 25 Nov 1998. After that date, we have correct

state in our database, since the attribute - John's birthdate - has the correct value. What

is more, an inspection about the state of the database between 25 Oct 1998 and

25 Nov 1998 would have found that the database had recorded different (factually

wrong) information about John's birthdate.

Finally, bitemporal database records a bitemporal element for every record in the

database - both valid and transaction times are recorded. The error is corrected by

adding the new transaction with the correct timestamp in valid time for John's birthdate.

The difference between bitemporal and rollback databases is that a bitemporal database

supports temporal query in valid time about every record in the database, whereas a

rollback database can inspect such data as the attribute only.

Katsuno and Mendelzon distinguished two concepts in correcting the error state in

the database: update and revision. An update brings the knowledge base up to date

when the described world changes. A revision is obtaining new information about a

static world (Katsuno and Mendelzon 1991).

Framework for a Spatiotemporal Database 39

The scenario we analyzed here is clearly a revision, because the universe of

discourse was static - John's birthday did not change. In the first two cases (static and

historical databases), we lost the information about existence of an error in past times.

In the last two cases (rollback and bitemporal databases) we just added the new

information to the existing knowledge, preserving the fact that we had had an error

before.

3.5 Summary

In this chapter, the setup for an object-oriented temporal database is described. The

database is a collection of selected objects and relations from the real world. The

essential concept of identity in a temporal database is explained: identity must be

unique, immutable and non-reusable. An object has a type; it is an instance of the class.

Objects are involved in relations, and altogether built a database.

Among different temporal models, a linear, discrete, bounded, absolute time is

chosen. Transaction time is selected as primary temporal dimension, and the valid time

is an optional attribute. Although simple, the model is powerful enough for modeling

our universe of discourse. The change is modeled by database versioning - the mutation

of the complete database for every change. It is conceptually simpler than object

versioning. Mappings between both versionings are possible and lossless.

The conceptual model presented in this chapter is formalized in Chapter 6. In the

next chapter, we introduce the rules for the identity change - operations affecting object

identity.

Operations Affecting Object Identity 40

4. OPERATIONS AFFECTING OBJECT IDENTITY

In the real world, changes happen over time. The change can be continuous (gradual) or

catastrophic (abrupt). It may affect a particular attribute of an object (location, color, or

dimension), its relation to other objects (topology, parthood), or its mere existence

(identity). The topic of this thesis is the change affecting object identity. Operations

affecting object identity can be grouped in categories, which we will call lifestyles.

The li fe of an object in a database begins with its creation. The creation connects

the new identity with a set of attribute values. An object may be created only once,

preserving its identity throughout its whole li fe. The creation is common to all objects.

The end of an object’s li fe is determined by its death. Since some objects might be

modeled as eternal in the context (e.g., the sun from the perspective of the earth), this

operation is not universal for all objects in the database. Deep philosophical questions

about the real meaning of eternity are not considered in this thesis.

An object may be modeled as having multiple episodes of its existence. Such

temporary loss of existence is modeled with two operations: suspend and resume. The

operation suspend freezes the li fe of an object until it i s resumed. A computer taken

apart is suspended until it i s assembled again and its identity resumes.

The four basic operations are defined with preconditions and postconditions:

predicates that are valid before and after applying the operations. All other operations

are compositions derived from the basic operations.

Basic operations can be composed: an object can be destroyed, triggering the

creation of its successors. This is the crucial property for modeling the higher level

operations like splitti ng and merging. The composition tables show that the number of

compositions of basic operations is finite.

Two different li festyles are recognized: fusions and aggregates. Fused objects lose

their identity - they are destroyed (pouring two glasses of water into a jar destroys the

liquid objects in both glasses). Aggregated objects do not lose their identity - they are

suspended (assembling the parts of a car does not destroy the identity of parts). Both

fusion and aggregation could be constructive or non-constructive. An example of

constructive fusion is pouring the water from the glasses in a jar. If the water is poured

back into the glasses, and then again into the jar, the second fusion may be considered

as resuming the previously existed liquid object in the jar. Since no new objects are

Operations Affecting Object Identity 41

created, such fusion is non-constructive. Disassembling and assembling a car is an

example of non-constructive aggregation. The final destruction of the car is a

constructive segregation (the inverse operation to aggregation).

 We present the minimal set of conditions a temporal database must satisfy for

dealing with the proposed li festyle operations. The concept of li festyles can be

implemented in a temporal database only if the database is recording the transaction

time (rollback and bitemporal databases).

4.1 Operations affecting the identity of a single object

We propose four basic operations affecting the identity of a single object: create,

destroy, suspend, and resume. Basic operations are known under different names in

literature: as create, destroy, kill , and reincarnate (Cli fford and Croker 1988), as create,

destruct, and reincarnate (Hornsby and Egenhofer 1997).

The first of them, create, is essential for all types of objects. An object can be

created independently of other objects or as a child object of one or more parent objects.

The temporal li nk with the predecessors of a newly created object is the essential part of

the operation create.

The second basic operation, destroy, terminates the existence of an object. The

previous existence of the destroyed object is preserved, but the object cannot be

referenced in the future time.

A temporary loss of existence is modeled with the pair of operations: suspend and

resume. A suspended object is not active in the database until it i s resumed. The effects

of all four simple operations on the existence of an object are shown in Figure 4.1. The

value of the predicate exist changes after each operation.

exist:

create suspend resume destroy

Time

not
yet

yes no
(suspended)

yes not
anymore

operation:

Figure 4.1: Possible episodes in the li fe of an object.

Before an object is created value of the predicate exist is "not yet". When an object is

created, the value of exist changes to "yes". Then, if an object is suspendable, it can be

Operations Affecting Object Identity 42

suspended and a special tag "no(suspended)" is used to describe this state. A subsequent

resumption would have changed the state "no(suspended)" to "yes". Finally, if an object

is destroyed, the value of the predicate is "not anymore" meaning that the object cannot

reappear in future states of the database. The last kind of transition could have happened

without the intermediate suspension.

Further, the fifth operation, evolve, captures the semantics of changing the identity

of an object that preserves a temporal li nk with its predecessor. This operation affects a

single object, although it is a composition of two simpler operations: destroy and create.

4.1.1 Create

The existence of an object in the database begins with the creation of its identifier in the

database. In Figure 4.2 an identity labeled "Id1" is created at the time point t1. The

operation create is essential for both the static and the temporal databases, since the

unique identity is needed for distinguishing objects in static databases.

Id1
t1

Figure 4.2: Identity operation create.

When an identifier is created in a database, it is chosen from an abstract set Ω.

Therefore, the domain of the operation create is the set Ω, and the range is the set of

identifiers. For a particular creation, the result type is an identifier (ID). Creating a

specified identifier is not allowed, because such operation might violate the properties

of uniqueness and non-reusabili ty of identifiers. Note that the label ID for an identifier

has different meaning from the label id for the identity function.

Using functional notation, the signature of the function create is written:

create :: Ω → ID

The effect of the creation on a database is explained using the standard technique in

program verification of state-oriented specifications: precondition and postcondition,

(Loeckx et al. 1996). Verification consists of a set of assertions of the form:

{ ϕ} P { ψ},

Operations Affecting Object Identity 43

where ϕ and ψ are formulas of predicate logic and where P contains the piece of

program to be specified. If the precondition ϕ holds before execution of P, then this

execution terminates and the postcondition ψ holds.

In our example, creation of a new object takes the database from one state to

another. The precondition for the initial state is that the object with the identifier i does

not yet exist. The postcondition for the final state after the execution of the operation

create is that the object with the identifier i exists. The values for conditions are taken

from Figure 4.1. Formally, this reads as:

Pre/Post - conditions: Code:

{exist (i) = “not yet”}
create

{exist (i) = “exist”}

The concept of predecessors, inevitable in temporal databases, is inherently tied with the

creation of an object. The creation is the only basic identity operation involving

predecessors. The set of predecessors is empty if the object is created without

predecessors. Therefore, there is no special notation in Figure 4.2. Predecessors will be

shown in complex operations (see section 4.2 below).

4.1.2 Destroy

The existence of an object in the database is terminated by destroying its identifier from

the database (Figure 4.3). For the database, it means that, from the moment of

destruction, it is not possible to update the properties object. An object is required to

exist if it is to be destroyed; destroy takes an identifier as an argument. The identifiers

of destroyed objects are not forgotten, because of non-reusabili ty. In addition, the

database may be queried about the past existence of a destroyed object.

Id1

t2

Figure 4.3: Identity operation destroy.

When an identifier is destroyed, i.e. removed from a database, it is disposed to an

undefined space. Therefore, the domain of the operation destroy is the set of identifiers,

and the range is infinity Ω. For a particular destruction, the argument type is an

identifier ID. Using functional notation, the signature of the function destroy is written:

destroy :: ID → Ω

Operations Affecting Object Identity 44

The precondition for the operation destroy is the existence of the identifier to be

destroyed in the database. The postcondition is the non-existence of the destroyed

identifier. In formal language:

Pre/Post - conditions: Code:

{exist (i) = “yes”}
destroy (i)

{exist (i) = “not any more”}

The values of predicates for the precondition and the postcondition are given in Figure

4.1.

4.1.3 Suspend and resume

An object may have multiple episodes of its existence. A well -known example from

history is the state of Austria, which disappeared and reappeared during this century.

A temporary loss of existence is modeled with two operations: suspend and

resume. The first operation requires an active (not-suspended) identifier, while the

second requires a suspended identifier. In Figure 4.4, the shadowed box with the struck

label represents the suspended identifier.

Id1

Id1

t1
 Id1

Id1

t2

Figure 4.4: Identity operations suspend (at t1) and resume (at t2).

The operation suspend freezes an object by preserving it from other operations until it is

resumed. Appropriateness of this pair of operations is the matter of user's choice: one

could assume that sleeping of li ving beings appears to be equivalent to a suspended

state.

The type of arguments and results of the operations suspend and resume is the

same: an identifier (ID). The signature of both operations is written:

suspend, resume :: ID → ID

The precondition for the operation suspend is the existence of the object. The

postcondition is that the object is suspended.

Pre/Post - conditions: Code:

{exist (i) = “yes”}
suspend (i)

{exist (i) = “no (suspended ”}

Operations Affecting Object Identity 45

The precondition for the operation resume is that the object is suspended. The

postcondition is that the object exists again.

Pre/Post - conditions: Code:

{exist (i) = “no (suspended)”}
resume (i)

{exist (i) = “yes”}

This pair of operations, suspend/resume, reflects the pair kill/ reincarnate (Cli fford and

Croker 1988). Hornsby and Egenhofer define reincarnation as the operation destruct

(equivalent to destroy in our notation) followed by the operation create of an object

with the same identity (Hornsby and Egenhofer 1997). In our model, destroyed

identifiers cannot be recreated.

4.1.4 Evolve

Basic operations presented so far could be composed in various ways. In this section,

we analyze compositions of two basic operations applied subsequently to the same

object.

Since the order of composed operations matters, there are 16 different

compositions. The composition symbol "." ("dot") is applied in the order as in the

equation: (g . f)(x)=g(f(x)). We explore all possible compositions in Table 4.1. A

composition yielding undefined results is marked with ⊥ ("bottom"). A composition

yielding the state that is the same as the original is the identity function (id) in the

mathematical sense.

 f
 g

create destroy suspend resume

create ⊥ evolve ⊥ ⊥

destroy id ⊥ destroy destroy

suspend suspend ⊥ ⊥ id

resume ⊥ ⊥ id ⊥

Table 4.1: Compositions g.f of two operations f and g on the same identity.

The results in Table 4.1 are calculated as g . f. That is, the operations from the row f are

applied first. Then, the operations from the column g are applied to the results of the

first operation (f).

Operations Affecting Object Identity 46

A composition as create.create is undefined, because the postcondition of the first

creation is the existence of the identifier i. Thus, it cannot be created again, since the

precondition for the operation create is the non-existence of the object. The predicate

exist has the signature ID → Bool, and the string values (not yet, exist, not anymore) are

introduced to improve understanding. We write the proof in functional notation:

Pre/Post - conditions: Code:

{exist (i) = “not yet”}
create

{exist (i) = “exist”}
create

not fulfilled since
 {exist (i) = “exist”} ≠ {exist (i) = “not yet”}

The same conclusion can be proved for the composition destroy.destroy. The

precondition for the second application of destroy is not fulfill ed, because the identifier

is already destroyed:

Pre/Post - conditions: Code:

{exist (i) = “yes”}
destroy

{exist (i) = “not anymore”}
destroy

not fulfilled since
 {exist (i) = “not anymore”} ≠ {exist (i) = “yes”}

If an identity is destroyed immediately after its creation, the result is the identity

function id (under assumption that the value “not yet” is identical to “not anymore” if

the object is destroyed at the same time it was created) :

Pre/Post - conditions: Code:

{exist (i) = “not yet”}
create

{exist (i) = “yes”}
destroy

{exist (i) = “not anymore”}

Both possible compositions of the operations suspend and resume yield the identity

function. We show the case of the composition resume.suspend:

Pre/Post - conditions: Code:

{exist (i) = “yes”}
suspend

{exist (i) = “no (suspended)”}
resume

{exist (i) = “yes”}

The composition of the operations suspend or resume with the operation destroy result

in destroy if the former is performed last. If the opposite is the case, i.e. if destroy is

performed first, the result is undefined: the destroyed identifier is not available for

suspend or resume.

Operations Affecting Object Identity 47

The compositions create.suspend and create.resume are undefined, because the

object must not exist in order to be created (precondition for create). The composition

resume.create fails because the precondition for resume is not fulfill ed after the

creation. Finally, suspend.create results in suspend.

A composition of creation and destroying where the destroying comes first is the

most important result - a new operation evolve, having the following signature:

evolve :: ID → ID

Because of the identity properties, the newly created identifier is denoted j in the

following verification. In addition, the old identifier (i) is the argument of the operation

create in order to maintain a temporal li nk with its predecessor. In the original

definition of create, the predecessor argument was empty and thus omitted for the sake

of simplicity.

Pre/Post - conditions: Code:

{exist (i) = “yes”}
destroy (i)

{exist (i) = “not anymore”}
create (i)

{exist (j) = “yes”}

The concept of identity evolution allows an object to change its identity under

conditions that a temporal li nk with the previous identity is established. An example for

such an operation is a country suddenly changing its constitution from a monarchy to a

republic (li ke Italy during the Second World War).

Id1

Id1

Id2
(1)

Id2

evolve

create

suspend

destroy

create
de

str
oy

re
su

m
e suspend

re
su

m
e

Figure 4.5: State diagram for operations affecting identity of a single object.

A state diagram represents possible operations on a single object identity (Figure 4.5).

The operation evolve yields the same result as the combination of operations destroy

Operations Affecting Object Identity 48

and create. The temporal chain is represented with the label "(1)" in the box of Id2: the

identity Id1 is the predecessor of the identity Id2.

4.1.5 Removing histories

A short explanation about the difference between static and temporal databases with

respect to the operation destroy, and of the difference between destroying and removing

of the history of an object is necessary. If an object is destroyed from a static database,

there is no way to recall it l ater: the object is gone forever. In a temporal database, the

object is not present in the database from the time of destroy onwards, while its past

states may be referred to.

If we want to remove an object from all snapshots of the database, we need another

type of operation, which neglects the historical concept of temporal databases. Such an

operation is dangerous because it can cause an irrecoverable loss of data. It gives the

opportunity to forge the history in an arbitrary way.

1

1
 2

1
 2
 3

destroy 2

1

1
 2

1
 2
 3

3

1

t1
t2

t3
t1

t2
t3

t4 1

1
 2

1
 2
 3

remove 2

1

1

1
 3

3

1

t1
t2

t3
t1

t2
t3

t4

Figure 4.6: Destroying (left) vs. removing histories (right).

The left-hand side of Figure 4.6 shows the effect of the destroy operation: from the

time-point t4 onwards, the object with the identifier 2 is not available, but its existence

before t4 is preserved. The right-hand side of the same figure shows what happens if the

objects with the identifier 2 are removed completely from the database: every track of

its existence vanishes. Due to implementation constraints, we might at best conclude

that the object with the identifier 2 existed, but the object with that identifier can not be

retrieved.

4.2 Compositions of basic operations affecting identity of several objects

Basic identity operations and its simple composition evolve operate on a single object.

Yet, there are many examples of change taking more than one object as arguments, or

producing several objects as a result. Merging of two cadastral parcels produces a new,

Operations Affecting Object Identity 49

third parcel. On the other hand, a single cadastral parcel, if divided, produces two or

more parcels with new identifiers. Assembling all car parts produces a new object - a

car. Disassembling the car produces, in general, the original parts with their old

existence.

All possible combinations of basic operations are shown in Table 4.2. The

operations affecting two or more identities come from the column g, and these are

marked with the suff ix “PL” (plural). The operations affecting single identity come

from the row f. Operations are applied in such order that the creation is performed at the

end, because it takes identifiers for predecessors.

 f (one)
g (many)

create destroy resume suspend

createPL ⊥ fission ⊥ w-fission

destroyPL fusion ⊥ w-fusion ⊥

resumePL ⊥ segregation ⊥ w-segregation

suspendPL aggregation ⊥ w-aggregation ⊥

Table 4.2: Compositions of operations affecting multiple identities.

Signatures for “PL” operations are given as follows (brackets [] are the standard symbol

for li sts in functional languages):

createPL :: Ω → [ID]

destroyPL :: [ID] → Ω

suspendPL :: [ID] → [ID]

resumePL :: [ID] → [ID]

The compositions in the second and the third column of Table 4.2 are “constructive” ,

because the object on the one-side is created or destroyed. The compositions in the

fourth and the fifth column of Table 4.2 are called “non-constructive” or weak, because

the one-side object is neither destroyed nor created. Non-constructive compositions are

marked with the prefix “w-“ (weak).

Depending on the operations applied on the PL-side, two groups of operations are

distinguished: fusion/fission and aggregate/segregate group.

Operations Affecting Object Identity 50

4.2.1 Fission and fusion

A (constructive) fission is the composition of destroying an object and creating a set of

its successors at the same time. Emerging objects maintain a temporal li nk with the

original object. A weak fission does not destroy the original object, but only suspend it.

A (constructive) fusion is the composition of destroying several objects and

creating a new single object at the same time. The emerging object maintains a temporal

link with the set of destroyed objects. A weak fusion does not create the new objects,

but resumes an already existing one. The precondition for a weak fusion is a weak

fission.

An example from a cadastral database involving fission and fusion of parcels is

shown in Figure 4.7. The parcel 1 is destroyed and the new parcels (2 and 3) are

created. Both new parcels maintain a temporal li nk to the parcel 1. At some later point,

the two parcels are united again. The identifiers 2 and 3 are destroyed. The new parcel

gets the new identifier (4), maintaining the temporal li nk with both of its predecessors.

Id2
(1)

Id3
(1)

Id1 Id4
(2,3)

fission fusion

Figure 4.7: Fission and fusion of cadastral parcels with links to predecessors in parenthesis.

It is questionable whether the identity resulting from the fusion of a complete set of

identities should be the same as the original identity which fissioned before. To give

more flexibili ty to the designer, the concept of reversible fission and aggregation is

introduced. The original identity must be suspended (instead of destroyed) to be

resumed. This is modeled by weak fission and fusion (w-fission and w-fusion). As an

example, consider a carafe full of water whose content is poured into two glasses. When

the water is poured back to the carafe, the original li quid object with the identifier Id1 is

resumed (Figure 4.8).

Operations Affecting Object Identity 51

w-fission w-fusion

Id1 Id2
(1)

Id3
(1)

Id1

Figure 4.8: Weak fission and fusion of liquid objects.

Common to both types of fusion is the irreversibili ty of the fusion operation: fused

identities are destroyed and cannot be re-used. Hence, identities of two cadastral parcels

fused into one cannot be re-established; liquid objects in two glasses cannot be

distinguished after having been poured into the carafe.

D
 D

C

S

C
 C

D

C
 C

D
 D

R

Figure 4.9: The li festyle of fusions (D - destroy, C - create, S - suspend, R - resume).

The complete set of possible fusions and fissions is shown in Figure 4.9. The four

distinctive operations are shown with the arrows indicating the order of their application

to the set of objects:

First, in a constructive fusion (DD-C), the two (or more) objects are destroyed (DD)

and a new object is created (C). Next, the resulting fused object can be suspended by a

weak fission (S-CC), or destroyed by an immediate constructive fission (D-CC) - the

longest arrow in Figure 4.9. In the former case, emerging objects may fuse again

resuming the original object by a weak fusion (DD-R). At the end, the li fe of the fused

object ends with a constructive fission. A practical example is an extension of the liquid

example shown in Figure 4.8: if the carafe is empty in the beginning, a constructive

fusion fill s it up. Pouring the water into glasses is a weak fission. Pouring the water

back into the carafe is a weak fusion. Finally, pouring the water on the floor is an

irreversible, constructive fission. If we poured the water on the floor instead into the

glasses, it would have the effect of the longest arrow in Figure 4.9.

4.2.2 Aggregation and segregation

Discussion about the identity and aggregation is connected with the part/whole relation.

From the perspective of operations affecting object identity explained so far, only such

Operations Affecting Object Identity 52

aggregations (and segregations) matter, which change identities of involved objects, i.e.

perform one of the four basic operations. The relation member-of without influence on

the identity is not considered as an aggregation in this thesis, see Figure 4.10. Such link

is usually called association (Khoshafian and Abnous 1990).

Id1

Id2

Id3

Id1

Id2

Id3

Id1
Id2

Id3

Figure 4.10: Association of objects and the reverse association.

An example of association is the membership of a person in a sport club: neither the

identity of the person nor the identity of the club changes if the person leaves the club.

The same goes for the associations of the states based on certain regional groupings

(e.g., Scandinavian countries, Mediterranean states, etc.).

Hornsby and Egenhofer refer to both aggregations and associations as composite

objects. Aggregations, based on the relation part-of, are formed from a framework - a

predefined method of placing parts into “slots” . Collections, based on the relation

member-of, are formed without framework, (Hornsby and Egenhofer 1998).

In this thesis, the aggregates are based on the relation part-of only. In addition, we

assume an object can be a part of exactly one object, although this is true for physical

things (the engine of one car cannot be in another car at the same time). The multiple

levels of parthood can be modeled as hierarchies.

The example of constructive aggregation is a federation of several states (Hornsby

and Egenhofer 1997). It is created by the politi cal contract among the states in question.

Federal government takes over certain representing functions (currency, foreign policy,

defense) from the member-states. In that respect, member-states are suspended. Now,

suppose that the federation breaks apart: its identity is destroyed, while the identities of

member-states are resumed. A later re-union would have produced a new object.

Operations Affecting Object Identity 53

Id1

Id2

Id3

Id1

Id2

Id3

Id1

Id2 Id3

Id4

Figure 4.11: Constructive aggregation: the aggregate is a new object dependent on its parts.

An example of a weak aggregation (w-aggregate and w-segregate) is an episode in the

li fe of a car. The identity of a particular car as a movable object emerges when all

necessary parts are produced and properly connected. As long as the car functions, its

parts do not have meaning outside the aggregate (car). If a part of the car is broken and

needs to be repaired, the identity of the car is suspended (since the car does not

function) and the identities of the parts are resumed. The broken part is repaired and all

parts are aggregated again, resuming the original identity of the car. Even if one part is

changed, the identity of the car is maintained.

The fundamental criteria for an aggregation to quali fy for an identity affecting

operation is the dependence of aggregated objects on the aggregate. If the aggregated

objects are suspended and the aggregate is created for the first time, it is a constructive

aggregation. If the aggregate already exists, it is a weak aggregation: the objects and the

aggregate are mutually suspended and resumed.

S
 S

C

S

R
 R

D

R
 R

S
 S

R

Figure 4.12: The li festyle of aggregates (D - destroy, C - create, S - suspend, R - resume).

The complete set of possible aggregate and segregate operations is shown in Figure

4.13. It starts with a constructive aggregate when the parts are suspended giving birth to

the new object. The new object could be destroyed in the next step (the long arrow) or

suspended (weak segregation). The difference in respect to the previously explained

fusion li festyles is in the reversibili ty of weak aggregation/segregation. In the case of a

weak fusion, objects on the many-side were destroyed and therefore not resumable. In

the case of weak segregation, objects on the plural side are resumed, and can be

suspended and resumed again.

A practical example of an aggregate is a car. When assembled for the first time, it is

a constructive aggregation (SS-C). There are two alternatives for the next step: the

Operations Affecting Object Identity 54

immediate destruction (D-RR) and a weak segregation (S-RR). An immediate

destruction could be a car accident, after which remaining parts are individually used or

sold. A weak segregation could be disassembling the car to repair malfunctioning parts.

The identity of the car is resumed when the broken part is fixed or changed. Eventually,

every car is destroyed, parts tend to li ve a littl e longer.

4.3 Object identity through time

This thesis merges together object oriented concepts with the temporal database

framework. The concept of object identity is crucial for object orientation and for

modeling processes in the dynamical world that surrounds us. The necessary condition

for implementation of li festyle operations (described in previous sections) in a temporal

database is the proper dimension of time supported.

4.3.1 Transaction-time condition

The criteria for object identity (uniqueness, immutabili ty, and non-reusabilit y) can be

satisfied in a database only if the system (database) is responsible for managing the

object identifiers. This applies both for static and temporal databases, regardless of

temporal dimension supported. If the user would have control of issuing new identifiers,

the objects might have non-unique identifiers - the conditions would have been violated.

The user is responsible for semantic decisions such as: when an object evolves (gets a

new identity instead of an old one); is a particular object type destroyable or not; does a

relationship apply between objects of specified classes; should an object be destroyed or

suspended. The user must not decide, however, that an already destroyed object identity

may be used again.

The criteria for the consistent behavior of identity in li festyles framework are

stronger. The crucial property for li festyles is the abili ty of objects to maintain a

temporal li nk with their predecessors. It is of the greatest importance in operations like

evolve, fusion, fission, but a mere creation of an object needs a list of predecessors for

the simplest model of parental relationship. In a static database, destruction of a parent

object would leave the existing child object with a reference to a non-existing identifier

(a dead pointer). The same happens in a database that tracks the valid time dimension

only: histories of objects that are once removed from the database cannot be referred.

Thus, removing a parent object would have the same effect in a valid time database as it

Operations Affecting Object Identity 55

would have in a static database: the child object has a temporal li nk with an object,

which cannot be queried for existence neither at the current time, nor at past times.

The transaction time is necessary for proper treatment of li festyle operations,

because the databases supporting the transaction time do not permanently remove

destroyed objects. Such databases are append only - a new snapshot without the

destroyed object is added. In both rollback and bitemporal databases (that track the

transaction temporal dimension), the user can inspect the complete history of the

database from its creation to the present moment. Even if an object is destroyed, the

temporal li nks of its child objects are pointing to certain objects that can be referred and

queried for their properties in the past times.

The concept of li festyles can be implemented only in temporal databases that record

transaction time: rollback databases and bitemporal databases. Static and historical

(valid-time-only) databases cannot support li festyle operations, because such databases

are not capable of tracking temporal li nks among object identities.

4.3.2 Finiteness of the set of operations affecting object identity

A set of four basic operations affecting object identity was proposed (create, destroy,

suspend, and resume). The only possible binary composition on a single object yielded

the fifth operation - evolve. Operations can involve one or more objects in a single

action. The basic operations are composed according to the cardinali ty of objects

involved in change. The result was a group of eight compositions: constructive and

weak fissions and fusions, aggregations and segregations. That makes the total of 13

possible operations affecting object identity.

What happens with many identifiers on both sides? Namely, some changes of

multiple objects result in a multiplicity of objects as well . The process of land

redistribution is well known in cadastre practice: a set of parcels is transformed into

another set covering the same area. Oosterom grouped land redistribution, together with

split and union, under restructuring processes involving several entities (van Oosterom

1997). Figure 4.13 shows a simpli fied view of such change.

Operations Affecting Object Identity 56

Id1 Id2 Id3

Id4

Figure 4.13: Redistribution of land parcels.

This anomaly is easily modeled as the composition of a fusion of identities 1 and 2 with

a subsequent fission into two new identities.

restructure = fission2 . fusion (Id1,Id2)

The result of fusion(Id1,Id2) is a temporary identity Id3, which is immediately fissioned

into 2 new identities. A query about the identity Id3 would not have found any valid

interval of its existence, but its predecessors are traceable as common predecessors of

all emerged parcels.

Thus, we conclude that the set of operations affecting object identity is finite. There

are 14 possible operations. Basic identity operations are: create, destroy, suspend, and

resume. These operations build an algebra with the following axioms:

create . destroy = evolve

destroy . create = id

suspend . resume = id

resume . suspend = id

Further, compositions of basic operations define 9 new operations (the suff ix “PL”

means that the operation is applied to the group of two or more identities):

destroy . createPL = fission

create . destroyPL = fusion

suspend . createPL = w-fission

resume . destroyPL = w-fusion

create . suspendPL = aggregate

destroy . resumePL = segregate

resume . suspendPL = w-aggregate

suspend . resumePL = w-segregate

fission . fusion = restructure

Operations Affecting Object Identity 57

These compositions extend the algebra with additional axioms:

w-fusion . w-fission = id

w-aggregate . w-segregate = id

w-segregate . w-aggregate = id

The axioms that are cited in this section are independent of the arguments (types of

objects are irrelevant).

4.3.3 Comparison with the previous work

We compare our approach with the most detailed description of object identity change

(Hornsby and Egenhofer 1997). Informal discussion given here is formalized in Section

7.3.

Hornsby and Egenhofer propose the following operations for manipulating single

objects: create (without predecessors), destruct , continu e existence ,

continue non-existence , reincarnate (as a des t ruct followed by a cr eate

of an object with the same identity, and two types of issue (creation of a new object

from the existing one): spawn and metamorphose . In case of spawn , the original

object continues to exist; in case of metamorphose , the original object is destroyed.

Our operation create covers both create and spawn , because an object can be

created without or with predecessors. The operation destroy is conceptually similar to

destruct . The logical model of our database ensures existence or non -existence

of objects from one database version to the next, since all not affected objects are copied

to the new state. The pair of operations suspend and resume explains the possibili ty of

multiple episodes of existence of an object in a simpler way than a single operation

reincarnate , which actually contradicts with the nature of permanent destruction.

Finally, the operation evolve has the same meaning as the second type of issue -

metamorphose .

For joining objects, Hornsby and Egenhofer proposed a number of operations:

merge destroys the joined objects issuing the new object at the same time, generate

does not destroy the original objects when a new object is issued (parenthood), mix

issues a new object destroying one parent but not both, aggregate creates a new

object from a set of individual objects that retain their identity, unite creates an

aggregate of composite objects, compound adds a subpart to a composite object,

Operations Affecting Object Identity 58

amalgamate merges the subparts of two composite objects yielding the new composite

object with new parts, combine joins the two composite objects retaining the identity

of their subparts.

In this thesis, the constructive fusion is identical to merge , create with predecessors

is the same as generate . The composition of creation with parents as predecessors

followed by destroying of one parent is equal to mix . The operation aggregate covers

the semantics of both aggregate and unite . The composition of weak segregation

and weak aggregation with one more object is identical to compound . The composition

of segregate and aggregate is the adequate replacement for combine . Finally, the

composition of segregate, fusion and aggregate is a model for the operation

amalgamate .

Hornsby and Egenhofer gave five operations for splitti ng of objects: splinter

separates a portion of the original object, which continues to exist; divide separates

the original object, which ceases to exist, into n parts; secede separates a part from the

composed object; dissolve completely splits a composite object into its constitutive

parts; select allows for choice or selection of either the entire object or a portion of

object.

In our model, the create with exactly one predecessor is equal to splinter . The

constructive fission is exactly a divide . The composition of weak segregation and

weak aggregation replaces secede , and constructive segregation is the same as

dissolve .

To conclude, all types of change in identity discussed in (Hornsby and Egenhofer

1997), can be easily modeled with fewer operations. Besides the simpler compositional

structure of our model, the concept of suspend/resume is better suited for modeling the

multiple episodes in the existence of an object than other proposals. In addition, the

concept of weak fission and weak fusion allows reincarnation of f issioned objects - an

important property not covered in previous work.

4.4 Summary

In this chapter, we introduced operations that govern the change of identities in a

spatiotemporal database. All operations are divided into two groups: basic operations

and compositions. Basic identity operations are: create, destroy, suspend, and resume.

Operations Affecting Object Identity 59

Their compositions operate either on a single object or on a group of objects.

Composition of destroy followed by create is the only new operation among single

object compositions and it is called evolve.

When several objects are considered, all possible operations are obtained as

compositions of one basic operation on a single identity and another one operating on a

group of two or more identities. If the single identity is destroyable, we have

constructive compositions, if not we have weak compositions. If the many-side is

destroyable, we have fusions, if not, we have aggregates. The fundamental difference

between aggregation and fusion is the irreversibilit y of f ission, while an aggregation is

always reversible.

The criteria for object identity can be fulfill ed in any database, regardless of

temporal dimensions it support, assuming that the system controls the issuing of new

identifiers. For the proper support to the li festyle operations, the transaction time is

necessary, because temporal li nks among an object and its predecessors can be

preserved.

Since the compositions cover all possible cases of change in object identity, we

conclude that the set of operations is finite. We compare our results with the work of

other authors, concluding that our set of operations is more economical, conceptually

simpler, and has more expressive power than other models.

All operations affecting object identity explained here are formalized in Chapter 7

in the context of an object-oriented temporal database, which is formalized in Chapter 6.

The next chapter presents the formalization method: executable algebraic specifications

written in the functional language, and the formalization tool: Gofer dialect of the

functional programming language Haskell .

Methodology: Algebraic specifications 60

5. METHODOLOGY: ALGEBRAIC SPECIFICATIONS

In this chapter, I describe the method used for formalization: algebraic specifications

written in a functional language. Algebraic specifications represent the necessary step

between a conceptual model and its implementation, used to formally prove the

correctness of the latter. Algebraic specifications are based on solid mathematical

foundations (category theory) and mathematical methods can be applied to them.

Functional languages are formally defined: a compiler checks the syntax,

completeness and other formal aspects of a program. Such programs are executable and

can be used as a prototype. Gofer (Jones 1991), an experimental dialect of the non-strict

and strongly typed functional programming language Haskell (Peterson et al. 1997), is

used for formalization in this thesis. It unifies several advanced features from other

similar languages: automatic type checking, user defined abstract data types, higher

order functions, parameterized polymorphism and lazy evaluation. The Gofer code is

compact, readable and portable. Abstract data types, polymorphism and inheritance, as

implemented in Gofer, allow the specifications to be written in an object-oriented

manner. After the machine has checked the syntax and the programmer checked the

semantics by applying it to example cases, a specification can be easily translated into

any other object-oriented environment.

This chapter is organized as follows: the first section is a short introduction in

algebraic specifications stressing their importance in constructing programs; the second

section is dedicated to general terms and concepts in functional programming; the third

section explains Haskell syntax, to the extent necessary to understand specifications

provided in this thesis.

5.1 Algebraic specifications

Algebraic specifications represent the necessary step between a conceptual model and

its implementation, which is used to formally prove the correctness of the latter (Liskov

and Guttag 1986). The purpose of a specification is to formally describe the behavior of

objects. Algebraic specifications provide a clear and compact representation of theories

for behavior of objects. They are based on solid mathematical foundations and

mathematical methods can be applied to them.

Methodology: Algebraic specifications 61

Algebraic specifications were introduced to describe data abstractions (abstract data

types) in software design (Guttag et al. 1978). The goal was to construct the axioms

describing the behavior of data types independently of a particular implementation.

5.1.1 Definitions

An algebra is a description of a set of connected operations that are applied to a set of

types. This is the generalized definition of algebra, introduced as "universal algebra"

(Birkhoff 1945).

The algebraic specification consists of three parts (Ehrich et al. 1989):

• a set S of sorts (objects),

• a set Σ of operations applicable to this type, and

• a set Ε of axioms defining the behavior of these operations.

An algebraic axiom specification is defined by the triple (S, Σ, Ε), which represents an
algebraic structure.

A sort is an element or object of a particular type. If the set S contains sorts of only

one type, then we talk about single-sorted algebra. In a multi -sorted algebra, sorts of

different types may occur. Multi -sorted algebras are used to build structured data types

from more basic ones.

The set Σ contains operations applicable only to the sorts of S. Two kinds of

operations exist (Liskov and Guttag 1986, Chapter 10): constructors and observers.

Constructors are operations to create or modify a sort. Their result is an object of the

defined sort. Observers are operations to observe properties of a sort. The result is an

object of another sort (often Boolean). A minimal set of operations that are suff icient to

generate all values of a sort is a set of basic constructors, whereas the minimal set of

operations to retrieve these values is a set of basic observers.

A set Ε of axioms can be thought of as a set of rules which shows how each

operation is applied to a sort. Axioms relate operations on sorts of the same type. An

axiom states that an operation can be reduced or rewritten with some other operations

while preserving its meaning.

Methodology: Algebraic specifications 62

5.1.2 Examples

We describe the familiar algebra of natural numbers, following the syntax from (Ehrich

et al. 1989). Operations for addition, subtraction, negation and crating zero element are

described by their signatures: types of arguments and the result. Axioms define the

behavior of the operations are listed (two subsequent dashes "--" mean that the rest of

the line is a comment).

Algebra AbelianGroup (number)
Operations:
 +, - :: number -> number -> number
 negate :: number -> number
 0 :: number

Axioms:
 a + b = b + a -- commutative law
 (a+b)+c= a+(b+c)= a+b+c -- associative law
 0 + a = a + 0 = a -- existence of identity
 a + (negate a) = 0 -- existence of inverse
 a - b = a + (negate b) -- definition of subtraction

Algebras can be used to describe behaviors other than numbers, for example the

properties of a stack. In such cases, more than one type is used and it is called multi -

sorted or heterogeneous (Birkhoff and Lipson 1970).

A stack can accept elements pushed onto it. The operation push puts an element in a

stack; the operation top returns the top element, the operation pop returns a stack with

the top element removed. We show the parameterized algebra of stacks: the operations

are independent of the type of a. Thus, the following specification is universal for all

types.

Algebra Stack (stack of a, a)
Operations:
 empty :: stack of a -- constructor
 push :: a -> stack of a -> stack of a -- constructor
 pop :: stack of a -> stack of a -- observer
 top :: stack of a -> a -- observer

Axioms:
 top (push a s) = a -- a1
 pop (push a s) = s -- a2
 top (empty) = error -- a3
 pop (empty) = error -- a4

Using the terminology from the previous subsection, we have defined an algebraic

structure (S, Σ, Ε), where: S = { stack, a}, Σ = { empty, push, pop, top}, Ε = {a1, a2, a3,

a4}.

The behavior of the operations push, pop, and top is fully explained by the axioms a1,

a2, a3, and a4. The top element after pushing an element onto the stack is the element

Methodology: Algebraic specifications 63

that was pushed on. The stack that is returned after pushing something onto a stack and

then applying a pop to the result is the same stack before the push operation.

Using the point-free notation, explained in Section 2.5.5, the axiom a1 would be

written as:

pop . push x = id

indicating that the combination of a push and a pop operation is the identity operation,

which does not change the argument.

The axioms a3 and a4 yields an error as the result: the top of an empty stack is not

defined. The operation top is then a partial function, undefined over an empty stack of

any type. This operation can be made total by extending the set of carriers with a special

element “error” that represents the “undefined value” (Loeckx et al. 1996). Then, the

first line of the specification should be: Algebra Stack (stack of a, a, error) .

5.1.3 Advantages of algebraic specifications

In the process of developing reliable software, specifications are used for (Guttag et al.

1978):

• design and implementation of abstract data types:

Algebraic specifications can capture the behavior of objects in a formal

manner. It is possible to create complex types by using specifications of other,

simpler data types. An important purpose of a specification is to organize

types, values and operations that can be used for implementation.

• proof that an implementation is correct:

It can be done by showing that the original axioms are satisfied by the

implementation, which is probably the most important purpose of formal

specifications.

• early test:

If a specification is written in an executable programming language, it can be

tested as a prototype (Frank and Kuhn 1995).

In this thesis, algebraic specifications are the essential meta-language for a formal

description of li festyles in order to communicate the information with potential

implementors.

Methodology: Algebraic specifications 64

5.2 Functional programming

Functional programming languages are formally defined: a compiler checks the syntax,

type completeness and other formal aspects of a program. Such programs are executable

and can be used as a prototype. Furthermore, functional programming languages and

algebraic specifications use a similar syntax and have similar mathematical foundations.

Functional languages can express semantics and are easy to understand, which are the

essential requirements for formal specification languages (Frank and Kuhn 1995). Since

functional programming languages fulfill t hese requirements and allow for rapid

prototyping in addition, they are used as specification and prototyping tools in this

study.

Programming in a functional language consists of building definitions in the form

of functions and using the computer to evaluate expressions (Bird and Wadler 1988).

Definitions are constructed according to mathematical principles, and are expressed in

notation that is similar to the traditional mathematical notation. If an expression

possesses a well -defined value, then the order in which a computer evaluates the

expression does not affect the result.

5.2.1 Functional vs. imperative languages

Most programming languages used today are imperative: the commands modify an

implicit state. A typical example for implicit storing of a state is the assignment to a

counter (e.g., a := a + 1). Examples of sequencing are begin/end, while/loop, and goto

constructs.

In contrast to imperative programming languages, functional programming

languages are declarative, i.e., there are no side effects and the programming is done

with expressions rather than commands. If a functional language is completely free of

side effects, it is called pure functional programming language. If some side effects

exist, the language is impure.

An excellent comparison of imperative and functional programming languages is

presented in the Turing Award lecture by John Backus (Backus 1978). Backus

compared an imperative program for calculating the inner product with its functional

counterpart. The imperative program was written in Pascal-li ke fashion:

c := 0
for i :=1 step 1 until n do
 c := c + a[i] * b[i]

Methodology: Algebraic specifications 65

The functional version of the program, translated to the standard Haskell notation by the

author of this thesis, was:

innerproduct = foldr (+) 0 . map (foldr (*) 1) . transpose

Functions (+) and (*) are standard addition and multiplication; (.) denotes functional

composition. Functions foldr, map are higher order functions defined in the standard

prelude (library) of Haskell and explained in Section 5.2.6 below. The function

transpose converts the rows of a matrix to its columns.

Backus concluded that the functional program has the following important

advantages over its imperative counterpart:

• it operates only on its arguments,

• it is hierarchical, being built from simpler functions,

• it is static and nonrepetiti ve,

• it operates on whole conceptual units, not words,

• it incorporates no data; it is completely general, it works for any pairs of

conformable vectors,

• it does not name its arguments,

• it employs forms and functions that are generally useful in many other

programs.

The functional programs are computationally complete: any function can be expressed

using those that are already defined. The most important elements of functional

programming are referential transparency, strong typing and type inference,

polymorphism, higher-order functions, pattern matching, and lazy evaluation. These

elements are explained in the following subsections. First, we explain categorical

combinators - the background for the point-free style of programming.

5.2.2 Categorical combinators

Categorical combinators are functions that reflect important concepts from category

theory, thus enabling point-free style programming - description of a function

exclusively in terms of functional composition. The combinators used in later chapters

are described: categorical product, conditionals, and currying.

Methodology: Algebraic specifications 66

Categorical product, (see Figure 2.6) known as “cross-product” or “pairing” of two

functions over a single argument is described with the following functions:

pair (f, g) a = (f a, g a)
outl (a, b) = a
outr (a, b) = b

These functions are related by the following properties

outl . pair (f, g) = f
outr . pair (f, g) = g

A pair of functions can be applied to a pair of arguments as well:

cross (f, g) (a, b) = (f a, g b)

The function cross can be expressed as composition of basic functions:

cross (f, g) = pair (f . outl, g . outr)

Some additional auxiliary combinators, related to the categorical product, are defined to

simpli fy manipulation of functions: swap, assocl, assocr.

swap (a,b) = (b,a)

assocl (a,(b,c)) = ((a,b),c)

assocr ((a,b),c) = (a,(b,c))

The categorical product covers the cases when both functions are applied on an

argument. The conditional operator covers the case when only one of the two functions

is applied on an argument, depending on a predicate, as in the McCarthy conditional

form (p � f, g) for writing conditionals. The conditional combinator is defined as:

cond p (f, g) a = if (p a) then (f a) else (g a)

Conditions can be combined with the functions meet and join. Both functions originate

from the lattice theory: meet is written as ∩, and join is written as ∪. The signature of

both functions is:

meet, join :: (a -> Bool, a -> Bool) -> a -> Bool

The function meet returns True if and only if the second argument satisfies both

conditions (relational and). The function join returns True if the second argument

satisfies at least one condition (relational or):

meet ((>2),(<4)) 5 = False

join ((>2),(<4)) 5 = True

Methodology: Algebraic specifications 67

Functions of more than one argument can be defined in one of two basic styles: either

by pairing the arguments, as in

plus (a, b) = a + b

or by currying, as in

cplus a b = a + b

The difference between plus and cplus is just one of type:

plus :: Num a => (a, a) -> a

cplus :: a -> a -> a

The function curry (after logician Haskell B. Curry) converts a non-curried function

into a curried one, and the function uncurry does the inverse:

curry f a b = f (a, b)

uncurry f (a,b) = f a b

Curried functions are common in functional programming, because they usually lead to

fewer brackets. We will , however, follow the advice from Bird (Bird and de Moore

1997) and use uncurried functions in cases when it leads to clearer definitions. The

reason is that the product type (a,b) is a simpler object than the function type a -> b in

an abstract setting.

5.2.3 Referential transparency

One of the properties of functional languages that are lost when side effects are

introduced is referential transparency. The term referentially transparent refers to the

style of programming where “equals can be replaced by equals” (Hudak, 1989, p.362).

For example, in the expression (the valid Haskell syntax):

f x y = (a + 1) * (a + 2)

 where a = (x + y)/2

the application (x+y)/2 created by the where expression may be substituted for any free

occurrence of a such as in (a+1)*(a+2) . The substitution is possible because an

expression (in our case the local definition of a) always denotes the same value. This is

only guaranteed in the absence of side effects.

Referential transparency allows mathematical reasoning based on substitutions

(equational reasoning). It permits mathematical proofs of program behavior, and is

useful in writing and debugging programs.

Methodology: Algebraic specifications 68

5.2.4 Strong typing

Every object in a computer program has a type. The fundamental purpose of a type

system is to prevent the occurrence of execution errors during the running of a program

(Cardelli 1997). With the help of a type inference mechanism types of expressions can

be inferred, when littl e or no type information is given explicitly (Cardelli and Wegner

1985; Milner 1978). For example, given some predetermined types (e.g., constants 1

and 2 are of the type Int), a type inference mechanism can logically deduce types of

expressions (e.g., deducing from "x=1+2" that x is of the type Int).

The languages in which types are checked during program compilation are called

strongly typed languages. The languages in which type checking is performed during

program execution are called untyped languages. Miranda, ML, and Haskell are

strongly typed languages, whereas LISP and Basic are untyped languages. Haskell

support writing large program fragments where type information is omitted; the type

system of Haskell automatically assigns types to such program fragments.

5.2.5 Polymorphism

A language is said to be polymorphic if its values and variables may have more than

one type. A polymorphic function is a function that can be applied to arguments of

different types. A polymorphic type is a type whose operations can be applied to other

types. An example of a polymorphic function is addition of integers or floating

numbers1.

When the name of an operation is overloaded with two meanings it is ad-hoc

polymorphism or overloading. In Haskell l anguage, we have parametric polymorphism,

since overloaded functions may be only applied to a predetermined range of types. How

this is realized in Haskell -li ke languages is explained in Section 5.3.3.

5.2.6 Higher-order functions

The source and target types of functions in functional programming are not restricted in

any way: functions can take any value as argument and yield any value as result. In

1 In Haskell , the infix operator (+), with the signature a->a->a, is a member of the type class Num,

which is, among other types, defined over the types Int and Float. Therefore, (+) 1 2 yields 3, (+) 1.0 2.0

yields 3.0.

Methodology: Algebraic specifications 69

particular, these values may themselves be functions. Hence, a higher-order function is

every function, which has functions as its arguments or its result.

A mathematical example is the derivation function, which takes a function as the

argument and yields its derivative (which is a function, too) as the result. In section 3.1,

we have already seen the functional composition (.) - the most often cited example of

higher-order functions in functional programming.

The standard example, the function map converts a function operating on elements

to a function operating on lists of elements. Elements of li sts are enclosed in square

brackets and separated by commas. The type of map is given by:

map :: (a -> b) -> ([a] -> [b])

The source of map is a function of type (a - > b) , and the target is again a function

having the type ([a] -> [b]) . For example:

map sqrt [1,4,9] = [1,2,3]

Another example is the function foldr (fold right), which recursively applies the given

function on the result of the preceding application to the elements of a li st. The informal

description of foldr:

 foldr f a [x1, x2, ..., xn] = f x1 (f x2 ... (f a xn)...))

The type of foldr is given by:

foldr :: (a -> b -> b) -> b -> [a] -> b

An example is the summing of all elements in a list of integers. The function is (+), the

start value is 0.

foldr (+) 0 [3,6,10] = 19

The third standard higher-order function is the function filter, which returns the sublist

of those elements of a li st which satisfy the given predicate. The type of filter is given

by:

filter :: (a -> Bool) -> [a] -> [a]

For example, if the predicate is (<5) having the type (Int -> B ool) , filtering the list of

the first ten natural numbers yields:

filter (<5) [1,2,3,4,5,6,7,8,9,10] = [1,2,3,4]

The higher-order function flip swaps the arguments of a function:

flip f a b = flip f b a

flip (-) 3 2 = (-) 2 3 = -1

Methodology: Algebraic specifications 70

5.2.7 Pattern matching

In order to define new functions in functional programming, a programmer can choose

between two possibiliti es: conditional equations or pattern matching. An example for a

conditional equation is the following definition of standard factorial function:

fac n = if n = 0 then 1 else n * fac (n-1)

The same effect can be achieved by pattern matching:

fac 0 = 1

fac n = n * fac (n-1)

Pattern matching is one of the cornerstones of an equational style of definition. It leads

to a cleaner and more readily understandable definition than a style based on conditional

equations.

5.2.8 Lazy evaluation

Lazy (non-strict) evaluation is a technique of evaluating expressions that has two

properties: no expression is evaluated until it s value is needed, and no shared expression

is evaluated more than once. The first of these ideas is ill ustrated by the following

function:

ignoreArgument x = 3

Since the result of the function "ignoreArgument" does not depend on the value of its

argument (x), that argument will not be evaluated. Shown here, the evaluation of the

argument (1/0) gives 3.

5.3 Haskell and Gofer

A non-strict, lazy functional programming language Haskell , named after the logician

Haskell Curry, is now widely regarded as the language of choice among lazy functional

programming languages (Bird 1998). Its standardization is supported by the scientific

community (Peterson et al. 1997), and the development is promising. The main

impediment to its wider use in the past was the lack of simple portable interpreter of a

huge Haskell compiler.

Gofer interpreter (Jones 1991) is an experimental dialect of Haskell . In addition to

standard functionali ty of Haskell , Gofer supports multi -parameter type classes, a very

important feature for complex modeling. Gofer is small , portable, stable, simple to learn

Methodology: Algebraic specifications 71

and use, and nevertheless powerful functional programming tool. These are the most

important reasons for its popularity. Recently, Haskell Users' Gofer System (Hugs)

became available, which unifies certain advantages of Gofer with conformity to Haskell

standard. We decide to use Gofer for this thesis because of its stabili ty - the version of

Hugs matching the Gofer features is still i n the testing phase.

Since Haskell i s standardized, we describe its syntax and semantics. Each usage of

Gofer features that differs from the standard Haskell will be marked. Further

information about the basics and advanced topics of functional programming in Haskell

can be found in the recent textbooks on that topic (Bird 1998), (Thompson 1999).

5.3.1 Layout rule

Readabili ty of Haskell code is further improved by the layout rule - the level of

indentation indicates the structure of a program. Non-indented lines represent top levels

of a Haskell program. Every indentation shows that the indented line actually continues

a previous, less-indented line. Equally indented lines share the same level in the

structure. This rule allows the programmer to write long lines of code simply by

breaking the line and indenting the rest and reduces the need for parentheses (like

begin/end in a Pascal-li ke language.

5.3.2 Predefined and user-defined data type constructors

An identifier in Haskell begins with a letter of the alphabet optionally followed by a

sequence of characters, each of which is either a letter, a digit, an apostrophe (') or an

underbar (_). Identifiers representing functions or variables must begin with a lower

case letter (identifiers beginning with an upper case letter are used to denote a special

kind of function called a constructor function.

Several data types are predefined in Haskell standard prelude: integer (Int) ,

floating point numbers (Float) , Boolean values (Bool) , characters (Char) , li sts ([a]),

strings (String), and tuples (for example, (a,b) is a pair).

1 :: Int

1.0 :: Float

True, False :: Bool

'a' :: Char

Methodology: Algebraic specifications 72

If a is a type then [a] is a li st whose elements are values of type a. Lists can be

arbitrarily long, but all elements must be of the same type. There are several ways of

writing list expressions:

• the simplest list of any type is the empty list, written [] ;

• non-empty lists can be constructed either by explicitly li sting the members of

the list (for example: [1,3,10]) or by adding a single element onto the front of

another li st using the (:) operator (for example: 1 : 3 : 10 : []).

A string is treated as a list of characters and the type String is simply an abbreviation for

the type [Char] . Strings are written as sequences of characters enclosed between

quotation marks (").

A product type (tuple) consists of a predefined number of elements of any kind. The

examples are:

(1, 'a') :: (Int, Char), -- pair

('a', 2, 1.0) :: (Char, Int, Float) -- triple

("Name",[1,2,21],(2,3),1) :: (String,[Int],(Int,Int),Int) -- quadruple

User-defined data types are declared by the keyword data together with type

constructors. A type constructor is a function that constructs a new data type from other

predefined data types. Constructors start with capitals. In the next example, the new data

type Person is introduced by applying the constructor function P to an integer and a

string.

data Person = P Int String

A sum type (enumeration) is represented as a series of values separated by a "| ". The

standard example is the definition of the days of the week:

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

A type synonym is an alias for an already existing data type. It is introduced by a

keyword type. The new type ID behaves as the predefined type Int in our program.

type ID = Int

There are other predefined types and methods of introducing new types, but not relevant

for the purpose of this thesis. Complete reference of Haskell data types and type

synonyms can be found in (Peterson et al. 1997).

Methodology: Algebraic specifications 73

5.3.3 Classes and instances

A type class can be thought of as an algebra of types whose elements are called

instances of the class (Jones 1991). It is used to model the behavior of a data type or a

parameterized family of data types (Jones et al. 1997). In this section, we deal with

simple classes that have a single parameter. Classes with multiple parameters are

represented in Section 5.3.4 below.

To test the specifications, we need a representation and an implementation. In a

class based functional programming language, these concepts are separated, leading to

the following three notions: class, data, and instance. These three notions correspond to

specification, representation and implementation of an abstract data type.

A class consists of a set of operations expressed by functions applied to a type (or

types). In the class declaration, the first line (called the class header) states which class

is defined, li sts the parameters and may list conditions for the parameters. In the

following lines the signatures of operations are given, describing the types of their

arguments and of the result. In a Haskell signature, data types and type parameters

before the last arrow ‘ -> ‘ represent the arguments types, and the last one represents the

type of the result.

The type class Eq is a simple and useful example, whose instances are precisely

those types whose elements can be tested for equali ty. The declaration of this class

given in the standard prelude is as follows:

class Eq a where

 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)

The third line of the class declaration provides a default definition of the (/=) operator in

terms of the (==) operator (similar to derived operations in terms of algebra). Thus, it is

only necessary to give a definition for the (==) operator in order to define all of the

member functions for the class Eq. It is possible to override default member definitions

by giving an alternative definition as appropriate for specific instances of the class.

Methodology: Algebraic specifications 74

The data representation is constructed from predefined representations for basic

types: integers (Int), floating point numbers (Float), and characters (Char). These can

be combined as lists (a variable number of components of the same type) or records (a

fixed number of components of different types). For most classes the representation is

some sort of record, here for example consisting of a string and two integers:

data Point = Pt String Int Int

where a String represents the identifier of a point and the Ints are x and y coordinates.

Instances connect the data types with classes: they explain how the operations defined

in a class are carried out using this particular representation. In our example, functions

(==) and (/=) are polymorphic: they are applicable for each type that is an instance of

the class Eq. We can freely choose the way in which points are compared for equali ty,

for example just by testing for similarity of name:

instance Eq Point where

 (==) (Point n1 x1 y1) (Point n2 x2 y2) = (==) i1 i2

Finally, we need the physical realization of our model to test if the intended meaning is

captured. These are created and initialized with the declarations like:

p1, p2, p3 :: Point

p1 = Pt 3 4

p2 = Pt 1 4

p3 = Pt 3 4

We can see that p1 == p2 gives False , p1 == p3 gives True , and so on. Frank and

Kuhn used the similar approach to compare different approaches to point equali ty in the

North-American Open GIS Consortium, where different systems cooperating in a

heterogeneous environment can use different semantics in their equali ty operation

(Frank and Kuhn 1995).

Methodology: Algebraic specifications 75

5.3.4 Classes with multiple parameters

Gofer is the first language to support the use of type classes with multiple parameters

(Jones 1995), and thus the modeling of multi -sorted algebras. This feature allows

further hiding of implementation issues from specification of functions. It is possible,

for example, to define operations on two-dimensional points without specifying how

coordinates are expressed (as integers or as floats):

class Points p a where

 getX :: p a -> a

 getY :: p a -> a

A representation (datatype Point) is also parameterized in the similar way.

data Point a = Pt a a

Finally, an implementation of the class Points on the datatype Point is defined as

follows:

instance Points Point a where

 getX (Pt b c) = b

 getY (Pt b c) = c

The type of the result is not fixed and depends on the type of argument. If the parameter

of Point is an integer, the result of the function x will be an integer.

The concept of inheritance is modeled within the context of a class. In addition,

with multi -parameter classes, inherited behavior can be specified for each parameter.

For example, we made no restrictions on the type of coordinates for the class Points

above - the program would accept a string or character as well as any user-defined

datatype. If we want only numbers as coordinates, we must add the context to the class

declaration:

class Num a => Points p a where

 getX :: p a -> a

 getY :: p a -> a

The types for coordinates must be instances of the class Num. Any type that is not an

instance of Num (e.g., a character) causes an error.

The testing examples are:

p4 :: Pt Int

p5 :: Pt Float

p4 = Pt 3 4

p5 = Pt 4.0 5.0

Then, getX p4 gives 3 (Int), getY p5 gives 5 (Float).

Methodology: Algebraic specifications 76

The multi -parameter classes are the key prerequisite for modeling many-sorted

algebras. This advanced feature of Gofer is exploited in the rest of this thesis to hide

implementation details (e.g., of representation of objects) in developing specification on

the high level of abstraction (e.g., databases as collections of objects).

5.4 Summary

In this chapter, we presented the formalization method used in this thesis: algebraic

specifications written in the functional programming language Gofer. The definitions of

the main terms in algebraic specifications are given and clarified on simple examples.

The advantages of executable specifications are readabili ty, easy understanding and

testing, and rapid prototyping.

The characteristics of the functional programming language Haskell are described

with special attention paid to properties present in Gofer. Besides the most important

syntax rules, which are necessary for reading the rest of this thesis, we stressed the more

advanced concepts such as higher-order functions, type classes and classes with

multiple parameters. These concepts are the building blocks for the formalization of an

object-oriented temporal database in the next chapters.

Spatiotemporal Database in Model Implementation 77

6. SPATIOTEMPORAL DATABASE IN MODEL IMPLEMENTATION

The elements of a spatiotemporal database and the design decisions for a temporal

model, described in Chapter 3, are formalized here, based on formalization concepts

explained in Chapter 5. The result is a full -fledged executable model of a temporal

database, which will serve as a starting point for modeling li festyle operations in

Chapter 7.

We begin with the specification of the database elements: objects with attributes

and identifiers, value sets, values and relations, with a brief description of the entity-

relationship data model (Chen 1976) introduced in Chapter 3, and continue with the

formalization of snapshots and operations on full temporal databases. The second step is

the choice of representation for abstract definitions given in the first step: we define

appropriate datatypes for physical representation of database elements. In the third step,

we connect the abstract specification with the representation in an implementation. The

specification is applied on a simple example with queries that test if the model behaves

as intended.

At the end of chapter, a formal description of transformation functions between the

object versioning and the database versioning is given.

6.1 Data model for a temporal database

A data model is a model of the structure of the information system, independent of

implementation details, and used as a basis for employing algorithms on the data. The

goal of this section is to develop a formal model of a temporal database that is

independent on implementation of objects and object types. We achieve such

independence by attaching two additional parameters (datatypes for objects and object

types) to all collections (snapshots and temporal database). Other elements of the model

(attributes, value sets, values, identifiers, and relations) are not parameterized for the

sake of clarity and simplicity. The data model is based on Chen's entity-relationship

model (Chen 1976).

Spatiotemporal Database in Model Implementation 78

6.1.1 Object identifiers

Identifiers are modeled as an abstract class with the operations for producing the next

(new) identifier (nextID), for observing the identifier (getID), and for the comparison of

two identifiers (sameID). The operation for comparison of equali ty is inherited from the

class Eq. For every implementation of the class IDs there must be an equality test for

the datatype. Note that there is no constructor operation for setting an identifier to the

abstract datatype. Identifiers are generated automatically by the function nextID, and

cannot be arbitrarily changed for any implementation.

class Eq i => IDs i where

 nextID :: i -> i

 getID :: i -> ID

 sameID :: i -> i -> Bool

 sameID i j = getID i == getID j

For simplicity, the identifiers are implemented as integers. Other structures would be

possible. Natural numbers form an ordered set with equali ty defined. Peano's axioms

guarantee that each new identifier is always different from all i dentifiers that are already

issued, because n + 1 > n.

type ID = Int

instance IDs ID where

 nextID i = i + 1

 getID = id

The identifier of an object is unique for a whole database, because successors are

always different. The identifier cannot be arbitrarily changed: it is not mutable. The

source of new identifiers - the set of natural numbers - is theoretically infinite: old

identifiers are not re-used. Therefore, all three conditions for identifiers, mentioned in

Section 3.2.2, are fulfill ed: uniqueness, immutabili ty and non-reusabili ty.

The class IDs can be instantiated not only on the object datatype, but on a collection

of objects as well , in order to determine the latest identifier issued in a snapshot or a

database.

6.1.2 Attributes, values sets and values

Attributes of objects are represented as value sets with assigned predefined types of

values. According to Chen, an attribute can be formally defined as a function which

maps from an entity set into a value set or a Cartesian product of value sets. (Chen

Spatiotemporal Database in Model Implementation 79

1976). Examples of attributes are a value set Name with a value of String, or a value set

Age with a value of Int.

We model the attributes as the class Attrib with a constructor attrib, and observers

getValueSet and getValue, that return the value set and value, respectively. The

operation setValue updates the value of an attribute. Finally, the operation selectAtt

extracts an attribute with the given value set.

class Attribs a where

 attrib :: (ValueSet, Value) -> a

 getValueSet :: a -> ValueSet

 getValue :: a -> Value

 setValue :: Value -> a -> a

 selectAtt :: ValueSet -> [a] -> a

 selectAtt s = head . filter ((s==).getValueSet)

The number of value sets is finite for a specific application domain. We define the

datatype ValueSet that will cover the demonstrative purposes.

data ValueSet = Name | Age | Preds | Alive | Amount | Capacity | Weight

Chen assumed that there should exist direct representations of values (Chen 1976).

Thus, values should be basic datatypes: characters, integers, and floats. We must wrap

different types of values in a single datatype, because we need a list representation of

attributes, and lists accept only elements having equal types.

data Value = Vs String | Vb Bool | Vi Int | Vf Float | Vp [Int]

There is a predicate associated with each value set to test whether a value belongs to it.

This is modeled with the operation checkV in the class ValueSets with two parameters

and an implementation over the datatypes ValueSet and Value. Usually, only a single

type of value can be assigned to a particular type of value set, whereas each type value

serves for several types of value sets.

class ValueSets vs v where

 checkV :: (vs, v) -> Bool

The operations for wrapping and unwrapping the basic types from and to the value

datatype are defined in the class Values with the operations wrapValue and

unwrapValue.

class Values v a where

 unwrapValue :: v -> a

 wrapValue :: a -> v

Spatiotemporal Database in Model Implementation 80

Finally, we give the representation of attributes. It will be needed in definitions of the

abstract specification of objects in the following subsection.

data Attrib = Att (ValueSet, Value)

After definition of identifiers, value sets and values, we proceed with the fully abstract

definition of objects - the "first-class" citizens in our model.

6.1.3 Objects

The class representing the abstract data type of objects is parameterized in the object

type and defines the operations for creation of a new object (makeObj), attaching the

attributes to the object (setAttribs) and retrieving the object type and the list of attributes

(getObjtype and getAttribs) respectively. These four operations are dependent of a

particular representation of object datatype. The next four operations (for adding and

updating a single attribute or several attributes at once) are defined by already known

operations and do not depend on a particular implementation. Their default definitions

are valid for every implementation of class Objects.

class IDs (o t) => Objects o t where

 makeObj :: (t, ID) -> o t

 setAttribs :: [Attrib] -> o t -> o t

 getObjType :: o t -> t

 getAttribs :: o t -> [Attrib]

 addAtt :: ValueSet -> Value -> o t -> o t

 addAtt s v = uncurry setAttribs . pair (f . getAttribs, id)

 where f = cons . pair (const (attrib (s, v)), id)

 addAtts :: [(ValueSet, Value)] -> o t -> o t

 addAtts = (flip.foldr) (uncurry addAtt)

 updateAtt :: Eq ValueSet => ValueSet -> Value -> o t -> o t

 updateAtt s v = uncurry setAttribs . pair (f . getAttribs, id)

 where f = updateBy ((s==).getValueSet) (attrib (s, v))

 updateAtts :: Eq ValueSet => [(ValueSet, Value)] -> o t -> o t

 updateAtts = (flip.foldr) (uncurry updateAtt)

The class IDs is mentioned in context, ensuring that for each implementation of the

class Objects an implementation of the class IDs must exist. All functions are defined

without the explicit naming of all their arguments, in a categorical point-free style. The

functions uncurry, pair, flip, and foldr are explained in Chapter 5. The function id is the

standard identity function; cons is the uncurried version of the list constructor (:) with

the following meaning: cons (1, [2,3]) = [1,2,3] ; const is the constant function - it takes

two arguments and return the first one. The function updateBy replaces the elements of

Spatiotemporal Database in Model Implementation 81

a list that satisfy the given criteria with a given element: updateBy even 6 [1,2,3,4] =

[1,6,3,6] .

6.1.4 Relations

Relations are represented as tuples consisting of a relation type and a pair of object

identifiers. For the sake of the simplicity of notation, we introduce a type synonym Rel

for representing relations:

type Rel = (RelType, (ID, ID))

The datatype for different relation types is RelType. In this chapter we will need only a

spatial relation "On". The relation PartOf will be exploited in subsequent chapters.

data RelType = On | PartOf

A relation should be established only between appropriate types of objects, e.g., an

engine cannot be a part of a table, but can be a part of a car. This is modeled with a class

Relatable.

class Relatable t where

 relatable :: (RelType, (t, t)) -> Bool

The implementation of the operation relatable depends on the object type t.

6.1.5 Static database - a snapshot

Objects and relationships at a particular moment build a snapshot - a static database. A

snapshot is modeled as an abstract datatype with the operations for manipulating objects

and relations. Operations dependent on an implementation are: observers getObjects and

getRelations, constructors setObjects and setRelations.

The operation liftS transforms a function that operates on a list of objects to a

function that operates on the snapshot abstract type. For example, if a function head

returns the first object from a list of objects, the function headS = liftS head will return

the first object from a snapshot containing the list of objects. The similar operation to

liftS is liftR, which "li fts" the function over a list of relations to a function over a

snapshot containing the list of relations.

class (Objects o t, IDs (s o t), Relatable t) => Snapshots s o t where

 getObjects :: s o t -> [o t]

 getRelations :: s o t -> [Rel]

 setObjects :: [o t] -> s o t -> s o t

 setRelations :: [Rel] -> s o t -> s o t

Spatiotemporal Database in Model Implementation 82

 liftS :: ([o t] -> [o t]) -> s o t -> s o t

 liftS f = uncurry setObjects . pair (f . getObjects, id)

 liftR :: ([Rel] -> [Rel]) -> s o t -> s o t

 liftR f = uncurry setRelations . pair (f . getRelations, id)

A snapshot is a static database describing the universe of discourse in a particular

moment. It is suff icient to define the representation of the snapshot datatype as a tuple

consisting of a newest identifier, a li st of objects and a list of relations:

data Snapshot o t = Snap ID [o t] [Rel]

The datatype for snapshots is parameterized for objects and object types. In order to

represent change between the states in a database, a collection of snapshots is necessary.

6.1.6 Temporal database - a collection of snapshots

The class TDBs defines the abstract datatype of a collection of snapshots with only two

operations: the observer getSnapshots, which retrieves the list of snapshots, and the

constructor setSnapshots, which changes the list of snapshots.

class TDBs td o t where

 getSnapshots :: td o t -> [Snapshot o t]

 setSnapshots :: [Snapshot o t] -> td o t -> td o t

The crucial database operations are specified in the class Databases. All of these

operations are polymorphic and can be applied either on a static database (a single

snapshot) or on a collection of snapshots (abstractly defined in the class TDBs).

The operation newObj creates a new object in a database. Note that the only

argument for this function is the object type (t). The identifier will be assigned

automatically and cannot be changed by the user. The function deleteObj removes an

object from the database; updateObj applies a function on an object that has the given

identifier; existObj is a test if the object with the given identifier still exist; selectObj

retrieves object from a database; queryObj returns a specific property of the object with

the given identifier. The function get is a shortcut for retrieving the value of a given

value set (the first argument of get) of an object (represented by its identifier). The

default definition of get depends on the implementation of the function queryObj.

Functions over relations have the following meanings: addRel puts the given

relation into a database; deleteRel removes a relation from a database; addRels adds

several instances of the single relation type involving a single identifier (for example,

several books are put on a table); deleteRels deletes all relations of a given type and a

single identifier (for example, all objects that are on a particular table); deleteRelsID

Spatiotemporal Database in Model Implementation 83

removes all relations the given object participated in (if an object is removed from the

database); getRels retrieves all i dentifiers that participate in a particular relation type

with a given identifier; getConvRels retrieves converse relations.

class Snapshots d o t => Databases d o t where

 newObj :: t -> d o t -> d o t

 deleteObj :: ID -> d o t -> d o t

 updateObj :: (o t -> o t) -> ID -> d o t -> d o t

 existObj :: ID -> d o t -> Bool

 selectObj :: ID -> d o t -> o t

 queryObj :: (o t -> x) -> ID -> d o t -> x

 queryObjs :: (o t -> x) -> [ID] -> d o t -> [x]

 queryObjs q is = liftM (queryObj q) is

 get :: ValueSet -> ID -> d o t -> Value

 get a = queryObj (getValue . selectAtt a . getAttribs)

 addRel :: ID -> RelType -> ID -> d o t -> d o t

 addRels :: RelType -> [ID] -> ID -> d o t -> d o t

 deleteRel :: RelType -> (ID,ID) -> d o t -> d o t

 deleteRels :: RelType -> ID -> d o t -> d o t

 deleteRelsID :: ID -> d o t -> d o t

 getRels :: RelType -> ID -> d o t -> [ID]

 getConvRels :: RelType -> ID -> d o t -> [ID]

-- for queries (observers)

 liftQ :: TDBs d o t => (Snapshot o t -> x) -> d o t -> x

 liftQ f = f . head . getSnapshots

-- for updates (constructors)

 liftU :: TDBs d o t => (Snapshot o t -> Snapshot o t) ->d o t->d o t

 liftU f = h . cross (g, id) . pair (getSnapshots, id)

 where h = uncurry setSnapshots

 g = cons. pair (f . head, id)

-- for operations on a list of identifiers (map)

 liftM :: (ID -> d o t -> x) -> [ID] -> d o t -> [x]

 liftM f is = map (uncurry f) . cpl . pair (const is, id)

The "li ft" operations have default definitions: liftQ transforms any query on a snapshot

datatype to a query on an abstract type of temporal database; liftU transforms an update

functions on a snapshot to an update function on an abstract type of temporal database;

liftM applies a function of a single ID to a list of identifiers, returning a list of queried

values. The great benefit of "li ft" operations is that we have to define the

implementation of operations only for snapshots.

The operation liftU is crucial for operations that create or change object identifiers.

First, the collection of snapshots together with the complete database is retrieved with

pair (getSnapshot,id), and then the first element of the resulting list of snapshots (the

Spatiotemporal Database in Model Implementation 84

function head retrieves the first element of a li st) is updated and added on the top of the

unchanged original li st (with the function g). The resulting list of snapshots is attached

back to the original database. Thus, each update operation append a new snapshot to

already existing list. There are no destructive updates. The temporal order of events is

stored as the ordering of the snapshots.

So far, we specified all abstract classes necessary for a full -fledged temporal

database. The model for representation of objects, object types, and temporal databases

is presented in the next section.

6.2 Representation of objects, object types and temporal databases

The representations for attributes, values, value sets, relations, identifiers, and snapshots

are already given. In this section, we give possible representations for parameters of

classes in the previous section: objects and object types. Finally, a possible

representation of temporal database is given.

An object will be represented as a tuple consisting of an identifier, an object type,

and a list of attributes. The datatype Object is parameterized with respect to the object

type. The same datatype for objects is retained throughout this thesis.

data Object t = Obj ID t [Attrib]

 Object types are represented as enumerated datatype expressing a particular needs of

the application domain. In this chapter, we present a simple example of a database

consisting of two types of solid objects (a block world). In subsequent chapters, the

parameterization of the database with respect to object types will be exploited for

representation of various object classes.

data ObjType = Book | Table

Finally, our temporal database is the collection of snapshots: a simple datatype

consisting of a li st of snapshots.

data TDB o t = T [Snapshot o t]

The datatype TDB has two parameters: the first (o) for the object datatype and the

second (t) for the datatype of object types. Thus, such representation is capable of

representing various objects and object types without changing its implementation.

Spatiotemporal Database in Model Implementation 85

6.3 Implementation of the data model

In this section, we show an implementation of a simple, yet complete temporal database

with two object types (books and tables) connected with a single relation (On). We start

with the implementation by connecting the classes with datatypes in order the latter

appeared in Section 6.1.

6.3.1 Implementation of values, value sets, and attributes

The implementation of the class ValueSets over datatypes ValueSet and Value is

necessary to assure that values are always assigned to appropriate value sets.

instance ValueSets ValueSet Value where

 checkV (Name, (Vs a)) = True

 checkV (Age, (Vi a)) = True

 checkV (Amount, (Vf a)) = True

 checkV (Capacity, (Vf a)) = True

 checkV (Preds, (Vp a)) = True

 checkV (Alive, (Vb a)) = True

 checkV (Weight, (Vf a)) = True

 checkV _ = False

In this chapter, we will use only the value set Name. Therefore, the wrappers are defined

only for string values.

instance Values Value String where

 unwrapValue (Vs s) = s

 wrapValue s = Vs s

The implementation of operations in the class Attribs over the datatype Attrib:

instance Attribs Attrib where

 attrib = cond checkV (Att, error "incompatible value types")

 getValueSet (Att (s,v)) = s

 getValue (Att (s,v)) = v

 setValue v (Att (s,u)) = attrib (s,v)

The implementation of the constructor function attrib checks the compatibili ty of its

arguments (a value set and a value), and returns an error message if the types are not

compatible.

6.3.2 Implementation of objects and relations

The class Objects can be instantiated over the parameterized datatype Object t without

concrete implementation of object type t.

Spatiotemporal Database in Model Implementation 86

instance Objects Object t where

 makeObj (t,i) = Obj i t []

 getObjType (Obj i t as) = t

 getAttribs (Obj i t as) = as

 setAttribs as (Obj i t bs) = Obj i t as

Since the class IDs was in the context of the class Objects, it must be instantiated for

Object t, too.

instance IDs (Object t) where

 sameID a b = sameID (getID a) (getID b)

 getID (Obj i t as) = i

The representation of relations is already defined in Section 6.1.4, but the class

Relatable should be implemented over the datatype ObjType. The only valid relation in

our simple database is between object types Book and Table (in that order), and its type

is On.

instance Relatable ObjType where

 relatable (On, (Book, Table)) = True

 relatable _ = False

The class Relatable can have different instantiations for different representation of

object types. We will t ake advantage of this in the following chapters.

6.3.3 Implementation of snapshots

The datatype Snapshot is an instance of classes IDs, Snapshots, and Databases. The

first instance implements the most important operation of all: nextID. The new

identifiers are issued by a snapshot and triggered each time a new object is created. The

observer getID retrieves the latest identifier issued.

instance IDs (Snapshot o t) where

 getID (Snap i os rs) = i

 nextID (Snap i os rs) = Snap (nextID i) os rs

The instance of the class Snapshots is simple:

instance Snapshots Snapshot o t where

 getObjects (Snap i os rs) = os

 setObjects os (Snap i ps rs) = Snap i os rs

 getRelations (Snap i os rs) = rs

 setRelations ts (Snap i os rs) = Snap i os ts

All update operations in a database are actually defined over a snapshot as the instance

of the class Databases over the parameterized type Snapshot o t. The operation newObj

that creates a new object in a snapshot triggers the nextID for a snapshot and produces a

new object with the new identifier. The operation deleteObj removes all relations the

Spatiotemporal Database in Model Implementation 87

object participated in. Other operations over objects have the behavior already explained

in Section 6.1.6.

instance Databases Snapshot o t where

 newObj t = nextID . uncurry setObjects .

 cross (cons . pair (makeObj.outl, outr), id) .

 cross (assocl. pair (const t, id), id) .

 pair (cross (getID, getObjects), outr) . pair (nextID, id)

 existObj i = cond p (false, true) where

 p = null . filter ((i==).getID) . getObjects

 deleteObj i = liftS f . liftR g where

 f = filter ((i/=).getID)

 g = filter (meet ((i/=).outl.outr, (i/=).outr.outr))

 updateObj f i = cond (existObj i) (g, h) where

 g = liftS (map (cond ((i==).getID) (f, id)))

 h = error ("the object " ++ show i ++ " does not exist.")

 selectObj i = (cond existObj i) (f, g) where

 f = head . filter ((i==).getID) . getObjects

 g = error ("the object " ++ show i ++ " does not exist.")

 queryObj q i = q . selectObj i

 queryObjs q is = liftM (queryObj q) is

 addRel j t i = cond p (f, g) where

 p = relatable . pair (const t, pair (h i, h j))

 h a = queryObj getObjType a

 f = liftR(cons . pair (pair (const t, pair (const i,const j)),id))

 g = error "types are not relatable."

 addRels t is j = (flip . foldr) (addRel j t) is

 deleteRel t is = liftR (filter (join' ((t/=).outl, (is/=).outr)))

 deleteRels t i = liftR(filter (join' ((t/=).outl, (i/=).outr.outr)))

 deleteRelsID i = liftR(filter(meet((i/=).outl.outr,(i/=).outr.outr)))

 getRels t i = map (outl.outr) . filter p . getRelations where

 p = meet ((t==).outl, (i==).outr.outr)

 getConvRels t i = map (outr.outr) . filter p . getRelations where

 p = meet ((t==).outl, (i==).outl.outr)

Among operations over relations, adding a new relation includes a check if the object

types are relatable. The function join' is relational or already described in Chapter 5 (the

apostrophe is added to avoid the name clash with the function join from the standard

Gofer prelude).

6.3.4 Implementation of a temporal database

The datatype TDB implements following classes from our model: IDs, TDBs, and

Databases. The instantiation of the class IDs enables the query about the latest identifier

Spatiotemporal Database in Model Implementation 88

in the whole database. Since the operation liftQ is necessary, the class Database must be

mentioned in context and an instantiation of the class Database over the datatype TDB

must be provided.

instance (Databases TDB o t) => IDs (TDB o t) where

 getID = liftQ getID

Further, the operations in the class TDBs are implement to enable retrieval and updating

of a li st of snapshots.

instance TDBs TDB o t where

 getSnapshots (T ss) = ss

 setSnapshots ss (T ts) = T ss

Finally, the implementation of the class Databases is surprisingly simple: all functions

are transformed with appropriate li ft operations to the functions operating on the latest

snapshot.

instance (TDBs TDB o t, Databases Snapshot o t)

 => Databases TDB o t where

 newObj t = liftU (newObj t)

 deleteObj i = liftU (deleteObj i)

 updateObj f i = liftU (updateObj f i)

 existObj i = liftQ (existObj i)

 selectObj i = liftQ (selectObj i)

 queryObj q i = liftQ (queryObj q i)

 addRel j t i = liftU (addRel j t i)

 addRels t is j = liftU (addRels t is j)

 deleteRels t i = liftU (deleteRels t i)

 deleteRelsID i = liftU (deleteRelsID i)

 getRels t i = liftQ (getRels t i)

 getConvRels t i= liftQ (getConvRels t i)

Thus, we finished with the implementation of our data model. All classes defined in

Section 6.1 are connected with the representation types. Details about implementation

of standard type classes (Eq, Text, Num) are omitted and can be found in the Appendix.

6.4 An example database

In this section, we show a full example of a simple temporal database. Behavior of all

functions introduced in data model is tested. The universe of discourse that serves as the

test-bed consists of two books named "bookA" and "bookB" and two tables named

"tableA" and "tableB". Beside the population of the database with these four objects, we

will t est the capabili ty of the model to prevent ill egal operations like putting an already

deleted book on the table.

Spatiotemporal Database in Model Implementation 89

First, we populate our database starting from an empty database td0 with the

following piece of code:

td0, td1, td2, td3, td4, td5, td6, td7 :: TDB Object ObjType

td0 = T [Snap 0 [] []]

td1 = foldr newObj td0 [Table, Table, Book, Book]

td2 = updateObj (addAtt Name (Vs "Book1")) 1 td1

td3 = updateObj (addAtt Name (Vs "Book2")) 2 td2

td4 = updateObj (addAtt Name (Vs "Table1")) 3 td3

td5 = updateObj (addAtt Name (Vs "Table2")) 4 td4

td6 = addRel (On, (1,3)) td5

td7 = addRel (On, (2,4)) td6

The result is the following state of the database (only the latest snapshot) represented

using a simple implementation of Gofer type class Text:

? liftQ show td7

Snapshot

 Latest ID =4

 Objects: [

 4 Table Attribs:[name = "Table2"],

 3 Table Attribs:[name = "Table1"],

 2 Book Attribs:[name = "Book2"],

 1 Book Attribs:[name = "Book1"]]

 Relations: [2 is on 4,1 is on 3]

Thus, we conclude that the operations newObj, updateObj, and addRel show the

intended behavior. Several tests can be performed on the final state td7 and we will

show possible actions and results as comments. For each test operation, the expected

type is specified explicitl y to avoid type errors. We use identifiers for referring the

objects, because identifiers are guaranteed to be unique. If unique names are given to all

objects, it would be possible to refer the objects in a more natural manner - by using

their names.

tst1, tst2 :: Bool

tst3 :: Object ObjType

tst4 :: Value

tst5 :: String

tst6 :: Object ObjType

tst7 :: [Rel]

tst8 :: TDB Object ObjType

tst1 = existObj 4 td7

-- True

tst2 = existObj 4 (deleteObj 4 td7)

-- False

tst3 = selectObj 4 (deleteObj 4 td7)

-- error: the object 4 does not exist.

Spatiotemporal Database in Model Implementation 90

tst4 = get Name 1 td7

-- Vs "Book1"

tst5 = unwrapValue (get Name 1 td7)

-- Book1

tst6 = selectObj 3 td7

-- Obj 3 Table [Att (Name,Vs "Table1")]

tst7 = liftQ getRelations (deleteRel On (1,4) td7)

-- [(On, (2,4))]

tst8 = addRel (On, (4,1)) td7

-- error: types not relatable.

The first test shows that the function existObj gives the expected result for an existing

object. The second and third test show that the deleted objects do not exist and cannot

be selected from the latest snapshot. Two examples of querying existing objects are

shown in tst4 and tst5. A successful selection of an object is shown in tst6. The last two

tests deal with relations: tst7 shows which relations remain in the database after a

successful deletion of an existing relation, and tst8 shows what happens if we attempt to

put a table on the book (a undefined relation).

6.5 Formal model of transformations between versioning techniques

In Section 3.3.2 we claimed that the transformations between two versioning techniques

(object versioning and database versioning) are lossless. We give the formal model for

transformations and show on a simple example that any transformation composed with

the inverse transformation return the original database.

6.5.1 Specification

All functions are defined in the class Groups, which has two parameters: t for

representation of time and o for representation of objects. The function toOV transforms

a database versioning model to an object versioning model. The function toDV is the

inverse operation to toOV. Both functions are composed in five steps explained in

Section 3.3.2: distribute, find, select, normalize, and concatenate.

class (Eq t, Eq o) => Groups t o where

-- (database versioning -> object versioning)

 distrTime :: [(t,[o])] -> [(o,t)]

 distrTime = concat . map cpl . map swap

 findObjs :: [(o,t)] -> [o]

 findObjs = nub . map outl

Spatiotemporal Database in Model Implementation 91

-- select times for given object

 selTimes :: (o, [(o,t)]) -> [(o,t)]

 selTimes = uncurry filter . cross (flip ((==).outl), id)

 normObj :: [(o,t)] -> (o,[t])

 normObj = pair (head . map outl, map outr)

 toOV :: [(t,[o])] -> [(o,[t])]

 toOV = map (normObj.selTimes) . cpl

 . pair (findObjs, id) . distrTime

-- the opposite case (object versioning -> database versioning)

 distrObjs :: [(o,[t])] -> [(o,t)]

 distrObjs = concat . map cpr

 findTimes :: [(o,t)] -> [t]

 findTimes = nub . map outr

-- select objects at given time

 selObjs :: (t,[(o,t)]) -> [(o,t)]

 selObjs = uncurry filter . cross (flip ((==).outr), id)

 normTime :: [(o,t)] -> ([o],t)

 normTime = pair (map outl, head . map outr)

 toDV :: [(o,[t])] -> [(t,[o])]

 toDV = map (swap.normTime.selObjs). cpl

 . pair (findTimes, id) . distrObjs

Beside several already seen functions, functions for Cartesian products (cpl and cpr)

and the function nub deserve additional explanation1.

6.5.2 Representation of time and objects

Time is represented with integers. Objects are simpli fied to a tuple consisting of an

identifier, an object type and a single attribute (color).

type Time = Int

data ObjX = Ob ID ObjT Color

data ObjT = House | Car

data Color = Red | Blue | White

6.5.3 Implementation

An instance of the class Eq is necessary for the datatypes ObjX and Color to compare

objects for equali ty:

1 Cartesian product left (cpl) pairs a list of values with a single value: cpl ([1,2,3],4)=[(1,4), (2,4), (3,4)].

Cartesian product right (cpr) pairs a single value with a list of values: cpr (4,[1,2,3])=[(4,1), (4,2), (4,3)].

The function nub removes duplicates from a list: nub [1,2,3,3,2]=1,2,3.

Spatiotemporal Database in Model Implementation 92

instance Eq ObjX where

 (==) (Ob i t c) (Ob j u d) = i == j && c == d

instance Eq Color where

 Red == Red = True

 Blue == Blue = True

 White == White = True

 _ == _ = False

Since all functions of the class Groups have default definitions, we need just to connect

the class with the representations for time and objects.

instance Groups Time Obj

In the next subsection, we test the model on the simple example mentioned in Section

3.3.2.

6.5.4 Examples

We construct the objects House and Car, and prepare a list of snapshots representing the

universe of discourse.

o1, o2, o3 :: ObjX

o1 = Ob 1 Car Red

o2 = Ob 1 Car Blue

o3 = Ob 2 House White

dv1, dv2 :: [(Time, [ObjX])]

dv1 = [(1, [o1]), (2, [o2,o3]), (3, [o2,o3]), (4, [o3])]

ov1 :: [(ObjX,[Time])]

ov1 = toOV dv1

dv2 = toDV ov1

The results of executing tests dv1, ov1, and dv2 are:

dv1 =

[(1,[redCar]),(2,[blueCar,whiteHouse]),

 (3,[blueCar,whiteHouse]),(4,[whiteHouse])]

ov1 =

[(redCar,[1]),(blueCar,[2,3]),(whiteHouse,[2,3,4])]

dv2 =

[(1,[redCar]),(2,[blueCar,whiteHouse]),

(3,[blueCar,whiteHouse]),(4,[whiteHouse])]

We can see that the application of the transformation function toDV after the

transformation function toOV yields the original database. The composition of

transformation functions is equal to the identity function. Transformations between two

versioning techniques are lossless.

Spatiotemporal Database in Model Implementation 93

6.6 Summary

An entity-relationship model of a working temporal database is formally described and

an executable specification is provided. The concepts of identifiers, attributes, value

sets, values, objects, snapshots, and temporal databases are formalized as classes in

Gofer. The object identifiers are issued by the system during the creation of new objects

only, and cannot be arbitrarily changed after the creation of objects. Thus, the

conditions of uniqueness, immutabili ty and non-reusabili ty of identifiers are satisfied.

The relations are valid only if the objects represented in relations by their identifiers

have appropriate types. A simple instantiation is made for a small database and the

functionali ty of the operations is tested. Finally, we formalized the algorithms for

transformations between versioning techniques presented in Section 3.3.2. We showed

that these transformations are lossless.

In the next chapter, we build the model for operations affecting object identity on

top of the spatiotemporal database presented here.

Operations Affecting Object Identity - a Formal Model 94

7. OPERATIONS AFFECTING OBJECT IDENTITY - A FORMAL MODEL

In previous chapter, we develop an executable functional specification of a full -fledged

temporal database based on the entity-relationship data model. On top of that

specification, we formalize li festyles - classes of operations affecting object identity,

described in Chapter 4. Lifestyle operations are completely independent of the

representations for objects and object types. At the end, we give a comparison with

other prominent proposals for categorizations of operations that change object identity.

The implementations and applications of li festyles are given in Chapters 8 and 9.

7.1 Operations affecting single identity

The basic operations that affect the identity of a single object (create, destroy, suspend,

resume, and evolve) are formalized in separate Gofer classes with appropriate classes

from the previous chapter in the context.

7.1.1 Create

In the previous chapter, the operation newObj for producing a new object in the

database was introduced in the class Databases. The operation create maintains a set of

temporal li nks with predecessors. Therefore, a li st of predecessors is a mandatory

argument of the operation create. Predecessors can be set only during the creation of the

object. Objects, which are created from scratch, have an empty list of predecessors.

Two auxili ary operations are defined: createWithID and createN. The former

operation returns a pair consisting of the newly created identifier and the updated

database, while the latter creates several new objects with the same object type and with

the same set of predecessors, yet with different identifiers. The number of created

objects with the function createN is determined by its first argument (n).

class (Objects o t, IDs (d o t), Databases d o t)

 => Creatable d o t where

 create :: ([ID], t) -> d o t -> d o t

 createWithID :: ([ID], t) -> d o t -> (ID, d o t)

 createN :: Int -> ([ID], t) -> d o t -> d o t

 create (is, ot) = uncurry (updateObj f) . pair (getID, id) . newObj ot

 where f = addAtt Preds (Vp is)

 createWithID (is, ot) = pair (getID, id) . create (is, ot)

 createN n (is, ot) = flip (!!) n . iterate (create (is, ot))

Operations Affecting Object Identity - a Formal Model 95

The operations updateObj, getID, and newObj are inherited from the classes Objects

IDs, and Databases, respectively. Two standard operations over li sts are used for the

definition of the operation createN: iterate and (!!)1.

7.1.2 Destroy

The operation destroy is not applicable to all object types. In order to be destroyable, a

specific object type must implement the method destroyable from the class

DestroyableT ('T' stands for type):

class DestroyableT d where

 destroyable :: d -> Bool

This class is then added to the context of the class Destroyable, ensuring that for each

implementation of class Destroyable (parameterized in object type t) an instance

DestroyableT t exists.

class (DestroyableT t, Creatable d o t) => Destroyable d o t where

 destroy :: ID -> d o t -> d o t

 destroy i = cond p (f, g) where

 p = destroyable . getObjType . selectObj i

 f = deleteObj i

 g = error ("the object" ++ show i ++ "is not destroyable")

The prerequisite that the object type is destroyable is stated in the condition p for the

operation deleteObj inherited from the class Databases. Although the class Databases is

not explicitly mentioned in the context of the class Destroyable, it is implicitly inherited

from the class Creatable, which is in the context. The operation destroy has the

following effect: the object is removed from the latest snapshot; it cannot actively

participate in further changes to the database, but its previous existence can be

referenced. All relations in which the object had participated are removed as well .

7.1.3 Suspend and resume

The operations suspend and resume are mutually dependent. It is natural to model both

of them in the single class Suspendable. Operations suspendObj and resumeObj operate

on object level.

1 The function iterate generates an infinite list by iteratively applying a function on the last element:

iterate (+2) 1 = [1,3,5,7,...] . The function (!!) n selects the nth element of the list. (!!) ['a','b','c'] 1 = 'b'

(indexing starts from 0).

Operations Affecting Object Identity - a Formal Model 96

A predicate suspendable is needed to check if an object type can be suspended or

not. The predicate is defined in the class SuspendableT which must be instantiated for

each object type.

class SuspendableT s where

 suspendable :: s -> Bool

On the object level (class SuspendableO), the predicate suspended checks whether an

object is already suspended, whereas the functions suspendObj and resumeObj change

the attribute Alive of the object.

class Objects o t => SuspendableO o t where

 suspended :: o t -> Bool

 suspended = not .unwrapValue . getValue . selectAtt Alive . getAttribs

 suspendObj :: o t -> o t

 suspendObj = updateAtt Alive (Vb False)

 resumeObj :: o t -> o t

 resumeObj = updateAtt Alive (Vb True)

Finally, the operations suspend and resume push the operations suspendObj and

resumeObj, respectively, to the database level. The class Suspendable needs both

classes SuspendableT and SuspendableO, together with the class Creatable in its

contexts.

class (SuspendableT t, SuspendableO o t, Creatable d o t)

 => Suspendable d o t where

 suspend, resume :: ID -> d o t -> d o t

 suspend i = cond p (f, g) where

 p = suspendable . getObjType . selectObj i

 f = updateObj suspendObj i

 g = error ("the object" ++ show i ++ "is not suspendable")

 resume i = cond p (f, g) where

 p = queryObj suspended i

 f = updateObj resumeObj i

 g = error ("the object" ++ show i ++ "is already suspended")

The operations suspend and resume are defined conditionally: an object can be

suspended if it is suspendable and can be resumed only if it is already suspended. All

operations on the database level are completely independent of the implementation at

the cost of a complex set of conditions for the type parameters in the context.

7.1.4 Evolve

The evolvable objects must implement the class Destroyable as can be seen in the

context. Any later instantiation is independent of the instantiation of the database.

Operations Affecting Object Identity - a Formal Model 97

class Destroyable d o t => Evolvable d o t where

 evolve :: ID -> d o t -> d o t

 evolve i = destroy i . uncurry (updateObj' setAttribs)

 . pair (pair (getID, getAttribs. selectObj i), id) . uncurry create

 . assocl. pair (const (wrap i), pair (getObjType . selectObj i, id))

 where updateObj' f (i,x) = updateObj (f x) i

The new object is created with the original object as the predecessor: the code fragment

const (wrap i) produces a singleton list [i] that is used as the argument for the operation

create. All attributes of the original objects are transferred to the emerging object as

well , leading to a complex definition.

7.2 Operations affecting multiple identities

Compositions of basic operations are modeled with the following four classes:

Aggregates, WAggregates, Fusions and WFusions. Classes with the prefix 'W' cover the

weak or non-constructive cases of fusions and aggregation.

7.2.1 Constructive aggregates

The constructive aggregates must implement the classes Suspendable and Destroyable.

The operation aggregate suspends the objects having the identifiers from the given list,

creates a new object with the given object type, and establishes the relation PartOf

among the suspended objects and the newly created object.

class (Destroyable d o t, Suspendable d o t)

 => Aggregates d o t where

 aggregate :: [ID] -> t -> d o t -> d o t

 aggregate is t = uncurry (addRels PartOf is) . createWithID ([],t)

 . (flip.foldr) suspend is

 segregate :: ID -> d o t -> d o t

 segregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i, g)

 where g = deleteRels PartOf i . destroy i

The operation segregate first searches all i dentifiers that are parts of the given identifier,

resumes matching objects, removes relations PartOf, and destroys the object with the

given identifier.

7.2.2 Weak aggregates

Weak or non-constructive aggregations and segregations does not destroy objects.

Therefore, such objects are only creatable and suspendable. It is suff icient to add the

class Suspendable to the context, because the class Creatable is inherited implicitly.

Operations Affecting Object Identity - a Formal Model 98

class Suspendable d o t => WAggregates d o t where

 waggregate :: [ID] -> ID -> d o t -> d o t

 waggregate is i = (flip.foldr) suspend is.addRels PartOf is i.resume i

 wsegregate :: ID -> d o t -> d o t

 wsegregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i,g)

 where g = deleteRels PartOf i . suspend i

The operation waggregate differs from aggregate only in that the aggregated object is

resumed instead of created. Similarly, the operation wsegregate differs from segregate

in that the segregated object is suspended instead of destroyed.

7.2.3 Constructive fusions

Constructive fusions are not reversible. Thus, the class Destroyable is the only class

necessary in the context. The operation fusion creates a new object with the given object

type and destroys the objects having identifiers from the given list. The new object has

destroyed objects as predecessors.

class Destroyable d o t => Fusions d o t where

 fusion :: [ID] -> t -> d o t -> d o t

 fusion is t = (flip . foldr) destroy is . create (is, t)

 fissionN :: Int -> ID -> d o t -> d o t

 fissionN n i = uncurry (createN n) . pair (f, destroy i)

 where f = pair (wrap . const i, getObjType . selectObj i)

 restructure :: [ID] -> t -> Int -> d o t -> d o t

 restructure is t n = uncurry (fissionN n).pair (getID,id).fusion is t

The operation fissionN creates n new objects that all have the same type as the original

object. Each of n new objects has exactly single predecessor - the identifier of the

original objects. Finally, the operation restructure is modeled as a composition between

a fusion and a subsequent fission of the fusioned object.

7.2.4 Weak fusions

Weak or non-constructive fusions implement the class Suspendable. The class

Destroyable is necessary as well , because the operation wfusion destroys fused objects.

class (Destroyable d o t, Suspendable d o t) => WFusions d o t where

 wfusion :: [ID] -> ID -> d o t -> d o t

 wfusion is i = (flip . foldr) destroy is . resume i

 wfissionN :: Int -> ID -> d o t -> d o t

 wfissionN n i = uncurry (createN n) . pair (f, suspend i)

 where f = pair (wrap . const i, getObjType . selectObj i)

The only difference between constructive and weak fusion is formalized as the

difference of the basic operation applied on the single object side of the operation:

Operations Affecting Object Identity - a Formal Model 99

constructive operations create (destroy) the object, while weak operations resume

(suspend) objects.

7.3 Comparison of lifestyles with other categorizations of identity change

Theory of li festyles is powerful enough to completely cover already existing proposals

for categorization of change in identities, notably those of Al-Taha and Barrera (1994),

and Hornsby and Egenhofer (1997). The mapping between li festyles and the operations

proposed by Al-Taha and Barrera (shown in Figure 2.2) is straightforward:

create = create

destroy = destroy

kill = suspend

reincarnate = resume

evolve = evolve

identify = foldr destroy

spawn i = uncurry create . pair (f, id)

 where f = pair (wrap . const i, getObjType . selectObj i)

aggregate = aggregate

disaggregate = segregate

fuse = fusion

fission = fission

Phenomena that can be modeled in the li festyles framework and cannot be modeled in

the proposal by Al-Taha and Barrera include weak fissions and aggregates, and the

operation restructure.

Operations proposed by Hornsby and Egenhofer, informally discussed in Section

4.3.3 are formalized as compositions of the high-level li festyles operations only:

metamorphose :: Evolvable d o t => ID -> d o t -> d o t

metamorphose = evolve

spawn :: Creatable d o t => ID -> d o t -> d o t

spawn i = uncurry create . pair (f, id)

 where f = pair (wrap . const i, getObjType . selectObj i)

mergeH :: Fusions d o t => [ID] -> t -> d o t -> d o t

mergeH = fusion

generate :: Creatable d o t => [ID] -> t -> d o t -> d o t

generate = curry create

mix :: Destroyable d o t => [ID] -> t -> d o t -> d o t

mix (i:is) t = destroy i . curry create is t

The functions that operate on composite objects are compound, unite, amalgamate,

combine, secede, and dissolve. The function segregate' returns a pair consisting of a li st

of aggregated objects and the database. It is used in definition of the function combine.

Operations Affecting Object Identity - a Formal Model 100

The operation amalgamate (see Figure 2.5-d) is especially interesting. It is a

composition of fusions followed by an aggregation. Objects that amalgamate are

aggregates with an arbitrary number of parts. It must be defined which parts of these

objects are fusible. What happens if one composite has more parts than other

composites that amalgamate? Is it possible to fuse several parts of one composite with a

single part of other composite? It seems that amalgamate allows many different

situations, and it is not clear if the proper behavior for each case can be standardized.

Without loss of generality, we formalize only the case where the following conditions

are fulfill ed:

1. all composite objects have the same number of parts,

2. only one part of particular composite may participate in each fusion, and

3. parts are fused with respect to some ordering within the original composed objects -

this is equal to the framework setting (Hornsby and Egenhofer 1998).

With these assumptions, the operation amalgamate is formally defined as a composition

of multiple fusions followed by an aggregation of fused objects.

segregate' :: Aggregates d o t => ID -> d o t -> ([ID], d o t)

segregate' i = pair (outl, (uncurry.flip.foldr) resume)

 . pair (getRels PartOf i, destroy i)

compound :: WAggregates d o t => ID -> ID -> d o t -> d o t

compound i j = uncurry (flip waggregate j)

 . cross (cons . pair (const i, id), id)

 . pair (getRels PartOf j, wsegregate j)

unite :: Aggregates d o t => [ID] -> t -> d o t -> d o t

unite = aggregate

combine :: Aggregates d o t => [ID] -> t -> d o t -> d o t

combine is t db = aggregate js t db where

 js = concat . map (outl . (flip segregate' db)) $ is

amalgamate :: (Fusions d o t, Aggregates d o t)

 => [ID] -> t -> t -> d o t -> d o t

amalgamate is t1 t2 db = uncurry (aggregate ns) (t1, db') where

 db' = outr (foldr fusion' (t2, db) jss)

 jss = transpose . map (outl . (flip segregate' db)) $ is

 fusion' is1 (t1,db1) = (t1, fusion is1 t1 db1)

 ns = [a+1 .. b]

 a = getID db

 b = a + length is

secede :: WAggregates d o t => ID -> ID -> d o t -> d o t

secede i j = uncurry (flip waggregate j)

 . cross (filter (i/=), id)

 . pair (getRels PartOf j, wsegregate j)

Operations Affecting Object Identity - a Formal Model 101

dissolve :: Aggregates d o t => ID -> d o t -> d o t

dissolve = segregate

The functions compound and secede shows an advantage of li festyles: if there exist

some minimal condition for an aggregation (e.g., a specific number of parts), secession

will automatically signalize if the condition is not fulfill ed any more.

Generali ty expressed with compositions is comparable with the iconic language

used by Hornsby and Egenhofer. The operation missing in their proposal is the

operation suspend and related concepts of weak operations on composite objects.

7.4 Summary

The operations affecting object identity are formalized on top of the formal model

of an entity-relationship temporal database developed in Chapter 6. First, simple

operations are modeled as primitive li festyles, and their compositions are divided into

four complex li festyles: weak and constructive aggregations and fusions. The difference

between the two variations of each (constructive and weak) is that the underlying

operations on the single-side are create and destroy in the first case, and suspend and

resume in the second case. Dependencies among classes for all li festyles are shown in

Figure 7.1.

SuspendableT t

Objects o t SuspendableO o t

Databases d o t Creatable d o t Suspendable d o t WAggregates d o t

DestroyableT t Destroyable d o t Aggregates d o t

WFusions d o t
Evolvable d o t Fusions d o t

Figure 7.1: Classes hierarchy for li festyles.

A comparison of our proposal with other categorizations of change showed that the

theory of li festyles offers greater flexibili ty and generali ty with less operations.

Lifestyles of Physical Objects 102

8. LIFESTYLES OF PHYSICAL OBJECTS

In previous chapters, we defined and formalized the general framework for the change

affecting identity of objects. Objects were described as completely abstract, having only

identifiers and operations on them in common. Whereas such abstract treatment is

suitable for laying down the theoretical foundation for change operations, examples that

are more concrete are necessary to show the practical importance of our approach.

We focus on the applicabili ty of our theoretical considerations to the specific

groups of real-world objects. Objects are divided into physical and abstract ones.

Physical objects are concrete, graspable things that make up the physical reali ty of the

world. Abstract objects are concepts that exist only as a matter of a social consensus (for

example: marriages, partnerships, or unions of states). We analyze abstract objects in

the subsequent chapter.

In this chapter, an extended account on physical objects is given. A categorization

of physical objects, based on contemporary cognitive linguistics, is presented. Physical

objects may be solid or liquid, movable or immovable, natural or human-made, li ving or

non-living. As a special class, eternal objects are introduced for the representation of

objects having the li fespan longer than the context within which such objects are

considered.

Each subsection consists of an informal overview with the common sense

background and a formal model. The formal model for each application is built on top

of the general model of li festyles, formalized in Chapter 7.

8.1 Solid objects

Solid objects are non-living objects with crisp boundaries that are physically observable

by humans. They can be moved and their boundaries then become evident. These

objects endure; they can be destroyed and created, but only by recognizable actions and

events (through cutting, crushing, burning); they have a beginning and an end (Hayes

1985a).

Solid objects are divided into movable and immovable objects. Movable objects are

typically manipulable by humans; they fit in the small -scale or tabletop space (Mark and

Lifestyles of Physical Objects 103

Frank 1996). Movable objects can be natural objects (objects as they existed without

humans) and artifacts (objects produced by human activities).

Immovable objects are typically much larger than movables; they are not

manipulable and form geographical space (Egenhofer and Mark 1995); they are places

in which humans are placed, can move through or leave. Since there is no significant

difference between natural and human-made immovable objects for the purpose of this

thesis, these are treated together.

movable immovable

natural stones, fruits mountains, valleys

artifact cars, computers buildings, roads

Table 8.1: Categorization of solid objects.

The categorization of solid objects is proposed (see Table 8.1), and all categories are

analyzed in the following subsections.

8.1.1 Movable natural objects

Natural movable solids are small -scale objects as found in the natural environment.

Such objects are usually similar to other objects of the same kind, but can be easily

individuated. They come to being by natural processes that separate smaller pieces from

large masses: erosion, earthquakes, or volcanology. Typical examples are stones and

fruits. Note that fruits are a border case to li ving objects. Once picked, however, fruits

can be assumed “dead” for purposes of this section.

Natural objects are creatable and destroyable. The li festyle of natural objects is

characterized by the following formalization:

class Destroyable d o t => MovableNaturals d o t where

 createMovNat :: String -> Float -> ([ID], t) -> d o t -> d o t

 createMovNat name w a = uncurry (updateObj (addAtts as))

 . createWithID a

 where as = [(Name, Vs name), (Preds, Vp []), (Weight, Vf w)]

We assigned three default attributes for movable natural objects: a name, a list of

predecessors, and weight. A simple representation of fruits and stones, followed by the

implementation of the database model developed in Chapters 6 and 7 is:

Lifestyles of Physical Objects 104

data MovNat = Fruit | Stone

instance Relatable MovNat where

 relatable (On, (Fruit, Stone)) = True

instance Creatable TDB Object MovNat

instance DestroyableT MovNat where

 destroyable Fruit = True

 destroyable Stone = True

instance MovableNaturals TDB Object MovNat

Example queries on a small database are shown. Objects are created with two additional

arguments: a String for names and a Float for weights of movable natural objects.

mn0, mn1, mn2 :: TDB Object MovNat

mn0 = T [Snap 0 [] []]

mn1 = createMovNat "appleA" 0.4 ([],Fruit) mn0

mn2 = createMovNat "stoneA" 1.2 ([],Stone) mn1

mn3 = createMovNat "stoneB" 2.3 ([],Stone) mn2

tstmn1 = existObj 3 (destroy 3 mn3)

-- False

tstmn2 = get Weight 2 mn3

-- Vf 1.2

 The first test shows that the object named stoneB does not exist after the operation

destroy. The second test extracts the value for the value set Weight of the object named

stoneA.

8.1.2 Movable artifacts

Artifacts are solid objects produced by human activity. In this section, we consider

movable artifacts only, while the immovable artifacts are described together with

immovable natural objects in the next subsection.

A movable artifact can be a piece of homogenous solid stuff (e.g. a glass) or an

assembly, which is made up of a finite number of other artifacts (e.g. a window). All

manufactured goods we encounter and use in our everyday li fe conform to these criteria.

Prototypical examples for simple artifacts are tires, wooden bricks, bolts, and screws.

Prototypical examples for complex artifacts are cars, chairs, computers, and watches.

The property of being a part or having parts determines the li festyle of movable

artifacts. The individuation of assembled artifacts is simple as long as the original parts

are holding together. The problem arises when the parts are changed or broken, for

example. What makes a complex object the same through time, is a question from the

story about the ship of Theseus, mentioned in the introduction of this thesis. Assuming

spatiotemporal continuity, an assembly retains the same identity even if all of its parts

Lifestyles of Physical Objects 105

are replaced (Hayes 1985a). This view is plausible in the purely physical world we are

dealing with in this chapter.

The second phenomenon related to complex artifacts is that of functionali ty. Such

objects are constructed to fulfill certain human needs. If an artifact is not working

properly, it must be repaired; often only a not-functioning part is replaced. We usually

talk about “dead computers” or “dead cars” . When a computer or a car is repaired, it

li ves again - it is reincarnated. Therefore, it makes sense to allow such objects to be

suspended (when broken) and resumed (when successfully repaired).

The formalization of movable artifacts resembles the aggregate li festyle, allowing

the objects to be suspended and resumed. Our example will be a car consisting of

several changeable parts: a chassis, an engine, and four wheels. If a wheel is to be

changed, the car is temporarily taken apart - suspended, and each of its parts is resumed.

An aggregation of other original parts with the new wheel resumes the original identity

of the car.

We formalize the behavior of movable artifacts with operations grouped in the class

MovableArtifacts, which inherits operations from the classes Aggregates and

WAggregates. The default attributes for movable artifacts are names and truth-values for

the state (alive or suspended). The operations destroy, segregate, waggregate,

wsegregate are inherited from the classes mentioned in the context. Three new

operations are defined for aggregates: addPart brings additional part to an already

existing aggregate; removePart takes a specific part away; replacePart exchanges an

existing part of an aggregate with a part from the outside world. It is essential that all

three mentioned operations be modeled as a composition of a weak segregation

followed by a weak aggregation. If any criteria for the existence of the aggregate were

not met after the parts are changed, the change would be rejected by the system.

class (Aggregates d o t, WAggregates d o t)

 => MovableArtifacts d o t where

 createMovArt :: String -> ([ID], t) -> d o t -> d o t

 createMovArt name t = uncurry (updateObj (addAtts as)).createWithID t

 where as = [(Name, Vs name), (Alive, Vb True)]

 aggregateMovArt :: String -> [ID] -> t -> d o t -> d o t

 aggregateMovArt name is t = uncurry (updateObj (addAtts as))

 . pair (getID, id) . aggregate is t

 where as = [(Name, Vs name), (Alive, Vb True)]

Lifestyles of Physical Objects 106

 addPart :: ID -> ID -> d o t -> d o t

 addPart i j = uncurry (flip waggregate j)

 . cross (cons . pair (const i, id), id)

 . pair (getRels PartOf j, wsegregate j)

 removePart :: ID -> ID -> d o t -> d o t

 removePart i j = uncurry (flip waggregate j)

 . cross (filter (i/=), id)

 . pair (getRels PartOf j, wsegregate j)

 replacePart :: ID -> ID -> ID -> d o t -> d o t

 replacePart i j k = uncurry (flip waggregate k)

 . cross (cons . pair (const i, filter (j/=)), id)

 . pair (getRels PartOf k, wsegregate k)

A simple representation of car parts with the necessary instances of the classes

Relatable, DestroyableT, Suspendable, and MovableArtifacts:

data MovArt = Car | Chassis | Engine | Wheel

instance Relatable MovArt where

 relatable (PartOf, (Chassis, Car)) = True

 relatable (PartOf, (Engine, Car)) = True

 relatable (PartOf, (Wheel, Car)) = True

instance DestroyableT MovArt where

 destroyable Car = True

 destroyable Chassis = True

 destroyable Engine = True

 destroyable Wheel = True

instance SuspendableT MovArt where

 suspendable Car = True

 suspendable Chassis = True

 suspendable Engine = True

 suspendable Wheel = True

instance MovableArtifacts TDB Object MovArt

We populate an example database with several objects: a chassis, an engine, and four

wheels shall build a car. Then, the test demonstrate the exchange of a wheel that is a

part of the car with an "external" wheel (5).

ma0 = T [Snap 0 [] []]

ma1 = createMovArt "wheel-1 " ([], Engine) ma0

ma2 = createMovArt "wheel-2 " ([], Chassis) ma1

ma3 = createMovArt "wheel-3 " ([], Wheel) ma2

ma4 = createMovArt "wheel-4 " ([], Wheel) ma3

ma5 = createMovArt "wheel-5 " ([], Wheel) ma4

ma6 = createMovArt "chassisA" ([], Wheel) ma5

ma7 = createMovArt "engineA " ([], Wheel) ma6

ma8 = aggregateMovArt "carA " [1,2,3,4,6,7] Car ma7

-- exchange wheel5 (5) and wheel2 (2) in the car (8)

tstma1 = replacePart 5 2 8 ma8

-- the new state of the database is then:

Lifestyles of Physical Objects 107

Snapshot

 Latest ID =8

 Objects: [

 #8 Car ["carA ", resumed , []],

 #7 Wheel ["engineA ", suspended, []],

 #6 Wheel ["chassisA", suspended, []],

 #5 Wheel ["wheel-5 ", suspended, []],

 #4 Wheel ["wheel-4 ", suspended, []],

 #3 Wheel ["wheel-3 ", suspended, []],

 #2 Chassis["wheel-2 ", resumed , []],

 #1 Engine ["wheel-1 ", suspended, []]]

 Relations: [

 5 is part of 8,

 1 is part of 8,

 3 is part of 8,

 4 is part of 8,

 6 is part of 8,

 7 is part of 8]

The wheel-2 is resumed, the relation PartOf between the wheel-2 and the carA is

removed, the wheel-5 is suspended and it is the new part of the carA.

8.1.3 Immovable geographic objects

Immovable physical objects are human-made or natural objects that are not (easily)

manipulable by humans. Such objects fill so-called large-scale geographical space:

“space whose structure cannot be observed from a single viewpoint” as defined by

Kuipers (Kuipers 1978, p.129), acknowledging all ambiguities coming from such a

straightforward definition as explained by Mark and Frank (Mark and Frank 1996).

Namely, “a single viewpoint” might be a plane or a satellit e, when the viewer would be

able to observe large-scale objects from a single viewpoint. If an average observer is a

pedestrian, however, the definition given by Kuipers is valid.

Immovable objects made by humans are buildings: skyscrapers, roads, squares,

bridges, dams. Natural immovables are earth topography phenomena: hill s, mountains,

valleys, islands, peninsulas. Human-made immovables have crisp boundaries, while

natural immovables have fuzzy boundaries. This distinction is, however, imposed by

human reasoning, and not by natural laws.

The operations that can be applied to these objects are creation, destroying and

evolution.

Lifestyles of Physical Objects 108

class Destroyable d o t => Immovables d o t where

 createImmov :: String -> ([ID], t) -> d o t -> d o t

 createImmov name a = uncurry (updateObj (addAtts as)) . createWithID a

 where as = [(Name, Vs name), (Preds, Vp [])]

The necessary instances are:

data Immovable = Mountain | Building

instance Relatable Immovable

instance DestroyableT Immovable where

 destroyable Mountain = True

 destroyable Building = True

instance Immovables TDB Object Immovable

A brief example: a house evolves to a museum.

im0, im1, im2 :: TDB Object Immovable

im0 = T [Snap 0 [] []]

im1 = createImmov "Alps " ([], Mountain) im0

im2 = createImmov "HouseA" ([], Building) im1

im3 = (uncurry (set Name (Vs "MuseumA")).pair (getID, id).(evolve 2)) im2

The result of im2 (the state before evolution) is:

Latest ID =2

 Objects: [

 #2 Building["HouseA", []],

 #1 Mountain["Alps ", []]]

Evolution (im3) is followed with setting the new name ("MuseumA") for a former

house. The code fragment "evolve 2" produces the new object, which is referred by

getID of the latest snapshot. Thus, the name is set to the newly created object (with

identifier equal to 3) and not to the original object (ID=2), which does not exist after

evolution. The resulting snapshot is:

Latest ID =3

 Objects: [

 #3 Building["MuseumA", [2]],

 #1 Mountain["Alps ", []]]

The object 2 is destroyed, but its identifier is added to the list of predecessors of the

newly created object.

8.2 Liquids

Liquids consist of many small l oosely connected particles. Liquids differ from solid

objects insofar they have no definite shape. They easily merge, split , move, and change

shape because of gravity. Liquids are hard to grasp, but necessary for many fundamental

physical and physiological processes.

Lifestyles of Physical Objects 109

Hayes gave the first formal account on liquids (Hayes 1985a). He proposed 15

different physical states of liquids ranging from wet surface to spray. In this thesis, we

analyze only contained, bulk, lazy liquids in space, e.g. water in a glass, a river or a

lake. Even such simpli fied view of liquids bears two different representations: liquids

contained in solid objects - containers, and independent liquid objects. We start the

discussion with the latter case: pure liquid objects, and then return to containers.

8.2.1 Liquid objects

The li festyle of liquid objects is simple: it is a prototypical example of constructive

fusion. The liquid objects fuse with other liquid objects into a new object that has the

identifiers of fused objects as predecessors. Fused objects are destroyed, and cannot be

resumed. If a liquid object is fissioned, new objects emerge and the original object is

destroyed. We introduce the class Liquids that has a single operation - the function

createLiquid, which adds three default attributes to liquid objects: a name, a list of

predecessors, and an amount.

class (Fusions d o t) => Liquids d o t where

 createLiquid :: String -> Float -> ([ID], t) -> d o t -> d o t

 createLiquid name x a = uncurry (updateObj (addAtts as))

 . createWithID a

 where as = [(Name, Vs name), (Preds, Vp (outl a)), (Amount, Vf x)]

A representation of water objects with instances necessary to inherit operations from the

classes in context:

data Liquid = Water

instance Relatable Liquid

instance DestroyableT Liquid where

 destroyable Water = True

instance Liquids TDB Object Liquid

instance Fusions TDB Object Liquid

Finally, a simple example of two liquid objects that fuse into the third one. At the end

the new object is fissioned into 3 new objects and the result is shown.

w0, w1, w2, w3 :: TDB Object Liquid

w0 = T [Snap 0 [] []]

w1 = createLiquid "waterA" 2.4 ([], Water) w0

w2 = createLiquid "waterB" 2.8 ([], Water) w1

w3 = fusion [1,2] Water w2

w4 = fissionN 3 3 w3

Lifestyles of Physical Objects 110

Latest ID =6

 Objects: [

 #6 water[[3]],

 #5 water[[3]],

 #4 water[[3]]]

 Relations: []

In the next section, we analyze behavior of liquids in containers, a more interesting

situation that is closer to the everyday perception of liquids by humans.

8.2.2 Liquids in containers

A container is a solid object or a part of solid object, which bounds a contained space –

a connected volume of three-dimensional-space which has a contiguous rigid boundary

below it and around it (Hayes 1985a). The surface of a container is impermeable and

normally contains no leaks. The concept of quantity or amount is essential for reasoning

about contained liquids. A container is limited by its capacity – the maximum amount of

liquid it can contain.

This view of liquid objects allows their easy individuation through the

individuation of containers, which are solid objects. The change of amount of liquid in a

container does not change the identity of the contained liquid. Using this ontology, we

can individuate and reason about dynamical li quid objects li ke rivers or baths. The

li festyle of containers is stable, similar to solid objects already discussed. They are

created, destroyed, suspendable, and evolvable (a stream can grow to a river).

The remaining combination is the existence of liquid within a solid artifact, e.g., an

amount of tea in the cup. We claim this case is an aggregate as well , but with some

special properties which require careful analysis.

The aggregate is the fill ed cup consisting of the cup and the tea inside it. The liquid

object inside the cup behaves as a fusible object, but it can be changed only after it has

resumed after the segregation of the container.

If we are about to add some tea into the cup, the fill ed cup is suspended and the cup

and the amount of tea are resumed (weak segregation); the amount of tea fuses with the

added amount of tea into a new liquid object (fusion); the cup and the new amount of

tea are aggregated as the old fill ed cup (weak aggregation).

The question is: what is, after all , an empty cup - is it a cup or a fill ed cup with no

content? The answer is: if it is an “empty” cup, it is an aggregation of the cup and a zero

amount of liquid.

Lifestyles of Physical Objects 111

The formalization has two levels: the object level and the database level. At the

object level, the class Containers is necessary to capture operations for changing the

amount of a single container (pourIn and takeOut). It has two observers (with the prefix

"get") and two constructors (with the prefix "set") for retrieving and setting the

mandatory attributes Amount and Capacity on the single objects.

class Objects o t => ContainersO o t where

 getAmount :: o t -> Float

 getCapacity :: o t -> Float

 setAmount :: (Float,o t) -> o t

 setCapacity :: (Float,o t) -> o t

 getAmount = unwrapValue . getValue . selectAtt Amount . getAttribs

 getCapacity = unwrapValue . getValue . selectAtt Capacity . getAttribs

 setAmount = uncurry (updateAtt Amount) . cross (wrapValue, id)

 setCapacity = uncurry (updateAtt Capacity) . cross (wrapValue, id)

 isEmpty :: o t -> Bool

 isEmpty = (==0.0) . getAmount

 pourIn :: (Float, o t) -> o t

 pourIn = cond p (f,g) where

 p = leq . pair (plus.cross(id,getAmount), getCapacity.outr)

 f = setAmount . pair (plus.cross (id,getAmount),outr)

 g = error "would overflow"

 takeOut :: (Float, o t) -> o t

 takeOut = cond p (f,g) where

 p = leq . cross (id, getAmount)

 f = setAmount . pair (minus.swap.cross (id,getAmount),outr)

 g = error "not enough in the container"

The predicate isEmpty and the functions pourIn and takeOut are defined in terms of

basic operations and thus independent of the implementation. If the incoming amount is

bigger than the free space in the container, an overflow error occurs. If the amount to be

taken out from the container is bigger than the available amount, an underflow error

occurs.

At the database level, the operation createCont produces a container with default

attributes (name, predecessors, amount, and capacity). A new container is created only

if the proposed capacity is greater than the proposed amount.

class (ContainersO o t, Aggregates d o t) => Containers d o t where

 createCont :: String -> Float -> Float -> ([ID], t) -> d o t -> d o t

 createCont name a c s = cond p (f, g) where

 p = const (a <= c)

 f = uncurry (updateObj h) . createWithID s

 g = error "amount cannot be greater than capacity"

 h = addAtts [(Name, Vs name), (Alive, Vb True),

 (Amount, Vf a), (Capacity, Vf c)]

Lifestyles of Physical Objects 112

 pourFromInto :: Float -> ID -> ID -> d o t -> d o t

 pourFromInto a i j = updateObj (curry pourIn a) j

 . updateObj (curry takeOut a) i

The operation pourFromInto is a composition of the operations pourIn and takeOut, that

ensure that the total amount of liquid in the universe of discourse is preserved

(conservation law).

The instantiation of the necessary classes for the representation types follows.

data Container = Cup | Tea | FilledCup

instance Relatable Container where

 relatable (In, (Tea, FilledCup)) = True

 relatable (PartOf, (Tea, FilledCup)) = True

 relatable (PartOf, (Cup, FilledCup)) = True

instance DestroyableT Container where

 destroyable Cup = True

 destroyable Tea = True

 destroyable FilledCup = True

instance SuspendableT Container where

 suspendable Cup = True

 suspendable Tea = True

 suspendable FilledCup = True

instance ContainersO Object Container

instance Containers TDB Object Container

A simple example with two cups with certain amounts of tea and pouring an amount to

another cup is provided.

cs0, cs1, cs2, cs3, cs4 :: TDB Object Container

cs0 = T [Snap 0 [] []]

cs1 = createCont "firstCup " 4.0 10.0 ([],Cup) cs0

cs2 = createCont "secondCup" 4.0 10.0 ([],Cup) cs1

cs3 = createCont "teaA " 5.0 5.0 ([],Tea) cs2

cs4 = aggregate [1,3] FilledCup cs3

tcs1, tcs2 :: Value

tcs1 = get Amount 1 cs4

-- Vf 4.0

tcs2 = get Amount 1 (pourFromInto 3.0 1 2 cs4)

-- Vf 1.0

The first cup has the amount 4.0 in cs4. After we pour the amount 3.0 to the second cup,

the rest amount is 1.0.

8.3 Living beings

Living beings are able to reproduce their kind. They breath, eat, grow, and, finally, die.

These are fundamental characteristics of biological li fe. Between the birth and death,

Lifestyles of Physical Objects 113

li ving beings retain their identity, although they are changeable in many ways: size,

color, and appearance.

We begin with simple living beings: persons, animals, plants, and discuss a special

case of tree with fruits in the subsequent section.

8.3.1 Persons, animals, and plants

Two fundamental properties of li ving beings are essential for the modeling of their

li festyle: birth and death. Death or the end of biological li fe is universal for all li ving

beings, and it is naturally modeled with the operation destroy. Birth or the beginning of

li fe is a more challenging task. It was modeled as an additional construct: reproduction

(Hornsby and Egenhofer 1997), in accordance with common-sense representation of

parental relations in the human society.

class Destroyable d o t => Livings d o t where

 createLiving :: String -> ([ID], t) -> d o t -> d o t

 createLiving name a = uncurry (updateObj (addAtts as)).createWithID a

 where as = [(Name, Vs name), (Preds, Vp (outl a))]

The former case seems too complicate for the common sense based applications.

Therefore, the simpler solutions are already incorporated into the semantics of the

operation createLiving: a creation takes the identifiers of parents as the predecessors,

preserving a temporal li nk among children and their parents. Thus, an additional

construct for reproduction is superfluous. A simple implementation with examples

follows.

data Living = Person | Animal | Plant

instance DestroyableT Living where

 destroyable Person = True

 destroyable Animal = True

 destroyable Plant = True

instance Livings TDB Object Living

instance Relatable Living

liv0, liv1, liv2, liv3 :: TDB Object Living

liv0 = T [Snap 0 [] []]

liv1 = createLiving "John" ([], Person) liv0

liv2 = createLiving "Mary" ([], Person) liv1

liv3 = createLiving "Sue " ([1,2], Person) liv2

Thus, the person "Sue" has the identifiers of John and Mary as her predecessors -

parents.

Lifestyles of Physical Objects 114

8.3.2 Trees with fruits

 A tree with its seasonal fruits is another example of li ving objects. A tree with fruits is

an aggregate. In an implementation, trees and fruits are modeled as suspendable objects

(to enable aggregation). A tree is a persistent carrier, existence of which is independent

of fruits. Fruits are seasonally created by the tree (neglecting some assistance from the

nature). Fruits grow to a certain time when they start to rot if not collected and

consumed by animals or people.

A tree with fruits is a composed object that consists of a tree (container) and fruits

(containment). Although we can count items of fruit, it is possible to speak about fruits

in terms of amount or mass. Thus, we can collect a certain amount of fruits from a tree,

leaving the rest to be collected later. Eventually, the rest rots after a certain period.

When the last fruit vanishes from a tree with fruits, it is a tree what is left - the

composed object is destroyed. During the next season a new composed object will

emerge: the old tree with new fruits.

Formally, a tree with fruits is a constructive aggregate between exactly one tree and

exactly one amount of fruits. This is expressed in the condition for the operation

aggregateTree.

class (ContainersO o t, Aggregates d o t) => TreeWithFruits d o t where

 createTree :: String -> Float -> ([ID], t) -> d o t -> d o t

 createTree name a s = uncurry (updateObj h) . createWithID s where

 h = addAtts [(Name, Vs name), (Alive, Vb True), (Amount, Vf a)]

 aggregateTree :: [ID] -> t -> d o t -> d o t

 aggregateTree is t = cond p (f, g) where

 p = eql . pair (const (length is), const 2)

 f = aggregate is t

 g = error "only a single fruits object allowed"

The fact that fruits cannot be poured back to the tree is expressed in the instantiation of

the class ContainersO:

instance ContainersO Object Tree where

 pourIn = error " not possible "

 takeOut = cond p (f,g) where

 p = leq . cross (id, getAmount)

 f = setAmount . pair (minus.swap.cross (id,getAmount),outr)

 g = error "not enough fruits on the tree"

data Tree = ATree | Fruits | TreeWithFruits

instance Relatable Tree where

 relatable (PartOf, (ATree, TreeWithFruits)) = True

 relatable (PartOf, (Fruits, TreeWithFruits)) = True

Lifestyles of Physical Objects 115

instance DestroyableT Tree where

 destroyable ATree = True

 destroyable Fruits = True

 destroyable TreeWithFruits = True

instance SuspendableT Tree where

 suspendable ATree = True

 suspendable Fruits = True

 suspendable TreeWithFruits = False

instance TreeWithFruits TDB Object Tree

The datatype of the aggregate (TreeWithFruits) is not suspendable - only constructive

aggregation is possible. Fruits come seasonal and - once collected - cannot be

aggregated with the tree.

tf0, tf1, tf2, tf3 :: TDB Object Tree

tf0 = T [Snap 0 [] []]

tf1 = createTree "TreeA " 10.0 ([],ATree) tf0

tf2 = createTree "FruitsA" 5.0 ([],ATree) tf1

tf3 = aggregateTree [1,2] TreeWithFruits tf2

ttf1 :: Float

ttf1 = queryObj getAmount 1 tf3

-- 5.0

ttf2 = updateObj (curry pourIn 7.0) 2 tf3

-- not possible

8.4 Eternal objects

Eternal objects are never destroyed. In the model, it means that their li fe span is by

orders of magnitude longer than the context they are considered in. An excellent

example is the Sun from the human perspective.

The li festyle of eternal objects is the simplest of all . They just exist, and are, in

contrast to all other categories, not destroyable.

class (Creatable d o t) => Eternals d o t where

 createEternal :: String -> ([ID], t) -> d o t -> d o t

 createEternal name a = uncurry (updateObj (addAtts as)).createWithID a

 where as = [(Name, Vs name), (Preds, Vp (outl a))])

data Eternal = Star | Planet

instance Relatable Eternal

instance DestroyableT Eternal where

 destroyable Star = False

 destroyable Planet = False

instance Eternals TDB Object Eternal

Lifestyles of Physical Objects 116

Finally, we can test if a created object can be destroyed:

e0, e1, e2 :: TDB Object Eternal

e0 = T [Snap 0 [] []]

e1 = createEternal "Sun" ([],Star) e0

e2 = destroy 1 e1

-- error: the object #1 is not destroyable.

An attempt to destroy an eternal object results in an error message.

8.5 Summary

In this chapter, we gave a categorization of objects constructing the physical reali ty of

our world. At the level of detail assumed here, the physical objects are divided into

solids, liquids, li ving beings, and eternal objects. The operations on identity within each

category are modeled with the apparatus developed in previous chapters. The theory of

li festyles is powerful enough to describe diversity of physical objects. Usually, a simple

extension of sets of object types is all that is necessary. Sometimes, however, we must

introduce new classes to capture the semantics of additional important operations. This

is achieved easily by putting our general framework in the context of new instances.

The hierarchy of classes is shown in Figure 8.1.

Creatable d o t Eternals o t

MovableNaturals d o t

DestroyableT t Immovables d o t

Livings d o t

TreeWithFruits d o t
ContainersO o t

Containers d o t
Aggregates d o t

WAggregates d o t MovableArtifacts d o t

Fusions d o t Liquids d o t

Figure 8.1: Classes hierarchy for li festyles of physical objects.

The level of application presented in this chapter – physical reali ty - is the starting point

for modeling a more complex environment of social reali ty – abstract objects.

Lifestyles of Abstract Objects in the Social Realm 117

9. LIFESTYLES OF ABSTRACT OBJECTS IN THE SOCIAL REALM

In this chapter, we continue to provide practical applications for the theoretical

framework of operations affecting object identity. After the analysis of physical

(tangible) objects in the previous chapter, we concentrate on abstract objects: non-

graspable things that exist only in view of a particular social agreement. These objects

construct the social reality of the world, the part completely dependent on human

beings.

We give an informal description of typical social constructs: marriages and

business partnerships. Such constructs emerge, develop and cease to exist through time.

An analogy is drawn between social constructs and physical objects from the previous

chapter. Humans have abili ty to use metaphorical transformation from one experience,

to structure experience in another situation.

Several typical applications from the GIS domain are described: administrative

units, ownership and usufruct rights on cadastre parcels. These important concepts are

formalized using the tools developed in the previous chapters. Marriages, partnerships,

and administrative units share behavior with movable artifacts, ownership rights with

liquids, and usufruct rights with trees and fruits.

9.1 Constructs of social reality

Most human interaction is defined by the rules of social behavior. Some of these rules

are not written (friendships, promises), but many of them exist in written form, called

institutional facts (Searle 1995). The concepts that belong in this group are numerous:

money, marriage, partnerships, ownership, governments, citizenship, etc.

Institutional facts need physical objects as status indicators. Pieces of paper or coins

are physical objects, which under certain circumstances are considered as money. A

passport is a valid indicator that its owner is empowered to travel to certain foreign

countries and come back to his home country.

Institutional facts depend on collective intentionali ty; common will of the criti cal

majority in a particular society to accept the rules. In contrast to physical objects, which

wear out as we use them (cars, shirts), the institutional objects are renewed and

Lifestyles of Abstract Objects in the Social Realm 118

strengthened by their constant use (ownership, citizenship, money, marriage,

government) (Searle 1995).

We have chosen two typical institutional facts for the analysis of li festyles

applicabili ty: marriages and business partnerships. Both concepts are described by

underlying metaphors that relate institutional facts with physical, graspable objects.

In cognitive science, metaphors are ways of understanding one domain of

experience by using the terms from another, possibly simpler domain (Lakoff and

Johnson 1980). A common prejudice is thinking about metaphors as strictly poetic and

rhetorical figures of speech that express emotions, moods, and attitudes. In what

follows, we consider and use of metaphors in the sense of cognitive science.

9.1.1 Marr iage

Marriage begins with two people simply li ving together. The conversion of spatial

proximity and cohabitation to an institutional fact is justified by the need for a system of

collectively recognized rights, responsibiliti es, duties, and obligations (Searle 1995).

The institutional fact of marriage is a result of the institutional fact of the speech act in a

special context: mutual promises of spouses in front of a presiding off icial.

In this thesis, we consider the institutional fact of marriage as an abstract object on

its own. Our goal is to show that such an object has its li festyle similar to certain

physical objects. The set of metaphors for marriage is proposed in (Johnson 1993). On

the basis of individual interviews of married couples, Johnson found out that people

perceive their marriage through one or more of the following metaphors: MARRIAGE IS

A MANUFACTURED OBJECT, MARRIAGE IS AN ONGOING JOURNEY, MARRIAGE IS A

DURABLE BOND BETWEEN TWO PEOPLE, MARRIAGE IS A RESOURCE/INVESTMENT, and

MARRIAGE IS AN ORGANIC UNITY, (Johnson 1993). How to extract a unifying core from

such wide palette of metaphors?

Johnson’s metaphors are formed around the opinions of the people about their

marriages. We will analyze the li fe cycle of a marriage and its effects on the spouses.

The following scenario of a naive society is proposed: there are unmarried men and

women, those who are married, and those who were married before. This is exactly how

the real world is seen by the eyes of the appropriate legal off ice – let us call it “ the

marriage registry” . Then, a marriage begins with the registration of a mutual agreement

of both spouses in front of a registrar. Both spouses are removed from the list of

Lifestyles of Abstract Objects in the Social Realm 119

unmarried people and added to the list of married people. The end of marriage is

registered either as a result of the death of a spouse or a legal procedure called divorce.

If the spouses get divorced, they cannot be transferred back to the list of unmarried

people – marriage is irreversible. Even in the case that they marry each other again, it

would not be their first marriage.

The li festyle described here gives rise to a new metaphor for marriage: MARRIAGE

IS A CONSTRUCTIVE AGGREGATE. To support this claim we can draw the following

parallels between two domains:

• the marriage begins as an aggregation of two people, and after the marriage

they are not available for another marriage (spouses are shielded against other

aggregation);

• the divorce ends the marriage, producing the two old objects – spouses;

• death of one of spouses ends the marriage, the other spouse is then free;

• the marriage is irreversible – the same spouses married again make the new

marriage, (once destroyed, a marriage is not reincarnatable). It should be noted

that this is the legal, but not a “naive” view.

Thus, the formalization of marriage resembles the formalization of movable

artifacts from previous chapter. The only difference is stipulated by regulations: a new

marriage is always a new marriage, even between the same persons. Marriages are

constructive aggregates only - they cannot be suspended or resumed.

The formalization of marriages begins with the operation createPerson that

incorporate the attribute Age. It is assumed that there is a minimal age condition for

marriage being 18 years. Next, the operation destroyPerson has two cases: if a person

was not married, only the person is destroyed; if the person was married, the marriage is

destroyed as well .

class (Eq t, Aggregates d o t) => Marriages d o t where

 createPerson :: String -> Int -> ([ID], t) -> d o t -> d o t

 createPerson name age s = uncurry (updateObj h) . createWithID s where

 h = addAtts [(Name, Vs name), (Alive, Vb True), (Age, Vi age)]

 destroyPerson :: ID -> d o t -> d o t

 destroyPerson i = cond (married i) (f . pair (head . h i, g), g) where

 married x = not . null . h x

 h x = getConvRels PartOf x

 f = uncurry destroy

 g = destroy i

Lifestyles of Abstract Objects in the Social Realm 120

 createMarriage :: (ID,ID) -> t -> d o t -> d o t

 createMarriage (i, j) t = cond (meet (p,q)) (f, g) where

 p = uncurry (/=) . pair (h i, h j)

 h x = queryObj getObjType x

 q = meet (age i, age j)

 age x = geq . pair (y . getAttribs . selectObj x, const 18)

 y = unwrapValue . getValue . selectAtt Age

 f = aggregate [i,j] t

 g = error "not a legal marriage!"

 divorceMarr :: ID -> d o t -> d o t

 divorceMarr = segregate

Marriage is created with the operation createMarr iage, which performs two checks:

persons must be of different type (gender), and both must be older than 18 years. If one

of these criteria is not fulfill ed, the marriage is declared ill egal and will not be

registered. Finally, divorce is similar to the operation segregate. It ensures that a weak

aggregation is not possible.

The representation and necessary instances:

data Marr = Marriage | Male | Female

instance Eq Marr where

 (==) Male Male = True

 (==) Female Female = True

 (==) Marriage Marriage = True

 (==) _ _ = False

instance Relatable Marr where

 relatable (PartOf, (Male, Marriage)) = True

 relatable (PartOf, (Female, Marriage)) = True

instance SuspendableT Marr where

 suspendable Marriage = False

 suspendable Male = True

 suspendable Female = True

instance DestroyableT Marr where

 destroyable _ = True

instance Marriages TDB Object Marr

We are ready to demonstrate some examples of the presented theory:

mm0, mm1, mm2, mm3, mm4, mm5, mm6 :: TDB Object Marr

mm0 = T [Snap 0 [] []]

mm1 = createPerson "John" 20 ([], Male) mm0

mm2 = createPerson "Mary" 20 ([], Female) mm1

mm3 = createPerson "Sue " 17 ([], Female) mm2

mm4 = createMarriage (1,2) Marriage mm3 -- OK

mm5 = createMarriage (1,3) Marriage mm3 -- not legal

mm6 = destroyPerson 1 mm4

mm7 = divorceMarr 4 mm4

The operation mm4 returns the following state (John and Marry are parts of the

marriage, both are suspended):

Lifestyles of Abstract Objects in the Social Realm 121

Latest ID =4

 Objects: [

 #4 Marriage[[]],

 #3 Female ["Sue ", resumed , 17, []],

 #2 Female ["Mary", suspended, 20, []],

 #1 Male ["John", suspended, 20, []]]

 Relations: [

 1 is part of 4,

 2 is part of 4]

The operation mm5 (trying to construct a marriage between 17 years old Sue and John)

results in an error message - marriage is not legal. The operation mm6 (John dies)

destroys the marriage and resumes Mary's identifier:

Latest ID =4

 Objects: [

 #3 Female ["Sue ", resumed , 17, []],

 #2 Female ["Mary", suspended, 20, []]]

 Relations: []

We conclude that a powerful model for a marriage registry can be developed as an

extension of the generic li festyle of constructive aggregation.

9.1.2 Business partnerships

Our second example comes from the domain of economics. Legal organization of

business activities and relationships is an important issue in modern society. To avoid

disputes, promises and friendships are replaced by contracts and business partnerships.

The goal reached by such institutionalization is the higher predictabili ty of behavior of

all parties involved.

The idea of partnership is based on sharing of common investments and added

values through profits in equal parts: there are no special items exclusively owned by

one partner. According to the Swiss civil l aw (Schweizerisches Obligationenrecht - OR)

compiled in (Schönenberger 1976), a simple partnership "is a contractual agreement

between two or more persons to attain a joint goal with joint forces and means", the

translation by (Arpagaus 1997). The original text in German is:

"[Einfache] Gesellschaft ist die vertragsmäßige Verbindung von zwei
oder mehreren Personen zur Erreichung eines gemeinsamen Zweckes
mit gemeinsamen Kräften oder Mitteln." OR §530

Each partner must share the profit with other partners. Each partner takes the equal part

in a profit or a loss. A partnership is over if the goal it i s grounded for does not exist any

Lifestyles of Abstract Objects in the Social Realm 122

more or is unreachable, or if one of partners dies, or if one of partners bankrupts, or on

agreement of partners, or if the agreed period of time pasts, or if the court decide so.

The simple partnerships are very much like marriages, and we will not formalize

the same thing twice. Instead, we shall l ook at the rules of grounding and dismissing

stock corporations (Aktiengesellschaften - AG). A stock corporation "is a separate legal

entity with a corporate name and legal capital that is fixed in advance and divided into

shares of capital stock", (Arpagaus 1997). The original text in German is:

"Die Aktiengesellschaft ist eine Gesellschaft mit eigener Firma, deren
zum voraus bestimmtes Kapital (Grundkapital) in Teilsummen (Aktien)
zerlegt ist und für deren Verbindlichkeiten nur das
Gesellschaftsvermögen haftet." OR §620

A stock corporation is modeled as a movable artifact with two conditions for grounding

and subsequent changes in the structure of shareholders: the number of shareholders and

the amount of capital stock. Shareholders are modeled as containers of shares. The class

Partnerships is characterized with the operation sumStocks, which establishes the

condition for grounding the corporation in the operation createCorporation. The

amount of ground stock remains always the same (although the par value of a single

share may vary). In the following formalization, we assume that the fixed number of

shares is 10000; each share has the value of 10 francs, hence reaching the minimal

capital stock value of 10000 Swiss francs.

class (Containers d o t, MovableArtifacts d o t)

 => Partnerships d o t where

 createStockHolder :: String -> Float -> ([ID],t) -> d o t -> d o t

 createStockHolder name m s = uncurry (updateObj h) . createWithID s

 where

 h = addAtts [(Name, Vs name), (Alive, Vb True),

 (Amount, Vf m), (Capacity, Vf 10000.0)]

 sumStocks :: [ID] -> ValueSet -> d o t -> Float

 sumStocks is a = sum . map (unwrapValue . getValue . selectAtt a

 . getAttribs) . liftM selectObj is

 createCorporation :: String -> [ID] -> t -> d o t -> d o t

 createCorporation name ss t d =

 if s > 10000.0 then cond (meet (p,true)) (f,g) d

 else error " not enough capital" where

 p = geq . pair (const (length ss), const 3)

 s = sumStocks ss Amount d

 f = uncurry (updateObj (addAtts [(Alive, Vb True),

 (Amount, Vf s)])) . pair (getID, id) . aggregate ss t

 g = error "founding of the corporation not possible"

Lifestyles of Abstract Objects in the Social Realm 123

 sellShares :: Float -> ID -> ID -> d o t -> d o t

 sellShares = pourFromInto

 sellAllShares :: ID -> ID -> ID -> d o t -> d o t

 sellAllShares a b c d = removePart a c d'

 where d' = pourFromInto f a b d

 f = unwrapValue (get Amount a d)

The operation sellShares simulates the transfer of a certain number of shares from one

shareholder to another one. If one shareholder decides to quit and sell all his shares, he

is also removed from the aggregate - corporation. In both cases, it is essential that the

number of shares remains the same. The representation and implementation of inherited

classes on the datatype follows.

data Partnership = Corporation | StockHolder

instance Relatable Partnership where

 relatable (PartOf, (StockHolder, Corporation)) = True

instance SuspendableT Partnership where

 suspendable Corporation = True

 suspendable StockHolder = True

instance DestroyableT Partnership where

 destroyable _ = True

A prototype of a corporation and the possible changes are shown in the following

example. First, a corporation (ID=5) is created with the total of 10000 shares. If the

shareholder A (ID=1) buys 2500 shares from the shareholder B, the sum remains the

same. If B sells all , he leaves the corporation, the sum of shares remains the same.

pa0, pa6 :: TDB Object Partnership

pa1, pa2, pa3, pa4, pa5 ::

 Snapshot Object Partnership -> Snapshot Object Partnership

pa0 = T [Snap 0 [] []]

pa1 = createStockHolder "holderA" 2000.0 ([],StockHolder)

pa2 = createStockHolder "holderB" 4000.0 ([],StockHolder)

pa3 = createStockHolder "holderC" 3000.0 ([],StockHolder)

pa4 = createStockHolder "holderD" 2000.0 ([],StockHolder)

pa5 = createCorporation "corporA" [1,2,3,4] Corporation

-- serialized transaction:

pa6 = liftU (pa5 . pa4 . pa3 . pa2 . pa1) pa0

pa7, pa8 :: TDB Object Partnership

-- shareholder A sells some shares (2500) to B:

pa7 = liftU (sellShares 2500.0 2 1) pa6

-- shareholder A sells all shares to B in the corporation 5:

pa8 = liftU (sellAllShares 2 1 5) pa6

Lifestyles of Abstract Objects in the Social Realm 124

The transaction pa7 results in:

Latest ID =5

 Objects: [

 #5 Corporation["corporA", resumed , 11000.0, []],

 #4 StockHolder["holderD", suspended, 2000.0, 11000.0, []],

 #3 StockHolder["holderC", suspended, 3000.0, 11000.0, []],

 #2 StockHolder["holderB", suspended, 1500.0, 11000.0, []],

 #1 StockHolder["holderA", suspended, 4500.0, 11000.0, []]]

 Relations: [

 1 is part of 5,

 2 is part of 5,

 3 is part of 5,

 4 is part of 5]

The transaction pa8 results in:

Snapshot

 Latest ID =5

 Objects: [

 #5 Corporation["corporA", resumed , 11000.0, []],

 #4 StockHolder["holderD", suspended, 2000.0, 11000.0, []],

 #3 StockHolder["holderC", suspended, 3000.0, 11000.0, []],

 #2 StockHolder["holderB", resumed , 0.0, 11000.0, []],

 #1 StockHolder["holderA", suspended, 6000.0, 11000.0, []]]

 Relations: [

 1 is part of 5,

 3 is part of 5,

 4 is part of 5]

Stock corporations share the li festyle with movable artifacts. The conditions for

existence are different than in physical domain, because of legal regulations.

9.2 Lifestyles of land units

In this section, we focus on the application of li festyles theory on land information

systems. The land domain is selected because spatial administrative subdivisions of land

area cover the whole ground of our planet, being the area of environmental concerns (in

case of vital resources for the future), international disputes (in case of wars), and

careful measuring and mapping (in case of national surveying).

9.2.1 Ownership rights on cadastre parcels

The right of ownership is the basic right in common law. In Austrian law, ownership in

general is defined as follows (translation of the author):

Lifestyles of Abstract Objects in the Social Realm 125

“Viewed as a right, ownership is the competence to rule the substance and the use

of a thing to one’s arbitrariness and to bar anybody else from substance and use.”

This definition is very broad and accounts for watches, cars, and pieces of land as

well . The ownership of land is somewhat specific: land is non-perishable and it cannot

be easily stolen, lost, destroyed, or counterfeited (Smith and Zaibert 1996).

The ownership rights behave like liquids: once melted, these are not splittable - new

rights emerge. The reason is the legal nature of the ownership rights posed upon the

parcel. A good example for indivisibili ty of rights is the mortgage.

class Liquids d o t => Parcels d o t where

 createParcel :: String -> Float -> ([ID], t) -> d o t -> d o t

 createParcel = createLiquid

data Parcel = Parcel

instance Relatable Parcel

instance DestroyableT Parcel where

 destroyable Parcel = True

instance Parcels TDB Object Parcel

instance Liquids TDB Object Parcel

p0, p1, p2, p3 :: TDB Object Parcel

p0 = T [Snap 0 [] []]

p1 = createParcel "parcelA" 2.4 ([], Parcel) p0

p2 = createParcel "parcelB" 2.8 ([], Parcel) p1

p3 = fusion [1,2] Parcel p2

p4 = fissionN 3 3 p3

p6 = restructure [1,2] Parcel 4 p2 --4,5,6,7

The metaphor behind the model is OWNERSHIP RIGHTS ON PARCELS ARE LIQUID

OBJECTS.

9.2.2 Usufruct rights

There is a special right that can be imposed on a cadastre parcel: the owner of the parcel

transfers the right of harvesting the parcel to another person, who then is said to have

usufruct right on the parcel. Usufruct is the right to use another's property while not

changing or harming it.

If the parcel is not harvested, the possible benefit is irreversibly gone, just like the

fruits from the tree rot if not picked. Therefore, the right of usufruct can be formalized

in the same way as the li fe of trees with fruits.

Lifestyles of Abstract Objects in the Social Realm 126

class TreeWithFruits d o t => Usufructs d o t where

 createAParcel :: String -> Float -> ([ID], t) -> d o t -> d o t

 createAParcel = createTree

 createUsufruct :: [ID] -> t -> d o t -> d o t

 createUsufruct = aggregateTree

data UsufructRight = AParcel | Usufruct | ParcelWithUsufruct

instance Relatable UsufructRight where

 relatable (PartOf, (AParcel, ParcelWithUsufruct)) = True

 relatable (PartOf, (Usufruct, ParcelWithUsufruct)) = True

instance DestroyableT UsufructRight where

 destroyable AParcel = True

 destroyable Usufruct = True

 destroyable ParcelWithUsufruct = True

instance SuspendableT UsufructRight where

 suspendable AParcel = True

 suspendable Usufruct = True

 suspendable ParcelWithUsufruct = False

instance ContainersO Object UsufructRight where

 pourIn = error " not possible "

 takeOut = cond p (f,g) where

 p = leq . cross (id, getAmount)

 f = setAmount . pair (minus.swap.cross (id,getAmount),outr)

 g = error "not enough usufruct on the parcel"

instance TreeWithFruits TDB Object UsufructRight

instance Usufructs TDB Object UsufructRight

-- examples:

uf0, uf1, uf2, uf3, uf4 :: TDB Object UsufructRight

uf0 = T [Snap 0 [] []]

uf1 = createAParcel "parcelA " 10.0 ([],AParcel) uf0

uf2 = createAParcel "usufructA " 10.0 ([],Usufruct) uf1

uf3 = createAParcel "parcelB " 5.0 ([],AParcel) uf2

uf4 = createUsufruct [1,2] ParcelWithUsufruct uf3

tuf1 :: Float

tuf1 = get Amount 3 uf4

-- Vf 5.0

tuf2 = updateObj (curry pourIn 7.0) 2 uf4

-- not possible

The li festyle of usufruct rights can be fully matched by the model of trees with

fruits.

9.2.3 Administrative units

Administrative units (states, counties, provinces) can be assembled and disassembled

freely, depending only on the common will of the subjects involved. The formal model

is completely similar to the model for movable artifacts, described in Section 8.1.2.

Lifestyles of Abstract Objects in the Social Realm 127

class MovableArtifacts d o t => Unions d o t where

 createUnit :: String -> ([ID], t) -> d o t -> d o t

 createUnit = createMovArt

 aggregateUnits :: String -> [ID] -> t -> d o t -> d o t

 aggregateUnits = aggregateMovArt

 addUnit :: ID -> ID -> d o t -> d o t

 addUnit = addPart

 secedeUnit :: ID -> ID -> d o t -> d o t

 secedeUnit = removePart

The implementation for the appropriate object type is:

data AdminUnit = State | Union

instance Relatable AdminUnit where

 relatable (PartOf, (State, Union)) = True

instance DestroyableT AdminUnit where

 destroyable State = True

 destroyable Union = True

instance SuspendableT AdminUnit where

 suspendable State = True

 suspendable Union = True

instance MovableArtifacts TDB Object AdminUnit

instance Unions TDB Object AdminUnit

Our case study will be forming of Canada, followed by a hypothetical secession of

Quebec (Hornsby and Egenhofer 1997). The union is formed by 10 states:

au0, au1, au2, au3 :: TDB Object AdminUnit

au0 = T [Snap 0 [] []]

au1 = createUnit "Quebec " ([], State) au0

au2 = createUnit "Ontario " ([], State) au1

au3 = createUnit "New Brunswick " ([], State) au2

au4 = createUnit "Nova Scotia " ([], State) au3

au5 = createUnit "British Columbia " ([], State) au4

au6 = createUnit "Prince Edward Isl" ([], State) au5

au7 = createUnit "Alberta " ([], State) au6

au8 = createUnit "Manitoba " ([], State) au7

au9 = createUnit "Newfoundland " ([], State) au8

au10 = createUnit "Saskatchewan " ([], State) au9

au11 = aggregateUnits "Canada " [1,2,3,4,5,6,7,8,9,10] Union au10

-- all parts of canada as a list of IDs

tstau0 = getRels PartOf 11 au11

-- all parts as a list of objects:

tstau1 = map (flip selectObj au11) (getRels PartOf 11 au11)

-- finally, secession

tstau2 = secedeUnit 1 11 au11

-- results in:

Lifestyles of Abstract Objects in the Social Realm 128

Latest ID =11

 Objects: [

 #11 Union["Canada ", resumed , []],

 #10 State["Saskatchewan ", suspended, []],

 #9 State["Newfoundland ", suspended, []],

 #8 State["Manitoba ", suspended, []],

 #7 State["Alberta ", suspended, []],

 #6 State["Prince Edward Isl", suspended, []],

 #5 State["Britisch Columbia", suspended, []],

 #4 State["Nova Scotia ", suspended, []],

 #3 State["New Brunswick ", suspended, []],

 #2 State["Ontario ", suspended, []],

 #1 State["Quebec ", resumed , []]]

 Relations: [

 2 is part of 11,

 3 is part of 11,

 4 is part of 11,

 5 is part of 11,

 6 is part of 11,

 7 is part of 11,

 8 is part of 11,

 9 is part of 11,

 10 is part of 11]

The Quebec is segregated and resumed, while Canada survived. Other administrative

divisions (e.g., the division of a state in provinces and counties) could be modeled in the

same manner. The metaphor behind this model is: ADMINISTRATIVE UNITS ARE

MOVABLE ARTIFACTS.

9.3 Summary

In this chapter, we focused on abstract objects – objects that evolved with human

society and whose existence is dependent on human agreement. Such objects are called

institutional facts, in contrast to bona fide facts that do not need to be enforced. We

showed that institutional objects could be modeled in the same way as physical objects

by the simple extension of the proposed theory of li festyles.

Marriages and partnerships, seen from a registry perspective, exercise the li festyle

of aggregatable objects: marriages are constructive aggregates; partnerships are

movable artifacts where the parts are containers shareholders.

Administrative subdivisions of land – regardless if they are unions, federations,

states, provinces or counties – are similar to movable artifacts. Lower-level units can be

removed, added, replaced or regrouped within higher-level units. Ownership rights on a

cadastral parcel, on the other hand, resemble liquid objects: parcels fuse and fission

Lifestyles of Abstract Objects in the Social Realm 129

irreversibly creating the new parcels and destroying the existing parcels. Finally, the

kind of partial right on cadastral parcel – usufruct right – is similar to a tree with fruits:

if the parcel is not harvested, the usufruct right is gone for that year.

The hierarchy of classes for abstract objects and the dependencies upon the classes

of physical objects and generic li festyles are shown in Figure 9.1.

TreeWithFruits d o t Usufructs d o t
ContainersO o t

Containers d o t
Aggregates d o t Marriages d o t

WAggregates d o t MovableArtifacts d o t Unions d o t

Partnerships d o t

Fusions d o t Liquids d o t Parcels d o t

Figure 9.1: Classes hierarchy for non-tangible (abstract) objects from social realm.

The theory of li festyles is applicable to a wide range of phenomena in the world of

institutional facts – the part of real world human activities. Extensions to the class

system proposed in the previous chapter are simple and straightforward. The most

significant institutions of human society are modeled similar to simpler domains of

physical objects.

Conclusions and Future Work 130

10. CONCLUSIONS AND FUTURE WORK

The goal of this thesis was to explore the behavior of object identity in a spatiotemporal

database, and to examine the applicabili ty of the theory in various application domains

both in physical and social realm.

We used the entity-relationship (E-R) model for the representation of the real world

(Chen 1976). Identifiable features are represented as objects, which are distinguishable

by unique identifiers. Properties of features are represented as attributes (functions from

objects to values). Relationships among features are modeled as relations among

objects.

All objects and relations at a single point of time build a snapshot. Objects and

relations are changing over time. For each change, a new snapshot is appended to the

database. The whole spatiotemporal database consists of a number of snapshots, and

time is implicitly stored as the ordering of snapshots. We used linear, discrete, and

totally ordered model of time.

Objects are metaphorically perceived as having li fe: an object has its birth or

creation, its li fe or existence, its death or destruction. The central concept in the li fe of

an object is its identifier, which is unchanged from the birth to the death of the object.

Identifiers are system constructs and they are maintained by the database independently

of the user. A long discussion about the model for a general temporal database was

necessary to prepare the ground for change in identity, because we wanted to represent

both the multi -purpose temporal database and the properties of identifiers in a single

environment.

Four basic operations affecting object identity are proposed: create, destroy,

suspend, and resume. Their compositions are either applicable on a single object

(evolve), or on a group of objects (constructive and weak fusion, fission, aggregate and

segregate, and restructure). Altogether, these operations build a finite set of identity

affecting operations. Depending on the applicabilit y of operations on identity, objects

can be divided into two main li festyles: fusions and aggregates. We showed that the

examples of these li festyles are found in both the physical and the abstract domain.

The theory of li festyles reduces the efforts for constructing the applications that

need temporal database models. In order to build an application (e.g., for temporal GIS),

Conclusions and Future Work 131

the designer must only instantiate his objects to appropriate li festyles classes, and all

necessary properties will be automatically deduced using the inheritance mechanism.

10.1 Results and major findings

The major result of this thesis is the formal model for a universal spatiotemporal

database, capable of representing different classes of objects in a uniform way with

respect to change in identity of objects. The “representation mapping” between the real

world and the database model is essential: features are mapped to objects; identities are

mapped to identifiers; properties to attributes. The broad term of cognitively assigned

identity is reduced to the prototypical cases: objects that have crisp boundaries either in

virtue of their physical appearance (like cars and buildings) or in virtue of an

institutional agreement (li ke cadastre parcels and administrative units).

The criteria an identifier must fulfill (uniqueness, immutabili ty, and non-

reusabili ty) hold in any database, but li festyle operations are possible only if the

transaction time dimension is supported and there is no overwriting of the existing data.

Only if new identifiers are assigned automatically and a new version of a database is

appended for each change, a consistent treatment of temporal li nks among identifiers is

possible.

10.1.1 Lifestyles

Lifestyles are algebras of operations affecting object identifiers. Not all operations are

applicable for every object class (e.g., car tires cannot be fused).

The set of operations affecting object identifiers in a temporal database is finite.

Assuming that there are four basic operations (create, destroy, suspend, resume), the

number of their compositions is an exhaustible set, covering a wide range of situations

encountered in the application domain. This set is developed in a logical system, based

on category theory, using functional composition only.

create (is, ot) = uncurry (updateObj f) . pair (getID, id) . newObj ot

 where f = addAtt Preds (Vp is)

destroy i = cond p (f, g) where

 p = destroyable . getObjType . selectObj i

 f = deleteObj i

 g = error ("the object" ++ show i ++ "is not destroyable")

Conclusions and Future Work 132

suspend i = cond p (f, g) where

 p = suspendable . getObjType . selectObj i

 f = updateObj suspendObj i

 g = error ("the object" ++ show i ++ "is not suspendable")

resume i = cond p (f, g) where

 p = queryObj suspended i

 f = updateObj resumeObj i

 g = error ("the object" ++ show i ++ "is already suspended")

All possible compositions of the four basic operations are divided into 5 classes:

evolvable, constructive aggregates, weak aggregates, constructive fusions, and weak

fusions. The point-free formulae follow (details are given in Chapter 7):

evolve i = uncurry (set Preds (Vp (wrap i)))

 . pair (getID, destroy i) . uncurry (updateObj' setAttribs)

 . pair (pair (getID, getAttribs. selectObj i), id) . uncurry create

 . assocl. pair (nil, pair (getObjType . selectObj i, id))

 where updateObj' f (i,x) = updateObj (f x) i

aggregate is t = uncurry (addRels PartOf is) . createWithID ([],t)

 . (flip.foldr) suspend is

segregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i, g)

 where g = deleteRels PartOf i . destroy i

waggregate is i = (flip.foldr) suspend is.addRels PartOf is i.resume i

wsegregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i,g)

 where g = deleteRels PartOf i . suspend i

fusion is t = (flip . foldr) destroy is . create (is, t)

fissionN n i = uncurry (createN n) . pair (f, destroy i)

 where f = pair (wrap . const i, getObjType . selectObj i)

restructure is t n = uncurry (fissionN n).pair (getID,id).fusion is t

wfusion is i = (flip . foldr) destroy is . resume i

wfissionN n i = uncurry (createN n) . pair (f, suspend i)

 where f = pair (wrap . const i, getObjType . selectObj i)

The difference between a constructive fusion (fusion) and a weak fusion (wfusion) is in

the semantics of underlying operations: a constructive fusion creates a new object,

whereas a weak fusion resumes an already existing one. In the same manner, a

constructive fission destroys an object, whereas a weak fission suspends an object. Both

constructive and weak fusions destroy fused objects. Thus, a fusion is always

irreversible.

The rationale behind constructive and weak aggregations (segregations) is similar

to constructive and weak fusions (fissions) with an essential difference: both

Conclusions and Future Work 133

constructive and weak aggregations suspend the aggregated objects. Thus, a weak

aggregation is a reversible operation.

The theory of li festyles is compared to other prominent proposals for categorization

of operations affecting object identity: the proposal by Al-Taha and Barrera (1994) and

the proposal by Hornsby and Egenhofer (1997). In Section 7.3, we show that all well -

defined operations in both proposals can be formally modeled with li festyles. We

provided translations of those operations in functional language. The theory of li festyles

is a step forward with respect to other proposals, because it is more general an powerful

than the proposal of Al-Taha and Barrera, and it is conceptually simpler than, yet

equally powerful as the proposal of Hornsby and Egenhofer.

10.1.2 Application of lifestyles

Objects are composed in aggregates, and details about single parts are hidden until we

change the level of abstraction (a car is perceived as a unity as long as it functions

properly; its tire becomes important if it is broken). The relation part-of (aggregation)

matters when identifiers are concerned, because the identifiers of parts are suppressed in

a whole. At the same time the relation member-of (association) does not change the

identifiers: an object can be simultaneously member of many sets, none of which

diminish its identity (a car can be a member of all red objects, of all movable objects,

etc.).

A categorization of objects existing in the real world is proposed and each category

is formalized. Lifestyles of physical (tangible) objects could be applied on abstract

(non-tangible) objects using metaphorical transfer. Operations in one domain (e.g., trees

with fruits) are applied to another domain (e.g., cadastre parcels with usufruct rights)

without altering the definitions of operations. The dependencies among common classes

in physical and abstract domains are shown in Figure 10.1. This leads to the

simpli fication of the overall model, enabling the database designer to reuse a significant

amount of code. Modeling of abstract objects (institutional facts) is of enormous

importance for future GIS. The possibili ty to deal with such objects using simpler

models of physical objects allows better insight into their nature as well .

Conclusions and Future Work 134

Creatable d o t Eternals o t

MovableNaturals d o t

DestroyableT t Immovables d o t

Livings d o t

TreeWithFruits d o t Usufructs d o t
ContainersO o t

Containers d o t
Aggregates d o t Marriages d o t

WAggregates d o t MovableArtifacts d o t Unions d o t

Partnerships d o t

Fusions d o t Liquids d o t Parcels d o t

Figure 10.1: Classes hierarchy - from generic lifestyles along physical objects to abstract objects.

Transformations between the two different concepts of altering temporal database

(database versioning and object versioning) are lossless - they transfer complete

information from one view to another. The difference between the techniques lies in the

different dimensions for grouping thematic and temporal elements. Database versioning

groups thematic elements (objects) for each temporal element. Object versioning groups

temporal elements for each thematic element (object), see Figure 3.4. We provided the

algorithms for transformations between versioning techniques in Section 3.3.2, and

formalized the algorithms in the functional language in Section 6.5. Since the

transformations are lossless, we developed a conceptual model based on the simpler,

database versioning view.

10.1.3 Discussion

In this thesis, we provided a model of an object-oriented spatiotemporal database with

the emphasis on changes in identifiers of objects. The change in attributes was not the

topic of discussion. An object may change its identity by changing its attributes. This is

modeled as the evolution construct, but the semantic decision how much change in

attributes is necessary for an object to evolve is left to the human expert for a particular

domain. Such criteria could be formalized for different application areas and then added

as compositions to the generic operation evolve.

Conclusions and Future Work 135

A single relationship between objects is exclusively discussed: the mereological

relation "part of". This relation is the basis for cognitive process of hierarchical

abstraction: humans tend to omit details about parts of the whole as long as the whole is

functioning properly (e.g., the engine in a car). Another relation for constructing

composite objects - the association "member-of" - is omitted from our model, because

this relation does not change identity of objects involved.

The last remaining issue is how li festyles help in designing temporal GIS. A hint

how this can be done is provided in Chapters 8 and 9: the generic li festyles framework

is extended to suite the needs each particular application. A designer of GIS needs only

to assign the objects of his model to appropriate li festyles and provide the

implementation of basic classes. The unified treatment of the change in object

identifiers is automatically inherited. Models based on li festyles would share common

behavior of operations, leading to increased interoperabili ty among the applications in

different domains. The theory of li festyles is an important step in the direction of

interoperable temporal information systems.

10.2 Directions for future work

In this thesis, we concentrated exclusively on change of object identity. Properties

(attributes) of objects are also worth investigating: how attributes change under the

proposed rules of change? This is especially important for such qualiti es of objects that

can be added or averaged in case a new object results from the fusion of several existing

objects. The examples of such attributes include area, volume, and weight. In order to

be averaged or summed up, such attributes must be quantitatively measurable either on

an interval or on a ratio scale (Stevens 1946), in contrast to qualiti es that are only

nominal (color), or ordinal (hardness).

Operations affecting object identity imply significant changes to the relations

among the changed objects. A detailed analysis of these consequences with respect to

the nature of relations is an interesting research topic, especially for GIS applications.

For example, how the topological relations of an object are distributed on its child

objects after the original object is fissioned?

Finally, further work is necessary on producing more complete categorizations of

real world objects for specific domains and on the investigation of the requirements the

Conclusions and Future Work 136

general model of li festyles should fulfill t o capture the semantics of these

categorizations.

The temporal model implemented in this thesis was simple. Branching time with

multiple futures is possible. Which temporal dimension (transaction, valid) is

appropriate for dealing with li festyles in branching time? Does cyclic time negate the

identity uniqueness, or just disable destroying (and li festyles based on destroying)?

In a rollback database, modeling of future times is not possible. If we add the valid

time dimension, we could model possible alternatives. In that case, some interesting

questions about levels of existence arise: a creation of a particular car may be projected

into the future even before concrete, physical parts are aggregated into a new car as a

moving object.

Finally, in our model, the user has complete freedom in manipulating the valid time

dimension. It is possible to impose some constraints on the valid time. For example, in

the transaction time, a fusion implies that the deletion time of fused objects and the

creation time of the emerging object coincide. If this requirement is applied to the valid

time dimension, the freedom of updating the database by the user is restricted.

137

BIBLIOGRAPHY

Allen, J. F. (1983). “Maintaining Knowledge about Temporal Intervals.”

Communications of the ACM, 26(11), 832-843.

Al-Taha, K. (1992). “Temporal Reasoning in Cadastral Systems.” Ph.D. thesis,

University of Maine.

Al-Taha, K., and Barrera, R. (1994). "Identities through Time". In Proceedings of

International Workshop on Requirements for Integrated Geographic Information

Systems, (Ehlers, ed.), in New Orleans, Louisiana, pp: 1-12.

Arpagaus, R. (1997). “Business Associations under Swiss Law.”

http://www.swissemb.org/legal/html/corporation.html (The Embassy of

Switzerland in Washington, D.C.).

Backus, J. (1978). “Can Programming Be Liberated from the von Neumann Style? A

Functional Style and Its Algebra of Programs.” Communications of the ACM, 21,

613-641.

Bird, R. (1998). Introduction to Functional Programming Using Haskell , Prentice Hall

Europe, Hemel Hempstead, UK.

Bird, R., and de Moore, O. (1997). Algebra of Programming, Prentice Hall , London.

Bird, R., and Wadler, P. (1988). Introduction to Functional Programming, Prentice Hall

International, Hemel Hempstead (UK).

Birkhoff , G. (1945). "Universal Algebra". In Proceedings of First Canadian Math.

Congress, Published by Toronto University Press, pp: 310-326.

Birkhoff , G., and Lipson, J. D. (1970). “Heterogeneous Algebras.” Journal of

Combinatorial Theory, 8, 115-133.

Bittner, S. (1998). “Die Modelli erung eines Grundbuchsystems im Situationskalkül.”

Master thesis, Department of Computer Science, University of Leipzig, Leipzig.

Bunge, M. A. (1977). Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture

of the World, Reidel, Boston.

Bunge, M. A. (1979). Treatise on Basic Philosophy: Vol. 4: Ontology II: A World of

Systems, Reidel, Boston.

Bibliography 138

Cardelli , L. (1997). “Type Systems.” Handbook of Computer Science and Engineering,

CRC Press.

Cardelli , L., and Wegner, P. (1985). “On Understanding Types, Data Abstraction, and

Polymorphism.” ACM Computing Surveys, 17(4), 471 - 522.

Casati, R., and Varzi, A. C. (1994). Holes and Other Superficialiti es, MIT Press,

Cambridge, Mass.

Cattell , R. G. G., and Barry, D. K. (1997). Object Database Standard: ODMG 2.0,

Morgan Kaufmann, San Francisco, CA.

Chen, P. P.-S. (1976). “The Entity-Relationship Model - Toward a Unified View of

Data.” ACM Transactions on Database Systems, 1(1), 9 - 36.

Claramunt, C., and Thériault, M. (1996). "Toward Semantics for Modelli ng Spatio-

Temporal Processes within GIS". In Proceedings of 7th International Symposium

on Spatial Data Handling, (M.-J. Kraak and M. Molenaar, eds.), August 12-16, in

Delft,The Netherlands, Published by International Geographical Union, Vol. 2,

pp: 2.27-2.43.

Cli fford, J., and Croker, A. (1988). “Objects in Time.” Database Engineering, 7(4),

189-196.

Cli fford, J., and Isakowitz, T. (1994). "Modeling Time: Adequacy of Three Distinct

Time Concepts for Temporal Databases". In Proceedings of Advances in

Database Technology - EDBT, (J. Matthias, J. Bubenko, and K. Jeffery, eds.),

March 28-31, in Cambridge, UK, Published by Springer -Verlag, Lecture Notes in

Computer Science, pp: 215-230.

Codd, E. (1979). “Extending the database relational model to capture more meaning.”

ACM TODS, 4(4), 379-434.

Egenhofer, M. J., and Mark, D. M. (1995). “Naive Geography.” Spatial Information

Theory - A Theoretical Basis for GIS, (A. U. Frank and W. Kuhn, eds.), Springer-

Verlag, Berlin, 1-15.

Ehrich, H.-D., Gogolla, M., and Lipeck, U. W. (1989). Algebraische Spezifikation

abstrakter Datentypen, B.G. Teubner, Stuttgart.

Eilenberg, S., and Mac Lane, S. (1945). “General Theory of Natural Equivalences.”

Transactions of the American Mathematical Society, 58, 231-294.

Bibliography 139

Frank, A. U. (1994). "Qualitative temporal reasoning in GIS - ordered time scales". In

Proceedings of Sixth International Symposium on Spatial Data Handling,

SDH'94, (T. C. Waugh and R. G. Healey, eds.), Jan. 94, in Edinburgh, Scotland,

Sept. 5-9, 1994, Published by IGU Commission on GIS, Vol. 1, pp: 410-430.

Frank, A. U. (1996). “The Prevalence of Objects with Sharp Boundaries in GIS.”

Geographic Objects with Indeterminate Boundaries, (P. A. Burrough and A. U.

Frank, eds.), Taylor & Francis, London, 29-40.

Frank, A. U. (1998a). “Different types of 'times' in GIS.” Spatial and Temporal

Reasoning in GIS, (M. J. Egenhofer and R. G. Golledge, eds.), Oxford University

Press, New York, 40-61.

Frank, A. U. (1998b). "GIS for Politi cs". In Proceedings of GIS Planet'98, in Dordrecht,

the Netherlands (September 7-11, 1998).

Frank, A. U., and Kuhn, W. (1995). “Specifying Open GIS with Functional

Languages.” Advances in Spatial Databases (4th Int. Symposium on Large Spatial

Databases, SSD'95, in Portland, USA), (M. J. Egenhofer and J. R. Herring, eds.),

Springer-Verlag, 184-195.

Gruber, T. (1993). “A translation approach to portable ontologies.” Knowledge

Acquisition, 5(2), 199-220.

Guttag, J. V., Horowitz, E., and Musser, D. R. (1978). “Abstract Data Types and

Software Validation.” Comm. ACM, 21(12), 1048-1064.

Hawking, S. W. (1988). A Brief History of Time, Bantam, New York.

Hayes, P. J. (1978). “The Naive Physics Manifesto.” Expert Systems in the

Microelectronic Age, (D. Mitchie, ed.), Edinburgh University Press, Edinburgh,

242-270.

Hayes, P. J. (1985a). “Naive Physics I: Ontology for Liquids.” Formal Theories of the

Commonsense World, (J. R. Hobbs and R. C. Moore, eds.), Ablex Publishing,

Norwood, NJ, 71-107.

Hayes, P. J. (1985b). “The Second Naive Physics Manifesto.” Formal Theories of the

Commonsense World, (J. R. Hobbs and R. C. Moore, eds.), Ablex Publishing,

Norwood, NJ, 1-36.

Bibliography 140

Herring, J., Egenhofer, M. J., and Frank, A. U. (1990). "Using Category Theory to

Model GIS Applications". In Proceedings of 4th International Symposium on

Spatial Data Handling, (K. Brassel, ed.), in Zurich, Switzerland, Published by

International Geographical Union IGU, Commission on Geographic Information

Systems, Vol. 2, pp: 820-829.

Hobbs, J., and Moore, R. C. (1985). “Formal Theories of the Commonsense World.”

Ablex Series in Artificial Intelli gence, Ablex Publishing Corp., Norwood, NJ.

Hofstadter, D. R. (1979). Gödel, Escher, Bach: An Eternal Golden Braid, Vintage

Books, New York.

Hornsby, K., and Egenhofer, M. J. (1997). “Qualitative Representation of Change.”

Spatial Information Theory - A Theoretical Basis for GIS (International

Conference COSIT'97), (S. C. Hirtle and A. U. Frank, eds.), Springer-Verlag,

Berlin-Heidelberg, 15-33.

Hornsby, K., and Egenhofer, M. J. (1998). "Identity-Based Change Operations for

Composite Objects". In Proceedings of 8th Internal Symposium on Spatial Data

Handling, (T. K. Poiker and N. Chrisman, eds.), July 11-15, 1998, in Vancouver,

Published by International Geographical Union, pp: 202-213.

Jensen, C. C., and Dyreson, C. E. (1998). "The Consensus Glossary of Temporal

Database Concepts - February 1998 Version". In Proceedings of Temporal

Database - Research and Practice, (O. Etzion, S. Jajodia, and S. Sripada, eds.),

Published by Springer Verlag, Lecture Notes in Computer Science 1399, pp: 367-

405.

Jensen, C. C., and Snodgrass, R. T. (1992). "Temporal Specialization and

Generalization". In Proceedings of IEEE Transactions on Knowledge and Data

Engineering.

Johnson, M. (1993). Moral Imagination - Implications of Cognitive Science for Ethics,

The University of Chicago Press.

Jones, M. P. (1991). “An Introduction to Gofer. Technical Report.” , Yale University.

Jones, M. P. (1995). “A system of constructor classes: overloading and implicit higher-

order polymorphism.” Functional Programming, 5(1), 1-35.

Jones, S. P., Jones, M., and Meijer, E. (1997). “Type classes: an exploration of the

design space.” , Universities of Glasgow, Nottingham and Utrecht.

Bibliography 141

Katsuno, H., and Mendelzon, A. O. (1991). "On the Difference between Updating a

Knowledge Base and Revising it". In Proceedings of 2nd International

Conference on Principles of Knowledge Representation and Reasoning, (J. Allen,

R. Fikes, and E. Sandewall , eds.), April , in Cambridge, MA, USA, Published by

Morgan Kaufmann Publishers, pp: 387-394.

Khoshafian, S., and Abnous, R. (1990). Object Orientation - Concepts, Languages,

Databases, User Interfaces, John Wiley & Sons, New York, NY.

Kim, S.-K., and Chakravarthy, S. (1994). "Modeling Time: Adequacy of Three Distinct

Time Concepts for Temporal Databases". In Proceedings of Advances in

Database Technology - EDBT, (J. Matthias, J. Bubenko, and K. Jeffery, eds.),

March 28-31, in Cambridge, UK, Published by Springer -Verlag, Lecture Notes in

Computer Science, pp: 475-491.

Kuipers, B. (1978). “Modeling Spatial Knowledge.” Cognitive Science, 2(2), 129-154.

Kuipers, B. (1994). Qualitative Reasoning: Modeling and Simulation with Incomplete

Knowledge, MIT Press, Cambridge, MA.

Lakoff , G. (1987). Women, Fire, and Dangerous Things: What Categories Reveal

About the Mind, University of Chicago Press, Chicago, IL.

Lakoff , G., and Johnson, M. (1980). Metaphors We Live By, University of Chicago

Press, Chicago.

Langran, G. (1989). “A review of temporal database research and its use in GIS

applications.” IJGIS, 3(3), 215-232.

Lenat, D. G., Guha, R. V., Pittman, K., Pratt, D., and Shepherd, M. (1990). “CYC:

Toward programs with common sense.” Communications of the ACM, 33(8), 30 -

49.

Liskov, B., and Guttag, J. (1986). Abstraction and Specification in Program

Development, MIT Press, Cambridge, MA.

Loeckx, J., Ehrich, H.-D., and Wolf, M. (1996). Specification of Abstract Data Types,

Wiley, Teubner.

Mark, D. M., and Frank, A. U. (1996). “Experiential and Formal Models of Geographic

Space.” Environment and Planning, Series B, 23, 3-24.

McCarthy, J. (1957). “Situations, actions and causal laws.” AI-Memo 1, Stanford

University, Stanford, CA.

Bibliography 142

McCarthy, J., and Hayes, P. J. (1969). “Some Philosophical Problems from the

Standpoint of Artificial Intelli gence.” Machine Intelli gence 4, (B. Meltzer and D.

Michie, eds.), Edinburgh University Press, Edinburgh, 463-502.

Milner, R. (1978). “A Theory of Type Polymorphism in Programming.” Journal of

Computer and System Sciences, 17, 348-375.

Mulli gan, K., and Smith, B. (1986). “A Relational Theory of the Act.” Topoi, 5(2), 115-

130.

Peterson, J., Hammond, K., Augustsson, L., Boutel, B., Burton, W., Fasel, J., Gordon,

A. D., Hughes, J., Hudak, P., Johnsson, T., Jones, M., Meijer, E., Jones, S. P.,

Reid, A., and Wadler, P. (1997). “The Haskell 1.4 Report.”

http://haskell .org/report/index.html.

Reiter, R. (1984). “Towards a logical reconstruction of relational database theory.” On

Conceptual Modelli ng, Perspectives from Artifi cial Intelli gence, Databases, and

Programming Languages, (M. L. Brodie, M. Mylopolous, and L. Schmidt, eds.),

Springer Verlag, New York, 191-233.

Reiter, R. (1994). “On Specifying Database Updates.” The Journal of Logic

Programming, 19(20).

Reiter, R. (in preparation). Knowledge in Action: Logical Foundations for Describing

and Implementing Dynamical Systems, University of Toronto.

Rumbaugh, J., Blacha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-

Oriented Modeling and Design, Prentice Hall , Englewood Cli ffs, NJ.

Sarda, N. (1990). “Extensions to SQL for Historical Databases.” IEEE Transactions on

Knowledge and Data Engineering, 2(2), 220-230.

Schönenberger, W. (1976). Schweizerisches Zivilgesetzbuch mit Obligationenrecht,

Shulthess Polygraphischer Verlag AG, Zürich.

Searle, J. R. (1995). The Construction of Social Reality, The Free Press, New York.

Smith, B. (1982). “Parts and Moments - Studies in Logic and Formal Ontology.”

Analytica, Philosophia Verlag, München.

Smith, B. (1999). “An Introduction to Ontology.” , NCGIA, Bad Harbor, Maine.

Smith, B. (to appear). “Objects and their Environments: from Aristotle to Ecological

Ontology.” Life and Motion of Socio-Economic Units, (A. U. Frank, J. Raper, and

J.-P. Cheylan, eds.), Taylor & Francis, London.

Bibliography 143

Smith, B., and Zaibert, L. (1996). “Prolegomena to a Metaphysics of Real Estate.”

Shadows and Socio-Economic Units. Foundations of Formal Geography, (R.

Casati, ed.), Department of Geoinformation, Vienna, 151-155.

Snodgrass, R. T. (1987). “The temporal query language TQUEL.” ACM Transactions

on Database Systems, 12, 247-298.

Snodgrass, R. T. (1992). “Temporal Databases.” Theories and Methods of Spatio-

Temporal Reasoning in Geographic Space, (A. U. Frank, I. Campari, and U.

Formentini, eds.), Springer-Verlag, Heidelberg-Berlin, 22-64.

Snodgrass, R. T. (1995a). “Temporal Object-Oriented Databases: A Critical

Comparison.” Modern Database Systems - The Object Model, Interoperabilit y,

and Beyond, (W. Kim, ed.), Addison-Wesley, New York, 386-408.

Snodgrass, R. T. (1995b). The TSQL2 Temporal Query Language, Kluwer.

Stevens, S. S. (1946). “On the theory of scales of measurement.” Science, 103(2684),

677 - 680.

Stonebraker, M., and Rowe, L. A. (1986). “The Design of POSTGRES.” ACM-

SIGMOD International Conference on the Management of Data.

Tansel, A. U. (1986). “Adding Time Dimension to Relational Model and Extending

Relational Algebra.” Information Systems, 11(4), 343-355.

Tarski, A. (1946). Introduction to logic and to the methodology of deductive sciences,

Oxford University Press, New York.

Thompson, S. (1999). Haskell - The Craft of Functional Programming - Second

Edition, Addison-Wesley, Harlow, UK.

van Oosterom, P. (1997). "Maintaining consistent topology including historical data in a

large spatial database". In Proceedings of Autocarto 13, in Seattle, WA, USA,

Published by ACSM/ASPRS, Vol. 5, pp: 327-336.

Walters, R. F. C. (1991). Categories and computer science, Carslaw Publications,

Cambridge, UK.

Wand, Y. (1989). “A Proposal for a Formal Model of Objects.” Object-Oriented

Concepts, Databases, and Applications, (W. Kim and F. H. Lochovsky, eds.),

Addison-Wesley, New York, 537-559.

Bibliography 144

Worboys, M. F. (1994). "Unifying the Spatial and Temporal Components of

Geographical Information". In Proceedings of Sixth International Symposium on

Spatial Data Handling, (T. C. Waugh and R. G. Healey, eds.), in Edinburgh,

Published by AGI, Vol. 2, pp: 505 - 517.

Worboys, M. F. (1995). GIS: A Computing Perspective, Taylor & Francis, London.

Appendix: Gofer code 145

GOFER PROJECT FILE

-- tdbProj.gp calls all other scripts
-- collection of Gofer scripts for the temporal database (chapter 6) and
-- for all applications from chapters 8 and 9

adds.gs -- from categorical prelude (Bird&deMoor 1997)
attrib.gs -- attributes, values, value sets
object.gs -- identifiers and objects
database.gs -- database operations
snapshot.gs -- implementations on snapshots
tempdb.gs -- implementations on temporal databases
lifestyles.gs -- lifestyle operations
comparison.gs -- comparison with previous work
text.gs -- text instances for all types so far
simplelife.gs -- books and tables example
transf.gs -- versionings transformation
chapter08.gs -- chapter 8: (movable naturals, immovables,
 -- living, eternal, liquids)
movarts.gs -- movable artifacts
containers.gs -- containers
treeFruits.gs -- trees with fruits
marriages.gs -- chapter 9
partnerships.gs
usufruct.gs
unions.gs
parcels.gs

PRELUDE ADDITIONS

-- adds.gs
-- categorical additions to the standard Gofer prelude
-- based on Algebra of programming (Bird & de Moor 1997)

-- standard combinators:
outl :: (a,b) -> a
outr :: (a,b) -> b
swap :: (a,b) -> (b,a)
outl (a, b) = a
outr (a, b) = b
swap (a, b) = (b, a)

assocl :: (a,(b,c)) -> ((a,b),c)
assocr :: ((a,b),c) -> (a,(b,c))
assocl (a,(b,c)) = ((a,b),c)
assocr ((a,b),c) = (a,(b,c))

pair :: (a -> b,a -> c) -> a -> (b,c)
cross :: (a -> b,c -> d) -> (a,c) -> (b,d)
cond :: (a -> Bool) -> (a -> b,a -> b) -> a -> b
pair (f,g) a = (f a, g a)
cross (f,g) (a,b) = (f a, g b)
cond p (f,g) a = if (p a) then (f a) else (g a)

-- relations:
leq, eql, geq :: Ord a => (a, a) -> Bool
leq = uncurry (<=)
eql = uncurry (==)
geq = uncurry (>=)

false = const False
true = const True

Appendix: Gofer code 146

meet, join' :: (a -> Bool,a -> Bool) -> a -> Bool
meet (r,s) = cond r (s, false) -- logical AND
join' (r,s) = cond r (true, s) -- logical OR

--numerical functions:

plus, minus :: Num a => (a, a) -> a
plus = uncurry (+)
minus = uncurry (-)

-- list processing functions:
nil :: a -> [b]
nil = const []

wrap :: a -> [a]
wrap = cons . pair (id, nil)

cons :: (a,[a]) -> [a]
cons = uncurry (:)

-- cartesian product left
cpl :: ([a],b) -> [(a,b)]
cpl (x,b) = [(a,b) | a <- x]
-- cartesian product right
cpr :: (a,[b]) -> [(a,b)]
cpr (a,y) = [(a,b) | b <- y]

-- end of categorical additions

-- list update (for updateAtts in object.gs)
updateBy :: Eq b => (a -> b) -> a -> [a] -> [a]
updateBy f a = map (cond ((f a ==).f) (const a, id))

-- end of adds.gs

ATTRIBUTES

-- attrib.gs
-- attributes, values, value sets

class Attribs a where
 attrib :: (ValueSet, Value) -> a
 getValueSet :: a -> ValueSet
 getValue :: a -> Value
 setValue :: Value -> a -> a
 selectAtt :: ValueSet -> [a] -> a
 selectAtt s = head . filter ((s==).getValueSet)
class ValueSets vs v where
 checkV :: (vs, v) -> Bool
class Values v a where
 unwrapValue :: v -> a
 wrapValue :: a -> v

data Attrib = Att (ValueSet, Value)
instance (Eq ValueSet, Eq Value) => Eq Attrib where
 (==) a b = getValueSet a == getValueSet b
 && getValue a == getValue b
instance Attribs Attrib where
 attrib = cond checkV (Att, error "incompatible value types")
 getValueSet (Att (s,v)) = s
 getValue (Att (s,v)) = v
 setValue v (Att (s,u)) = attrib (s,v)

Appendix: Gofer code 147

data ValueSet = Name | Age | Preds | Alive | Amount | Capacity | Weight
instance Eq ValueSet where
 (==) Name Name = True
 (==) Age Age = True
 (==) Amount Amount = True
 (==) Capacity Capacity = True
 (==) Preds Preds = True
 (==) Alive Alive = True
 (==) Weight Weight = True
 (==) _ _ = False
instance ValueSets ValueSet Value where
 checkV (Name, (Vs a)) = True
 checkV (Age, (Vi a)) = True
 checkV (Amount, (Vf a)) = True
 checkV (Capacity, (Vf a)) = True
 checkV (Preds, (Vp a)) = True
 checkV (Alive, (Vb a)) = True
 checkV (Weight, (Vf a)) = True
 checkV (_, _) = False

data Value = Vs String | Vb Bool | Vi Int | Vf Float | Vp [Int]
instance Eq Value where
 (==) (Vs a) (Vs b) = a == b
 (==) (Vb a) (Vb b) = a == b
 (==) (Vi a) (Vi b) = a == b
 (==) (Vf a) (Vf b) = a == b
 (==) (Vp a) (Vp b) = a == b
 (==) _ _ = False
instance Values Value String where
 unwrapValue (Vs s) = s
 wrapValue s = Vs s
instance Values Value Bool where
 unwrapValue (Vb b) = b
 wrapValue b = Vb b
instance Values Value Int where
 unwrapValue (Vi i) = i
 wrapValue i = Vi i
instance Values Value Float where
 unwrapValue (Vf f) = f
 wrapValue f = Vf f
instance Values Value [Int] where
 unwrapValue (Vp is) = is
 wrapValue is = Vp is

instance Num Value where
 (+) (Vf a) (Vf b) = Vf (a + b)
 (-) (Vf a) (Vf b) = Vf (a - b)

-- end of attrib.gs

Appendix: Gofer code 148

IDENTITIFIERS AND OBJECTS

-- object.gs
-- identifiers and objects

class Eq i => IDs i where
 sameID, notSameID :: i -> i -> Bool
 nextID :: i -> i
 getID :: i -> ID
 sameID i j = getID i == getID j
 notSameID i = not . sameID i
class IDs (o t) => Objects o t where
 makeObj :: (t, ID) -> o t
 getObjType :: o t -> t
 getAttribs :: o t -> [Attrib]
 setAttribs :: [Attrib] -> o t -> o t

 addAtt :: ValueSet -> Value -> o t -> o t
 addAtt s v = uncurry setAttribs . pair (f . getAttribs, id)
 where f = cons . pair (const (attrib (s, v)), id)
 addAtts :: [(ValueSet, Value)] -> o t -> o t
 addAtts = (flip.foldr) (uncurry addAtt)
 updateAtt :: Eq ValueSet => ValueSet -> Value -> o t -> o t
 updateAtt s v = uncurry setAttribs . pair (f . getAttribs, id)
 where f = updateBy ((s==).getValueSet) (attrib (s, v))
 updateAtts :: Eq ValueSet => [(ValueSet, Value)] -> o t -> o t
 updateAtts = (flip.foldr) (uncurry updateAtt)

type ID = Int
instance IDs Int where
 nextID = (+1)
data Object t = Obj ID t [Attrib]
instance IDs (Object t) => Eq (Object t) where
 (==) = sameID
instance IDs (Object t) where
 sameID a b = sameID (getID a) (getID b)
 getID (Obj i t as) = i
instance Objects Object t where
 makeObj (t,i) = Obj i t []
 getObjType (Obj i t as) = t
 getAttribs (Obj i t as) = as
 setAttribs as (Obj i t bs) = Obj i t as
-- end of object.gs

DATABASE OPERATIONS

-- database.gs
-- database operations

class (Objects o t, IDs (s o t), Relatable t) => Snapshots s o t where
 getObjects :: s o t -> [o t]
 getRelations :: s o t -> [Rel]
 setObjects :: [o t] -> s o t -> s o t
 setRelations :: [Rel] -> s o t -> s o t

 liftS :: ([o t] -> [o t]) -> s o t -> s o t
 liftS f = uncurry setObjects . pair (f . getObjects, id)
 liftR :: ([Rel] -> [Rel]) -> s o t -> s o t
 liftR f = uncurry setRelations . pair (f . getRelations, id)

Appendix: Gofer code 149

class TDBs td o t where
 getSnapshots :: td o t -> [Snapshot o t]
 setSnapshots :: [Snapshot o t] -> td o t -> td o t

class Snapshots d o t => Databases d o t where
 newObj :: t -> d o t -> d o t
 existObj :: ID -> d o t -> Bool
 existObjs :: [ID] -> d o t -> Bool
 deleteObj :: ID -> d o t -> d o t
 updateObj :: (o t -> o t) -> ID -> d o t -> d o t
 selectObj :: ID -> d o t -> o t
 queryObj :: (o t -> x) -> ID -> d o t -> x

 queryObjs :: (o t -> x) -> [ID] -> d o t -> [x]
 queryObjs q is = liftM (queryObj q) is
-- a shortcut for getting the Value from an object
 get :: ValueSet -> ID -> d o t -> Value
 get a = queryObj (getValue . selectAtt a . getAttribs)
-- a shortcut for updating the Attribute in an object
 set :: ValueSet -> Value -> ID -> d o t -> d o t
 set s v i = updateObj (updateAtt s v) i

 addRel :: ID -> RelType -> ID -> d o t -> d o t
 addRels :: RelType -> [ID] -> ID -> d o t -> d o t

 deleteRel :: RelType -> (ID,ID) -> d o t -> d o t
-- involving a reltype and an ID on the right
 deleteRels :: RelType -> ID -> d o t -> d o t
-- involving an ID either on left or right
 deleteRelsID :: ID -> d o t -> d o t
 getRels :: RelType -> ID -> d o t -> [ID]
 getConvRels :: RelType -> ID -> d o t -> [ID]

-- for queries and select
 liftQ :: TDBs d o t => (Snapshot o t -> x) -> d o t -> x
 liftQ f = f . head . getSnapshots

-- for updates, deletions and creations
 liftU :: TDBs d o t => (Snapshot o t -> Snapshot o t) -> d o t -> d o t
 liftU f = h . cross (cons . g, id) . pair (getSnapshots, id)
 where h = uncurry setSnapshots
 g = pair (f . head, id)
-- for operations on a list of identifiers (map)
 liftM :: (ID -> d o t -> x) -> [ID] -> d o t -> [x]
 liftM f is = map (uncurry f) . cpl . pair (const is, id)

class Relatable t where
 relatable :: (RelType, (t, t)) -> Bool

type Rel = (RelType, (ID, ID))
data RelType = PartOf | In | On | NoneRel
instance Eq RelType where
 (==) PartOf PartOf = True
 (==) In In = True
 (==) On On = True
 (==) _ _ = False
data Snapshot o t = Snap ID [o t] [Rel]

-- end of database.gs

Appendix: Gofer code 150

SNAPSHOTS

-- snapshot.gs
-- implementation for a static database

instance Eq [o t] => Eq (Snapshot o t) where
 (==) (Snap i o r) (Snap j p s) = i == j && o == p && r == s
instance IDs (Snapshot o t) where
 getID (Snap i os rs) = i
 nextID (Snap i os rs) = Snap (nextID i) os rs
instance Snapshots Snapshot o t where
 getObjects (Snap i os rs) = os
 setObjects os (Snap i ps rs) = Snap i os rs
 getRelations (Snap i os rs) = rs
 setRelations ts (Snap i os rs) = Snap i os ts

instance Databases Snapshot o t where
 newObj t = nextID . uncurry setObjects .
 cross (cons . pair (makeObj.outl, outr), id) .
 cross (assocl. pair (const t, id), id) .
 pair (cross (getID, getObjects), outr) . pair (nextID, id)

 existObj i = cond p (false, true) where
 p = null . filter ((i==).getID) . getObjects

 existObjs is = and . liftM existObj is

 deleteObj i = liftS f . liftR g where
 f = filter ((i/=).getID)
 g = filter (meet ((i/=).fst.snd, (i/=).snd.snd))

 updateObj f i = cond (existObj i) (g, h) where
 g = liftS (map (cond ((i==).getID) (f, id)))
 h = error ("the object " ++ show i ++ " does not exist.")

 selectObj i = cond (existObj i) (f, g) where
 f = head . filter ((i==).getID) . getObjects
 g = error ("the object " ++ show i ++ " does not exist.")

 queryObj q i = q . selectObj i

 addRel j t i = cond p (f, g) where
 p = relatable . pair (const t, pair (h i, h j))
 h a = queryObj getObjType a
 f = liftR (cons . pair (pair (const t, pair (const i, const j)), id))
 g = error "types are not relatable."
 addRels t is j = (flip . foldr) (addRel j t) is

 deleteRel t is = liftR (filter (join' ((t/=).outl, (is/=).outr)))
 deleteRels t i = liftR (filter (join' ((t/=).outl, (i/=).outr.outr)))
 deleteRelsID i = liftR (filter (meet ((i/=).outl.outr, (i/=).outr.outr)))
 getRels t i = map (outl.outr) . filter p . getRelations where
 p = meet ((t==).outl, (i==).outr.outr)
 getConvRels t i = map (outr.outr) . filter p . getRelations where
 p = meet ((t==).outl, (i==).outl.outr)

-- end of snapshot.gs

Appendix: Gofer code 151

TEMPORAL DATABASE

-- tempdb.gs
-- implementation for temporal databases

data TDB o t = T [Snapshot o t]
instance Eq [Snapshot o t] => Eq (TDB o t) where
 (==) (T s) (T t) = s == t
instance (Databases TDB o t) => IDs (TDB o t) where
 getID = liftQ getID
instance Snapshots TDB o t
instance TDBs TDB o t where
 getSnapshots (T ss) = ss
 setSnapshots ss (T ts) = T ss
instance (TDBs TDB o t, Databases Snapshot o t)
 => Databases TDB o t where
 newObj t = liftU (newObj t)
 deleteObj i = liftU (deleteObj i)
 updateObj f i = liftU (updateObj f i)
 existObj i = liftQ (existObj i)
 existObjs is = liftQ (existObjs is)
 selectObj i = liftQ (selectObj i)
 queryObj q i = liftQ (queryObj q i)

 addRel j t i = liftU (addRel j t i)
 addRels t is j = liftU (addRels t is j)

 deleteRel t is = liftU (deleteRel t is)
 deleteRels t i = liftU (deleteRels t i)
 deleteRelsID i = liftU (deleteRelsID i)
 getRels t i = liftQ (getRels t i)
 getConvRels t i = liftQ (getConvRels t i)

-- end of tempdb.gs

LIFESTYLE OPERATIONS

-- lifestyles.gs

class Databases d o t => Creatable d o t where
 create :: ([ID], t) -> d o t -> d o t
 createWithID :: ([ID], t) -> d o t -> (ID, d o t)
 createN :: Int -> ([ID], t) -> d o t -> d o t
 create (is, ot) = uncurry (updateObj f) . pair (getID, id) . newObj ot
 where f = addAtt Preds (Vp is)
 createWithID (is, ot) = pair (getID, id) . create (is, ot)
 createN n (is, ot) = flip (!!) n . iterate (create (is, ot))

class DestroyableT d where
 destroyable :: d -> Bool

class (DestroyableT t, Creatable d o t)
 => Destroyable d o t where
 destroy :: ID -> d o t -> d o t
 destroy i = cond p (f, g) where
 p = destroyable . getObjType . selectObj i
 f = deleteObj i
 g = error ("the object #" ++ show i ++ " is not destroyable")

Appendix: Gofer code 152

class SuspendableT s where
 suspendable :: s -> Bool
class (Objects o t, SuspendableT t) => SuspendableO o t where
 suspended :: o t -> Bool
 suspended = not . unwrapValue . getValue . selectAtt Alive . getAttribs
 suspendObj :: o t -> o t
 suspendObj = updateAtt Alive (Vb False)
 resumeObj :: o t -> o t
 resumeObj = updateAtt Alive (Vb True)
class (SuspendableO o t, Creatable d o t)
 => Suspendable d o t where
 suspend, resume :: ID -> d o t -> d o t
 suspend i = cond p (f, g) where
 p = suspendable . getObjType . selectObj i
 f = updateObj suspendObj i
 g = error ("the object #" ++ show i ++ " is not suspendable")
 resume i = cond p (f, g) where
 p = queryObj suspended i
 f = updateObj resumeObj i
 g = error ("the object #" ++ show i ++ " is already suspended")

class Destroyable d o t => Evolvable d o t where
 evolve :: ID -> d o t -> d o t
 evolve i = uncurry (set Preds (Vp (wrap i)))
 . pair (getID, destroy i) . uncurry (updateObj' setAttribs)
 . pair (pair (getID, getAttribs. selectObj i), id) . uncurry create
 . assocl. pair (nil , pair (getObjType . selectObj i, id))
 where updateObj' f (i,x) = updateObj (f x) i

class Destroyable d o t => Fusions d o t where
 fusion :: [ID] -> t -> d o t -> d o t
 fusion is t = (flip . foldr) destroy is . create (is, t)
 fissionN :: Int -> ID -> d o t -> d o t
 fissionN n i = uncurry (createN n) . pair (f, destroy i)
 where f = pair (wrap . const i, getObjType . selectObj i)
 restructure :: [ID] -> t -> Int -> d o t -> d o t
 restructure is t n = uncurry (fissionN n) . pair (getID, id) . fusion is t

class (Destroyable d o t, Suspendable d o t)
 => WFusions d o t where
 wfusion :: [ID] -> ID -> d o t -> d o t
 wfusion is i = (flip . foldr) destroy is . resume i

 wfissionN :: Int -> ID -> d o t -> d o t
 wfissionN n i = uncurry (createN n) . pair (f, suspend i)
 where f = pair (wrap . const i, getObjType . selectObj i)

class (Destroyable d o t, Suspendable d o t)
 => Aggregates d o t where

 aggregate :: [ID] -> t -> d o t -> d o t
 aggregate is t = uncurry (addRels PartOf is) . createWithID ([],t)
 . (flip.foldr) suspend is
 segregate :: ID -> d o t -> d o t
 segregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i, g)
 where g = deleteRels PartOf i . destroy i

class Suspendable d o t => WAggregates d o t where
 waggregate :: [ID] -> ID -> d o t -> d o t
 waggregate is i = (flip . foldr) suspend is . addRels PartOf is i .resume i
 wsegregate :: ID -> d o t -> d o t
 wsegregate i = (uncurry.flip.foldr) resume . pair (getRels PartOf i, g)
 where g = deleteRels PartOf i . suspend i

Appendix: Gofer code 153

--instances:
instance Creatable Snapshot o t
instance Creatable Snapshot o t => Creatable TDB o t where
 create = liftU . create
 createN n = liftU . createN n
instance Destroyable Snapshot o t
instance Destroyable TDB o t
instance Suspendable Snapshot o t
instance Suspendable TDB o t
instance Evolvable Snapshot o t
instance Evolvable Snapshot o t => Evolvable TDB o t where
 evolve = liftU . evolve
instance Fusions Snapshot o t
instance Fusions TDB o t
instance WFusions Snapshot o t
instance WFusions TDB o t
instance Aggregates Snapshot o t
instance Aggregates TDB o t
instance WAggregates Snapshot o t
instance WAggregates TDB o t
instance SuspendableO Object t
-- end of lifestyles.gs

COMPARISON WITH PREVIOUS WORK

--comparison.gs

-- comparison with hornsby&egenhofer:
metamorphose :: Evolvable d o t => ID -> d o t -> d o t
metamorphose = evolve
spawn :: Creatable d o t => ID -> d o t -> d o t
spawn i = uncurry create . pair (f, id)
 where f = pair (wrap . const i, getObjType . selectObj i)

mergeH :: Fusions d o t => [ID] -> t -> d o t -> d o t
mergeH = fusion

generate :: Creatable d o t => [ID] -> t -> d o t -> d o t
generate = curry create

mix :: Destroyable d o t => [ID] -> t -> d o t -> d o t
mix (i:is) t = destroy i . curry create is t

-- auxiliary functions
segregate' :: Aggregates d o t => ID -> d o t -> ([ID], d o t)
segregate' i = pair (outl, (uncurry.flip.foldr) resume)
 . pair (getRels PartOf i, destroy i)
wsegregate' :: WAggregates d o t => ID -> d o t -> ([ID], d o t)
wsegregate' i = pair (outl, (uncurry.flip.foldr) resume)
 . pair (getRels PartOf i, suspend i)

-- composite objects:
compound :: WAggregates d o t => ID -> ID -> d o t -> d o t
compound i j = uncurry (flip waggregate j)
 . cross (cons . pair (const i, id), id)
 . pair (getRels PartOf j, wsegregate j)

unite :: Aggregates d o t => [ID] -> t -> d o t -> d o t
unite = aggregate

combine :: Aggregates d o t => [ID] -> t -> d o t -> d o t
combine is t db = aggregate js t db where
 js = concat . map (outl . (flip segregate' db)) $ is

Appendix: Gofer code 154

amalgamate :: (Fusions d o t, Aggregates d o t)
 => [ID] -> t -> t -> d o t -> d o t
amalgamate is t1 t2 db = uncurry (aggregate ns) (t1, db') where
 db' = outr (foldr fusion' (t2, db) jss)
 jss = transpose . map (outl . (flip segregate' db)) $ is
 fusion' is1 (t1,db1) = (t1, fusion is1 t1 db1)
 ns = [a+1 .. b]
 a = getID db
 b = a + length is
secede :: WAggregates d o t => ID -> ID -> d o t -> d o t
secede i j = uncurry (flip waggregate j)
 . cross (filter (i/=), id)
 . pair (getRels PartOf j, wsegregate j)
dissolve :: Aggregates d o t => ID -> d o t -> d o t
dissolve = segregate
-- end of comparison.gs

REPRESENTATIONS OF DATATYPES

-- text.gs
-- text instances for datatypes given in comments
--data Attrib = Att (ValueSet, Value)
instance Text Attrib where
 showsPrec 0 a = showString "" --. shows (getValueSet a)
 . showChar ' ' . shows (getValue a)
--data ValueSet = Name | Age | Preds | Alive | Amount | Capacity | Weight
instance Text ValueSet where
 showsPrec d Name = showString "name ="
 showsPrec d Age = showString "age ="
 showsPrec d Preds = showString "preds ="
 showsPrec d Alive = showString "state ="
 showsPrec d Amount = showString "amount ="
 showsPrec d Capacity = showString "capacity ="
--data Value = Vs String | Vb Bool | Vi Int | Vf Float | Vp [Int]
instance Text Value where
 showsPrec d (Vs a) = shows a
 showsPrec d (Vb a) = if a then showString "resumed "
 else showString "suspended"
 showsPrec d (Vi a) = shows a
 showsPrec d (Vf a) = shows a
 showsPrec d (Vp a) = shows a
--data Object t = Obj ID t [Attrib]
instance (Objects Object t, Text t) => Text (Object t) where
 showsPrec d a = showString "\n #" . shows (getID a) . showString " "
 . shows (getObjType a) --. showString " Attribs:"
 . shows (getAttribs a)
--data RelType = PartOf | In | On | NoneRel
instance Text RelType where
 showsPrec d PartOf = showString " is part of "
 showsPrec d In = showString " is in "
 showsPrec d On = showString " is on "
--data Snapshot o t = Snap ID [o t] [Rel]
instance (IDs (Snapshot o t), Snapshots Snapshot o t, Text [o t])
 => Text (Snapshot o t) where
 showsPrec d a = showString "\nSnapshot\n Latest ID =" . shows (getID a)
 . showString "\n Objects: " . shows (getObjects a)
 . showString "\n Relations: " . shows (getRelations a)
--data TDB o t = T [Snapshot o t]
instance (TDBs TDB o t, Text [Snapshot o t]) => Text (TDB o t) where
 showsPrec d a = showString "\nTDB " . shows (getSnapshots a)
instance Text Rel where
 showsPrec d (a, (b,c)) = showString "\n " . shows b . shows a . shows c
x :: (Text (Snapshot o t), Databases d o t, TDBs d o t) => d o t -> String
x = liftQ show -- shortcut for showing the latest snapshot of the database
-- end of text.gs

Appendix: Gofer code 155

AN EXAMPLE OF DATABASE (SECTION 6.4)

-- simplelife.gs

-- implementation of lifestyles for ObjType
-- with examples for Section 6.4

data ObjType = Book | Table | Room
instance Text ObjType where
 showsPrec d Book = showString "Book "
 showsPrec d Table = showString "Table"
 showsPrec d Room = showString "Room "
instance Relatable ObjType where
 relatable (On, (Book, Table)) = True
 relatable (In, (Table, Room)) = True
 relatable _ = False
class Destroyable d o t => Simples d o t where
 createSimple :: String -> ([ID], t) -> d o t -> d o t
 createSimple s t = uncurry (updateObj f) . createWithID t
 where f = addAtts [(Name, Vs s)]

instance Simples Snapshot Object ObjType
instance Simples TDB Object ObjType

-- optional instances for t = ObjType (could be SimpleType)
instance DestroyableT ObjType where
 destroyable Book = True
 destroyable Table = True
 destroyable Room = True
 destroyable _ = False
instance SuspendableT ObjType where
 suspendable Book = True
 suspendable Table = True
 suspendable Room = True
 suspendable _ = False

--
-- examples for section 6.4 two books and two tables
--
td0, td7 :: TDB Object ObjType
td1, td2, td3, td4, td5, td6
 :: Snapshot Object ObjType -> Snapshot Object ObjType
td0 = T [Snap 0 [] []]
td1 = createSimple "BookA" ([], Book)
td2 = createSimple "BookB" ([], Book)
td3 = createSimple "TableA" ([], Table)
td4 = createSimple "TableB" ([], Table)
td5 = addRel 3 On 1
td6 = addRel 4 On 2
td7 = liftU (td6.td5.td4.td3.td2.td1) td0

tst1, tst2 :: Bool
tst3 :: Object ObjType
tst4 :: Value
tst5 :: String
tst6 :: Object ObjType
tst7 :: [Rel]
tst8 :: TDB Object ObjType

tst1 = existObj 4 td7
-- True
tst2 = existObj 4 (deleteObj 4 td7)
-- False
tst3 = selectObj 4 (deleteObj 4 td7)
-- error: the object 4 does not exist.

Appendix: Gofer code 156

tst4 = get Name 1 td7
-- Vs "Book1"
tst5 = unwrapValue (get Name 1 td7)
-- Book1
tst6 = selectObj 3 td7
-- Obj 3 Table [Att (Name,Vs "Table1")]
tst7 = liftQ getRelations (deleteRel On (1,3) td7)
-- [(On, (2,4))]
tst8 = addRel 1 On 4 td7
-- error: types are not relatable.

-- end of simplelife.gs

TRANSFORMATIONS BETWEEN VERSIONINGS

-- transfs.gs

-- transformation between the fixed time (database versioning)
-- and the fixed theme (object versioning)

type Time = Int

class (Eq t, Eq o) => Groups t o where
 distrTime :: [(t,[o])] -> [(o,t)]
 distrTime = concat . map cpl . map swap

 findObjs :: [(o,t)] -> [o]
 findObjs = nub . map outl

-- select times for given object (DV -> OV)
 selTimes :: (o, [(o,t)]) -> [(o,t)]
 selTimes = uncurry filter . cross (flip ((==).outl), id)

 normObj :: [(o,t)] -> (o,[t])
 normObj = pair (head . map outl, map outr)

 toOV :: [(t,[o])] -> [(o,[t])]
 toOV = map (normObj.selTimes) . cpl . pair (findObjs, id) . distrTime

-- the opposite case (OV -> DV)
 distrObjs :: [(o,[t])] -> [(o,t)]
 distrObjs = concat . map cpr

 findTimes :: [(o,t)] -> [t]
 findTimes = nub . map outr

-- select objects at given time
 selObjs :: (t,[(o,t)]) -> [(o,t)]
 selObjs = uncurry filter . cross (flip ((==).outr), id)
 normTime :: [(o,t)] -> ([o],t)
 normTime = pair (map outl, head . map outr)

 toDV :: [(o,[t])] -> [(t,[o])]
 toDV = map (swap.normTime.selObjs). cpl . pair (findTimes, id) . distrObjs

Appendix: Gofer code 157

instance Groups Time ObjX
data ObjX = Ob ID ObjT Color
instance Text ObjX where
 showsPrec d (Ob i t c) = shows c . shows t
instance Eq ObjX where
 (==) (Ob i t c) (Ob j u d) = i == j && c == d
data ObjT = HouseT | CarT
instance Text ObjT where
 showsPrec d HouseT = showString "House"
 showsPrec d CarT = showString "Car"
data Color = Red | Blue | White
instance Text Color where
 showsPrec d Red = showString "red"
 showsPrec d Blue = showString "blue"
 showsPrec d White = showString "white"
instance Eq Color where
 Red == Red = True
 Blue == Blue = True
 White == White = True
 _ == _ = False

-- thesis example, sections 3.2.2 and 6.5
o1, o2, o3 :: ObjX
o1 = Ob 1 CarT Red
o2 = Ob 1 CarT Blue
o3 = Ob 2 HouseT White
dv1, dv2 :: [(Time, [ObjX])]
dv1 = [(1, [o1]), (2, [o2,o3]), (3, [o2,o3]), (4, [o3])]
ov1 = toOV dv1
dv2 = toDV ov1

-- end of transf.gs

PHYSICAL OBJECTS

-- chapter08.gs
-- applications from chapter 8

--the applications of lifestyles: each object is a class with attributes added
--during its creation
--8.1.1 movable naturals (stones,fruits)
--8.1.3 immovable geographic objects (mountains, buildings)
--8.2 living beings (persons)
--8.4 eternals

class Destroyable d o t => MovableNaturals d o t where
 createMovNat :: String -> Float -> ([ID], t) -> d o t -> d o t
 createMovNat name w a = uncurry (updateObj (addAtts as)) . createWithID a
 where as = [(Name, Vs name), (Preds, Vp []), (Weight, Vf w)]

-- immovable objects
class Destroyable d o t => Immovables d o t where
 createImmov :: String -> ([ID], t) -> d o t -> d o t
 createImmov name a = uncurry (updateObj (addAtts as))
 . pair (getID, id) . create a
 where as = [(Name, Vs name)]

-- living objects:
class Destroyable d o t => Livings d o t where
 createLiving :: String -> ([ID], t) -> d o t -> d o t
 createLiving name a = uncurry (updateObj (addAtts as)) . createWithID a
 where as = [(Name, Vs name), (Preds, Vp (outl a))]

Appendix: Gofer code 158

-- simple liquids
class (Fusions d o t) => Liquids d o t where
 createLiquid :: String -> Float -> ([ID], t) -> d o t -> d o t
 createLiquid name x a = uncurry (updateObj (addAtts as)) . createWithID a
 where as = [(Name, Vs name), (Preds, Vp (outl a)), (Amount, Vf x)]
 fusionLiquid :: [ID] -> t -> d o t -> d o t
 fusionLiquid is t d = f (fusion is t d) where
 f x = updateObj (updateAtt Amount (Vf z)) (getID x) x
 z = sum (map (flip (queryObj g) d) is)
 g = unwrapValue . getValue . selectAtt Amount . getAttribs

-- eternals:
class (Creatable d o t) => Eternals d o t where
 createEternal :: String -> ([ID], t) -> d o t -> d o t
 createEternal name a = uncurry (updateObj (addAtts as)) . createWithID a
 where as = [(Name, Vs name), (Preds, Vp (outl a))]

-- EXAMPLES:
-- movable naturals
data MovNat = Fruit | Stone
instance Text MovNat where
 showsPrec d Fruit = showString "Fruit"
 showsPrec d Stone = showString "Stone"
instance Relatable MovNat where
 relatable (On, (Fruit, Stone)) = True
 relatable _ = False
instance Creatable TDB Object MovNat
instance DestroyableT MovNat where
 destroyable Fruit = True
 destroyable Stone = True
instance MovableNaturals Snapshot Object MovNat
mn0, mn2 :: TDB Object MovNat
mn0 = T [Snap 0 [] []]
mn2 = liftU (createMovNat "appleA" 0.4 ([],Fruit)
 .createMovNat "stoneA" 1.2 ([],Stone)
 .createMovNat "stoneB" 2.3 ([],Stone)) mn0
tstmn1 = existObj 3 (destroy 3 mn2)
-- False
tstmn2 = get Weight 3 mn2
-- Vf 2.3

-- immovables
data Immovable = Mountain | Building
instance Text Immovable where
 showsPrec d Mountain = showString "Mountain"
 showsPrec d Building = showString "Building"
instance Relatable Immovable
instance DestroyableT Immovable where
 destroyable Mountain = True
 destroyable Building = True
instance Immovables Snapshot Object Immovable
im0, im2 :: TDB Object Immovable
im0 = T [Snap 0 [] []]
im2 = liftU (createImmov "Alps " ([], Mountain)
 .createImmov "HouseA" ([], Building)) im0
im3 = (uncurry (set Name (Vs "MuseumA")).pair (getID, id).(evolve 1)) im2

Appendix: Gofer code 159

--simple liquids
data Liquid = Water | Wine
instance Text Liquid where
 showsPrec d Water = showString "water"
 showsPrec d Wine = showString "wine "
instance Relatable Liquid
instance DestroyableT Liquid where
 destroyable Water = True
 destroyable Wine = True
instance Liquids Snapshot Object Liquid
instance Fusions Snapshot Object Liquid
w0, w2, w3 :: TDB Object Liquid
w0 = T [Snap 0 [] []]
w2 = liftU (fissionN 3 3
 . fusion [1,2] Water
 . createLiquid "waterA" 2.4 ([], Water)
 . createLiquid "waterB" 2.8 ([], Water)
) w0
w3 = liftU (fusionLiquid [4,5,6] Water) w2

-- livings:
data Living = Person | Animal | Plant
instance Text Living where
 showsPrec d Person = showString "person"
 showsPrec d Animal = showString "animal"
 showsPrec d Plant = showString "plant "
instance DestroyableT Living where
 destroyable Person = True
 destroyable Animal = True
 destroyable Plant = True
instance Livings TDB Object Living
instance Livings Snapshot Object Living
instance Relatable Living
liv0, liv1 :: TDB Object Living
liv0 = T [Snap 0 [] []]
liv1 = liftU (createLiving "John" ([], Person)
 . createLiving "Mary" ([], Person)
 . createLiving "Sue " ([1,2], Person)) liv0

-- eternals
data Eternal = Star | Planet
instance Text Eternal where
 showsPrec d Star = showString "star "
 showsPrec d Planet = showString "planet"
instance Relatable Eternal
instance DestroyableT Eternal where
 destroyable Star = False
 destroyable Planet = False
instance Eternals TDB Object Eternal
instance Eternals Snapshot Object Eternal
e0, e1, e2 :: TDB Object Eternal
e0 = T [Snap 0 [] []]
e1 = liftU (createEternal "Sun" ([],Star)) e0
e2 = destroy 1 e1
-- error: the object #1 is not destroyable

-- end of chapter08.gs

Appendix: Gofer code 160

MOVABLE ARTIFACTS

-- movarts.gs

-- movable artifacts (car, chassis, wheel, engine)
-- creation, aggregation, replacePart example

class (Aggregates d o t, WAggregates d o t) => MovableArtifacts d o t where
 createMovArt :: String -> ([ID], t) -> d o t -> d o t
 createMovArt name ti = uncurry (updateObj (addAtts as)) . createWithID ti
 where as = [(Name, Vs name), (Alive, Vb True)]
 aggregateMovArt :: String -> [ID] -> t -> d o t -> d o t
 aggregateMovArt name is t = uncurry (updateObj (addAtts as))
 . pair (getID, id) . aggregate is t
 where as = [(Name, Vs name), (Alive, Vb True)]

 addPart :: ID -> ID -> d o t -> d o t
 addPart i j = uncurry (flip waggregate j)
 . cross (cons . pair (const i, id), id)
 . pair (getRels PartOf j, wsegregate j)

 removePart :: ID -> ID -> d o t -> d o t
 removePart i j = uncurry (flip waggregate j)
 . cross (filter (i/=), id)
 . pair (getRels PartOf j, wsegregate j)

 replacePart :: ID -> ID -> ID -> d o t -> d o t
 replacePart i j k = uncurry (flip waggregate k)
 . cross (cons . pair (const i, filter (j/=)), id)
 . pair (getRels PartOf k, wsegregate k)

-- movable aritifacts
data MovArt = Car | Chassis | Engine | Wheel
instance Text MovArt where
 showsPrec d Car = showString "Car "
 showsPrec d Chassis = showString "Chassis"
 showsPrec d Engine = showString "Engine "
 showsPrec d Wheel = showString "Wheel "

instance Relatable MovArt where
 relatable (PartOf, (Chassis, Car)) = True
 relatable (PartOf, (Engine, Car)) = True
 relatable (PartOf, (Wheel, Car)) = True
 relatable (PartOf, (_, Car)) = False
instance DestroyableT MovArt where
 destroyable Car = True
 destroyable Chassis = True
 destroyable Engine = True
 destroyable Wheel = True
instance SuspendableT MovArt where
 suspendable Car = True
 suspendable Chassis = True
 suspendable Engine = True
 suspendable Wheel = True
instance MovableArtifacts Snapshot Object MovArt
instance MovableArtifacts TDB Object MovArt

-- case study: the carA has chassisA, engineA, and wheels 1,2,3, and 4
-- change the wheel w3 with wheel w5
ma0, ma9 :: TDB Object MovArt
ma0 = T [Snap 0 [] []]
ma1, ma2, ma3, ma4, ma5, ma6, ma7, ma8 ::
 Snapshot Object MovArt -> Snapshot Object MovArt
ma1 = createMovArt "wheel-1 " ([], Engine)

Appendix: Gofer code 161

ma2 = createMovArt "wheel-2 " ([], Chassis)
ma3 = createMovArt "wheel-3 " ([], Wheel)
ma4 = createMovArt "wheel-4 " ([], Wheel)
ma5 = createMovArt "wheel-5 " ([], Wheel)
ma6 = createMovArt "chassisA" ([], Wheel)
ma7 = createMovArt "engineA " ([], Wheel)
ma8 = aggregateMovArt "carA " [1,2,3,4,6,7] Car
ma9 = liftU (ma8.ma7.ma6.ma5.ma4.ma3.ma2.ma1) ma0
-- all parts of a car as a list of IDs
tstma0 = getRels PartOf 8 ma9
-- all parts as a list of objects:
tstma1 = map (flip selectObj ma9) (getRels PartOf 8 ma9)
-- use: liftQ show (outr tstma2)
tstma2 = pair (getRels PartOf 8, wsegregate 8) ma9
-- exchange wheel5 (5) and wheel2 (2) in the car (8)
tstma3 = liftU (replacePart 5 2 8) ma9
tstma4 = liftU (removePart 1 8) ma9
tstma5 = liftU (addPart 1 8) tstma4

-- end of movarts.gs

CONTAINERS

-- containers.gs
-- chapter 8.3
-- pourFromInto example, conservation law

class Objects o t => ContainersO o t where
 getAmount :: o t -> Float
 getCapacity :: o t -> Float
 setAmount :: (Float,o t) -> o t
 setCapacity :: (Float,o t) -> o t
 getAmount = unwrapValue . getValue . selectAtt Amount . getAttribs
 getCapacity = unwrapValue . getValue . selectAtt Capacity . getAttribs
 setAmount = uncurry (updateAtt Amount) . cross (wrapValue, id)
 setCapacity = uncurry (updateAtt Capacity) . cross (wrapValue, id)

 isEmpty :: o t -> Bool
 isEmpty = (==0.0) . getAmount

 pourIn :: (Float, o t) -> o t
 pourIn = cond p (f,g) where
 p = leq . pair (plus.cross(id,getAmount), getCapacity.outr)
 f = setAmount . pair (plus.cross (id,getAmount),outr)
 g = error "would overflow"

 takeOut :: (Float, o t) -> o t
 takeOut = cond p (f,g) where
 p = leq . cross (id, getAmount)
 f = setAmount . pair (minus.swap.cross (id,getAmount),outr)
 g = error "not enough in the container"

class (ContainersO o t, Aggregates d o t) => Containers d o t where
 createCont :: String -> Float -> Float -> ([ID], t) -> d o t -> d o t
 createCont name a c s = cond p (f, g) where
 p = const (a <= c)
 f = uncurry (updateObj h) . createWithID s
 g = error "amount cannot be greater than capacity"
 h = addAtts [(Name, Vs name), (Alive, Vb True),
 (Amount, Vf a), (Capacity, Vf c)]

 pourFromInto :: Float -> ID -> ID -> d o t -> d o t
 pourFromInto a i j = updateObj (curry pourIn a) j
 . updateObj (curry takeOut a) i

Appendix: Gofer code 162

data Container = Cup | Tea | FilledCup
instance Text Container where
 showsPrec d Cup = showString "Cup "
 showsPrec d Tea = showString "Tea "
 showsPrec d FilledCup = showString "Filled cup"
instance Relatable Container where
 relatable (In, (Tea, FilledCup)) = True
 relatable (PartOf, (Tea, FilledCup)) = True
 relatable (PartOf, (Cup, FilledCup)) = True
 relatable _ = False
instance DestroyableT Container where
 destroyable Cup = True
 destroyable Tea = True
 destroyable FilledCup = True
instance SuspendableT Container where
 suspendable Cup = True
 suspendable Tea = True
 suspendable FilledCup = True
instance ContainersO Object Container
instance Containers TDB Object Container
instance Containers Snapshot Object Container

-- examples:
cs0, cs5 :: TDB Object Container
cs1, cs2, cs3, cs4 :: Snapshot Object Container -> Snapshot Object Container
cs0 = T [Snap 0 [] []]
cs1 = createCont "firstCup " 4.0 10.0 ([],Cup)
cs2 = createCont "secondCup" 4.0 10.0 ([],Cup)
cs3 = createCont "teaA " 5.0 5.0 ([],Tea)
cs4 = aggregate [1,3] FilledCup
cs5 = liftU (cs4 . cs3 . cs2 . cs1) cs0
--tcs1, tcs2 :: Value
tcs1 = get Amount 1 cs5
-- Vf 4.0
tcs2 = get Amount 1 (pourFromInto 3.0 1 2 cs5)
-- Vf 1.0
tcs3 = liftU (updateObj (curry pourIn 7.0) 2) cs5
-- owould overflow

-- end of containers.gs

TREES WITH FRUITS

-- treeFruits.gs
-- chapter 8.3
-- fruits can be just takenOut (collected) but not pouredInto"

class (ContainersO o t, Aggregates d o t) => TreeWithFruits d o t where
 createTree :: String -> Float -> ([ID], t) -> d o t -> d o t
 createTree name a s = uncurry (updateObj h) . createWithID s where
 h = addAtts [(Name, Vs name), (Alive, Vb True), (Amount, Vf a)]
 aggregateTree :: [ID] -> t -> d o t -> d o t
 aggregateTree is t = cond p (f, g) where
 p = eql . pair (const (length is), const 2)
 f = aggregate is t
 g = error "only a single fruits object allowed"

data Tree = ATree | Fruits | TreeWithFruits
instance ContainersO Object Tree where
 pourIn = error " not possible "
 takeOut = cond p (f,g) where
 p = leq . cross (id, getAmount)
 f = setAmount . pair (minus.swap.cross (id,getAmount),outr)
 g = error "not enough fruits on the tree"

Appendix: Gofer code 163

instance Text Tree where
 showsPrec d ATree = showString "Tree "
 showsPrec d Fruits = showString "Fruits "
 showsPrec d TreeWithFruits = showString "FruitTree"
instance Relatable Tree where
 relatable (PartOf, (ATree, TreeWithFruits)) = True
 relatable (PartOf, (Fruits, TreeWithFruits)) = True
 relatable _ = False
instance DestroyableT Tree where
 destroyable ATree = True
 destroyable Fruits = True
 destroyable TreeWithFruits = True
instance SuspendableT Tree where
 suspendable ATree = True
 suspendable Fruits = True
 suspendable TreeWithFruits = False
instance TreeWithFruits TDB Object Tree
instance TreeWithFruits Snapshot Object Tree

-- examples:
tf0, tf1 :: TDB Object Tree
tf0 = T [Snap 0 [] []]
tf1 = liftU (createTree "TreeA " 10.0 ([],ATree)
 . createTree "FruitsA" 5.0 ([],ATree)
 . aggregateTree [1,2] TreeWithFruits) tf0
ttf1 :: Float
ttf1 = queryObj getAmount 1 tf1
-- 5.0
ttf2 = updateObj (curry pourIn 7.0) 2 tf1
-- not possible
-- end of treeFruits.gs

MARRIAGES

-- marriages.gs, chapter 9.1.1
class (Eq t, Aggregates d o t) => Marriages d o t where
 createPerson :: String -> Int -> ([ID], t) -> d o t -> d o t
 createPerson name age s = uncurry (updateObj h) . createWithID s where
 h = addAtts [(Name, Vs name), (Alive, Vb True), (Age, Vi age)]
 destroyPerson :: ID -> d o t -> d o t
 destroyPerson i = cond (married i) (f . pair (head . h i, g), g) where
 married x = not . null . h x
 h x = getConvRels PartOf x
 f = uncurry destroy
 g = destroy i
 createMarriage :: (ID,ID) -> t -> d o t -> d o t
 createMarriage (i, j) t = cond (meet (p,q)) (f, g) where
 p = uncurry (/=) . pair (h i, h j)
 h x = queryObj getObjType x
 q = meet (age i, age j)
 age x = geq . pair (y . getAttribs . selectObj x, const (18))
 y = unwrapValue . getValue . selectAtt Age
 f = aggregate [i,j] t
 g = error "not a legal marriage!"
 divorceMarr :: ID -> d o t -> d o t
 divorceMarr = segregate

Appendix: Gofer code 164

data Marr = Marriage | Male | Female
instance Eq Marr where
 (==) Male Male = True
 (==) Female Female = True
 (==) Marriage Marriage = True
 (==) _ _ = False
instance Text Marr where
 showsPrec d Marriage = showString "Marriage"
 showsPrec d Male = showString "Male "
 showsPrec d Female = showString "Female "
instance Relatable Marr where
 relatable (PartOf, (Male, Marriage)) = True
 relatable (PartOf, (Female, Marriage)) = True
 relatable _ = False
instance SuspendableT Marr where
 suspendable Marriage = False
 suspendable Male = True
 suspendable Female = True
instance DestroyableT Marr where
 destroyable _ = True
instance Marriages TDB Object Marr
instance Marriages Snapshot Object Marr

-- examples:
mm0, mm4, mm5, mm6, mm7, mm8 :: TDB Object Marr
mm1, mm2, mm3 :: Snapshot Object Marr -> Snapshot Object Marr
mm0 = T [Snap 0 [] []]
mm1 = createPerson "John" 20 ([], Male)
mm2 = createPerson "Mary" 20 ([], Female)
mm3 = createPerson "Sue " 17 ([], Female)
mm4 = liftU (mm3 . mm2 . mm1) mm0
mm5 = liftU (createMarriage (1,2) Marriage) mm4 -- OK
mm6 = liftU (createMarriage (1,3) Marriage) mm4 -- not legal
mm7 = liftU (destroyPerson 1) mm5
mm8 = liftU (divorceMarr 4) mm5

-- end of marriages.gs

PARTNERSHIPS

-- parnerships.gs

class (Containers d o t, MovableArtifacts d o t)
 => Partnerships d o t where
 createStockHolder :: String -> Float -> ([ID],t) -> d o t -> d o t
 createStockHolder name m s = uncurry (updateObj h) . createWithID s
 where
 h = addAtts [(Name, Vs name), (Alive, Vb True),
 (Amount, Vf m), (Capacity, Vf 11000.0)]

 sumStocks :: [ID] -> ValueSet -> d o t -> Float
 sumStocks is a = sum . map (unwrapValue . getValue . selectAtt a
 . getAttribs) . liftM selectObj is

 createCorporation :: String -> [ID] -> t -> d o t -> d o t
 createCorporation name ss t d =
 if s > 10000.0 then cond (meet (p,true)) (f,g) d
 else error " not enough capital" where
 p = geq . pair (const (length ss), const 3)
 s = sumStocks ss Amount d
 f = uncurry (updateObj (addAtts [(Name, Vs name), (Alive, Vb True),
 (Amount, Vf s)])) . pair (getID, id) . aggregate ss t
 g = error "founding of the corporation not possible"

Appendix: Gofer code 165

 sellShares :: Float -> ID -> ID -> d o t -> d o t
 sellShares = pourFromInto

 sellAllShares :: ID -> ID -> ID -> d o t -> d o t
 sellAllShares a b c d = removePart a c d'
 where d' = pourFromInto f a b d
 f = unwrapValue (get Amount a d)

data Partnership = Corporation | StockHolder
instance Text Partnership where
 showsPrec d Corporation = showString "Corporation"
 showsPrec d StockHolder = showString "StockHolder"
instance Relatable Partnership where
 relatable (PartOf, (StockHolder, Corporation)) = True
 relatable _ = False
instance SuspendableT Partnership where
 suspendable Corporation = True
 suspendable StockHolder = True
instance DestroyableT Partnership where
 destroyable _ = True
instance Partnerships TDB Object Partnership
instance Partnerships Snapshot Object Partnership
instance Containers Snapshot Object Partnership
instance Containers TDB Object Partnership
instance ContainersO Object Partnership
instance MovableArtifacts TDB Object Partnership
instance MovableArtifacts Snapshot Object Partnership
instance Suspendable TDB Object Partnership
--instance WAggregates Snapshot Object Partnership

-- examples:
pa0, pa6 :: TDB Object Partnership
pa1, pa2, pa3, pa4, pa5 ::
 Snapshot Object Partnership -> Snapshot Object Partnership
pa0 = T [Snap 0 [] []]
pa1 = createStockHolder "holderA" 2000.0 ([],StockHolder)
pa2 = createStockHolder "holderB" 4000.0 ([],StockHolder)
pa3 = createStockHolder "holderC" 3000.0 ([],StockHolder)
pa4 = createStockHolder "holderD" 2000.0 ([],StockHolder)
pa5 = createCorporation "corporA" [1,2,3,4] Corporation
-- serialized transaction:
pa6 = liftU (pa5 . pa4 . pa3 . pa2 . pa1) pa0

pa7, pa8 :: TDB Object Partnership
-- shareholder A sells some shares (2500) to B
pa7 = liftU (sellShares 2500.0 2 1) pa6
-- shareholder A sells all shares to B in the corporation 5
pa8 = liftU (sellAllShares 2 1 5) pa6

{-
the result of: x pa6 -- starting situation
Snapshot
 Latest ID =5
 Objects: [
 #5 Corporation["corporA", resumed , 11000.0, []],
 #4 StockHolder["holderD", suspended, 2000.0, 11000.0, []],
 #3 StockHolder["holderC", suspended, 3000.0, 11000.0, []],
 #2 StockHolder["holderB", suspended, 4000.0, 11000.0, []],
 #1 StockHolder["holderA", suspended, 2000.0, 11000.0, []]]
 Relations: [
 1 is part of 5,
 2 is part of 5,
 3 is part of 5,
 4 is part of 5]

the result of: x pa7 -- the sum of stock is the same,
 B sold some shares to A

Appendix: Gofer code 166

Snapshot
 Latest ID =5
 Objects: [
 #5 Corporation["corporA", resumed , 11000.0, []],
 #4 StockHolder["holderD", suspended, 2000.0, 11000.0, []],
 #3 StockHolder["holderC", suspended, 3000.0, 11000.0, []],
 #2 StockHolder["holderB", suspended, 1500.0, 11000.0, []],
 #1 StockHolder["holderA", suspended, 4500.0, 11000.0, []]]
 Relations: [
 1 is part of 5,
 2 is part of 5,
 3 is part of 5,
 4 is part of 5]

the result of: show pa8 -- the sum of stocks is the same, B is free

Snapshot
 Latest ID =5
 Objects: [
 #5 Corporation["corporA", resumed , 11000.0, []],
 #4 StockHolder["holderD", suspended, 2000.0, 11000.0, []],
 #3 StockHolder["holderC", suspended, 3000.0, 11000.0, []],
 #2 StockHolder["holderB", resumed , 0.0, 11000.0, []],
 #1 StockHolder["holderA", suspended, 6000.0, 11000.0, []]]
 Relations: [
 1 is part of 5,
 3 is part of 5,
 4 is part of 5]

-}
-- end of partnerships.gs

Appendix: Gofer code 167

USUFRUCT RIGHTS

-- usufruct.gs
-- chapter 9.2.3
-- usufruct <= tree (fruits can be just takenOut (collected) but not
-- pouredInto")
-- "usufruct rights are fruit trees"

class TreeWithFruits d o t => Usufructs d o t where
 createAParcel :: String -> Float -> ([ID], t) -> d o t -> d o t
 createAParcel = createTree
 createUsufruct :: [ID] -> t -> d o t -> d o t
 createUsufruct = aggregateTree

data UsufructRight = AParcel | Usufruct | ParcelWithUsufruct

instance Text UsufructRight where
 showsPrec d AParcel = showString "Parcel "
 showsPrec d Usufruct = showString "Usufruct "
 showsPrec d ParcelWithUsufruct = showString "FruitTree"
instance Relatable UsufructRight where
 relatable (PartOf, (AParcel, ParcelWithUsufruct)) = True
 relatable (PartOf, (Usufruct, ParcelWithUsufruct)) = True
 relatable _ = False
instance DestroyableT UsufructRight where
 destroyable AParcel = True
 destroyable Usufruct = True
 destroyable ParcelWithUsufruct = True
instance SuspendableT UsufructRight where
 suspendable AParcel = True
 suspendable Usufruct = True
 suspendable ParcelWithUsufruct = False
instance ContainersO Object UsufructRight where
 pourIn = error " not possible "
 takeOut = cond p (f,g) where
 p = leq . cross (id, getAmount)
 f = setAmount . pair (minus.swap.cross (id,getAmount),outr)
 g = error "not enough usufruct on the parcel"
instance TreeWithFruits TDB Object UsufructRight
instance TreeWithFruits Snapshot Object UsufructRight
instance Usufructs TDB Object UsufructRight
instance Usufructs Snapshot Object UsufructRight

-- examples:
uf0, uf1, uf2, uf3, uf4 :: TDB Object UsufructRight
uf0 = T [Snap 0 [] []]
uf1 = liftU (createAParcel "parcelA " 10.0 ([],AParcel)) uf0
uf2 = liftU (createAParcel "usufructA " 10.0 ([],Usufruct)) uf1
uf3 = liftU (createAParcel "parcelB " 5.0 ([],AParcel)) uf2
uf4 = liftU (createUsufruct [1,2] ParcelWithUsufruct) uf3

tuf1 :: Value
tuf1 = get Amount 3 uf4
-- Vf 5.0
tuf2 = updateObj (curry pourIn 7.0) 2 uf4
-- not possible

-- end of usufruct.gs

Appendix: Gofer code 168

UNIONS

-- unions.gs

-- administrative units (country unions)
-- creation, aggregation, secede example

class MovableArtifacts d o t => Unions d o t where
 createUnit :: String -> ([ID], t) -> d o t -> d o t
 createUnit = createMovArt

 aggregateUnits :: String -> [ID] -> t -> d o t -> d o t
 aggregateUnits = aggregateMovArt

 addUnit :: ID -> ID -> d o t -> d o t
 addUnit = addPart

 secedeUnit :: ID -> ID -> d o t -> d o t
 secedeUnit = removePart

-- movable aritifacts
data AdminUnit = State | Union
instance Text AdminUnit where
 showsPrec d State = showString "State"
 showsPrec d Union = showString "Union"

instance Relatable AdminUnit where
 relatable (PartOf, (State, Union)) = True
 relatable _ = False
instance DestroyableT AdminUnit where
 destroyable State = True
 destroyable Union = True
instance SuspendableT AdminUnit where
 suspendable State = True
 suspendable Union = True
--instance AdminUnitsO Object AdminUnit
instance MovableArtifacts TDB Object AdminUnit
instance MovableArtifacts Snapshot Object AdminUnit
instance Unions TDB Object AdminUnit
instance Unions Snapshot Object AdminUnit
-- case study: Canada and Quebec
-- secede Quebec, and put it back later
au0, au12 :: TDB Object AdminUnit
au11, au10, au9, au8, au7, au6, au5, au4, au3, au2, au1 ::
 Snapshot Object AdminUnit -> Snapshot Object AdminUnit
au0 = T [Snap 0 [] []]
au1 = createUnit "Quebec " ([], State)
au2 = createUnit "Ontario " ([], State)
au3 = createUnit "New Brunswick " ([], State)
au4 = createUnit "Nova Scotia " ([], State)
au5 = createUnit "Britisch Columbia" ([], State)
au6 = createUnit "Prince Edward Isl" ([], State)
au7 = createUnit "Alberta " ([], State)
au8 = createUnit "Manitoba " ([], State)
au9 = createUnit "Newfoundland " ([], State)
au10 = createUnit "Saskatchewan " ([], State)
au11 = aggregateUnits "Canada " [1,2,3,4,5,6,7,8,9,10] Union
au12 = liftU (au11 . au10 . au9 . au8 . au7 . au6 . au5 . au4 . au3 . au2 .
au1) au0

-- all parts of canada as a list of IDs
tstau0 = getRels PartOf 11 au12
-- all parts as a list of objects:
tstau1 = map (flip selectObj au12) (getRels PartOf 11 au12)

Appendix: Gofer code 169

-- use: x (outr tstau2)
tstau2 = liftU (secedeUnit 1 11) au12
tstau3 = pair (getRels PartOf 11, wsegregate 11) au12
tstau4 = liftU (evolve 1) tstau2
tstau5 = liftU (set Name (Vs "Quebec Noveau ") 12) tstau4
tstau6 = liftU (addUnit 12 11) tstau5

-- end of unions.gs

PARCELS

-- parcels.gs
-- parcels are liquids

class (Liquids d o t) => Parcels d o t where
 createParcel :: String -> Float -> ([ID], t) -> d o t -> d o t
 createParcel = createLiquid
 mergeParcel :: [ID] -> t -> d o t -> d o t
 mergeParcel = fusionLiquid

-- instances:
data Parcel = Parcel
instance Text Parcel where
 showsPrec d Parcel = showString "parcel"
instance Relatable Parcel
instance DestroyableT Parcel where
 destroyable Parcel = True
instance Parcels TDB Object Parcel
instance Parcels Snapshot Object Parcel
instance Liquids TDB Object Parcel
instance Liquids Snapshot Object Parcel

p0, p3, p4, p5, p6, p7 :: TDB Object Parcel
p1, p2 :: Snapshot Object Parcel -> Snapshot Object Parcel
p0 = T [Snap 0 [] []]
p1 = createParcel "parcelA" 2.4 ([], Parcel)
p2 = createParcel "parcelB" 2.8 ([], Parcel)
p3 = liftU (p2 . p1) p0
p4 = liftU (fusion [1,2] Parcel) p3
p5 = liftU (fissionN 3 3) p3
p6 = liftU (mergeParcel [1,2] Parcel) p3 -- 3 [1,2]
p7 = liftU (restructure [1,2] Parcel 4) p3 --4,5,6,7

-- end of parcels.gs

Dipl.-Ing. Damir Medak

CURRICULUM VITAE

19th Aug 1968born in Dubrovnik, Croatia,

1986 �������������������������������� � �!�"�#%$�&�'� �(���)�"�*
+� �,�&���,�"
1986-1987 army service,

1987 beginning of studies at Faculty of Geodesy, University of Zagreb,

1988-1992 teaching assistant in areas of mathematics and informatics,

1989-1992 six different rector awards for best students of the university,

1993 May -�$���$�����$. /�0#%,���&�$�+213��$������54�,�-�(����� �+7698:+� ��7;=<>+�$�?���@���+0A
 �!���)�B�"�&���$.,�(/$�+�,9��$
mark: 4.7 (excellent = 5),

1993 July employed as young scientist at the University of Zagreb,

1993 Oct guest researcher at Graz University of Technology (three months grant

given by Austrian government),

1994 June participated in GPS-campaigns EUREF'94 and CRODYN'94,

1995 Sep organization committee member of the GPS-campaign CROREF'95,

1995 Oct Ph.-D. studies at Vienna University of Technology, (a grant given by

Austrian government), advisor: Prof. Andre Frank,

1996 May "Formalizing and Representing Change of Spatial Socio-Economic Units

in GIS", ESF GISDATA Specialist Meeting, Nafplion (Greece),

1996 Oct "Ontology of Cadastre" Workshop, Vienna,

1997 July "Advances in Spatial Databases", 5th SSD, Berlin, Germany,

1997 Oct "Chorochronos Intensive Workshop '97", Petronel Carnuntum, Austria,

1998 Sep "3rd International Summer School on Advanced Functional

Programming", Braga, Portugal.

